124582Szliu /*
224582Szliu * Copyright (c) 1985 Regents of the University of California.
324582Szliu *
424582Szliu * Use and reproduction of this software are granted in accordance with
524582Szliu * the terms and conditions specified in the Berkeley Software License
624582Szliu * Agreement (in particular, this entails acknowledgement of the programs'
724582Szliu * source, and inclusion of this notice) with the additional understanding
824582Szliu * that all recipients should regard themselves as participants in an
924582Szliu * ongoing research project and hence should feel obligated to report
1024582Szliu * their experiences (good or bad) with these elementary function codes,
1124582Szliu * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
1224582Szliu */
1324582Szliu
1424582Szliu #ifndef lint
1524720Selefunt static char sccsid[] =
16*31855Szliu "@(#)trig.c 1.2 (Berkeley) 8/22/85; 1.7 (ucb.elefunt) 07/13/87";
17*31855Szliu #endif /* not lint */
1824582Szliu
1924582Szliu /* SIN(X), COS(X), TAN(X)
2024582Szliu * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY
2124582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
2224582Szliu * CODED IN C BY K.C. NG, 1/8/85;
2324582Szliu * REVISED BY W. Kahan and K.C. NG, 8/17/85.
2424582Szliu *
2524582Szliu * Required system supported functions:
2624582Szliu * copysign(x,y)
2724582Szliu * finite(x)
2824582Szliu * drem(x,p)
2924582Szliu *
3024582Szliu * Static kernel functions:
3124582Szliu * sin__S(z) ....sin__S(x*x) return (sin(x)-x)/x
3224582Szliu * cos__C(z) ....cos__C(x*x) return cos(x)-1-x*x/2
3324582Szliu *
3424582Szliu * Method.
3524582Szliu * Let S and C denote the polynomial approximations to sin and cos
3624582Szliu * respectively on [-PI/4, +PI/4].
3724582Szliu *
3824582Szliu * SIN and COS:
3924582Szliu * 1. Reduce the argument into [-PI , +PI] by the remainder function.
4024582Szliu * 2. For x in (-PI,+PI), there are three cases:
4124582Szliu * case 1: |x| < PI/4
4224582Szliu * case 2: PI/4 <= |x| < 3PI/4
4324582Szliu * case 3: 3PI/4 <= |x|.
4424582Szliu * SIN and COS of x are computed by:
4524582Szliu *
4624582Szliu * sin(x) cos(x) remark
4724582Szliu * ----------------------------------------------------------
4824582Szliu * case 1 S(x) C(x)
4924582Szliu * case 2 sign(x)*C(y) S(y) y=PI/2-|x|
5024582Szliu * case 3 S(y) -C(y) y=sign(x)*(PI-|x|)
5124582Szliu * ----------------------------------------------------------
5224582Szliu *
5324582Szliu * TAN:
5424582Szliu * 1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function.
5524582Szliu * 2. For x in (-PI/2,+PI/2), there are two cases:
5624582Szliu * case 1: |x| < PI/4
5724582Szliu * case 2: PI/4 <= |x| < PI/2
5824582Szliu * TAN of x is computed by:
5924582Szliu *
6024582Szliu * tan (x) remark
6124582Szliu * ----------------------------------------------------------
6224582Szliu * case 1 S(x)/C(x)
6324582Szliu * case 2 C(y)/S(y) y=sign(x)*(PI/2-|x|)
6424582Szliu * ----------------------------------------------------------
6524582Szliu *
6624582Szliu * Notes:
6724582Szliu * 1. S(y) and C(y) were computed by:
6824582Szliu * S(y) = y+y*sin__S(y*y)
6924582Szliu * C(y) = 1-(y*y/2-cos__C(x*x)) ... if y*y/2 < thresh,
7024582Szliu * = 0.5-((y*y/2-0.5)-cos__C(x*x)) ... if y*y/2 >= thresh.
