xref: /csrg-svn/lib/libm/common/trig.c (revision 31855)
124582Szliu /*
224582Szliu  * Copyright (c) 1985 Regents of the University of California.
324582Szliu  *
424582Szliu  * Use and reproduction of this software are granted  in  accordance  with
524582Szliu  * the terms and conditions specified in  the  Berkeley  Software  License
624582Szliu  * Agreement (in particular, this entails acknowledgement of the programs'
724582Szliu  * source, and inclusion of this notice) with the additional understanding
824582Szliu  * that  all  recipients  should regard themselves as participants  in  an
924582Szliu  * ongoing  research  project and hence should  feel  obligated  to report
1024582Szliu  * their  experiences (good or bad) with these elementary function  codes,
1124582Szliu  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
1224582Szliu  */
1324582Szliu 
1424582Szliu #ifndef lint
1524720Selefunt static char sccsid[] =
16*31855Szliu "@(#)trig.c	1.2 (Berkeley) 8/22/85; 1.7 (ucb.elefunt) 07/13/87";
17*31855Szliu #endif	/* not lint */
1824582Szliu 
1924582Szliu /* SIN(X), COS(X), TAN(X)
2024582Szliu  * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY
2124582Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
2224582Szliu  * CODED IN C BY K.C. NG, 1/8/85;
2324582Szliu  * REVISED BY W. Kahan and K.C. NG, 8/17/85.
2424582Szliu  *
2524582Szliu  * Required system supported functions:
2624582Szliu  *      copysign(x,y)
2724582Szliu  *      finite(x)
2824582Szliu  *      drem(x,p)
2924582Szliu  *
3024582Szliu  * Static kernel functions:
3124582Szliu  *      sin__S(z)       ....sin__S(x*x) return (sin(x)-x)/x
3224582Szliu  *      cos__C(z)       ....cos__C(x*x) return cos(x)-1-x*x/2
3324582Szliu  *
3424582Szliu  * Method.
3524582Szliu  *      Let S and C denote the polynomial approximations to sin and cos
3624582Szliu  *      respectively on [-PI/4, +PI/4].
3724582Szliu  *
3824582Szliu  *      SIN and COS:
3924582Szliu  *      1. Reduce the argument into [-PI , +PI] by the remainder function.
4024582Szliu  *      2. For x in (-PI,+PI), there are three cases:
4124582Szliu  *			case 1:	|x| < PI/4
4224582Szliu  *			case 2:	PI/4 <= |x| < 3PI/4
4324582Szliu  *			case 3:	3PI/4 <= |x|.
4424582Szliu  *	   SIN and COS of x are computed by:
4524582Szliu  *
4624582Szliu  *                   sin(x)      cos(x)       remark
4724582Szliu  *     ----------------------------------------------------------
4824582Szliu  *        case 1     S(x)         C(x)
4924582Szliu  *        case 2 sign(x)*C(y)     S(y)      y=PI/2-|x|
5024582Szliu  *        case 3     S(y)        -C(y)      y=sign(x)*(PI-|x|)
5124582Szliu  *     ----------------------------------------------------------
5224582Szliu  *
5324582Szliu  *      TAN:
5424582Szliu  *      1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function.
5524582Szliu  *      2. For x in (-PI/2,+PI/2), there are two cases:
5624582Szliu  *			case 1:	|x| < PI/4
5724582Szliu  *			case 2:	PI/4 <= |x| < PI/2
5824582Szliu  *         TAN of x is computed by:
5924582Szliu  *
6024582Szliu  *                   tan (x)            remark
6124582Szliu  *     ----------------------------------------------------------
6224582Szliu  *        case 1     S(x)/C(x)
6324582Szliu  *        case 2     C(y)/S(y)     y=sign(x)*(PI/2-|x|)
6424582Szliu  *     ----------------------------------------------------------
6524582Szliu  *
6624582Szliu  *   Notes:
6724582Szliu  *      1. S(y) and C(y) were computed by:
6824582Szliu  *              S(y) = y+y*sin__S(y*y)
6924582Szliu  *              C(y) = 1-(y*y/2-cos__C(x*x))          ... if y*y/2 <  thresh,
7024582Szliu  *                   = 0.5-((y*y/2-0.5)-cos__C(x*x))  ... if y*y/2 >= thresh.
