xref: /csrg-svn/lib/libc/stdlib/random.c (revision 34098)
1 /*
2  * Copyright (c) 1983 Regents of the University of California.
3  * All rights reserved.  The Berkeley software License Agreement
4  * specifies the terms and conditions for redistribution.
5  */
6 
7 #if defined(LIBC_SCCS) && !defined(lint)
8 static char sccsid[] = "@(#)random.c	5.4 (Berkeley) 04/24/88";
9 #endif LIBC_SCCS and not lint
10 
11 #include	<stdio.h>
12 
13 /*
14  * random.c:
15  * An improved random number generation package.  In addition to the standard
16  * rand()/srand() like interface, this package also has a special state info
17  * interface.  The initstate() routine is called with a seed, an array of
18  * bytes, and a count of how many bytes are being passed in; this array is then
19  * initialized to contain information for random number generation with that
20  * much state information.  Good sizes for the amount of state information are
21  * 32, 64, 128, and 256 bytes.  The state can be switched by calling the
22  * setstate() routine with the same array as was initiallized with initstate().
23  * By default, the package runs with 128 bytes of state information and
24  * generates far better random numbers than a linear congruential generator.
25  * If the amount of state information is less than 32 bytes, a simple linear
26  * congruential R.N.G. is used.
27  * Internally, the state information is treated as an array of longs; the
28  * zeroeth element of the array is the type of R.N.G. being used (small
29  * integer); the remainder of the array is the state information for the
30  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
31  * state information, which will allow a degree seven polynomial.  (Note: the
32  * zeroeth word of state information also has some other information stored
33  * in it -- see setstate() for details).
34  * The random number generation technique is a linear feedback shift register
35  * approach, employing trinomials (since there are fewer terms to sum up that
36  * way).  In this approach, the least significant bit of all the numbers in
37  * the state table will act as a linear feedback shift register, and will have
38  * period 2^deg - 1 (where deg is the degree of the polynomial being used,
39  * assuming that the polynomial is irreducible and primitive).  The higher
40  * order bits will have longer periods, since their values are also influenced
41  * by pseudo-random carries out of the lower bits.  The total period of the
42  * generator is approximately deg*(2**deg - 1); thus doubling the amount of
43  * state information has a vast influence on the period of the generator.
44  * Note: the deg*(2**deg - 1) is an approximation only good for large deg,
45  * when the period of the shift register is the dominant factor.  With deg
46  * equal to seven, the period is actually much longer than the 7*(2**7 - 1)
47  * predicted by this formula.
48  */
49 
50 
51 
52 /*
53  * For each of the currently supported random number generators, we have a
54  * break value on the amount of state information (you need at least this
55  * many bytes of state info to support this random number generator), a degree
56  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
57  * the separation between the two lower order coefficients of the trinomial.
58  */
59 
60 #define		TYPE_0		0		/* linear congruential */
61 #define		BREAK_0		8
62 #define		DEG_0		0
63 #define		SEP_0		0
64 
65 #define		TYPE_1		1		/* x**7 + x**3 + 1 */
66 #define		BREAK_1		32
67 #define		DEG_1		7
68 #define		SEP_1		3
69 
70 #define		TYPE_2		2		/* x**15 + x + 1 */
71 #define		BREAK_2		64
72 #define		DEG_2		15
73 #define		SEP_2		1
74 
75 #define		TYPE_3		3		/* x**31 + x**3 + 1 */
76 #define		BREAK_3		128
77 #define		DEG_3		31
78 #define		SEP_3		3
79 
80 #define		TYPE_4		4		/* x**63 + x + 1 */
81 #define		BREAK_4		256
82 #define		DEG_4		63
83 #define		SEP_4		1
84 
85 
86 /*
87  * Array versions of the above information to make code run faster -- relies
88  * on fact that TYPE_i == i.
89  */
90 
91 #define		MAX_TYPES	5		/* max number of types above */
92 
93 static  int		degrees[ MAX_TYPES ]	= { DEG_0, DEG_1, DEG_2,
94 								DEG_3, DEG_4 };
95 
96 static  int		seps[ MAX_TYPES ]	= { SEP_0, SEP_1, SEP_2,
97 								SEP_3, SEP_4 };
98 
99 
100 
101 /*
102  * Initially, everything is set up as if from :
103  *		initstate( 1, &randtbl, 128 );
104  * Note that this initialization takes advantage of the fact that srandom()
105  * advances the front and rear pointers 10*rand_deg times, and hence the
106  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
107  * element of the state information, which contains info about the current
108  * position of the rear pointer is just
109  *	MAX_TYPES*(rptr - state) + TYPE_3 == TYPE_3.
