1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include <cassert>
51 #include <utility>
52 #include <vector>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "loop-interchange"
57
58 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
59
60 static cl::opt<int> LoopInterchangeCostThreshold(
61 "loop-interchange-threshold", cl::init(0), cl::Hidden,
62 cl::desc("Interchange if you gain more than this number"));
63
64 namespace {
65
66 using LoopVector = SmallVector<Loop *, 8>;
67
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix = std::vector<std::vector<char>>;
70
71 } // end anonymous namespace
72
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount = 100;
75
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth = 10;
78
79 #ifdef DUMP_DEP_MATRICIES
printDepMatrix(CharMatrix & DepMatrix)80 static void printDepMatrix(CharMatrix &DepMatrix) {
81 for (auto &Row : DepMatrix) {
82 for (auto D : Row)
83 LLVM_DEBUG(dbgs() << D << " ");
84 LLVM_DEBUG(dbgs() << "\n");
85 }
86 }
87 #endif
88
populateDependencyMatrix(CharMatrix & DepMatrix,unsigned Level,Loop * L,DependenceInfo * DI)89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
90 Loop *L, DependenceInfo *DI) {
91 using ValueVector = SmallVector<Value *, 16>;
92
93 ValueVector MemInstr;
94
95 // For each block.
96 for (BasicBlock *BB : L->blocks()) {
97 // Scan the BB and collect legal loads and stores.
98 for (Instruction &I : *BB) {
99 if (!isa<Instruction>(I))
100 return false;
101 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
102 if (!Ld->isSimple())
103 return false;
104 MemInstr.push_back(&I);
105 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
106 if (!St->isSimple())
107 return false;
108 MemInstr.push_back(&I);
109 }
110 }
111 }
112
113 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
114 << " Loads and Stores to analyze\n");
115
116 ValueVector::iterator I, IE, J, JE;
117
118 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
119 for (J = I, JE = MemInstr.end(); J != JE; ++J) {
120 std::vector<char> Dep;
121 Instruction *Src = cast<Instruction>(*I);
122 Instruction *Dst = cast<Instruction>(*J);
123 if (Src == Dst)
124 continue;
125 // Ignore Input dependencies.
126 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
127 continue;
128 // Track Output, Flow, and Anti dependencies.
129 if (auto D = DI->depends(Src, Dst, true)) {
130 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
131 LLVM_DEBUG(StringRef DepType =
132 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
133 dbgs() << "Found " << DepType
134 << " dependency between Src and Dst\n"
135 << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
136 unsigned Levels = D->getLevels();
137 char Direction;
138 for (unsigned II = 1; II <= Levels; ++II) {
139 const SCEV *Distance = D->getDistance(II);
140 const SCEVConstant *SCEVConst =
141 dyn_cast_or_null<SCEVConstant>(Distance);
142 if (SCEVConst) {
143 const ConstantInt *CI = SCEVConst->getValue();
144 if (CI->isNegative())
145 Direction = '<';
146 else if (CI->isZero())
147 Direction = '=';
148 else
149 Direction = '>';
150 Dep.push_back(Direction);
151 } else if (D->isScalar(II)) {
152 Direction = 'S';
153 Dep.push_back(Direction);
154 } else {
155 unsigned Dir = D->getDirection(II);
156 if (Dir == Dependence::DVEntry::LT ||
157 Dir == Dependence::DVEntry::LE)
158 Direction = '<';
159 else if (Dir == Dependence::DVEntry::GT ||
160 Dir == Dependence::DVEntry::GE)
161 Direction = '>';
162 else if (Dir == Dependence::DVEntry::EQ)
163 Direction = '=';
164 else
165 Direction = '*';
166 Dep.push_back(Direction);
167 }
168 }
169 while (Dep.size() != Level) {
170 Dep.push_back('I');
171 }
172
173 DepMatrix.push_back(Dep);
174 if (DepMatrix.size() > MaxMemInstrCount) {
175 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
176 << " dependencies inside loop\n");
177 return false;
178 }
179 }
180 }
181 }
182
183 return true;
184 }
185
186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
187 // matrix by exchanging the two columns.
interChangeDependencies(CharMatrix & DepMatrix,unsigned FromIndx,unsigned ToIndx)188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
189 unsigned ToIndx) {
190 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
191 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
192 }
193
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
isOuterMostDepPositive(CharMatrix & DepMatrix,unsigned Row,unsigned Column)196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197 unsigned Column) {
198 for (unsigned i = 0; i <= Column; ++i) {
199 if (DepMatrix[Row][i] == '<')
200 return false;
201 if (DepMatrix[Row][i] == '>')
202 return true;
203 }
204 // All dependencies were '=','S' or 'I'
205 return false;
206 }
207
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
containsNoDependence(CharMatrix & DepMatrix,unsigned Row,unsigned Column)209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210 unsigned Column) {
211 for (unsigned i = 0; i < Column; ++i) {
212 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213 DepMatrix[Row][i] != 'I')
214 return false;
215 }
216 return true;
217 }
218
validDepInterchange(CharMatrix & DepMatrix,unsigned Row,unsigned OuterLoopId,char InnerDep,char OuterDep)219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220 unsigned OuterLoopId, char InnerDep,
221 char OuterDep) {
222 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223 return false;
224
225 if (InnerDep == OuterDep)
226 return true;
227
228 // It is legal to interchange if and only if after interchange no row has a
229 // '>' direction as the leftmost non-'='.
230
231 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232 return true;
233
234 if (InnerDep == '<')
235 return true;
236
237 if (InnerDep == '>') {
238 // If OuterLoopId represents outermost loop then interchanging will make the
239 // 1st dependency as '>'
240 if (OuterLoopId == 0)
241 return false;
242
243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244 // interchanging will result in this row having an outermost non '='
245 // dependency of '>'
246 if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247 return true;
248 }
249
250 return false;
251 }
252
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
isLegalToInterChangeLoops(CharMatrix & DepMatrix,unsigned InnerLoopId,unsigned OuterLoopId)257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258 unsigned InnerLoopId,
259 unsigned OuterLoopId) {
260 unsigned NumRows = DepMatrix.size();
261 // For each row check if it is valid to interchange.
