134127Sbostic /* 2*61282Sbostic * Copyright (c) 1987, 1993 3*61282Sbostic * The Regents of the University of California. All rights reserved. 434127Sbostic * 542653Sbostic * %sccs.include.redist.c% 634127Sbostic * 7*61282Sbostic * @(#)trig.h 8.1 (Berkeley) 06/04/93 831931Szliu */ 934127Sbostic 1035680Sbostic #include "mathimpl.h" 1135680Sbostic 1235680Sbostic vc(thresh, 2.6117239648121182150E-1 ,b863,3f85,6ea0,6b02, -1, .85B8636B026EA0) 1335680Sbostic vc(PIo4, 7.8539816339744830676E-1 ,0fda,4049,68c2,a221, 0, .C90FDAA22168C2) 1435680Sbostic vc(PIo2, 1.5707963267948966135E0 ,0fda,40c9,68c2,a221, 1, .C90FDAA22168C2) 1535680Sbostic vc(PI3o4, 2.3561944901923449203E0 ,cbe3,4116,0e92,f999, 2, .96CBE3F9990E92) 1635680Sbostic vc(PI, 3.1415926535897932270E0 ,0fda,4149,68c2,a221, 2, .C90FDAA22168C2) 1735680Sbostic vc(PI2, 6.2831853071795864540E0 ,0fda,41c9,68c2,a221, 3, .C90FDAA22168C2) 1835680Sbostic 1935680Sbostic ic(thresh, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4) 2035680Sbostic ic(PIo4, 7.8539816339744827900E-1 , -1, 1.921FB54442D18) 2135680Sbostic ic(PIo2, 1.5707963267948965580E0 , 0, 1.921FB54442D18) 2235680Sbostic ic(PI3o4, 2.3561944901923448370E0 , 1, 1.2D97C7F3321D2) 2335680Sbostic ic(PI, 3.1415926535897931160E0 , 1, 1.921FB54442D18) 2435680Sbostic ic(PI2, 6.2831853071795862320E0 , 2, 1.921FB54442D18) 2535680Sbostic 2635680Sbostic #ifdef vccast 2735680Sbostic #define thresh vccast(thresh) 2835680Sbostic #define PIo4 vccast(PIo4) 2935680Sbostic #define PIo2 vccast(PIo2) 3035680Sbostic #define PI3o4 vccast(PI3o4) 3135680Sbostic #define PI vccast(PI) 3235680Sbostic #define PI2 vccast(PI2) 3335680Sbostic #endif 3435680Sbostic 3531931Szliu #ifdef national 3631931Szliu static long fmaxx[] = { 0xffffffff, 0x7fefffff}; 3731931Szliu #define fmax (*(double*)fmaxx) 3831931Szliu #endif /* national */ 3935680Sbostic 4035680Sbostic static const double 4131931Szliu zero = 0, 4231931Szliu one = 1, 4331931Szliu negone = -1, 4431931Szliu half = 1.0/2.0, 4531931Szliu small = 1E-10, /* 1+small**2 == 1; better values for small: 4631931Szliu * small = 1.5E-9 for VAX D 4731931Szliu * = 1.2E-8 for IEEE Double 4831931Szliu * = 2.8E-10 for IEEE Extended 4931931Szliu */ 5031931Szliu big = 1E20; /* big := 1/(small**2) */ 5131931Szliu 5231931Szliu /* sin__S(x*x) ... re-implemented as a macro 5331931Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) 5431931Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 5531931Szliu * CODED IN C BY K.C. NG, 1/21/85; 5631931Szliu * REVISED BY K.C. NG on 8/13/85. 5731931Szliu * 5831931Szliu * sin(x*k) - x 5931931Szliu * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded 6031931Szliu * x 6131931Szliu * value of pi in machine precision: 6231931Szliu * 6331931Szliu * Decimal: 6431931Szliu * pi = 3.141592653589793 23846264338327 ..... 6531931Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 6631931Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 6731931Szliu * 6831931Szliu * Hexadecimal: 6931931Szliu * pi = 3.243F6A8885A308D313198A2E.... 7031931Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 7131931Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 7231931Szliu * 7331931Szliu * Method: 7431931Szliu * 1. Let z=x*x. Create a polynomial approximation to 7531931Szliu * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5). 7631931Szliu * Then 7731931Szliu * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5) 7831931Szliu * 7931931Szliu * The coefficient S's are obtained by a special Remez algorithm. 8031931Szliu * 8131931Szliu * Accuracy: 8231931Szliu * In the absence of rounding error, the approximation has absolute error 8331931Szliu * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. 8431931Szliu * 8531931Szliu * Constants: 8631931Szliu * The hexadecimal values are the intended ones for the following constants. 8731931Szliu * The decimal values may be used, provided that the compiler will convert 8831931Szliu * from decimal to binary accurately enough to produce the hexadecimal values 8931931Szliu * shown. 