xref: /csrg-svn/lib/libc/stdlib/random.c (revision 46573)
1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.
4  *
5  * %sccs.include.redist.c%
6  */
7 
8 #if defined(LIBC_SCCS) && !defined(lint)
9 static char sccsid[] = "@(#)random.c	5.8 (Berkeley) 02/23/91";
10 #endif /* LIBC_SCCS and not lint */
11 
12 #include <stdio.h>
13 #include <stdlib.h>
14 
15 /*
16  * random.c:
17  * An improved random number generation package.  In addition to the standard
18  * rand()/srand() like interface, this package also has a special state info
19  * interface.  The initstate() routine is called with a seed, an array of
20  * bytes, and a count of how many bytes are being passed in; this array is then
21  * initialized to contain information for random number generation with that
22  * much state information.  Good sizes for the amount of state information are
23  * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
24  * setstate() routine with the same array as was initiallized with initstate().
25  * By default, the package runs with 128 bytes of state information and
26  * generates far better random numbers than a linear congruential generator.
27  * If the amount of state information is less than 32 bytes, a simple linear
28  * congruential R.N.G. is used.
29  * Internally, the state information is treated as an array of longs; the
30  * zeroeth element of the array is the type of R.N.G. being used (small
31  * integer); the remainder of the array is the state information for the
32  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
33  * state information, which will allow a degree seven polynomial.  (Note: the
34  * zeroeth word of state information also has some other information stored
35  * in it -- see setstate() for details).
36  * The random number generation technique is a linear feedback shift register
37  * approach, employing trinomials (since there are fewer terms to sum up that
38  * way).  In this approach, the least significant bit of all the numbers in
39  * the state table will act as a linear feedback shift register, and will have
40  * period 2^deg - 1 (where deg is the degree of the polynomial being used,
41  * assuming that the polynomial is irreducible and primitive).  The higher
42  * order bits will have longer periods, since their values are also influenced
43  * by pseudo-random carries out of the lower bits.  The total period of the
44  * generator is approximately deg*(2**deg - 1); thus doubling the amount of
45  * state information has a vast influence on the period of the generator.
46  * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
47  * when the period of the shift register is the dominant factor.  With deg
48  * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
49  * predicted by this formula.
50  */
51 
52 
53 
54 /*
55  * For each of the currently supported random number generators, we have a
56  * break value on the amount of state information (you need at least this
57  * many bytes of state info to support this random number generator), a degree
58  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
59  * the separation between the two lower order coefficients of the trinomial.
60  */
61 
62 #define		TYPE_0		0		/* linear congruential */
63 #define		BREAK_0		8
64 #define		DEG_0		0
65 #define		SEP_0		0
66 
67 #define		TYPE_1		1		/* x**7 + x**3 + 1 */
68 #define		BREAK_1		32
69 #define		DEG_1		7
70 #define		SEP_1		3
71 
72 #define		TYPE_2		2		/* x**15 + x + 1 */
73 #define		BREAK_2		64
74 #define		DEG_2		15
75 #define		SEP_2		1
76 
77 #define		TYPE_3		3		/* x**31 + x**3 + 1 */
78 #define		BREAK_3		128
79 #define		DEG_3		31
80 #define		SEP_3		3
81 
82 #define		TYPE_4		4		/* x**63 + x + 1 */
83 #define		BREAK_4		256
84 #define		DEG_4		63
85 #define		SEP_4		1
86 
87 
88 /*
89  * Array versions of the above information to make code run faster -- relies
90  * on fact that TYPE_i == i.