262 for (unsigned Row = 0; Row < NumRows; ++Row) {
263 char InnerDep = DepMatrix[Row][InnerLoopId];
264 char OuterDep = DepMatrix[Row][OuterLoopId];
265 if (InnerDep == '*' || OuterDep == '*')
266 return false;
267 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268 return false;
269 }
270 return true;
271 }
272
populateWorklist(Loop & L)273 static LoopVector populateWorklist(Loop &L) {
274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275 << L.getHeader()->getParent()->getName() << " Loop: %"
276 << L.getHeader()->getName() << '\n');
277 LoopVector LoopList;
278 Loop *CurrentLoop = &L;
279 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280 while (!Vec->empty()) {
281 // The current loop has multiple subloops in it hence it is not tightly
282 // nested.
283 // Discard all loops above it added into Worklist.
284 if (Vec->size() != 1)
285 return {};
286
287 LoopList.push_back(CurrentLoop);
288 CurrentLoop = Vec->front();
289 Vec = &CurrentLoop->getSubLoops();
290 }
291 LoopList.push_back(CurrentLoop);
292 return LoopList;
293 }
294
getInductionVariable(Loop * L,ScalarEvolution * SE)295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
296 PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
297 if (InnerIndexVar)
298 return InnerIndexVar;
299 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
300 return nullptr;
301 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
302 PHINode *PhiVar = cast<PHINode>(I);
303 Type *PhiTy = PhiVar->getType();
304 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
305 !PhiTy->isPointerTy())
306 return nullptr;
307 const SCEVAddRecExpr *AddRec =
308 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
309 if (!AddRec || !AddRec->isAffine())
310 continue;
311 const SCEV *Step = AddRec->getStepRecurrence(*SE);
312 if (!isa<SCEVConstant>(Step))
313 continue;
314 // Found the induction variable.
315 // FIXME: Handle loops with more than one induction variable. Note that,
316 // currently, legality makes sure we have only one induction variable.
317 return PhiVar;
318 }
319 return nullptr;
320 }
321
322 namespace {
323
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality {
326 public:
LoopInterchangeLegality(Loop * Outer,Loop * Inner,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)327 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
328 OptimizationRemarkEmitter *ORE)
329 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
330
331 /// Check if the loops can be interchanged.
332 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333 CharMatrix &DepMatrix);
334
335 /// Check if the loop structure is understood. We do not handle triangular
336 /// loops for now.
337 bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
338
339 bool currentLimitations();
340
getOuterInnerReductions() const341 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
342 return OuterInnerReductions;
343 }
344
345 private:
346 bool tightlyNested(Loop *Outer, Loop *Inner);
347 bool containsUnsafeInstructions(BasicBlock *BB);
348
349 /// Discover induction and reduction PHIs in the header of \p L. Induction
350 /// PHIs are added to \p Inductions, reductions are added to
351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352 /// to be passed as \p InnerLoop.
353 bool findInductionAndReductions(Loop *L,
354 SmallVector<PHINode *, 8> &Inductions,
355 Loop *InnerLoop);
356
357 Loop *OuterLoop;
358 Loop *InnerLoop;
359
360 ScalarEvolution *SE;
361
362 /// Interface to emit optimization remarks.
363 OptimizationRemarkEmitter *ORE;
364
365 /// Set of reduction PHIs taking part of a reduction across the inner and
366 /// outer loop.
367 SmallPtrSet<PHINode *, 4> OuterInnerReductions;
368 };
369
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
LoopInterchangeProfitability(Loop * Outer,Loop * Inner,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375 OptimizationRemarkEmitter *ORE)
376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377
378 /// Check if the loop interchange is profitable.
379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380 CharMatrix &DepMatrix);
381
382 private:
383 int getInstrOrderCost();
384
385 Loop *OuterLoop;
386 Loop *InnerLoop;
387
388 /// Scev analysis.
389 ScalarEvolution *SE;
390
391 /// Interface to emit optimization remarks.
392 OptimizationRemarkEmitter *ORE;
393 };
394
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
LoopInterchangeTransform(Loop * Outer,Loop * Inner,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,const LoopInterchangeLegality & LIL)398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399 LoopInfo *LI, DominatorTree *DT,
400 const LoopInterchangeLegality &LIL)
401 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
402
403 /// Interchange OuterLoop and InnerLoop.
404 bool transform();
405 void restructureLoops(Loop *NewInner, Loop *NewOuter,
406 BasicBlock *OrigInnerPreHeader,
407 BasicBlock *OrigOuterPreHeader);
408 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
409
410 private:
411 bool adjustLoopLinks();
412 bool adjustLoopBranches();
413
414 Loop *OuterLoop;
415 Loop *InnerLoop;
416
417 /// Scev analysis.
418 ScalarEvolution *SE;
419
420 LoopInfo *LI;
421 DominatorTree *DT;
422
423 const LoopInterchangeLegality &LIL;
424 };
425
426 struct LoopInterchange {
427 ScalarEvolution *SE = nullptr;
428 LoopInfo *LI = nullptr;
429 DependenceInfo *DI = nullptr;
430 DominatorTree *DT = nullptr;
431
432 /// Interface to emit optimization remarks.
433 OptimizationRemarkEmitter *ORE;
434
LoopInterchange__anonc2e4e0200211::LoopInterchange435 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
436 DominatorTree *DT, OptimizationRemarkEmitter *ORE)
437 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
438
run__anonc2e4e0200211::LoopInterchange439 bool run(Loop *L) {
440 if (L->getParentLoop())
441 return false;
442
443 return processLoopList(populateWorklist(*L));
444 }
445
run__anonc2e4e0200211::LoopInterchange446 bool run(LoopNest &LN) {
447 const auto &LoopList = LN.getLoops();
448 for (unsigned I = 1; I < LoopList.size(); ++I)
449 if (LoopList[I]->getParentLoop() != LoopList[I - 1])
450 return false;
451 return processLoopList(LoopList);
452 }
453
isComputableLoopNest__anonc2e4e0200211::LoopInterchange454 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
455 for (Loop *L : LoopList) {
456 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
457 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
458 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
459 return false;
460 }
461 if (L->getNumBackEdges() != 1) {
462 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
463 return false;
464 }
465 if (!L->getExitingBlock()) {
466 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
467 return false;
468 }
469 }
470 return true;
471 }
472
selectLoopForInterchange__anonc2e4e0200211::LoopInterchange473 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
474 // TODO: Add a better heuristic to select the loop to be interchanged based
475 // on the dependence matrix. Currently we select the innermost loop.