7124582Szliu  *         where
7224582Szliu  *              thresh = 0.5*(acos(3/4)**2)
7324582Szliu  *
7424582Szliu  *      2. For better accuracy, we use the following formula for S/C for tan
7524582Szliu  *         (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then
7624582Szliu  *
7724582Szliu  *                            y+y*ss             (y*y/2-cc)+ss
7824582Szliu  *             S(y)/C(y)   = -------- = y + y * ---------------.
7924582Szliu  *                               C                     C
8024582Szliu  *
8124582Szliu  *
8224582Szliu  * Special cases:
8324582Szliu  *      Let trig be any of sin, cos, or tan.
8424582Szliu  *      trig(+-INF)  is NaN, with signals;
8524582Szliu  *      trig(NaN)    is that NaN;
8624582Szliu  *      trig(n*PI/2) is exact for any integer n, provided n*PI is
8724582Szliu  *      representable; otherwise, trig(x) is inexact.
8824582Szliu  *
8924582Szliu  * Accuracy:
9024582Szliu  *      trig(x) returns the exact trig(x*pi/PI) nearly rounded, where
9124582Szliu  *
9224582Szliu  *      Decimal:
9324582Szliu  *              pi = 3.141592653589793 23846264338327 .....
9424582Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
9524582Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
9624582Szliu  *
9724582Szliu  *      Hexadecimal:
9824582Szliu  *              pi = 3.243F6A8885A308D313198A2E....
9924582Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18    error=.276ulps
10024582Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
10124582Szliu  *
10224582Szliu  *      In a test run with 1,024,000 random arguments on a VAX, the maximum
10324582Szliu  *      observed errors (compared with the exact trig(x*pi/PI)) were
10424582Szliu  *                      tan(x) : 2.09 ulps (around 4.716340404662354)
10524582Szliu  *                      sin(x) : .861 ulps
10624582Szliu  *                      cos(x) : .857 ulps
10724582Szliu  *
10824582Szliu  * Constants:
10924582Szliu  * The hexadecimal values are the intended ones for the following constants.
11024582Szliu  * The decimal values may be used, provided that the compiler will convert
11124582Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
11224582Szliu  * shown.
11324582Szliu  */
11424582Szliu 
115*31855Szliu #if defined(vax)||defined(tahoe)
116*31855Szliu #ifdef vax
11731814Szliu #define _0x(A,B)	0x/**/A/**/B
118*31855Szliu #else	/* vax */
11931814Szliu #define _0x(A,B)	0x/**/B/**/A
120*31855Szliu #endif	/* vax */
12124582Szliu /*thresh =  2.6117239648121182150E-1    , Hex  2^ -1   *  .85B8636B026EA0 */
12224582Szliu /*PIo4   =  7.8539816339744830676E-1    , Hex  2^  0   *  .C90FDAA22168C2 */
12324582Szliu /*PIo2   =  1.5707963267948966135E0     , Hex  2^  1   *  .C90FDAA22168C2 */
12424582Szliu /*PI3o4  =  2.3561944901923449203E0     , Hex  2^  2   *  .96CBE3F9990E92 */
12524582Szliu /*PI     =  3.1415926535897932270E0     , Hex  2^  2   *  .C90FDAA22168C2 */
12624582Szliu /*PI2    =  6.2831853071795864540E0     ; Hex  2^  3   *  .C90FDAA22168C2 */
12731814Szliu static long    threshx[] = { _0x(b863,3f85), _0x(6ea0,6b02)};
12824582Szliu #define   thresh    (*(double*)threshx)
12931814Szliu static long      PIo4x[] = { _0x(0fda,4049), _0x(68c2,a221)};
13024582Szliu #define     PIo4    (*(double*)PIo4x)
13131814Szliu static long      PIo2x[] = { _0x(0fda,40c9), _0x(68c2,a221)};
13224582Szliu #define     PIo2    (*(double*)PIo2x)
13331814Szliu static long      PI3o4x[] = { _0x(cbe3,4116), _0x(0e92,f999)};