91  */
92 
93 #define		MAX_TYPES	5		/* max number of types above */
94 
95 static  int		degrees[ MAX_TYPES ]	= { DEG_0, DEG_1, DEG_2,
96 								DEG_3, DEG_4 };
97 
98 static  int		seps[ MAX_TYPES ]	= { SEP_0, SEP_1, SEP_2,
99 								SEP_3, SEP_4 };
100 
101 
102 
103 /*
104  * Initially, everything is set up as if from :
105  *		initstate( 1, &randtbl, 128 );
106  * Note that this initialization takes advantage of the fact that srandom()
107  * advances the front and rear pointers 10*rand_deg times, and hence the
108  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
109  * element of the state information, which contains info about the current
110  * position of the rear pointer is just
111  *	MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
112  */
113 
114 static  long		randtbl[ DEG_3 + 1 ]	= { TYPE_3,
115 			    0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
116 			    0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
117 			    0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
118 			    0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
119 			    0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
120 			    0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
121 			    0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
122 					0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };
123 
124 /*
125  * fptr and rptr are two pointers into the state info, a front and a rear
126  * pointer.  These two pointers are always rand_sep places aparts, as they cycle
127  * cyclically through the state information.  (Yes, this does mean we could get
128  * away with just one pointer, but the code for random() is more efficient this
129  * way).  The pointers are left positioned as they would be from the call
130  *			initstate( 1, randtbl, 128 )
131  * (The position of the rear pointer, rptr, is really 0 (as explained above
132  * in the initialization of randtbl) because the state table pointer is set
133  * to point to randtbl[1] (as explained below).
134  */
135 
136 static  long		*fptr			= &randtbl[ SEP_3 + 1 ];
137 static  long		*rptr			= &randtbl[ 1 ];
138 
139 
140 
141 /*
142  * The following things are the pointer to the state information table,
143  * the type of the current generator, the degree of the current polynomial
144  * being used, and the separation between the two pointers.
145  * Note that for efficiency of random(), we remember the first location of
146  * the state information, not the zeroeth.  Hence it is valid to access
147  * state[-1], which is used to store the type of the R.N.G.
148  * Also, we remember the last location, since this is more efficient than
149  * indexing every time to find the address of the last element to see if
150  * the front and rear pointers have wrapped.
151  */
152 
153 static  long		*state			= &randtbl[ 1 ];
154 
155 static  int		rand_type		= TYPE_3;
156 static  int		rand_deg		= DEG_3;
157 static  int		rand_sep		= SEP_3;
158 
159 static  long		*end_ptr		= &randtbl[ DEG_3 + 1 ];
160 
161 
162 
163 /*
164  * srandom:
165  * Initialize the random number generator based on the given seed.  If the
166  * type is the trivial no-state-information type, just remember the seed.
167  * Otherwise, initializes state[] based on the given "seed" via a linear
168  * congruential generator.  Then, the pointers are set to known locations
169  * that are exactly rand_sep places apart.  Lastly, it cycles the state
170  * information a given number of times to get rid of any initial dependencies
171  * introduced by the L.C.R.N.G.
172  * Note that the initialization of randtbl[] for default usage relies on
173  * values produced by this routine.
174  */
175 
176 void
177 srandom( x )
178 
179     unsigned		x;
180 {
181     	register  int		i, j;
182 
183 	if(  rand_type  ==  TYPE_0  )  {
184 	    state[ 0 ] = x;
185 	}
186 	else  {
187 	    j = 1;
188 	    state[ 0 ] = x;
189 	    for( i = 1; i < rand_deg; i++ )  {
190 		state[i] = 1103515245*state[i - 1] + 12345;
191 	    }
192 	    fptr = &state[ rand_sep ];
193 	    rptr = &state[ 0 ];
194 	    for( i = 0; i < 10*rand_deg; i++ )
195 		(void) random();
196 	}
197 }
198 
199 
200 
201 /*
202  * initstate:
203  * Initialize the state information in the given array of n bytes for
204  * future random number generation.  Based on the number of bytes we
205  * are given, and the break values for the different R.N.G.'s, we choose
206  * the best (largest) one we can and set things up for it.  srandom() is
207  * then called to initialize the state information.
208  * Note that on return from srandom(), we set state[-1] to be the type
209  * multiplexed with the current value of the rear pointer; this is so
210  * successive calls to initstate() won't lose this information and will
211  * be able to restart with setstate().
212  * Note: the first thing we do is save the current state, if any, just like
213  * setstate() so that it doesn't matter when initstate is called.
214  * Returns a pointer to the old state.