110  */
111 
112 static  long		randtbl[ DEG_3 + 1 ]	= { TYPE_3,
113 			    0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
114 			    0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
115 			    0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
116 			    0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
117 			    0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
118 			    0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
119 			    0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
120 					0xf5ad9d0e, 0x8999220b, 0x27fb47b9 };
121 
122 /*
123  * fptr and rptr are two pointers into the state info, a front and a rear
124  * pointer.  These two pointers are always rand_sep places aparts, as they cycle
125  * cyclically through the state information.  (Yes, this does mean we could get
126  * away with just one pointer, but the code for random() is more efficient this
127  * way).  The pointers are left positioned as they would be from the call
128  *			initstate( 1, randtbl, 128 )
129  * (The position of the rear pointer, rptr, is really 0 (as explained above
130  * in the initialization of randtbl) because the state table pointer is set
131  * to point to randtbl[1] (as explained below).
132  */
133 
134 static  long		*fptr			= &randtbl[ SEP_3 + 1 ];
135 static  long		*rptr			= &randtbl[ 1 ];
136 
137 
138 
139 /*
140  * The following things are the pointer to the state information table,
141  * the type of the current generator, the degree of the current polynomial
142  * being used, and the separation between the two pointers.
143  * Note that for efficiency of random(), we remember the first location of
144  * the state information, not the zeroeth.  Hence it is valid to access
145  * state[-1], which is used to store the type of the R.N.G.
146  * Also, we remember the last location, since this is more efficient than
147  * indexing every time to find the address of the last element to see if
148  * the front and rear pointers have wrapped.
149  */
150 
151 static  long		*state			= &randtbl[ 1 ];
152 
153 static  int		rand_type		= TYPE_3;
154 static  int		rand_deg		= DEG_3;
155 static  int		rand_sep		= SEP_3;
156 
157 static  long		*end_ptr		= &randtbl[ DEG_3 + 1 ];
158 
159 
160 
161 /*
162  * srandom:
163  * Initialize the random number generator based on the given seed.  If the
164  * type is the trivial no-state-information type, just remember the seed.
165  * Otherwise, initializes state[] based on the given "seed" via a linear
166  * congruential generator.  Then, the pointers are set to known locations
167  * that are exactly rand_sep places apart.  Lastly, it cycles the state
168  * information a given number of times to get rid of any initial dependencies
169  * introduced by the L.C.R.N.G.
170  * Note that the initialization of randtbl[] for default usage relies on
171  * values produced by this routine.
172  */
173 
174 srandom( x )
175 
176     unsigned		x;
177 {
178     	register  int		i, j;
179 	long random();
180 
181 	if(  rand_type  ==  TYPE_0  )  {
182 	    state[ 0 ] = x;
183 	}
184 	else  {
185 	    j = 1;
186 	    state[ 0 ] = x;
187 	    for( i = 1; i < rand_deg; i++ )  {
188 		state[i] = 1103515245*state[i - 1] + 12345;
189 	    }
190 	    fptr = &state[ rand_sep ];
191 	    rptr = &state[ 0 ];
192 	    for( i = 0; i < 10*rand_deg; i++ )  random();
193 	}
194 }
195 
196 
197 
198 /*
199  * initstate:
200  * Initialize the state information in the given array of n bytes for
201  * future random number generation.  Based on the number of bytes we
202  * are given, and the break values for the different R.N.G.'s, we choose
203  * the best (largest) one we can and set things up for it.  srandom() is
204  * then called to initialize the state information.
205  * Note that on return from srandom(), we set state[-1] to be the type
206  * multiplexed with the current value of the rear pointer; this is so
207  * successive calls to initstate() won't lose this information and will
208  * be able to restart with setstate().
209  * Note: the first thing we do is save the current state, if any, just like
210  * setstate() so that it doesn't matter when initstate is called.
211  * Returns a pointer to the old state.