476 return LoopList.size() - 1;
477 }
478
processLoopList__anonc2e4e0200211::LoopInterchange479 bool processLoopList(ArrayRef<Loop *> LoopList) {
480 bool Changed = false;
481 unsigned LoopNestDepth = LoopList.size();
482 if (LoopNestDepth < 2) {
483 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
484 return false;
485 }
486 if (LoopNestDepth > MaxLoopNestDepth) {
487 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
488 << MaxLoopNestDepth << "\n");
489 return false;
490 }
491 if (!isComputableLoopNest(LoopList)) {
492 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
493 return false;
494 }
495
496 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
497 << "\n");
498
499 CharMatrix DependencyMatrix;
500 Loop *OuterMostLoop = *(LoopList.begin());
501 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
502 OuterMostLoop, DI)) {
503 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
504 return false;
505 }
506 #ifdef DUMP_DEP_MATRICIES
507 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
508 printDepMatrix(DependencyMatrix);
509 #endif
510
511 // Get the Outermost loop exit.
512 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
513 if (!LoopNestExit) {
514 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
515 return false;
516 }
517
518 unsigned SelecLoopId = selectLoopForInterchange(LoopList);
519 // Move the selected loop outwards to the best possible position.
520 Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
521 for (unsigned i = SelecLoopId; i > 0; i--) {
522 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
523 i - 1, DependencyMatrix);
524 if (!Interchanged)
525 return Changed;
526 // Update the DependencyMatrix
527 interChangeDependencies(DependencyMatrix, i, i - 1);
528 #ifdef DUMP_DEP_MATRICIES
529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
530 printDepMatrix(DependencyMatrix);
531 #endif
532 Changed |= Interchanged;
533 }
534 return Changed;
535 }
536
processLoop__anonc2e4e0200211::LoopInterchange537 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
538 unsigned OuterLoopId,
539 std::vector<std::vector<char>> &DependencyMatrix) {
540 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
541 << " and OuterLoopId = " << OuterLoopId << "\n");
542 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
543 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
544 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
545 return false;
546 }
547 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
548 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
549 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
550 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
551 return false;
552 }
553
554 ORE->emit([&]() {
555 return OptimizationRemark(DEBUG_TYPE, "Interchanged",
556 InnerLoop->getStartLoc(),
557 InnerLoop->getHeader())
558 << "Loop interchanged with enclosing loop.";
559 });
560
561 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
562 LIT.transform();
563 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
564 LoopsInterchanged++;
565
566 assert(InnerLoop->isLCSSAForm(*DT) &&
567 "Inner loop not left in LCSSA form after loop interchange!");
568 assert(OuterLoop->isLCSSAForm(*DT) &&
569 "Outer loop not left in LCSSA form after loop interchange!");
570
571 return true;
572 }
573 };
574
575 } // end anonymous namespace
576
containsUnsafeInstructions(BasicBlock * BB)577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
578 return any_of(*BB, [](const Instruction &I) {
579 return I.mayHaveSideEffects() || I.mayReadFromMemory();
580 });
581 }
582
tightlyNested(Loop * OuterLoop,Loop * InnerLoop)583 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
584 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
585 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
586 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
587
588 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
589
590 // A perfectly nested loop will not have any branch in between the outer and
591 // inner block i.e. outer header will branch to either inner preheader and
592 // outerloop latch.
593 BranchInst *OuterLoopHeaderBI =
594 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
595 if (!OuterLoopHeaderBI)
596 return false;
597
598 for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
599 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
600 Succ != OuterLoopLatch)
601 return false;
602
603 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
604 // We do not have any basic block in between now make sure the outer header
605 // and outer loop latch doesn't contain any unsafe instructions.
606 if (containsUnsafeInstructions(OuterLoopHeader) ||
607 containsUnsafeInstructions(OuterLoopLatch))
608 return false;
609
610 // Also make sure the inner loop preheader does not contain any unsafe
611 // instructions. Note that all instructions in the preheader will be moved to
612 // the outer loop header when interchanging.
613 if (InnerLoopPreHeader != OuterLoopHeader &&
614 containsUnsafeInstructions(InnerLoopPreHeader))
615 return false;
616
617 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
618 // Ensure the inner loop exit block flows to the outer loop latch possibly
619 // through empty blocks.
620 const BasicBlock &SuccInner =
621 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
622 if (&SuccInner != OuterLoopLatch) {
623 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
624 << " does not lead to the outer loop latch.\n";);
625 return false;
626 }
627 // The inner loop exit block does flow to the outer loop latch and not some
628 // other BBs, now make sure it contains safe instructions, since it will be
629 // moved into the (new) inner loop after interchange.
630 if (containsUnsafeInstructions(InnerLoopExit))
631 return false;
632
633 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
634 // We have a perfect loop nest.
635 return true;
636 }
637
isLoopStructureUnderstood(PHINode * InnerInduction)638 bool LoopInterchangeLegality::isLoopStructureUnderstood(
639 PHINode *InnerInduction) {
640 unsigned Num = InnerInduction->getNumOperands();
641 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
642 for (unsigned i = 0; i < Num; ++i) {
643 Value *Val = InnerInduction->getOperand(i);
644 if (isa<Constant>(Val))
645 continue;
646 Instruction *I = dyn_cast<Instruction>(Val);
647 if (!I)
648 return false;
649 // TODO: Handle triangular loops.
