1 /* $NetBSD: intel_guc_log.c,v 1.3 2021/12/19 12:32:15 riastradh Exp $ */
2
3 // SPDX-License-Identifier: MIT
4 /*
5 * Copyright © 2014-2019 Intel Corporation
6 */
7
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_guc_log.c,v 1.3 2021/12/19 12:32:15 riastradh Exp $");
10
11 #include <linux/debugfs.h>
12
13 #include "gt/intel_gt.h"
14 #include "i915_drv.h"
15 #include "i915_memcpy.h"
16 #include "intel_guc_log.h"
17
18 static void guc_log_capture_logs(struct intel_guc_log *log);
19
20 /**
21 * DOC: GuC firmware log
22 *
23 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
24 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
25 * i915_guc_load_status will print out firmware loading status and scratch
26 * registers value.
27 */
28
guc_action_flush_log_complete(struct intel_guc * guc)29 static int guc_action_flush_log_complete(struct intel_guc *guc)
30 {
31 u32 action[] = {
32 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
33 };
34
35 return intel_guc_send(guc, action, ARRAY_SIZE(action));
36 }
37
guc_action_flush_log(struct intel_guc * guc)38 static int guc_action_flush_log(struct intel_guc *guc)
39 {
40 u32 action[] = {
41 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
42 0
43 };
44
45 return intel_guc_send(guc, action, ARRAY_SIZE(action));
46 }
47
guc_action_control_log(struct intel_guc * guc,bool enable,bool default_logging,u32 verbosity)48 static int guc_action_control_log(struct intel_guc *guc, bool enable,
49 bool default_logging, u32 verbosity)
50 {
51 u32 action[] = {
52 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
53 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
54 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
55 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
56 };
57
58 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
59
60 return intel_guc_send(guc, action, ARRAY_SIZE(action));
61 }
62
log_to_guc(struct intel_guc_log * log)63 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
64 {
65 return container_of(log, struct intel_guc, log);
66 }
67
guc_log_enable_flush_events(struct intel_guc_log * log)68 static void guc_log_enable_flush_events(struct intel_guc_log *log)
69 {
70 intel_guc_enable_msg(log_to_guc(log),
71 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
72 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
73 }
74
guc_log_disable_flush_events(struct intel_guc_log * log)75 static void guc_log_disable_flush_events(struct intel_guc_log *log)
76 {
77 intel_guc_disable_msg(log_to_guc(log),
78 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
79 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
80 }
81
82 /*
83 * Sub buffer switch callback. Called whenever relay has to switch to a new
84 * sub buffer, relay stays on the same sub buffer if 0 is returned.
85 */
subbuf_start_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)86 static int subbuf_start_callback(struct rchan_buf *buf,
87 void *subbuf,
88 void *prev_subbuf,
89 size_t prev_padding)
90 {
91 /*
92 * Use no-overwrite mode by default, where relay will stop accepting
93 * new data if there are no empty sub buffers left.
94 * There is no strict synchronization enforced by relay between Consumer
95 * and Producer. In overwrite mode, there is a possibility of getting
96 * inconsistent/garbled data, the producer could be writing on to the
97 * same sub buffer from which Consumer is reading. This can't be avoided
98 * unless Consumer is fast enough and can always run in tandem with
99 * Producer.
100 */
101 if (relay_buf_full(buf))
102 return 0;
103
104 return 1;
105 }
106
107 /*
108 * file_create() callback. Creates relay file in debugfs.
109 */
create_buf_file_callback(const char * filename,struct dentry * parent,umode_t mode,struct rchan_buf * buf,int * is_global)110 static struct dentry *create_buf_file_callback(const char *filename,
111 struct dentry *parent,
112 umode_t mode,
113 struct rchan_buf *buf,
114 int *is_global)
115 {
116 struct dentry *buf_file;
117
118 /*
119 * This to enable the use of a single buffer for the relay channel and
120 * correspondingly have a single file exposed to User, through which
121 * it can collect the logs in order without any post-processing.
122 * Need to set 'is_global' even if parent is NULL for early logging.
123 */
124 *is_global = 1;
125
126 if (!parent)
127 return NULL;
128
129 buf_file = debugfs_create_file(filename, mode,
130 parent, buf, &relay_file_operations);
131 if (IS_ERR(buf_file))
132 return NULL;
133
134 return buf_file;
135 }
136
137 /*
138 * file_remove() default callback. Removes relay file in debugfs.