215  */
216 
217 char  *
218 initstate( seed, arg_state, n )
219 
220     unsigned		seed;			/* seed for R. N. G. */
221     char		*arg_state;		/* pointer to state array */
222     int			n;			/* # bytes of state info */
223 {
224 	register  char		*ostate		= (char *)( &state[ -1 ] );
225 
226 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
227 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
228 	if(  n  <  BREAK_1  )  {
229 	    if(  n  <  BREAK_0  )  {
230 		fprintf( stderr, "initstate: not enough state (%d bytes); ignored.\n", n );
231 		return 0;
232 	    }
233 	    rand_type = TYPE_0;
234 	    rand_deg = DEG_0;
235 	    rand_sep = SEP_0;
236 	}
237 	else  {
238 	    if(  n  <  BREAK_2  )  {
239 		rand_type = TYPE_1;
240 		rand_deg = DEG_1;
241 		rand_sep = SEP_1;
242 	    }
243 	    else  {
244 		if(  n  <  BREAK_3  )  {
245 		    rand_type = TYPE_2;
246 		    rand_deg = DEG_2;
247 		    rand_sep = SEP_2;
248 		}
249 		else  {
250 		    if(  n  <  BREAK_4  )  {
251 			rand_type = TYPE_3;
252 			rand_deg = DEG_3;
253 			rand_sep = SEP_3;
254 		    }
255 		    else  {
256 			rand_type = TYPE_4;
257 			rand_deg = DEG_4;
258 			rand_sep = SEP_4;
259 		    }
260 		}
261 	    }
262 	}
263 	state = &(  ( (long *)arg_state )[1]  );	/* first location */
264 	end_ptr = &state[ rand_deg ];	/* must set end_ptr before srandom */
265 	srandom( seed );
266 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
267 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
268 	return( ostate );
269 }
270 
271 
272 
273 /*
274  * setstate:
275  * Restore the state from the given state array.
276  * Note: it is important that we also remember the locations of the pointers
277  * in the current state information, and restore the locations of the pointers
278  * from the old state information.  This is done by multiplexing the pointer
279  * location into the zeroeth word of the state information.
280  * Note that due to the order in which things are done, it is OK to call
281  * setstate() with the same state as the current state.
282  * Returns a pointer to the old state information.
283  */
284 
285 char  *
286 setstate( arg_state )
287 
288     char		*arg_state;
289 {
290 	register  long		*new_state	= (long *)arg_state;
291 	register  int		type		= new_state[0]%MAX_TYPES;
292 	register  int		rear		= new_state[0]/MAX_TYPES;
293 	char			*ostate		= (char *)( &state[ -1 ] );
294 
295 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
296 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
297 	switch(  type  )  {
298 	    case  TYPE_0:
299 	    case  TYPE_1:
300 	    case  TYPE_2:
301 	    case  TYPE_3:
302 	    case  TYPE_4:
303 		rand_type = type;
304 		rand_deg = degrees[ type ];
305 		rand_sep = seps[ type ];
306 		break;
307 
308 	    default:
309 		fprintf( stderr, "setstate: state info has been munged; not changed.\n" );
310 	}
311 	state = &new_state[ 1 ];
312 	if(  rand_type  !=  TYPE_0  )  {
313 	    rptr = &state[ rear ];
314 	    fptr = &state[ (rear + rand_sep)%rand_deg ];
315 	}
316 	end_ptr = &state[ rand_deg ];		/* set end_ptr too */
317 	return( ostate );
318 }
319 
320 
321 
322 /*
323  * random:
324  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
325  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
326  * same in all ther other cases due to all the global variables that have been
327  * set up.  The basic operation is to add the number at the rear pointer into
328  * the one at the front pointer.  Then both pointers are advanced to the next
329  * location cyclically in the table.  The value returned is the sum generated,
330  * reduced to 31 bits by throwing away the "least random" low bit.
331  * Note: the code takes advantage of the fact that both the front and
332  * rear pointers can't wrap on the same call by not testing the rear
333  * pointer if the front one has wrapped.
334  * Returns a 31-bit random number.
335  */
336 
337 long
338 random()
339 {
340 	long		i;
341 
342 	if(  rand_type  ==  TYPE_0  )  {
343 	    i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
344 	}
345 	else  {
346 	    *fptr += *rptr;
347 	    i = (*fptr >> 1)&0x7fffffff;	/* chucking least random bit */
348 	    if(  ++fptr  >=  end_ptr  )  {
349 		fptr = state;
350 		++rptr;
351 	    }
352 	    else  {
353 		if(  ++rptr  >=  end_ptr  )  rptr = state;
354 	    }
355 	}
356 	return( i );
357 }
358