7124582Szliu * where
7224582Szliu * thresh = 0.5*(acos(3/4)**2)
7324582Szliu *
7424582Szliu * 2. For better accuracy, we use the following formula for S/C for tan
7524582Szliu * (k=0): let ss=sin__S(y*y), and cc=cos__C(y*y), then
7624582Szliu *
7724582Szliu * y+y*ss (y*y/2-cc)+ss
7824582Szliu * S(y)/C(y) = -------- = y + y * ---------------.
7924582Szliu * C C
8024582Szliu *
8124582Szliu *
8224582Szliu * Special cases:
8324582Szliu * Let trig be any of sin, cos, or tan.
8424582Szliu * trig(+-INF) is NaN, with signals;
8524582Szliu * trig(NaN) is that NaN;
8624582Szliu * trig(n*PI/2) is exact for any integer n, provided n*PI is
8724582Szliu * representable; otherwise, trig(x) is inexact.
8824582Szliu *
8924582Szliu * Accuracy:
9024582Szliu * trig(x) returns the exact trig(x*pi/PI) nearly rounded, where
9124582Szliu *
9224582Szliu * Decimal:
9324582Szliu * pi = 3.141592653589793 23846264338327 .....
9424582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... ,
9524582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... ,
9624582Szliu *
9724582Szliu * Hexadecimal:
9824582Szliu * pi = 3.243F6A8885A308D313198A2E....
9924582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18 error=.276ulps
10024582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2 error=.206ulps
10124582Szliu *
10224582Szliu * In a test run with 1,024,000 random arguments on a VAX, the maximum
10324582Szliu * observed errors (compared with the exact trig(x*pi/PI)) were
10424582Szliu * tan(x) : 2.09 ulps (around 4.716340404662354)
10524582Szliu * sin(x) : .861 ulps
10624582Szliu * cos(x) : .857 ulps
10724582Szliu *
10824582Szliu * Constants:
10924582Szliu * The hexadecimal values are the intended ones for the following constants.
11024582Szliu * The decimal values may be used, provided that the compiler will convert
11124582Szliu * from decimal to binary accurately enough to produce the hexadecimal values
11224582Szliu * shown.
11324582Szliu */
11424582Szliu
115*31855Szliu #if defined(vax)||defined(tahoe)
116*31855Szliu #ifdef vax
11731814Szliu #define _0x(A,B) 0x/**/A/**/B
118*31855Szliu #else /* vax */
11931814Szliu #define _0x(A,B) 0x/**/B/**/A
120*31855Szliu #endif /* vax */
12124582Szliu /*thresh = 2.6117239648121182150E-1 , Hex 2^ -1 * .85B8636B026EA0 */
12224582Szliu /*PIo4 = 7.8539816339744830676E-1 , Hex 2^ 0 * .C90FDAA22168C2 */
12324582Szliu /*PIo2 = 1.5707963267948966135E0 , Hex 2^ 1 * .C90FDAA22168C2 */
12424582Szliu /*PI3o4 = 2.3561944901923449203E0 , Hex 2^ 2 * .96CBE3F9990E92 */
12524582Szliu /*PI = 3.1415926535897932270E0 , Hex 2^ 2 * .C90FDAA22168C2 */
12624582Szliu /*PI2 = 6.2831853071795864540E0 ; Hex 2^ 3 * .C90FDAA22168C2 */
12731814Szliu static long threshx[] = { _0x(b863,3f85), _0x(6ea0,6b02)};
12824582Szliu #define thresh (*(double*)threshx)
12931814Szliu static long PIo4x[] = { _0x(0fda,4049), _0x(68c2,a221)};
13024582Szliu #define PIo4 (*(double*)PIo4x)
13131814Szliu static long PIo2x[] = { _0x(0fda,40c9), _0x(68c2,a221)};
13224582Szliu #define PIo2 (*(double*)PIo2x)
13331814Szliu static long PI3o4x[] = { _0x(cbe3,4116), _0x(0e92,f999)};