139 */
remove_buf_file_callback(struct dentry * dentry)140 static int remove_buf_file_callback(struct dentry *dentry)
141 {
142 debugfs_remove(dentry);
143 return 0;
144 }
145
146 /* relay channel callbacks */
147 static struct rchan_callbacks relay_callbacks = {
148 .subbuf_start = subbuf_start_callback,
149 .create_buf_file = create_buf_file_callback,
150 .remove_buf_file = remove_buf_file_callback,
151 };
152
guc_move_to_next_buf(struct intel_guc_log * log)153 static void guc_move_to_next_buf(struct intel_guc_log *log)
154 {
155 /*
156 * Make sure the updates made in the sub buffer are visible when
157 * Consumer sees the following update to offset inside the sub buffer.
158 */
159 smp_wmb();
160
161 /* All data has been written, so now move the offset of sub buffer. */
162 relay_reserve(log->relay.channel, log->vma->obj->base.size);
163
164 /* Switch to the next sub buffer */
165 relay_flush(log->relay.channel);
166 }
167
guc_get_write_buffer(struct intel_guc_log * log)168 static void *guc_get_write_buffer(struct intel_guc_log *log)
169 {
170 /*
171 * Just get the base address of a new sub buffer and copy data into it
172 * ourselves. NULL will be returned in no-overwrite mode, if all sub
173 * buffers are full. Could have used the relay_write() to indirectly
174 * copy the data, but that would have been bit convoluted, as we need to
175 * write to only certain locations inside a sub buffer which cannot be
176 * done without using relay_reserve() along with relay_write(). So its
177 * better to use relay_reserve() alone.
178 */
179 return relay_reserve(log->relay.channel, 0);
180 }
181
guc_check_log_buf_overflow(struct intel_guc_log * log,enum guc_log_buffer_type type,unsigned int full_cnt)182 static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
183 enum guc_log_buffer_type type,
184 unsigned int full_cnt)
185 {
186 unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
187 bool overflow = false;
188
189 if (full_cnt != prev_full_cnt) {
190 overflow = true;
191
192 log->stats[type].overflow = full_cnt;
193 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
194
195 if (full_cnt < prev_full_cnt) {
196 /* buffer_full_cnt is a 4 bit counter */
197 log->stats[type].sampled_overflow += 16;
198 }
199
200 dev_notice_ratelimited(guc_to_gt(log_to_guc(log))->i915->drm.dev,
201 "GuC log buffer overflow\n");
202 }
203
204 return overflow;
205 }
206
guc_get_log_buffer_size(enum guc_log_buffer_type type)207 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
208 {
209 switch (type) {
210 case GUC_ISR_LOG_BUFFER:
211 return ISR_BUFFER_SIZE;
212 case GUC_DPC_LOG_BUFFER:
213 return DPC_BUFFER_SIZE;
214 case GUC_CRASH_DUMP_LOG_BUFFER:
215 return CRASH_BUFFER_SIZE;
216 default:
217 MISSING_CASE(type);
218 }
219
220 return 0;
221 }
222
guc_read_update_log_buffer(struct intel_guc_log * log)223 static void guc_read_update_log_buffer(struct intel_guc_log *log)
224 {
225 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
226 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
227 struct guc_log_buffer_state log_buf_state_local;
228 enum guc_log_buffer_type type;
229 void *src_data, *dst_data;
230 bool new_overflow;
231
232 mutex_lock(&log->relay.lock);
233
234 if (WARN_ON(!intel_guc_log_relay_created(log)))
235 goto out_unlock;
236
237 /* Get the pointer to shared GuC log buffer */
238 log_buf_state = src_data = log->relay.buf_addr;
239
240 /* Get the pointer to local buffer to store the logs */
241 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
242
243 if (unlikely(!log_buf_snapshot_state)) {
244 /*
245 * Used rate limited to avoid deluge of messages, logs might be
246 * getting consumed by User at a slow rate.
247 */
248 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
249 log->relay.full_count++;
250
251 goto out_unlock;
252 }
253
254 /* Actual logs are present from the 2nd page */
255 src_data += PAGE_SIZE;
256 dst_data += PAGE_SIZE;
257
258 for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
259 /*
260 * Make a copy of the state structure, inside GuC log buffer
261 * (which is uncached mapped), on the stack to avoid reading
262 * from it multiple times.