13424582Szliu #define     PI3o4    (*(double*)PI3o4x)
13531814Szliu static long        PIx[] = { _0x(0fda,4149), _0x(68c2,a221)};
13624582Szliu #define       PI    (*(double*)PIx)
13731814Szliu static long       PI2x[] = { _0x(0fda,41c9), _0x(68c2,a221)};
13824582Szliu #define      PI2    (*(double*)PI2x)
139*31855Szliu #else   /* defined(vax)||defined(tahoe) */
14024582Szliu static double
14124582Szliu thresh =  2.6117239648121182150E-1    , /*Hex  2^ -2   *  1.0B70C6D604DD4 */
14224582Szliu PIo4   =  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
14324582Szliu PIo2   =  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
14424582Szliu PI3o4  =  2.3561944901923448370E0     , /*Hex  2^  1   *  1.2D97C7F3321D2 */
14524582Szliu PI     =  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
14624582Szliu PI2    =  6.2831853071795862320E0     ; /*Hex  2^  2   *  1.921FB54442D18 */
147*31855Szliu #ifdef national
14831851Szliu static long    fmaxx[] = { 0xffffffff, 0x7fefffff};
14931851Szliu #define   fmax    (*(double*)fmaxx)
150*31855Szliu #endif	/* national */
151*31855Szliu #endif	/* defined(vax)||defined(tahoe) */
15224582Szliu static double zero=0, one=1, negone= -1, half=1.0/2.0,
15324582Szliu 	      small=1E-10, /* 1+small**2==1; better values for small:
15424582Szliu 					small = 1.5E-9 for VAX D
15524582Szliu 					      = 1.2E-8 for IEEE Double
15624582Szliu 					      = 2.8E-10 for IEEE Extended */
15724582Szliu 	      big=1E20;    /* big = 1/(small**2) */
15824582Szliu 
tan(x)15924582Szliu double tan(x)
16024582Szliu double x;
16124582Szliu {
16224582Szliu         double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c;
163*31855Szliu 	int finite(),k;
164*31855Szliu 
16524582Szliu         /* tan(NaN) and tan(INF) must be NaN */
166*31855Szliu         if(!finite(x))  return(x-x);
16724582Szliu         x=drem(x,PI);        /* reduce x into [-PI/2, PI/2] */
16824582Szliu         a=copysign(x,one);   /* ... = abs(x) */
16924582Szliu 	if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); }
17024582Szliu 	   else { k=0; if(a < small ) { big + a; return(x); }}
17124582Szliu 
17224582Szliu         z  = x*x;
17324582Szliu         cc = cos__C(z);
17424582Szliu         ss = sin__S(z);
17524582Szliu 	z  = z*half ;		/* Next get c = cos(x) accurately */
17624582Szliu 	c  = (z >= thresh )? half-((z-half)-cc) : one-(z-cc);
17724582Szliu 	if (k==0) return ( x + (x*(z-(cc-ss)))/c );  /* sin/cos */
178*31855Szliu #ifdef national
17931851Szliu 	else if(x==0.0) return copysign(fmax,x);  /* no inf on 32k */
180*31855Szliu #endif	/* national */
18131851Szliu 	else return( c/(x+x*ss) );	/*          ... cos/sin */
18224582Szliu 
18324582Szliu 
18424582Szliu }
sin(x)18524582Szliu double sin(x)
18624582Szliu double x;
18724582Szliu {
18824582Szliu         double copysign(),drem(),sin__S(),cos__C(),a,c,z;
189*31855Szliu         int finite();
190*31855Szliu 
19124582Szliu         /* sin(NaN) and sin(INF) must be NaN */
192*31855Szliu         if(!finite(x))  return(x-x);
19324582Szliu 	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
19424582Szliu         a=copysign(x,one);
19524582Szliu 	if( a >= PIo4 ) {
19624582Szliu 	     if( a >= PI3o4 )   /* 	.. in [3PI/4,  PI ]  */
19724582Szliu 		x=copysign((a=PI-a),x);
19824582Szliu 
19924582Szliu 	     else {	       /* 	.. in [PI/4, 3PI/4]  */
20024582Szliu 		a=PIo2-a;      /* return sign(x)*C(PI/2-|x|) */