650 // e.g. for(int i=0;i<N;i++)
651 // for(int j=i;j<N;j++)
652 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
653 if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
654 InnerLoopPreheader &&
655 !OuterLoop->isLoopInvariant(I)) {
656 return false;
657 }
658 }
659
660 // TODO: Handle triangular loops of another form.
661 // e.g. for(int i=0;i<N;i++)
662 // for(int j=0;j<i;j++)
663 // or,
664 // for(int i=0;i<N;i++)
665 // for(int j=0;j*i<N;j++)
666 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
667 BranchInst *InnerLoopLatchBI =
668 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
669 if (!InnerLoopLatchBI->isConditional())
670 return false;
671 if (CmpInst *InnerLoopCmp =
672 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
673 Value *Op0 = InnerLoopCmp->getOperand(0);
674 Value *Op1 = InnerLoopCmp->getOperand(1);
675
676 // LHS and RHS of the inner loop exit condition, e.g.,
677 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
678 Value *Left = nullptr;
679 Value *Right = nullptr;
680
681 // Check if V only involves inner loop induction variable.
682 // Return true if V is InnerInduction, or a cast from
683 // InnerInduction, or a binary operator that involves
684 // InnerInduction and a constant.
685 std::function<bool(Value *)> IsPathToIndVar;
686 IsPathToIndVar = [&InnerInduction, &IsPathToIndVar](Value *V) -> bool {
687 if (V == InnerInduction)
688 return true;
689 if (isa<Constant>(V))
690 return true;
691 Instruction *I = dyn_cast<Instruction>(V);
692 if (!I)
693 return false;
694 if (isa<CastInst>(I))
695 return IsPathToIndVar(I->getOperand(0));
696 if (isa<BinaryOperator>(I))
697 return IsPathToIndVar(I->getOperand(0)) &&
698 IsPathToIndVar(I->getOperand(1));
699 return false;
700 };
701
702 if (IsPathToIndVar(Op0) && !isa<Constant>(Op0)) {
703 Left = Op0;
704 Right = Op1;
705 } else if (IsPathToIndVar(Op1) && !isa<Constant>(Op1)) {
706 Left = Op1;
707 Right = Op0;
708 }
709
710 if (Left == nullptr)
711 return false;
712
713 const SCEV *S = SE->getSCEV(Right);
714 if (!SE->isLoopInvariant(S, OuterLoop))
715 return false;
716 }
717
718 return true;
719 }
720
721 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
722 // value.
followLCSSA(Value * SV)723 static Value *followLCSSA(Value *SV) {
724 PHINode *PHI = dyn_cast<PHINode>(SV);
725 if (!PHI)
726 return SV;
727
728 if (PHI->getNumIncomingValues() != 1)
729 return SV;
730 return followLCSSA(PHI->getIncomingValue(0));
731 }
732
733 // Check V's users to see if it is involved in a reduction in L.
findInnerReductionPhi(Loop * L,Value * V)734 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
735 // Reduction variables cannot be constants.
736 if (isa<Constant>(V))
737 return nullptr;
738
739 for (Value *User : V->users()) {
740 if (PHINode *PHI = dyn_cast<PHINode>(User)) {
741 if (PHI->getNumIncomingValues() == 1)
742 continue;
743 RecurrenceDescriptor RD;
744 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
745 return PHI;
746 return nullptr;
747 }
748 }
749
750 return nullptr;
751 }
752
findInductionAndReductions(Loop * L,SmallVector<PHINode *,8> & Inductions,Loop * InnerLoop)753 bool LoopInterchangeLegality::findInductionAndReductions(
754 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
755 if (!L->getLoopLatch() || !L->getLoopPredecessor())
756 return false;
757 for (PHINode &PHI : L->getHeader()->phis()) {
758 RecurrenceDescriptor RD;
759 InductionDescriptor ID;
760 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
761 Inductions.push_back(&PHI);
762 else {
763 // PHIs in inner loops need to be part of a reduction in the outer loop,
764 // discovered when checking the PHIs of the outer loop earlier.
765 if (!InnerLoop) {
766 if (!OuterInnerReductions.count(&PHI)) {
767 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
768 "across the outer loop.\n");
769 return false;
770 }
771 } else {
772 assert(PHI.getNumIncomingValues() == 2 &&
773 "Phis in loop header should have exactly 2 incoming values");
774 // Check if we have a PHI node in the outer loop that has a reduction
775 // result from the inner loop as an incoming value.
776 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
777 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
778 if (!InnerRedPhi ||
779 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
780 LLVM_DEBUG(
781 dbgs()
782 << "Failed to recognize PHI as an induction or reduction.\n");
783 return false;
784 }
785 OuterInnerReductions.insert(&PHI);
786 OuterInnerReductions.insert(InnerRedPhi);
787 }
788 }
789 }
790 return true;
791 }
792
793 // This function indicates the current limitations in the transform as a result
794 // of which we do not proceed.
currentLimitations()795 bool LoopInterchangeLegality::currentLimitations() {
796 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
797 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
798
799 // transform currently expects the loop latches to also be the exiting
800 // blocks.
801 if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
802 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
803 !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
804 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
805 LLVM_DEBUG(
806 dbgs() << "Loops where the latch is not the exiting block are not"
807 << " supported currently.\n");
808 ORE->emit([&]() {
809 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
810 OuterLoop->getStartLoc(),
811 OuterLoop->getHeader())
812 << "Loops where the latch is not the exiting block cannot be"
813 " interchange currently.";
814 });
815 return true;
816 }
817
818 PHINode *InnerInductionVar;
819 SmallVector<PHINode *, 8> Inductions;
820 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
821 LLVM_DEBUG(
822 dbgs() << "Only outer loops with induction or reduction PHI nodes "
823 << "are supported currently.\n");
824 ORE->emit([&]() {
825 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
826 OuterLoop->getStartLoc(),
827 OuterLoop->getHeader())
828 << "Only outer loops with induction or reduction PHI nodes can be"
829 " interchanged currently.";
830 });
831 return true;
832 }
833
834 // TODO: Currently we handle only loops with 1 induction variable.