263 */
264 memcpy(&log_buf_state_local, log_buf_state,
265 sizeof(struct guc_log_buffer_state));
266 buffer_size = guc_get_log_buffer_size(type);
267 read_offset = log_buf_state_local.read_ptr;
268 write_offset = log_buf_state_local.sampled_write_ptr;
269 full_cnt = log_buf_state_local.buffer_full_cnt;
270
271 /* Bookkeeping stuff */
272 log->stats[type].flush += log_buf_state_local.flush_to_file;
273 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
274
275 /* Update the state of shared log buffer */
276 log_buf_state->read_ptr = write_offset;
277 log_buf_state->flush_to_file = 0;
278 log_buf_state++;
279
280 /* First copy the state structure in snapshot buffer */
281 memcpy(log_buf_snapshot_state, &log_buf_state_local,
282 sizeof(struct guc_log_buffer_state));
283
284 /*
285 * The write pointer could have been updated by GuC firmware,
286 * after sending the flush interrupt to Host, for consistency
287 * set write pointer value to same value of sampled_write_ptr
288 * in the snapshot buffer.
289 */
290 log_buf_snapshot_state->write_ptr = write_offset;
291 log_buf_snapshot_state++;
292
293 /* Now copy the actual logs. */
294 if (unlikely(new_overflow)) {
295 /* copy the whole buffer in case of overflow */
296 read_offset = 0;
297 write_offset = buffer_size;
298 } else if (unlikely((read_offset > buffer_size) ||
299 (write_offset > buffer_size))) {
300 DRM_ERROR("invalid log buffer state\n");
301 /* copy whole buffer as offsets are unreliable */
302 read_offset = 0;
303 write_offset = buffer_size;
304 }
305
306 /* Just copy the newly written data */
307 if (read_offset > write_offset) {
308 i915_memcpy_from_wc(dst_data, src_data, write_offset);
309 bytes_to_copy = buffer_size - read_offset;
310 } else {
311 bytes_to_copy = write_offset - read_offset;
312 }
313 i915_memcpy_from_wc(dst_data + read_offset,
314 src_data + read_offset, bytes_to_copy);
315
316 src_data += buffer_size;
317 dst_data += buffer_size;
318 }
319
320 guc_move_to_next_buf(log);
321
322 out_unlock:
323 mutex_unlock(&log->relay.lock);
324 }
325
capture_logs_work(struct work_struct * work)326 static void capture_logs_work(struct work_struct *work)
327 {
328 struct intel_guc_log *log =
329 container_of(work, struct intel_guc_log, relay.flush_work);
330
331 guc_log_capture_logs(log);
332 }
333
guc_log_map(struct intel_guc_log * log)334 static int guc_log_map(struct intel_guc_log *log)
335 {
336 void *vaddr;
337
338 lockdep_assert_held(&log->relay.lock);
339
340 if (!log->vma)
341 return -ENODEV;
342
343 /*
344 * Create a WC (Uncached for read) vmalloc mapping of log
345 * buffer pages, so that we can directly get the data
346 * (up-to-date) from memory.
347 */
348 vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
349 if (IS_ERR(vaddr))
350 return PTR_ERR(vaddr);
351
352 log->relay.buf_addr = vaddr;
353
354 return 0;
355 }
356
guc_log_unmap(struct intel_guc_log * log)357 static void guc_log_unmap(struct intel_guc_log *log)
358 {
359 lockdep_assert_held(&log->relay.lock);
360
361 i915_gem_object_unpin_map(log->vma->obj);
362 log->relay.buf_addr = NULL;
363 }
364
intel_guc_log_init_early(struct intel_guc_log * log)365 void intel_guc_log_init_early(struct intel_guc_log *log)
366 {
367 mutex_init(&log->relay.lock);
368 INIT_WORK(&log->relay.flush_work, capture_logs_work);
369 log->relay.started = false;
370 }
371
guc_log_relay_create(struct intel_guc_log * log)372 static int guc_log_relay_create(struct intel_guc_log *log)
373 {
374 struct intel_guc *guc = log_to_guc(log);
375 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
376 struct rchan *guc_log_relay_chan;
377 size_t n_subbufs, subbuf_size;
378 int ret;
379
380 lockdep_assert_held(&log->relay.lock);
381 GEM_BUG_ON(!log->vma);
382
383 /* Keep the size of sub buffers same as shared log buffer */
384 subbuf_size = log->vma->size;
385
386 /*
387 * Store up to 8 snapshots, which is large enough to buffer sufficient
388 * boot time logs and provides enough leeway to User, in terms of
389 * latency, for consuming the logs from relay. Also doesn't take
390 * up too much memory.