20124582Szliu 		z=a*a;
20224582Szliu 		c=cos__C(z);
20324582Szliu 		z=z*half;
20424582Szliu 		a=(z>=thresh)?half-((z-half)-c):one-(z-c);
20524582Szliu 		return(copysign(a,x));
20624582Szliu 		}
20724582Szliu              }
20824582Szliu 
20924582Szliu         /* return S(x) */
21024582Szliu             if( a < small) { big + a; return(x);}
21124582Szliu             return(x+x*sin__S(x*x));
21224582Szliu }
21324582Szliu 
cos(x)21424582Szliu double cos(x)
21524582Szliu double x;
21624582Szliu {
21724582Szliu         double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0;
218*31855Szliu         int finite();
219*31855Szliu 
22024582Szliu         /* cos(NaN) and cos(INF) must be NaN */
221*31855Szliu         if(!finite(x))  return(x-x);
22224582Szliu 	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
22324582Szliu         a=copysign(x,one);
22424582Szliu 	if ( a >= PIo4 ) {
22524582Szliu 	     if ( a >= PI3o4 )  /* 	.. in [3PI/4,  PI ]  */
22624582Szliu 		{ a=PI-a; s= negone; }
22724582Szliu 
22824582Szliu 	     else 	       /* 	.. in [PI/4, 3PI/4]  */
22924582Szliu                                /*        return  S(PI/2-|x|) */
23024582Szliu 		{ a=PIo2-a; return(a+a*sin__S(a*a));}
23124582Szliu 	     }
23224582Szliu 
23324582Szliu 
23424582Szliu         /* return s*C(a) */
23524582Szliu             if( a < small) { big + a; return(s);}
23624582Szliu 	    z=a*a;
23724582Szliu 	    c=cos__C(z);
23824582Szliu 	    z=z*half;
23924582Szliu 	    a=(z>=thresh)?half-((z-half)-c):one-(z-c);
24024582Szliu 	    return(copysign(a,s));
24124582Szliu }
24224582Szliu 
24324582Szliu 
24424582Szliu /* sin__S(x*x)
24524582Szliu  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
24624582Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
24724582Szliu  * CODED IN C BY K.C. NG, 1/21/85;
24824582Szliu  * REVISED BY K.C. NG on 8/13/85.
24924582Szliu  *
25024582Szliu  *	    sin(x*k) - x
25124582Szliu  * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
25224582Szliu  *	            x
25324582Szliu  * value of pi in machine precision:
25424582Szliu  *
25524582Szliu  *	Decimal:
25624582Szliu  *		pi = 3.141592653589793 23846264338327 .....
25724582Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
25824582Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
25924582Szliu  *
26024582Szliu  *	Hexadecimal:
26124582Szliu  *		pi = 3.243F6A8885A308D313198A2E....
26224582Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
26324582Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
26424582Szliu  *
26524582Szliu  * Method:
26624582Szliu  *	1. Let z=x*x. Create a polynomial approximation to
26724582Szliu  *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z^1 + ... + S5*z^5).
26824582Szliu  *	Then
26924582Szliu  *      sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
27024582Szliu  *
27124582Szliu  *	The coefficient S's are obtained by a special Remez algorithm.
27224582Szliu  *
27324582Szliu  * Accuracy:
27424582Szliu  *	In the absence of rounding error, the approximation has absolute error
27524582Szliu  *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
27624582Szliu  *
27724582Szliu  * Constants:
27824582Szliu  * The hexadecimal values are the intended ones for the following constants.
27924582Szliu  * The decimal values may be used, provided that the compiler will convert
28024582Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
28124582Szliu  * shown.