13424582Szliu #define PI3o4 (*(double*)PI3o4x)
13531814Szliu static long PIx[] = { _0x(0fda,4149), _0x(68c2,a221)};
13624582Szliu #define PI (*(double*)PIx)
13731814Szliu static long PI2x[] = { _0x(0fda,41c9), _0x(68c2,a221)};
13824582Szliu #define PI2 (*(double*)PI2x)
139*31855Szliu #else /* defined(vax)||defined(tahoe) */
14024582Szliu static double
14124582Szliu thresh = 2.6117239648121182150E-1 , /*Hex 2^ -2 * 1.0B70C6D604DD4 */
14224582Szliu PIo4 = 7.8539816339744827900E-1 , /*Hex 2^ -1 * 1.921FB54442D18 */
14324582Szliu PIo2 = 1.5707963267948965580E0 , /*Hex 2^ 0 * 1.921FB54442D18 */
14424582Szliu PI3o4 = 2.3561944901923448370E0 , /*Hex 2^ 1 * 1.2D97C7F3321D2 */
14524582Szliu PI = 3.1415926535897931160E0 , /*Hex 2^ 1 * 1.921FB54442D18 */
14624582Szliu PI2 = 6.2831853071795862320E0 ; /*Hex 2^ 2 * 1.921FB54442D18 */
147*31855Szliu #ifdef national
14831851Szliu static long fmaxx[] = { 0xffffffff, 0x7fefffff};
14931851Szliu #define fmax (*(double*)fmaxx)
150*31855Szliu #endif /* national */
151*31855Szliu #endif /* defined(vax)||defined(tahoe) */
15224582Szliu static double zero=0, one=1, negone= -1, half=1.0/2.0,
15324582Szliu small=1E-10, /* 1+small**2==1; better values for small:
15424582Szliu small = 1.5E-9 for VAX D
15524582Szliu = 1.2E-8 for IEEE Double
15624582Szliu = 2.8E-10 for IEEE Extended */
15724582Szliu big=1E20; /* big = 1/(small**2) */
15824582Szliu
tan(x)15924582Szliu double tan(x)
16024582Szliu double x;
16124582Szliu {
16224582Szliu double copysign(),drem(),cos__C(),sin__S(),a,z,ss,cc,c;
163*31855Szliu int finite(),k;
164*31855Szliu
16524582Szliu /* tan(NaN) and tan(INF) must be NaN */
166*31855Szliu if(!finite(x)) return(x-x);
16724582Szliu x=drem(x,PI); /* reduce x into [-PI/2, PI/2] */
16824582Szliu a=copysign(x,one); /* ... = abs(x) */
16924582Szliu if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); }
17024582Szliu else { k=0; if(a < small ) { big + a; return(x); }}
17124582Szliu
17224582Szliu z = x*x;
17324582Szliu cc = cos__C(z);
17424582Szliu ss = sin__S(z);
17524582Szliu z = z*half ; /* Next get c = cos(x) accurately */
17624582Szliu c = (z >= thresh )? half-((z-half)-cc) : one-(z-cc);
17724582Szliu if (k==0) return ( x + (x*(z-(cc-ss)))/c ); /* sin/cos */
178*31855Szliu #ifdef national
17931851Szliu else if(x==0.0) return copysign(fmax,x); /* no inf on 32k */
180*31855Szliu #endif /* national */
18131851Szliu else return( c/(x+x*ss) ); /* ... cos/sin */
18224582Szliu
18324582Szliu
18424582Szliu }
sin(x)18524582Szliu double sin(x)
18624582Szliu double x;
18724582Szliu {
18824582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z;
189*31855Szliu int finite();
190*31855Szliu
19124582Szliu /* sin(NaN) and sin(INF) must be NaN */
192*31855Szliu if(!finite(x)) return(x-x);
19324582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */
19424582Szliu a=copysign(x,one);
19524582Szliu if( a >= PIo4 ) {
19624582Szliu if( a >= PI3o4 ) /* .. in [3PI/4, PI ] */
19724582Szliu x=copysign((a=PI-a),x);
19824582Szliu
19924582Szliu else { /* .. in [PI/4, 3PI/4] */
20024582Szliu a=PIo2-a; /* return sign(x)*C(PI/2-|x|) */
20124582Szliu z=a*a;
20224582Szliu c=cos__C(z);