835 if (Inductions.size() != 1) {
836 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
837 << "supported currently.\n");
838 ORE->emit([&]() {
839 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
840 OuterLoop->getStartLoc(),
841 OuterLoop->getHeader())
842 << "Only outer loops with 1 induction variable can be "
843 "interchanged currently.";
844 });
845 return true;
846 }
847
848 Inductions.clear();
849 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
850 LLVM_DEBUG(
851 dbgs() << "Only inner loops with induction or reduction PHI nodes "
852 << "are supported currently.\n");
853 ORE->emit([&]() {
854 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
855 InnerLoop->getStartLoc(),
856 InnerLoop->getHeader())
857 << "Only inner loops with induction or reduction PHI nodes can be"
858 " interchange currently.";
859 });
860 return true;
861 }
862
863 // TODO: Currently we handle only loops with 1 induction variable.
864 if (Inductions.size() != 1) {
865 LLVM_DEBUG(
866 dbgs() << "We currently only support loops with 1 induction variable."
867 << "Failed to interchange due to current limitation\n");
868 ORE->emit([&]() {
869 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
870 InnerLoop->getStartLoc(),
871 InnerLoop->getHeader())
872 << "Only inner loops with 1 induction variable can be "
873 "interchanged currently.";
874 });
875 return true;
876 }
877 InnerInductionVar = Inductions.pop_back_val();
878
879 // TODO: Triangular loops are not handled for now.
880 if (!isLoopStructureUnderstood(InnerInductionVar)) {
881 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
882 ORE->emit([&]() {
883 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
884 InnerLoop->getStartLoc(),
885 InnerLoop->getHeader())
886 << "Inner loop structure not understood currently.";
887 });
888 return true;
889 }
890
891 // TODO: Current limitation: Since we split the inner loop latch at the point
892 // were induction variable is incremented (induction.next); We cannot have
893 // more than 1 user of induction.next since it would result in broken code
894 // after split.
895 // e.g.
896 // for(i=0;i<N;i++) {
897 // for(j = 0;j<M;j++) {
898 // A[j+1][i+2] = A[j][i]+k;
899 // }
900 // }
901 Instruction *InnerIndexVarInc = nullptr;
902 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
903 InnerIndexVarInc =
904 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
905 else
906 InnerIndexVarInc =
907 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
908
909 if (!InnerIndexVarInc) {
910 LLVM_DEBUG(
911 dbgs() << "Did not find an instruction to increment the induction "
912 << "variable.\n");
913 ORE->emit([&]() {
914 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
915 InnerLoop->getStartLoc(),
916 InnerLoop->getHeader())
917 << "The inner loop does not increment the induction variable.";
918 });
919 return true;
920 }
921
922 // Since we split the inner loop latch on this induction variable. Make sure
923 // we do not have any instruction between the induction variable and branch
924 // instruction.
925
926 bool FoundInduction = false;
927 for (const Instruction &I :
928 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
929 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
930 isa<ZExtInst>(I))
931 continue;
932
933 // We found an instruction. If this is not induction variable then it is not
934 // safe to split this loop latch.
935 if (!I.isIdenticalTo(InnerIndexVarInc)) {
936 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
937 << "variable increment and branch.\n");
938 ORE->emit([&]() {
939 return OptimizationRemarkMissed(
940 DEBUG_TYPE, "UnsupportedInsBetweenInduction",
941 InnerLoop->getStartLoc(), InnerLoop->getHeader())
942 << "Found unsupported instruction between induction variable "
943 "increment and branch.";
944 });
945 return true;
946 }
947
948 FoundInduction = true;
949 break;
950 }
951 // The loop latch ended and we didn't find the induction variable return as
952 // current limitation.
953 if (!FoundInduction) {
954 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
955 ORE->emit([&]() {
956 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
957 InnerLoop->getStartLoc(),
958 InnerLoop->getHeader())
959 << "Did not find the induction variable.";
960 });
961 return true;
962 }
963 return false;
964 }
965
966 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
967 // users are either reduction PHIs or PHIs outside the outer loop (which means
968 // the we are only interested in the final value after the loop).
969 static bool
areInnerLoopExitPHIsSupported(Loop * InnerL,Loop * OuterL,SmallPtrSetImpl<PHINode * > & Reductions)970 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
971 SmallPtrSetImpl<PHINode *> &Reductions) {
972 BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
973 for (PHINode &PHI : InnerExit->phis()) {
974 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
975 if (PHI.getNumIncomingValues() > 1)
976 return false;
977 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
978 PHINode *PN = dyn_cast<PHINode>(U);
979 return !PN ||
980 (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
981 })) {
982 return false;
983 }
984 }
985 return true;
986 }
987
988 // We currently support LCSSA PHI nodes in the outer loop exit, if their
989 // incoming values do not come from the outer loop latch or if the
990 // outer loop latch has a single predecessor. In that case, the value will
991 // be available if both the inner and outer loop conditions are true, which
992 // will still be true after interchanging. If we have multiple predecessor,
993 // that may not be the case, e.g. because the outer loop latch may be executed
994 // if the inner loop is not executed.
areOuterLoopExitPHIsSupported(Loop * OuterLoop,Loop * InnerLoop)995 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
996 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
997 for (PHINode &PHI : LoopNestExit->phis()) {
998 // FIXME: We currently are not able to detect floating point reductions
999 // and have to use floating point PHIs as a proxy to prevent
1000 // interchanging in the presence of floating point reductions.
1001 if (PHI.getType()->isFloatingPointTy())
1002 return false;
1003 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
1004 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
1005 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
1006 continue;
1007
1008 // The incoming value is defined in the outer loop latch. Currently we
1009 // only support that in case the outer loop latch has a single predecessor.
1010 // This guarantees that the outer loop latch is executed if and only if
1011 // the inner loop is executed (because tightlyNested() guarantees that the
1012 // outer loop header only branches to the inner loop or the outer loop
1013 // latch).
1014 // FIXME: We could weaken this logic and allow multiple predecessors,
1015 // if the values are produced outside the loop latch. We would need
1016 // additional logic to update the PHI nodes in the exit block as
1017 // well.