28224582Szliu  *
28324582Szliu  */
28424582Szliu 
285*31855Szliu #if defined(vax)||defined(tahoe)
28624582Szliu /*S0     = -1.6666666666666646660E-1    , Hex  2^ -2   * -.AAAAAAAAAAAA71 */
28724582Szliu /*S1     =  8.3333333333297230413E-3    , Hex  2^ -6   *  .8888888888477F */
28824582Szliu /*S2     = -1.9841269838362403710E-4    , Hex  2^-12   * -.D00D00CF8A1057 */
28924582Szliu /*S3     =  2.7557318019967078930E-6    , Hex  2^-18   *  .B8EF1CA326BEDC */
29024582Szliu /*S4     = -2.5051841873876551398E-8    , Hex  2^-25   * -.D73195374CE1D3 */
29124582Szliu /*S5     =  1.6028995389845827653E-10   , Hex  2^-32   *  .B03D9C6D26CCCC */
29224582Szliu /*S6     = -6.2723499671769283121E-13   ; Hex  2^-40   * -.B08D0B7561EA82 */
29331814Szliu static long        S0x[] = { _0x(aaaa,bf2a), _0x(aa71,aaaa)};
29424582Szliu #define       S0    (*(double*)S0x)
29531814Szliu static long        S1x[] = { _0x(8888,3d08), _0x(477f,8888)};
29624582Szliu #define       S1    (*(double*)S1x)
29731814Szliu static long        S2x[] = { _0x(0d00,ba50), _0x(1057,cf8a)};
29824582Szliu #define       S2    (*(double*)S2x)
29931814Szliu static long        S3x[] = { _0x(ef1c,3738), _0x(bedc,a326)};
30024582Szliu #define       S3    (*(double*)S3x)
30131814Szliu static long        S4x[] = { _0x(3195,b3d7), _0x(e1d3,374c)};
30224582Szliu #define       S4    (*(double*)S4x)
30331814Szliu static long        S5x[] = { _0x(3d9c,3030), _0x(cccc,6d26)};
30424582Szliu #define       S5    (*(double*)S5x)
30531814Szliu static long        S6x[] = { _0x(8d0b,ac30), _0x(ea82,7561)};
30624582Szliu #define       S6    (*(double*)S6x)
30724582Szliu #else	/* IEEE double  */
30824582Szliu static double
30924582Szliu S0     = -1.6666666666666463126E-1    , /*Hex  2^ -3   * -1.555555555550C */
31024582Szliu S1     =  8.3333333332992771264E-3    , /*Hex  2^ -7   *  1.111111110C461 */
31124582Szliu S2     = -1.9841269816180999116E-4    , /*Hex  2^-13   * -1.A01A019746345 */
31224582Szliu S3     =  2.7557309793219876880E-6    , /*Hex  2^-19   *  1.71DE3209CDCD9 */
31324582Szliu S4     = -2.5050225177523807003E-8    , /*Hex  2^-26   * -1.AE5C0E319A4EF */
31424582Szliu S5     =  1.5868926979889205164E-10   ; /*Hex  2^-33   *  1.5CF61DF672B13 */
31524582Szliu #endif
31624582Szliu 
sin__S(z)31724582Szliu static double sin__S(z)
31824582Szliu double z;
31924582Szliu {
320*31855Szliu #if defined(vax)||defined(tahoe)
32124582Szliu 	return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))));
322*31855Szliu #else 	/* defined(vax)||defined(tahoe) */
32324582Szliu 	return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))));
324*31855Szliu #endif 	/* defined(vax)||defined(tahoe) */
32524582Szliu }
32624582Szliu 
32724582Szliu 
32824582Szliu /* cos__C(x*x)
32924582Szliu  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
33024582Szliu  * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
33124582Szliu  * CODED IN C BY K.C. NG, 1/21/85;
33224582Szliu  * REVISED BY K.C. NG on 8/13/85.
33324582Szliu  *
33424582Szliu  *	   		    x*x
33524582Szliu  * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
33624582Szliu  *	  		     2
33724582Szliu  * PI is the rounded value of pi in machine precision :
33824582Szliu  *
33924582Szliu  *	Decimal:
34024582Szliu  *		pi = 3.141592653589793 23846264338327 .....
34124582Szliu  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
34224582Szliu  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
34324582Szliu  *
34424582Szliu  *	Hexadecimal:
34524582Szliu  *		pi = 3.243F6A8885A308D313198A2E....