20324582Szliu z=z*half;
20424582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c);
20524582Szliu return(copysign(a,x));
20624582Szliu }
20724582Szliu }
20824582Szliu
20924582Szliu /* return S(x) */
21024582Szliu if( a < small) { big + a; return(x);}
21124582Szliu return(x+x*sin__S(x*x));
21224582Szliu }
21324582Szliu
cos(x)21424582Szliu double cos(x)
21524582Szliu double x;
21624582Szliu {
21724582Szliu double copysign(),drem(),sin__S(),cos__C(),a,c,z,s=1.0;
218*31855Szliu int finite();
219*31855Szliu
22024582Szliu /* cos(NaN) and cos(INF) must be NaN */
221*31855Szliu if(!finite(x)) return(x-x);
22224582Szliu x=drem(x,PI2); /* reduce x into [-PI, PI] */
22324582Szliu a=copysign(x,one);
22424582Szliu if ( a >= PIo4 ) {
22524582Szliu if ( a >= PI3o4 ) /* .. in [3PI/4, PI ] */
22624582Szliu { a=PI-a; s= negone; }
22724582Szliu
22824582Szliu else /* .. in [PI/4, 3PI/4] */
22924582Szliu /* return S(PI/2-|x|) */
23024582Szliu { a=PIo2-a; return(a+a*sin__S(a*a));}
23124582Szliu }
23224582Szliu
23324582Szliu
23424582Szliu /* return s*C(a) */
23524582Szliu if( a < small) { big + a; return(s);}
23624582Szliu z=a*a;
23724582Szliu c=cos__C(z);
23824582Szliu z=z*half;
23924582Szliu a=(z>=thresh)?half-((z-half)-c):one-(z-c);
24024582Szliu return(copysign(a,s));
24124582Szliu }
24224582Szliu
24324582Szliu
24424582Szliu /* sin__S(x*x)
24524582Szliu * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
24624582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
24724582Szliu * CODED IN C BY K.C. NG, 1/21/85;
24824582Szliu * REVISED BY K.C. NG on 8/13/85.
24924582Szliu *
25024582Szliu * sin(x*k) - x
25124582Szliu * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
25224582Szliu * x
25324582Szliu * value of pi in machine precision:
25424582Szliu *
25524582Szliu * Decimal:
25624582Szliu * pi = 3.141592653589793 23846264338327 .....
25724582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... ,
25824582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... ,
25924582Szliu *
26024582Szliu * Hexadecimal:
26124582Szliu * pi = 3.243F6A8885A308D313198A2E....
26224582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
26324582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
26424582Szliu *
26524582Szliu * Method:
26624582Szliu * 1. Let z=x*x. Create a polynomial approximation to
26724582Szliu * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5).
26824582Szliu * Then
26924582Szliu * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
27024582Szliu *
27124582Szliu * The coefficient S's are obtained by a special Remez algorithm.
27224582Szliu *
27324582Szliu * Accuracy:
27424582Szliu * In the absence of rounding error, the approximation has absolute error
27524582Szliu * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
27624582Szliu *
27724582Szliu * Constants:
27824582Szliu * The hexadecimal values are the intended ones for the following constants.
27924582Szliu * The decimal values may be used, provided that the compiler will convert
28024582Szliu * from decimal to binary accurately enough to produce the hexadecimal values
28124582Szliu * shown.