1018 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
1019 return false;
1020 }
1021 }
1022 return true;
1023 }
1024
canInterchangeLoops(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)1025 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
1026 unsigned OuterLoopId,
1027 CharMatrix &DepMatrix) {
1028 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
1029 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
1030 << " and OuterLoopId = " << OuterLoopId
1031 << " due to dependence\n");
1032 ORE->emit([&]() {
1033 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
1034 InnerLoop->getStartLoc(),
1035 InnerLoop->getHeader())
1036 << "Cannot interchange loops due to dependences.";
1037 });
1038 return false;
1039 }
1040 // Check if outer and inner loop contain legal instructions only.
1041 for (auto *BB : OuterLoop->blocks())
1042 for (Instruction &I : BB->instructionsWithoutDebug())
1043 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1044 // readnone functions do not prevent interchanging.
1045 if (CI->doesNotReadMemory())
1046 continue;
1047 LLVM_DEBUG(
1048 dbgs() << "Loops with call instructions cannot be interchanged "
1049 << "safely.");
1050 ORE->emit([&]() {
1051 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1052 CI->getDebugLoc(),
1053 CI->getParent())
1054 << "Cannot interchange loops due to call instruction.";
1055 });
1056
1057 return false;
1058 }
1059
1060 // TODO: The loops could not be interchanged due to current limitations in the
1061 // transform module.
1062 if (currentLimitations()) {
1063 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1064 return false;
1065 }
1066
1067 // Check if the loops are tightly nested.
1068 if (!tightlyNested(OuterLoop, InnerLoop)) {
1069 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1070 ORE->emit([&]() {
1071 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1072 InnerLoop->getStartLoc(),
1073 InnerLoop->getHeader())
1074 << "Cannot interchange loops because they are not tightly "
1075 "nested.";
1076 });
1077 return false;
1078 }
1079
1080 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1081 OuterInnerReductions)) {
1082 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1083 ORE->emit([&]() {
1084 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1085 InnerLoop->getStartLoc(),
1086 InnerLoop->getHeader())
1087 << "Found unsupported PHI node in loop exit.";
1088 });
1089 return false;
1090 }
1091
1092 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1093 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1094 ORE->emit([&]() {
1095 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1096 OuterLoop->getStartLoc(),
1097 OuterLoop->getHeader())
1098 << "Found unsupported PHI node in loop exit.";
1099 });
1100 return false;
1101 }
1102
1103 return true;
1104 }
1105
getInstrOrderCost()1106 int LoopInterchangeProfitability::getInstrOrderCost() {
1107 unsigned GoodOrder, BadOrder;
1108 BadOrder = GoodOrder = 0;
1109 for (BasicBlock *BB : InnerLoop->blocks()) {
1110 for (Instruction &Ins : *BB) {
1111 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1112 unsigned NumOp = GEP->getNumOperands();
1113 bool FoundInnerInduction = false;
1114 bool FoundOuterInduction = false;
1115 for (unsigned i = 0; i < NumOp; ++i) {
1116 // Skip operands that are not SCEV-able.
1117 if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1118 continue;
1119
1120 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1121 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1122 if (!AR)
1123 continue;
1124
1125 // If we find the inner induction after an outer induction e.g.
1126 // for(int i=0;i<N;i++)
1127 // for(int j=0;j<N;j++)
1128 // A[i][j] = A[i-1][j-1]+k;
1129 // then it is a good order.
1130 if (AR->getLoop() == InnerLoop) {
1131 // We found an InnerLoop induction after OuterLoop induction. It is
1132 // a good order.
1133 FoundInnerInduction = true;
1134 if (FoundOuterInduction) {
1135 GoodOrder++;
1136 break;
1137 }
1138 }
1139 // If we find the outer induction after an inner induction e.g.
1140 // for(int i=0;i<N;i++)
1141 // for(int j=0;j<N;j++)
1142 // A[j][i] = A[j-1][i-1]+k;
1143 // then it is a bad order.
1144 if (AR->getLoop() == OuterLoop) {
1145 // We found an OuterLoop induction after InnerLoop induction. It is
1146 // a bad order.
1147 FoundOuterInduction = true;
1148 if (FoundInnerInduction) {
1149 BadOrder++;
1150 break;
1151 }
1152 }
1153 }
1154 }
1155 }
1156 }
1157 return GoodOrder - BadOrder;
1158 }
1159
isProfitableForVectorization(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)1160 static bool isProfitableForVectorization(unsigned InnerLoopId,
1161 unsigned OuterLoopId,
1162 CharMatrix &DepMatrix) {
1163 // TODO: Improve this heuristic to catch more cases.
1164 // If the inner loop is loop independent or doesn't carry any dependency it is
1165 // profitable to move this to outer position.
1166 for (auto &Row : DepMatrix) {
1167 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1168 return false;
1169 // TODO: We need to improve this heuristic.
1170 if (Row[OuterLoopId] != '=')
1171 return false;
1172 }
1173 // If outer loop has dependence and inner loop is loop independent then it is
1174 // profitable to interchange to enable parallelism.
1175 // If there are no dependences, interchanging will not improve anything.
1176 return !DepMatrix.empty();
1177 }
1178
isProfitable(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)1179 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1180 unsigned OuterLoopId,
1181 CharMatrix &DepMatrix) {
1182 // TODO: Add better profitability checks.
1183 // e.g
1184 // 1) Construct dependency matrix and move the one with no loop carried dep
1185 // inside to enable vectorization.
1186
1187 // This is rough cost estimation algorithm. It counts the good and bad order
1188 // of induction variables in the instruction and allows reordering if number
1189 // of bad orders is more than good.
1190 int Cost = getInstrOrderCost();
1191 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1192 if (Cost < -LoopInterchangeCostThreshold)
1193 return true;
1194
1195 // It is not profitable as per current cache profitability model. But check if
1196 // we can move this loop outside to improve parallelism.
