xref: /csrg-svn/lib/libm/common/trig.h (revision 61282)
134127Sbostic /*
2*61282Sbostic  * Copyright (c) 1987, 1993
3*61282Sbostic  *	The Regents of the University of California.  All rights reserved.
434127Sbostic  *
542653Sbostic  * %sccs.include.redist.c%
634127Sbostic  *
7*61282Sbostic  *	@(#)trig.h	8.1 (Berkeley) 06/04/93
831931Szliu  */
934127Sbostic 
1035680Sbostic #include "mathimpl.h"
1135680Sbostic 
1235680Sbostic vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0)
1335680Sbostic vc(PIo4,   7.8539816339744830676E-1 ,0fda,4049,68c2,a221,  0, .C90FDAA22168C2)
1435680Sbostic vc(PIo2,   1.5707963267948966135E0  ,0fda,40c9,68c2,a221,  1, .C90FDAA22168C2)
1535680Sbostic vc(PI3o4,  2.3561944901923449203E0  ,cbe3,4116,0e92,f999,  2, .96CBE3F9990E92)
1635680Sbostic vc(PI,     3.1415926535897932270E0  ,0fda,4149,68c2,a221,  2, .C90FDAA22168C2)
1735680Sbostic vc(PI2,    6.2831853071795864540E0  ,0fda,41c9,68c2,a221,  3, .C90FDAA22168C2)
1835680Sbostic 
1935680Sbostic ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4)
2035680Sbostic ic(PIo4,   7.8539816339744827900E-1 , -1, 1.921FB54442D18)
2135680Sbostic ic(PIo2,   1.5707963267948965580E0  ,  0, 1.921FB54442D18)
2235680Sbostic ic(PI3o4,  2.3561944901923448370E0  ,  1, 1.2D97C7F3321D2)
2335680Sbostic ic(PI,     3.1415926535897931160E0  ,  1, 1.921FB54442D18)
2435680Sbostic ic(PI2,    6.2831853071795862320E0  ,  2, 1.921FB54442D18)
2535680Sbostic 
2635680Sbostic #ifdef vccast
2735680Sbostic #define	thresh	vccast(thresh)
2835680Sbostic #define	PIo4	vccast(PIo4)
2935680Sbostic #define	PIo2	vccast(PIo2)
3035680Sbostic #define	PI3o4	vccast(PI3o4)
3135680Sbostic #define	PI	vccast(PI)
3235680Sbostic #define	PI2	vccast(PI2)
3335680Sbostic #endif
3435680Sbostic 
3531931Szliu #ifdef national
3631931Szliu static long fmaxx[]	= { 0xffffffff, 0x7fefffff};
3731931Szliu #define   fmax    (*(double*)fmaxx)
3831931Szliu #endif	/* national */
3935680Sbostic 
4035680Sbostic static const double
4131931Szliu 	zero = 0,
4231931Szliu 	one = 1,
4331931Szliu 	negone = -1,
4431931Szliu 	half = 1.0/2.0,
4531931Szliu 	small = 1E-10,	/* 1+small**2 == 1; better values for small:
4631931Szliu 			 *		small	= 1.5E-9 for VAX D
4731931Szliu 			 *			= 1.2E-8 for IEEE Double
4831931Szliu 			 *			= 2.8E-10 for IEEE Extended
4931931Szliu 			 */
5031931Szliu 	big = 1E20;	/* big := 1/(small**2) */
5131931Szliu 
5231931Szliu /* sin__S(x*x) ... re-implemented as a macro
5331931Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
5431931Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
5531931Szliu  * CODED IN C BY K.C. NG, 1/21/85;
5631931Szliu  * REVISED BY K.C. NG on 8/13/85.
5731931Szliu  *
5831931Szliu  *	    sin(x*k) - x
5931931Szliu  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
6031931Szliu  *	            x
6131931Szliu  * value of pi in machine precision:
6231931Szliu  *
6331931Szliu  *	Decimal:
6431931Szliu  *		pi = 3.141592653589793 23846264338327 .....
6531931Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
6631931Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
6731931Szliu  *
6831931Szliu  *	Hexadecimal:
6931931Szliu  *		pi = 3.243F6A8885A308D313198A2E....
7031931Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
7131931Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
7231931Szliu  *
7331931Szliu  * Method:
7431931Szliu  *	1. Let z=x*x. Create a polynomial approximation to
7531931Szliu  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
7631931Szliu  *	Then
7731931Szliu  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
7831931Szliu  *
7931931Szliu  *	The coefficient S's are obtained by a special Remez algorithm.
8031931Szliu  *
8131931Szliu  * Accuracy:
8231931Szliu  *	In the absence of rounding error, the approximation has absolute error
8331931Szliu  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
8431931Szliu  *
8531931Szliu  * Constants:
8631931Szliu  * The hexadecimal values are the intended ones for the following constants.
8731931Szliu  * The decimal values may be used, provided that the compiler will convert
8831931Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
8931931Szliu  * shown.