391 */
392 n_subbufs = 8;
393
394 guc_log_relay_chan = relay_open("guc_log",
395 dev_priv->drm.primary->debugfs_root,
396 subbuf_size, n_subbufs,
397 &relay_callbacks, dev_priv);
398 if (!guc_log_relay_chan) {
399 DRM_ERROR("Couldn't create relay chan for GuC logging\n");
400
401 ret = -ENOMEM;
402 return ret;
403 }
404
405 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
406 log->relay.channel = guc_log_relay_chan;
407
408 return 0;
409 }
410
guc_log_relay_destroy(struct intel_guc_log * log)411 static void guc_log_relay_destroy(struct intel_guc_log *log)
412 {
413 lockdep_assert_held(&log->relay.lock);
414
415 relay_close(log->relay.channel);
416 log->relay.channel = NULL;
417 }
418
guc_log_capture_logs(struct intel_guc_log * log)419 static void guc_log_capture_logs(struct intel_guc_log *log)
420 {
421 struct intel_guc *guc = log_to_guc(log);
422 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
423 intel_wakeref_t wakeref;
424
425 guc_read_update_log_buffer(log);
426
427 /*
428 * Generally device is expected to be active only at this
429 * time, so get/put should be really quick.
430 */
431 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
432 guc_action_flush_log_complete(guc);
433 }
434
__get_default_log_level(struct intel_guc_log * log)435 static u32 __get_default_log_level(struct intel_guc_log *log)
436 {
437 /* A negative value means "use platform/config default" */
438 if (i915_modparams.guc_log_level < 0) {
439 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
440 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
441 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
442 }
443
444 if (i915_modparams.guc_log_level > GUC_LOG_LEVEL_MAX) {
445 DRM_WARN("Incompatible option detected: %s=%d, %s!\n",
446 "guc_log_level", i915_modparams.guc_log_level,
447 "verbosity too high");
448 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
449 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
450 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
451 }
452
453 GEM_BUG_ON(i915_modparams.guc_log_level < GUC_LOG_LEVEL_DISABLED);
454 GEM_BUG_ON(i915_modparams.guc_log_level > GUC_LOG_LEVEL_MAX);
455 return i915_modparams.guc_log_level;
456 }
457
intel_guc_log_create(struct intel_guc_log * log)458 int intel_guc_log_create(struct intel_guc_log *log)
459 {
460 struct intel_guc *guc = log_to_guc(log);
461 struct i915_vma *vma;
462 u32 guc_log_size;
463 int ret;
464
465 GEM_BUG_ON(log->vma);
466
467 /*
468 * GuC Log buffer Layout
469 *
470 * +===============================+ 00B
471 * | Crash dump state header |
472 * +-------------------------------+ 32B
473 * | DPC state header |
474 * +-------------------------------+ 64B
475 * | ISR state header |
476 * +-------------------------------+ 96B
477 * | |
478 * +===============================+ PAGE_SIZE (4KB)
479 * | Crash Dump logs |
480 * +===============================+ + CRASH_SIZE
481 * | DPC logs |
482 * +===============================+ + DPC_SIZE
483 * | ISR logs |
484 * +===============================+ + ISR_SIZE
485 */
486 guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
487 ISR_BUFFER_SIZE;
488
489 vma = intel_guc_allocate_vma(guc, guc_log_size);
490 if (IS_ERR(vma)) {
491 ret = PTR_ERR(vma);
492 goto err;
493 }
494
495 log->vma = vma;
496
497 log->level = __get_default_log_level(log);
498 DRM_DEBUG_DRIVER("guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
499 log->level, enableddisabled(log->level),
500 yesno(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
501 GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
502
503 return 0;
504
505 err:
506 DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
507 return ret;
508 }
509
intel_guc_log_destroy(struct intel_guc_log * log)510 void intel_guc_log_destroy(struct intel_guc_log *log)
511 {
512 i915_vma_unpin_and_release(&log->vma, 0);
513 mutex_destroy(&log->relay.lock);
514 }
515
intel_guc_log_set_level(struct intel_guc_log * log,u32 level)516 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
517 {
518 struct intel_guc *guc = log_to_guc(log);
519 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
520 intel_wakeref_t wakeref;
521 int ret = 0;
522
523 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
524 GEM_BUG_ON(!log->vma);
525
526 /*
527 * GuC is recognizing log levels starting from 0 to max, we're using 0
528 * as indication that logging should be disabled.
