xref: /csrg-svn/lib/libm/common_source/acosh.c (revision 31812)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] =
16 "@(#)acosh.c	1.2 (Berkeley) 8/21/85; 1.4 (ucb.elefunt) 07/10/87";
17 #endif not lint
18 /* ACOSH(X)
19  * RETURN THE INVERSE HYPERBOLIC COSINE OF X
20  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
21  * CODED IN C BY K.C. NG, 2/16/85;
22  * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
23  *
24  * Required system supported functions :
25  *	sqrt(x)
26  *
27  * Required kernel function:
28  *	log1p(x) 		...return log(1+x)
29  *
30  * Method :
31  *	Based on
32  *		acosh(x) = log [ x + sqrt(x*x-1) ]
33  *	we have
34  *		acosh(x) := log1p(x)+ln2,	if (x > 1.0E20); else
35  *		acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
36  *	These formulae avoid the over/underflow complication.
37  *
38  * Special cases:
39  *	acosh(x) is NaN with signal if x<1.
40  *	acosh(NaN) is NaN without signal.
41  *
42  * Accuracy:
43  *	acosh(x) returns the exact inverse hyperbolic cosine of x nearly
44  *	rounded. In a test run with 512,000 random arguments on a VAX, the
45  *	maximum observed error was 3.30 ulps (units of the last place) at
46  *	x=1.0070493753568216 .
47  *
48  * Constants:
49  * The hexadecimal values are the intended ones for the following constants.
50  * The decimal values may be used, provided that the compiler will convert
51  * from decimal to binary accurately enough to produce the hexadecimal values
52  * shown.
53  */
54 
55 #if (defined(VAX)||defined(TAHOE))	/* VAX D format */
56 #ifdef VAX
57 #define _0x(A,B)	0x/**/A/**/B
58 #else	/* VAX */
59 #define _0x(A,B)	0x/**/B/**/A
60 #endif	/* VAX */
61 /* static double */
62 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
63 /* ln2lo  =  1.6465949582897081279E-12   ; Hex  2^-39   *  .E7BCD5E4F1D9CC */
64 static long     ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
65 static long     ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
66 #define    ln2hi    (*(double*)ln2hix)
67 #define    ln2lo    (*(double*)ln2lox)
68 #else	/* IEEE double */
69 static double
70 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
71 ln2lo  =  1.9082149292705877000E-10   ; /*Hex  2^-33   *  1.A39EF35793C76 */
72 #endif
73 
74 double acosh(x)
75 double x;
76 {
77 	double log1p(),sqrt(),t,big=1.E20; /* big+1==big */
78 
79 #if (!defined(VAX)&&!defined(TAHOE))
80 	if(x!=x) return(x);	/* x is NaN */
81 #endif
82 
83     /* return log1p(x) + log(2) if x is large */
84 	if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
85 
86 	t=sqrt(x-1.0);
87 	return(log1p(t*(t+sqrt(x+1.0))));
88 }
89