9031931Szliu * 9131931Szliu */ 9231931Szliu 9335680Sbostic vc(S0, -1.6666666666666646660E-1 ,aaaa,bf2a,aa71,aaaa, -2, -.AAAAAAAAAAAA71) 9435680Sbostic vc(S1, 8.3333333333297230413E-3 ,8888,3d08,477f,8888, -6, .8888888888477F) 9535680Sbostic vc(S2, -1.9841269838362403710E-4 ,0d00,ba50,1057,cf8a, -12, -.D00D00CF8A1057) 9635680Sbostic vc(S3, 2.7557318019967078930E-6 ,ef1c,3738,bedc,a326, -18, .B8EF1CA326BEDC) 9735680Sbostic vc(S4, -2.5051841873876551398E-8 ,3195,b3d7,e1d3,374c, -25, -.D73195374CE1D3) 9835680Sbostic vc(S5, 1.6028995389845827653E-10 ,3d9c,3030,cccc,6d26, -32, .B03D9C6D26CCCC) 9935680Sbostic vc(S6, -6.2723499671769283121E-13 ,8d0b,ac30,ea82,7561, -40, -.B08D0B7561EA82) 10035680Sbostic 10135680Sbostic ic(S0, -1.6666666666666463126E-1 , -3, -1.555555555550C) 10235680Sbostic ic(S1, 8.3333333332992771264E-3 , -7, 1.111111110C461) 10335680Sbostic ic(S2, -1.9841269816180999116E-4 , -13, -1.A01A019746345) 10435680Sbostic ic(S3, 2.7557309793219876880E-6 , -19, 1.71DE3209CDCD9) 10535680Sbostic ic(S4, -2.5050225177523807003E-8 , -26, -1.AE5C0E319A4EF) 10635680Sbostic ic(S5, 1.5868926979889205164E-10 , -33, 1.5CF61DF672B13) 10735680Sbostic 10835680Sbostic #ifdef vccast 10935680Sbostic #define S0 vccast(S0) 11035680Sbostic #define S1 vccast(S1) 11135680Sbostic #define S2 vccast(S2) 11235680Sbostic #define S3 vccast(S3) 11335680Sbostic #define S4 vccast(S4) 11435680Sbostic #define S5 vccast(S5) 11535680Sbostic #define S6 vccast(S6) 11631931Szliu #endif 11731931Szliu 11831931Szliu #if defined(vax)||defined(tahoe) 11935680Sbostic # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6))))))) 12031931Szliu #else /* defined(vax)||defined(tahoe) */ 12135680Sbostic # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5)))))) 12231931Szliu #endif /* defined(vax)||defined(tahoe) */ 12331931Szliu 12431931Szliu /* cos__C(x*x) ... re-implemented as a macro 12531931Szliu * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) 12631931Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 12731931Szliu * CODED IN C BY K.C. NG, 1/21/85; 12831931Szliu * REVISED BY K.C. NG on 8/13/85. 12931931Szliu * 13031931Szliu * x*x 13131931Szliu * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI, 13231931Szliu * 2 13331931Szliu * PI is the rounded value of pi in machine precision : 13431931Szliu * 13531931Szliu * Decimal: 13631931Szliu * pi = 3.141592653589793 23846264338327 ..... 13731931Szliu * 53 bits PI = 3.141592653589793 115997963 ..... , 13831931Szliu * 56 bits PI = 3.141592653589793 227020265 ..... , 13931931Szliu * 14031931Szliu * Hexadecimal: 14131931Szliu * pi = 3.243F6A8885A308D313198A2E.... 14231931Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 14331931Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 14431931Szliu * 14531931Szliu * 14631931Szliu * Method: 14731931Szliu * 1. Let z=x*x. Create a polynomial approximation to 14831931Szliu * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5) 14931931Szliu * then 15031931Szliu * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5) 15131931Szliu * 15231931Szliu * The coefficient C's are obtained by a special Remez algorithm. 15331931Szliu * 15431931Szliu * Accuracy: 15531931Szliu * In the absence of rounding error, the approximation has absolute error 15631931Szliu * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. 15731931Szliu * 15831931Szliu * 15931931Szliu * Constants: 16031931Szliu * The hexadecimal values are the intended ones for the following constants. 16131931Szliu * The decimal values may be used, provided that the compiler will convert 16231931Szliu * from decimal to binary accurately enough to produce the hexadecimal values 16331931Szliu * shown. 16431931Szliu */ 16531931Szliu 16635680Sbostic vc(C0, 4.1666666666666504759E-2 ,aaaa,3e2a,a9f0,aaaa, -4, .AAAAAAAAAAA9F0) 16735680Sbostic vc(C1, -1.3888888888865302059E-3 ,0b60,bbb6,0cca,b60a, -9, -.B60B60B60A0CCA) 16835680Sbostic vc(C2, 2.4801587285601038265E-5 ,0d00,38d0,098f,cdcd, -15, .D00D00CDCD098F) 16935680Sbostic vc(C3, -2.7557313470902390219E-7 ,f27b,b593,e805,b593, -21, -.93F27BB593E805) 17035680Sbostic vc(C4, 2.0875623401082232009E-9 ,74c8,320f,3ff0,fa1e, -28, .8F74C8FA1E3FF0) 17135680Sbostic vc(C5, -1.1355178117642986178E-11 ,c32d,ae47,5a63,0a5c, -36, -.C7C32D0A5C5A63) 17231931Szliu 17335680Sbostic ic(C0, 4.1666666666666504759E-2 , -5, 1.555555555553E) 17435680Sbostic ic(C1, -1.3888888888865301516E-3 , -10, -1.6C16C16C14199) 17535680Sbostic ic(C2, 2.4801587269650015769E-5 , -16, 1.A01A01971CAEB) 17635680Sbostic ic(C3, -2.7557304623183959811E-7 , -22, -1.27E4F1314AD1A) 17735680Sbostic ic(C4, 2.0873958177697780076E-9 , -29, 1.1EE3B60DDDC8C) 17835680Sbostic ic(C5, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E) 17935680Sbostic 18035680Sbostic #ifdef vccast 18135680Sbostic #define C0 vccast(C0) 18235680Sbostic #define C1 vccast(C1) 18335680Sbostic #define C2 vccast(C2) 18435680Sbostic #define C3 vccast(C3) 18535680Sbostic #define C4 vccast(C4) 18635680Sbostic #define C5 vccast(C5) 18735680Sbostic #endif 18835680Sbostic 18931931Szliu #define cos__C(z) (z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5)))))) 190