28224582Szliu *
28324582Szliu */
28424582Szliu
285*31855Szliu #if defined(vax)||defined(tahoe)
28624582Szliu /*S0 = -1.6666666666666646660E-1 , Hex 2^ -2 * -.AAAAAAAAAAAA71 */
28724582Szliu /*S1 = 8.3333333333297230413E-3 , Hex 2^ -6 * .8888888888477F */
28824582Szliu /*S2 = -1.9841269838362403710E-4 , Hex 2^-12 * -.D00D00CF8A1057 */
28924582Szliu /*S3 = 2.7557318019967078930E-6 , Hex 2^-18 * .B8EF1CA326BEDC */
29024582Szliu /*S4 = -2.5051841873876551398E-8 , Hex 2^-25 * -.D73195374CE1D3 */
29124582Szliu /*S5 = 1.6028995389845827653E-10 , Hex 2^-32 * .B03D9C6D26CCCC */
29224582Szliu /*S6 = -6.2723499671769283121E-13 ; Hex 2^-40 * -.B08D0B7561EA82 */
29331814Szliu static long S0x[] = { _0x(aaaa,bf2a), _0x(aa71,aaaa)};
29424582Szliu #define S0 (*(double*)S0x)
29531814Szliu static long S1x[] = { _0x(8888,3d08), _0x(477f,8888)};
29624582Szliu #define S1 (*(double*)S1x)
29731814Szliu static long S2x[] = { _0x(0d00,ba50), _0x(1057,cf8a)};
29824582Szliu #define S2 (*(double*)S2x)
29931814Szliu static long S3x[] = { _0x(ef1c,3738), _0x(bedc,a326)};
30024582Szliu #define S3 (*(double*)S3x)
30131814Szliu static long S4x[] = { _0x(3195,b3d7), _0x(e1d3,374c)};
30224582Szliu #define S4 (*(double*)S4x)
30331814Szliu static long S5x[] = { _0x(3d9c,3030), _0x(cccc,6d26)};
30424582Szliu #define S5 (*(double*)S5x)
30531814Szliu static long S6x[] = { _0x(8d0b,ac30), _0x(ea82,7561)};
30624582Szliu #define S6 (*(double*)S6x)
30724582Szliu #else /* IEEE double */
30824582Szliu static double
30924582Szliu S0 = -1.6666666666666463126E-1 , /*Hex 2^ -3 * -1.555555555550C */
31024582Szliu S1 = 8.3333333332992771264E-3 , /*Hex 2^ -7 * 1.111111110C461 */
31124582Szliu S2 = -1.9841269816180999116E-4 , /*Hex 2^-13 * -1.A01A019746345 */
31224582Szliu S3 = 2.7557309793219876880E-6 , /*Hex 2^-19 * 1.71DE3209CDCD9 */
31324582Szliu S4 = -2.5050225177523807003E-8 , /*Hex 2^-26 * -1.AE5C0E319A4EF */
31424582Szliu S5 = 1.5868926979889205164E-10 ; /*Hex 2^-33 * 1.5CF61DF672B13 */
31524582Szliu #endif
31624582Szliu
sin__S(z)31724582Szliu static double sin__S(z)
31824582Szliu double z;
31924582Szliu {
320*31855Szliu #if defined(vax)||defined(tahoe)
32124582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))));
322*31855Szliu #else /* defined(vax)||defined(tahoe) */
32324582Szliu return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))));
324*31855Szliu #endif /* defined(vax)||defined(tahoe) */
32524582Szliu }
32624582Szliu
32724582Szliu
32824582Szliu /* cos__C(x*x)
32924582Szliu * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
33024582Szliu * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
33124582Szliu * CODED IN C BY K.C. NG, 1/21/85;
33224582Szliu * REVISED BY K.C. NG on 8/13/85.
33324582Szliu *
33424582Szliu * x*x
33524582Szliu * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI,
33624582Szliu * 2
33724582Szliu * PI is the rounded value of pi in machine precision :
33824582Szliu *
33924582Szliu * Decimal:
34024582Szliu * pi = 3.141592653589793 23846264338327 .....
34124582Szliu * 53 bits PI = 3.141592653589793 115997963 ..... ,
34224582Szliu * 56 bits PI = 3.141592653589793 227020265 ..... ,
34324582Szliu *
34424582Szliu * Hexadecimal:
34524582Szliu * pi = 3.243F6A8885A308D313198A2E....