34624582Szliu  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
34724582Szliu  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2
34824582Szliu  *
34924582Szliu  *
35024582Szliu  * Method:
35124582Szliu  *	1. Let z=x*x. Create a polynomial approximation to
35224582Szliu  *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
35324582Szliu  *	then
35424582Szliu  *      cos__C(z) =  z*z*(C0 + C1*z^1 + ... + C5*z^5)
35524582Szliu  *
35624582Szliu  *	The coefficient C's are obtained by a special Remez algorithm.
35724582Szliu  *
35824582Szliu  * Accuracy:
35924582Szliu  *	In the absence of rounding error, the approximation has absolute error
36024582Szliu  *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
36124582Szliu  *
36224582Szliu  *
36324582Szliu  * Constants:
36424582Szliu  * The hexadecimal values are the intended ones for the following constants.
36524582Szliu  * The decimal values may be used, provided that the compiler will convert
36624582Szliu  * from decimal to binary accurately enough to produce the hexadecimal values
36724582Szliu  * shown.
36824582Szliu  *
36924582Szliu  */
37024582Szliu 
371*31855Szliu #if defined(vax)||defined(tahoe)
37224582Szliu /*C0     =  4.1666666666666504759E-2    , Hex  2^ -4   *  .AAAAAAAAAAA9F0 */
37324582Szliu /*C1     = -1.3888888888865302059E-3    , Hex  2^ -9   * -.B60B60B60A0CCA */
37424582Szliu /*C2     =  2.4801587285601038265E-5    , Hex  2^-15   *  .D00D00CDCD098F */
37524582Szliu /*C3     = -2.7557313470902390219E-7    , Hex  2^-21   * -.93F27BB593E805 */
37624582Szliu /*C4     =  2.0875623401082232009E-9    , Hex  2^-28   *  .8F74C8FA1E3FF0 */
37724582Szliu /*C5     = -1.1355178117642986178E-11   ; Hex  2^-36   * -.C7C32D0A5C5A63 */
37831814Szliu static long        C0x[] = { _0x(aaaa,3e2a), _0x(a9f0,aaaa)};
37924582Szliu #define       C0    (*(double*)C0x)
38031814Szliu static long        C1x[] = { _0x(0b60,bbb6), _0x(0cca,b60a)};
38124582Szliu #define       C1    (*(double*)C1x)
38231814Szliu static long        C2x[] = { _0x(0d00,38d0), _0x(098f,cdcd)};
38324582Szliu #define       C2    (*(double*)C2x)
38431814Szliu static long        C3x[] = { _0x(f27b,b593), _0x(e805,b593)};
38524582Szliu #define       C3    (*(double*)C3x)
38631814Szliu static long        C4x[] = { _0x(74c8,320f), _0x(3ff0,fa1e)};
38724582Szliu #define       C4    (*(double*)C4x)
38831814Szliu static long        C5x[] = { _0x(c32d,ae47), _0x(5a63,0a5c)};
38924582Szliu #define       C5    (*(double*)C5x)
390*31855Szliu #else	/* defined(vax)||defined(tahoe) */
39124582Szliu static double
39224582Szliu C0     =  4.1666666666666504759E-2    , /*Hex  2^ -5   *  1.555555555553E */
39324582Szliu C1     = -1.3888888888865301516E-3    , /*Hex  2^-10   * -1.6C16C16C14199 */
39424582Szliu C2     =  2.4801587269650015769E-5    , /*Hex  2^-16   *  1.A01A01971CAEB */
39524582Szliu C3     = -2.7557304623183959811E-7    , /*Hex  2^-22   * -1.27E4F1314AD1A */
39624582Szliu C4     =  2.0873958177697780076E-9    , /*Hex  2^-29   *  1.1EE3B60DDDC8C */
39724582Szliu C5     = -1.1250289076471311557E-11   ; /*Hex  2^-37   * -1.8BD5986B2A52E */
398*31855Szliu #endif	/* defined(vax)||defined(tahoe) */
39924582Szliu 
cos__C(z)40024582Szliu static double cos__C(z)
40124582Szliu double z;
40224582Szliu {
40324582Szliu 	return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))));
40424582Szliu }
405