9031931Szliu  *
9131931Szliu  */
9231931Szliu 
9335680Sbostic vc(S0, -1.6666666666666646660E-1  ,aaaa,bf2a,aa71,aaaa,  -2, -.AAAAAAAAAAAA71)
9435680Sbostic vc(S1,  8.3333333333297230413E-3  ,8888,3d08,477f,8888,  -6,  .8888888888477F)
9535680Sbostic vc(S2, -1.9841269838362403710E-4  ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057)
9635680Sbostic vc(S3,  2.7557318019967078930E-6  ,ef1c,3738,bedc,a326, -18,  .B8EF1CA326BEDC)
9735680Sbostic vc(S4, -2.5051841873876551398E-8  ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3)
9835680Sbostic vc(S5,  1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32,  .B03D9C6D26CCCC)
9935680Sbostic vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82)
10035680Sbostic 
10135680Sbostic ic(S0, -1.6666666666666463126E-1  ,  -3, -1.555555555550C)
10235680Sbostic ic(S1,  8.3333333332992771264E-3  ,  -7,  1.111111110C461)
10335680Sbostic ic(S2, -1.9841269816180999116E-4  , -13, -1.A01A019746345)
10435680Sbostic ic(S3,  2.7557309793219876880E-6  , -19,  1.71DE3209CDCD9)
10535680Sbostic ic(S4, -2.5050225177523807003E-8  , -26, -1.AE5C0E319A4EF)
10635680Sbostic ic(S5,  1.5868926979889205164E-10 , -33,  1.5CF61DF672B13)
10735680Sbostic 
10835680Sbostic #ifdef vccast
10935680Sbostic #define	S0	vccast(S0)
11035680Sbostic #define	S1	vccast(S1)
11135680Sbostic #define	S2	vccast(S2)
11235680Sbostic #define	S3	vccast(S3)
11335680Sbostic #define	S4	vccast(S4)
11435680Sbostic #define	S5	vccast(S5)
11535680Sbostic #define	S6	vccast(S6)
11631931Szliu #endif
11731931Szliu 
11831931Szliu #if defined(vax)||defined(tahoe)
11935680Sbostic #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
12031931Szliu #else 	/* defined(vax)||defined(tahoe) */
12135680Sbostic #  define	sin__S(z)	(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
12231931Szliu #endif 	/* defined(vax)||defined(tahoe) */
12331931Szliu 
12431931Szliu /* cos__C(x*x) ... re-implemented as a macro
12531931Szliu  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
12631931Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
12731931Szliu  * CODED IN C BY K.C. NG, 1/21/85;
12831931Szliu  * REVISED BY K.C. NG on 8/13/85.
12931931Szliu  *
13031931Szliu  *	   		    x*x
13131931Szliu  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
13231931Szliu  *	  		     2
13331931Szliu  * PI is the rounded value of pi in machine precision :
13431931Szliu  *
13531931Szliu  *	Decimal:
13631931Szliu  *		pi = 3.141592653589793 23846264338327 .....
13731931Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
13831931Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
13931931Szliu  *
14031931Szliu  *	Hexadecimal:
14131931Szliu  *		pi = 3.243F6A8885A308D313198A2E....
14231931Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
14331931Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
14431931Szliu  *
14531931Szliu  *
14631931Szliu  * Method:
14731931Szliu  *	1. Let z=x*x. Create a polynomial approximation to
14831931Szliu  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
14931931Szliu  *	then
15031931Szliu  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
15131931Szliu  *
15231931Szliu  *	The coefficient C's are obtained by a special Remez algorithm.
15331931Szliu  *
15431931Szliu  * Accuracy:
15531931Szliu  *	In the absence of rounding error, the approximation has absolute error
15631931Szliu  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
15731931Szliu  *
15831931Szliu  *
15931931Szliu  * Constants:
16031931Szliu  * The hexadecimal values are the intended ones for the following constants.
16131931Szliu  * The decimal values may be used, provided that the compiler will convert
16231931Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
16331931Szliu  * shown.
16431931Szliu  */
16531931Szliu 
16635680Sbostic vc(C0,  4.1666666666666504759E-2  ,aaaa,3e2a,a9f0,aaaa,  -4,  .AAAAAAAAAAA9F0)
16735680Sbostic vc(C1, -1.3888888888865302059E-3  ,0b60,bbb6,0cca,b60a,  -9, -.B60B60B60A0CCA)
16835680Sbostic vc(C2,  2.4801587285601038265E-5  ,0d00,38d0,098f,cdcd, -15,  .D00D00CDCD098F)
16935680Sbostic vc(C3, -2.7557313470902390219E-7  ,f27b,b593,e805,b593, -21, -.93F27BB593E805)
17035680Sbostic vc(C4,  2.0875623401082232009E-9  ,74c8,320f,3ff0,fa1e, -28,  .8F74C8FA1E3FF0)
17135680Sbostic vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63)
17231931Szliu 
17335680Sbostic ic(C0,  4.1666666666666504759E-2  ,  -5,  1.555555555553E)
17435680Sbostic ic(C1, -1.3888888888865301516E-3  , -10, -1.6C16C16C14199)
17535680Sbostic ic(C2,  2.4801587269650015769E-5  , -16,  1.A01A01971CAEB)
17635680Sbostic ic(C3, -2.7557304623183959811E-7  , -22, -1.27E4F1314AD1A)
17735680Sbostic ic(C4,  2.0873958177697780076E-9  , -29,  1.1EE3B60DDDC8C)
17835680Sbostic ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E)
17935680Sbostic 
18035680Sbostic #ifdef vccast
18135680Sbostic #define	C0	vccast(C0)
18235680Sbostic #define	C1	vccast(C1)
18335680Sbostic #define	C2	vccast(C2)
18435680Sbostic #define	C3	vccast(C3)
18535680Sbostic #define	C4	vccast(C4)
18635680Sbostic #define	C5	vccast(C5)
18735680Sbostic #endif
18835680Sbostic 
18931931Szliu #define cos__C(z)	(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))
190