34624582Szliu * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
34724582Szliu * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
34824582Szliu *
34924582Szliu *
35024582Szliu * Method:
35124582Szliu * 1. Let z=x*x. Create a polynomial approximation to
35224582Szliu * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5)
35324582Szliu * then
35424582Szliu * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5)
35524582Szliu *
35624582Szliu * The coefficient C's are obtained by a special Remez algorithm.
35724582Szliu *
35824582Szliu * Accuracy:
35924582Szliu * In the absence of rounding error, the approximation has absolute error
36024582Szliu * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
36124582Szliu *
36224582Szliu *
36324582Szliu * Constants:
36424582Szliu * The hexadecimal values are the intended ones for the following constants.
36524582Szliu * The decimal values may be used, provided that the compiler will convert
36624582Szliu * from decimal to binary accurately enough to produce the hexadecimal values
36724582Szliu * shown.
36824582Szliu *
36924582Szliu */
37024582Szliu
371*31855Szliu #if defined(vax)||defined(tahoe)
37224582Szliu /*C0 = 4.1666666666666504759E-2 , Hex 2^ -4 * .AAAAAAAAAAA9F0 */
37324582Szliu /*C1 = -1.3888888888865302059E-3 , Hex 2^ -9 * -.B60B60B60A0CCA */
37424582Szliu /*C2 = 2.4801587285601038265E-5 , Hex 2^-15 * .D00D00CDCD098F */
37524582Szliu /*C3 = -2.7557313470902390219E-7 , Hex 2^-21 * -.93F27BB593E805 */
37624582Szliu /*C4 = 2.0875623401082232009E-9 , Hex 2^-28 * .8F74C8FA1E3FF0 */
37724582Szliu /*C5 = -1.1355178117642986178E-11 ; Hex 2^-36 * -.C7C32D0A5C5A63 */
37831814Szliu static long C0x[] = { _0x(aaaa,3e2a), _0x(a9f0,aaaa)};
37924582Szliu #define C0 (*(double*)C0x)
38031814Szliu static long C1x[] = { _0x(0b60,bbb6), _0x(0cca,b60a)};
38124582Szliu #define C1 (*(double*)C1x)
38231814Szliu static long C2x[] = { _0x(0d00,38d0), _0x(098f,cdcd)};
38324582Szliu #define C2 (*(double*)C2x)
38431814Szliu static long C3x[] = { _0x(f27b,b593), _0x(e805,b593)};
38524582Szliu #define C3 (*(double*)C3x)
38631814Szliu static long C4x[] = { _0x(74c8,320f), _0x(3ff0,fa1e)};
38724582Szliu #define C4 (*(double*)C4x)
38831814Szliu static long C5x[] = { _0x(c32d,ae47), _0x(5a63,0a5c)};
38924582Szliu #define C5 (*(double*)C5x)
390*31855Szliu #else /* defined(vax)||defined(tahoe) */
39124582Szliu static double
39224582Szliu C0 = 4.1666666666666504759E-2 , /*Hex 2^ -5 * 1.555555555553E */
39324582Szliu C1 = -1.3888888888865301516E-3 , /*Hex 2^-10 * -1.6C16C16C14199 */
39424582Szliu C2 = 2.4801587269650015769E-5 , /*Hex 2^-16 * 1.A01A01971CAEB */
39524582Szliu C3 = -2.7557304623183959811E-7 , /*Hex 2^-22 * -1.27E4F1314AD1A */
39624582Szliu C4 = 2.0873958177697780076E-9 , /*Hex 2^-29 * 1.1EE3B60DDDC8C */
39724582Szliu C5 = -1.1250289076471311557E-11 ; /*Hex 2^-37 * -1.8BD5986B2A52E */
398*31855Szliu #endif /* defined(vax)||defined(tahoe) */
39924582Szliu
cos__C(z)40024582Szliu static double cos__C(z)
40124582Szliu double z;
40224582Szliu {
40324582Szliu return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))));
40424582Szliu }
405