1197 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1198 return true;
1199
1200 ORE->emit([&]() {
1201 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1202 InnerLoop->getStartLoc(),
1203 InnerLoop->getHeader())
1204 << "Interchanging loops is too costly (cost="
1205 << ore::NV("Cost", Cost) << ", threshold="
1206 << ore::NV("Threshold", LoopInterchangeCostThreshold)
1207 << ") and it does not improve parallelism.";
1208 });
1209 return false;
1210 }
1211
removeChildLoop(Loop * OuterLoop,Loop * InnerLoop)1212 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1213 Loop *InnerLoop) {
1214 for (Loop *L : *OuterLoop)
1215 if (L == InnerLoop) {
1216 OuterLoop->removeChildLoop(L);
1217 return;
1218 }
1219 llvm_unreachable("Couldn't find loop");
1220 }
1221
1222 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1223 /// new inner and outer loop after interchanging: NewInner is the original
1224 /// outer loop and NewOuter is the original inner loop.
1225 ///
1226 /// Before interchanging, we have the following structure
1227 /// Outer preheader
1228 // Outer header
1229 // Inner preheader
1230 // Inner header
1231 // Inner body
1232 // Inner latch
1233 // outer bbs
1234 // Outer latch
1235 //
1236 // After interchanging:
1237 // Inner preheader
1238 // Inner header
1239 // Outer preheader
1240 // Outer header
1241 // Inner body
1242 // outer bbs
1243 // Outer latch
1244 // Inner latch
restructureLoops(Loop * NewInner,Loop * NewOuter,BasicBlock * OrigInnerPreHeader,BasicBlock * OrigOuterPreHeader)1245 void LoopInterchangeTransform::restructureLoops(
1246 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1247 BasicBlock *OrigOuterPreHeader) {
1248 Loop *OuterLoopParent = OuterLoop->getParentLoop();
1249 // The original inner loop preheader moves from the new inner loop to
1250 // the parent loop, if there is one.
1251 NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1252 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1253
1254 // Switch the loop levels.
1255 if (OuterLoopParent) {
1256 // Remove the loop from its parent loop.
1257 removeChildLoop(OuterLoopParent, NewInner);
1258 removeChildLoop(NewInner, NewOuter);
1259 OuterLoopParent->addChildLoop(NewOuter);
1260 } else {
1261 removeChildLoop(NewInner, NewOuter);
1262 LI->changeTopLevelLoop(NewInner, NewOuter);
1263 }
1264 while (!NewOuter->isInnermost())
1265 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1266 NewOuter->addChildLoop(NewInner);
1267
1268 // BBs from the original inner loop.
1269 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1270
1271 // Add BBs from the original outer loop to the original inner loop (excluding
1272 // BBs already in inner loop)
1273 for (BasicBlock *BB : NewInner->blocks())
1274 if (LI->getLoopFor(BB) == NewInner)
1275 NewOuter->addBlockEntry(BB);
1276
1277 // Now remove inner loop header and latch from the new inner loop and move
1278 // other BBs (the loop body) to the new inner loop.
1279 BasicBlock *OuterHeader = NewOuter->getHeader();
1280 BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1281 for (BasicBlock *BB : OrigInnerBBs) {
1282 // Nothing will change for BBs in child loops.
1283 if (LI->getLoopFor(BB) != NewOuter)
1284 continue;
1285 // Remove the new outer loop header and latch from the new inner loop.
1286 if (BB == OuterHeader || BB == OuterLatch)
1287 NewInner->removeBlockFromLoop(BB);
1288 else
1289 LI->changeLoopFor(BB, NewInner);
1290 }
1291
1292 // The preheader of the original outer loop becomes part of the new
1293 // outer loop.
1294 NewOuter->addBlockEntry(OrigOuterPreHeader);
1295 LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1296
1297 // Tell SE that we move the loops around.
1298 SE->forgetLoop(NewOuter);
1299 SE->forgetLoop(NewInner);
1300 }
1301
transform()1302 bool LoopInterchangeTransform::transform() {
1303 bool Transformed = false;
1304 Instruction *InnerIndexVar;
1305
1306 if (InnerLoop->getSubLoops().empty()) {
1307 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1308 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1309 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1310 if (!InductionPHI) {
1311 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1312 return false;
1313 }
1314
1315 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1316 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1317 else
1318 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1319
1320 // Ensure that InductionPHI is the first Phi node.
1321 if (&InductionPHI->getParent()->front() != InductionPHI)
1322 InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1323
1324 // Create a new latch block for the inner loop. We split at the
1325 // current latch's terminator and then move the condition and all
1326 // operands that are not either loop-invariant or the induction PHI into the
1327 // new latch block.
1328 BasicBlock *NewLatch =
1329 SplitBlock(InnerLoop->getLoopLatch(),
1330 InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1331
1332 SmallSetVector<Instruction *, 4> WorkList;
1333 unsigned i = 0;
1334 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
1335 for (; i < WorkList.size(); i++) {
1336 // Duplicate instruction and move it the new latch. Update uses that
1337 // have been moved.
1338 Instruction *NewI = WorkList[i]->clone();
1339 NewI->insertBefore(NewLatch->getFirstNonPHI());
1340 assert(!NewI->mayHaveSideEffects() &&
1341 "Moving instructions with side-effects may change behavior of "
1342 "the loop nest!");
1343 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1344 Instruction *UserI = cast<Instruction>(U.getUser());
1345 if (!InnerLoop->contains(UserI->getParent()) ||
1346 UserI->getParent() == NewLatch || UserI == InductionPHI)
1347 U.set(NewI);
1348 }
1349 // Add operands of moved instruction to the worklist, except if they are
1350 // outside the inner loop or are the induction PHI.
1351 for (Value *Op : WorkList[i]->operands()) {
1352 Instruction *OpI = dyn_cast<Instruction>(Op);
1353 if (!OpI ||
1354 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1355 OpI == InductionPHI)
1356 continue;
1357 WorkList.insert(OpI);
1358 }
1359 }
1360 };
1361
1362 // FIXME: Should we interchange when we have a constant condition?