529 */
530 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
531 return -EINVAL;
532
533 mutex_lock(&dev_priv->drm.struct_mutex);
534
535 if (log->level == level)
536 goto out_unlock;
537
538 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
539 ret = guc_action_control_log(guc,
540 GUC_LOG_LEVEL_IS_VERBOSE(level),
541 GUC_LOG_LEVEL_IS_ENABLED(level),
542 GUC_LOG_LEVEL_TO_VERBOSITY(level));
543 if (ret) {
544 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
545 goto out_unlock;
546 }
547
548 log->level = level;
549
550 out_unlock:
551 mutex_unlock(&dev_priv->drm.struct_mutex);
552
553 return ret;
554 }
555
intel_guc_log_relay_created(const struct intel_guc_log * log)556 bool intel_guc_log_relay_created(const struct intel_guc_log *log)
557 {
558 return log->relay.buf_addr;
559 }
560
intel_guc_log_relay_open(struct intel_guc_log * log)561 int intel_guc_log_relay_open(struct intel_guc_log *log)
562 {
563 int ret;
564
565 if (!log->vma)
566 return -ENODEV;
567
568 mutex_lock(&log->relay.lock);
569
570 if (intel_guc_log_relay_created(log)) {
571 ret = -EEXIST;
572 goto out_unlock;
573 }
574
575 /*
576 * We require SSE 4.1 for fast reads from the GuC log buffer and
577 * it should be present on the chipsets supporting GuC based
578 * submisssions.
579 */
580 if (!i915_has_memcpy_from_wc()) {
581 ret = -ENXIO;
582 goto out_unlock;
583 }
584
585 ret = guc_log_relay_create(log);
586 if (ret)
587 goto out_unlock;
588
589 ret = guc_log_map(log);
590 if (ret)
591 goto out_relay;
592
593 mutex_unlock(&log->relay.lock);
594
595 return 0;
596
597 out_relay:
598 guc_log_relay_destroy(log);
599 out_unlock:
600 mutex_unlock(&log->relay.lock);
601
602 return ret;
603 }
604
intel_guc_log_relay_start(struct intel_guc_log * log)605 int intel_guc_log_relay_start(struct intel_guc_log *log)
606 {
607 if (log->relay.started)
608 return -EEXIST;
609
610 guc_log_enable_flush_events(log);
611
612 /*
613 * When GuC is logging without us relaying to userspace, we're ignoring
614 * the flush notification. This means that we need to unconditionally
615 * flush on relay enabling, since GuC only notifies us once.
616 */
617 queue_work(system_highpri_wq, &log->relay.flush_work);
618
619 log->relay.started = true;
620
621 return 0;
622 }
623
intel_guc_log_relay_flush(struct intel_guc_log * log)624 void intel_guc_log_relay_flush(struct intel_guc_log *log)
625 {
626 struct intel_guc *guc = log_to_guc(log);
627 intel_wakeref_t wakeref;
628
629 if (!log->relay.started)
630 return;
631
632 /*
633 * Before initiating the forceful flush, wait for any pending/ongoing
634 * flush to complete otherwise forceful flush may not actually happen.
635 */
636 flush_work(&log->relay.flush_work);
637
638 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
639 guc_action_flush_log(guc);
640
641 /* GuC would have updated log buffer by now, so capture it */
642 guc_log_capture_logs(log);
643 }
644
645 /*
646 * Stops the relay log. Called from intel_guc_log_relay_close(), so no
647 * possibility of race with start/flush since relay_write cannot race
648 * relay_close.
649 */
guc_log_relay_stop(struct intel_guc_log * log)650 static void guc_log_relay_stop(struct intel_guc_log *log)
651 {
652 struct intel_guc *guc = log_to_guc(log);
653 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
654
655 if (!log->relay.started)
656 return;
657
658 guc_log_disable_flush_events(log);
659 intel_synchronize_irq(i915);
660
661 flush_work(&log->relay.flush_work);
662
663 log->relay.started = false;
664 }
665
intel_guc_log_relay_close(struct intel_guc_log * log)666 void intel_guc_log_relay_close(struct intel_guc_log *log)
667 {
668 guc_log_relay_stop(log);
669
670 mutex_lock(&log->relay.lock);
671 GEM_BUG_ON(!intel_guc_log_relay_created(log));
672 guc_log_unmap(log);
673 guc_log_relay_destroy(log);
674 mutex_unlock(&log->relay.lock);
675 }
676
intel_guc_log_handle_flush_event(struct intel_guc_log * log)677 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
678 {
679 queue_work(system_highpri_wq, &log->relay.flush_work);
680 }
681