212  */
213 
214 char  *
215 initstate( seed, arg_state, n )
216 
217     unsigned		seed;			/* seed for R. N. G. */
218     char		*arg_state;		/* pointer to state array */
219     int			n;			/* # bytes of state info */
220 {
221 	register  char		*ostate		= (char *)( &state[ -1 ] );
222 
223 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
224 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
225 	if(  n  <  BREAK_1  )  {
226 	    if(  n  <  BREAK_0  )  {
227 		fprintf( stderr, "initstate: not enough state (%d bytes) with which to do jack; ignored.\n", n );
228 		return;
229 	    }
230 	    rand_type = TYPE_0;
231 	    rand_deg = DEG_0;
232 	    rand_sep = SEP_0;
233 	}
234 	else  {
235 	    if(  n  <  BREAK_2  )  {
236 		rand_type = TYPE_1;
237 		rand_deg = DEG_1;
238 		rand_sep = SEP_1;
239 	    }
240 	    else  {
241 		if(  n  <  BREAK_3  )  {
242 		    rand_type = TYPE_2;
243 		    rand_deg = DEG_2;
244 		    rand_sep = SEP_2;
245 		}
246 		else  {
247 		    if(  n  <  BREAK_4  )  {
248 			rand_type = TYPE_3;
249 			rand_deg = DEG_3;
250 			rand_sep = SEP_3;
251 		    }
252 		    else  {
253 			rand_type = TYPE_4;
254 			rand_deg = DEG_4;
255 			rand_sep = SEP_4;
256 		    }
257 		}
258 	    }
259 	}
260 	state = &(  ( (long *)arg_state )[1]  );	/* first location */
261 	end_ptr = &state[ rand_deg ];	/* must set end_ptr before srandom */
262 	srandom( seed );
263 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
264 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
265 	return( ostate );
266 }
267 
268 
269 
270 /*
271  * setstate:
272  * Restore the state from the given state array.
273  * Note: it is important that we also remember the locations of the pointers
274  * in the current state information, and restore the locations of the pointers
275  * from the old state information.  This is done by multiplexing the pointer
276  * location into the zeroeth word of the state information.
277  * Note that due to the order in which things are done, it is OK to call
278  * setstate() with the same state as the current state.
279  * Returns a pointer to the old state information.
280  */
281 
282 char  *
283 setstate( arg_state )
284 
285     char		*arg_state;
286 {
287 	register  long		*new_state	= (long *)arg_state;
288 	register  int		type		= new_state[0]%MAX_TYPES;
289 	register  int		rear		= new_state[0]/MAX_TYPES;
290 	char			*ostate		= (char *)( &state[ -1 ] );
291 
292 	if(  rand_type  ==  TYPE_0  )  state[ -1 ] = rand_type;
293 	else  state[ -1 ] = MAX_TYPES*(rptr - state) + rand_type;
294 	switch(  type  )  {
295 	    case  TYPE_0:
296 	    case  TYPE_1:
297 	    case  TYPE_2:
298 	    case  TYPE_3:
299 	    case  TYPE_4:
300 		rand_type = type;
301 		rand_deg = degrees[ type ];
302 		rand_sep = seps[ type ];
303 		break;
304 
305 	    default:
306 		fprintf( stderr, "setstate: state info has been munged; not changed.\n" );
307 	}
308 	state = &new_state[ 1 ];
309 	if(  rand_type  !=  TYPE_0  )  {
310 	    rptr = &state[ rear ];
311 	    fptr = &state[ (rear + rand_sep)%rand_deg ];
312 	}
313 	end_ptr = &state[ rand_deg ];		/* set end_ptr too */
314 	return( ostate );
315 }
316 
317 
318 
319 /*
320  * random:
321  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
322  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
323  * same in all ther other cases due to all the global variables that have been
324  * set up.  The basic operation is to add the number at the rear pointer into
325  * the one at the front pointer.  Then both pointers are advanced to the next
326  * location cyclically in the table.  The value returned is the sum generated,
327  * reduced to 31 bits by throwing away the "least random" low bit.
328  * Note: the code takes advantage of the fact that both the front and
329  * rear pointers can't wrap on the same call by not testing the rear
330  * pointer if the front one has wrapped.
331  * Returns a 31-bit random number.
332  */
333 
334 long
335 random()
336 {
337 	long		i;
338 
339 	if(  rand_type  ==  TYPE_0  )  {
340 	    i = state[0] = ( state[0]*1103515245 + 12345 )&0x7fffffff;
341 	}
342 	else  {
343 	    *fptr += *rptr;
344 	    i = (*fptr >> 1)&0x7fffffff;	/* chucking least random bit */
345 	    if(  ++fptr  >=  end_ptr  )  {
346 		fptr = state;
347 		++rptr;
348 	    }
349 	    else  {
350 		if(  ++rptr  >=  end_ptr  )  rptr = state;
351 	    }
352 	}
353 	return( i );
354 }
355 
356