1363 Instruction *CondI = dyn_cast<Instruction>(
1364 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1365 ->getCondition());
1366 if (CondI)
1367 WorkList.insert(CondI);
1368 MoveInstructions();
1369 WorkList.insert(cast<Instruction>(InnerIndexVar));
1370 MoveInstructions();
1371
1372 // Splits the inner loops phi nodes out into a separate basic block.
1373 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1374 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1375 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1376 }
1377
1378 // Instructions in the original inner loop preheader may depend on values
1379 // defined in the outer loop header. Move them there, because the original
1380 // inner loop preheader will become the entry into the interchanged loop nest.
1381 // Currently we move all instructions and rely on LICM to move invariant
1382 // instructions outside the loop nest.
1383 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1384 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1385 if (InnerLoopPreHeader != OuterLoopHeader) {
1386 SmallPtrSet<Instruction *, 4> NeedsMoving;
1387 for (Instruction &I :
1388 make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1389 std::prev(InnerLoopPreHeader->end()))))
1390 I.moveBefore(OuterLoopHeader->getTerminator());
1391 }
1392
1393 Transformed |= adjustLoopLinks();
1394 if (!Transformed) {
1395 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1396 return false;
1397 }
1398
1399 return true;
1400 }
1401
1402 /// \brief Move all instructions except the terminator from FromBB right before
1403 /// InsertBefore
moveBBContents(BasicBlock * FromBB,Instruction * InsertBefore)1404 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1405 auto &ToList = InsertBefore->getParent()->getInstList();
1406 auto &FromList = FromBB->getInstList();
1407
1408 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1409 FromBB->getTerminator()->getIterator());
1410 }
1411
1412 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
swapBBContents(BasicBlock * BB1,BasicBlock * BB2)1413 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1414 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1415 // from BB1 afterwards.
1416 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1417 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1418 for (Instruction *I : TempInstrs)
1419 I->removeFromParent();
1420
1421 // Move instructions from BB2 to BB1.
1422 moveBBContents(BB2, BB1->getTerminator());
1423
1424 // Move instructions from TempInstrs to BB2.
1425 for (Instruction *I : TempInstrs)
1426 I->insertBefore(BB2->getTerminator());
1427 }
1428
1429 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1430 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1431 // \p OldBB is exactly once in BI's successor list.
updateSuccessor(BranchInst * BI,BasicBlock * OldBB,BasicBlock * NewBB,std::vector<DominatorTree::UpdateType> & DTUpdates,bool MustUpdateOnce=true)1432 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1433 BasicBlock *NewBB,
1434 std::vector<DominatorTree::UpdateType> &DTUpdates,
1435 bool MustUpdateOnce = true) {
1436 assert((!MustUpdateOnce ||
1437 llvm::count_if(successors(BI),
1438 [OldBB](BasicBlock *BB) {
1439 return BB == OldBB;
1440 }) == 1) && "BI must jump to OldBB exactly once.");
1441 bool Changed = false;
1442 for (Use &Op : BI->operands())
1443 if (Op == OldBB) {
1444 Op.set(NewBB);
1445 Changed = true;
1446 }
1447
1448 if (Changed) {
1449 DTUpdates.push_back(
1450 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1451 DTUpdates.push_back(
1452 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1453 }
1454 assert(Changed && "Expected a successor to be updated");
1455 }
1456
1457 // Move Lcssa PHIs to the right place.
moveLCSSAPhis(BasicBlock * InnerExit,BasicBlock * InnerHeader,BasicBlock * InnerLatch,BasicBlock * OuterHeader,BasicBlock * OuterLatch,BasicBlock * OuterExit,Loop * InnerLoop,LoopInfo * LI)1458 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1459 BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1460 BasicBlock *OuterLatch, BasicBlock *OuterExit,
1461 Loop *InnerLoop, LoopInfo *LI) {
1462
1463 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1464 // defined either in the header or latch. Those blocks will become header and
1465 // latch of the new outer loop, and the only possible users can PHI nodes
1466 // in the exit block of the loop nest or the outer loop header (reduction
1467 // PHIs, in that case, the incoming value must be defined in the inner loop
1468 // header). We can just substitute the user with the incoming value and remove
1469 // the PHI.
1470 for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1471 assert(P.getNumIncomingValues() == 1 &&
1472 "Only loops with a single exit are supported!");
1473
1474 // Incoming values are guaranteed be instructions currently.
1475 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1476 // Skip phis with incoming values from the inner loop body, excluding the
1477 // header and latch.
1478 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1479 continue;
1480
1481 assert(all_of(P.users(),
1482 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1483 return (cast<PHINode>(U)->getParent() == OuterHeader &&
1484 IncI->getParent() == InnerHeader) ||
1485 cast<PHINode>(U)->getParent() == OuterExit;
1486 }) &&
1487 "Can only replace phis iff the uses are in the loop nest exit or "
1488 "the incoming value is defined in the inner header (it will "
1489 "dominate all loop blocks after interchanging)");
1490 P.replaceAllUsesWith(IncI);
1491 P.eraseFromParent();
1492 }
1493
1494 SmallVector<PHINode *, 8> LcssaInnerExit;
1495 for (PHINode &P : InnerExit->phis())
1496 LcssaInnerExit.push_back(&P);
1497
1498 SmallVector<PHINode *, 8> LcssaInnerLatch;
1499 for (PHINode &P : InnerLatch->phis())
1500 LcssaInnerLatch.push_back(&P);
1501
1502 // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1503 // If a PHI node has users outside of InnerExit, it has a use outside the
1504 // interchanged loop and we have to preserve it. We move these to
1505 // InnerLatch, which will become the new exit block for the innermost
1506 // loop after interchanging.
1507 for (PHINode *P : LcssaInnerExit)
1508 P->moveBefore(InnerLatch->getFirstNonPHI());
1509
1510 // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1511 // and we have to move them to the new inner latch.
1512 for (PHINode *P : LcssaInnerLatch)
1513 P->moveBefore(InnerExit->getFirstNonPHI());
1514
1515 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1516 // incoming values defined in the outer loop, we have to add a new PHI
1517 // in the inner loop latch, which became the exit block of the outer loop,
1518 // after interchanging.
1519 if (OuterExit) {
1520 for (PHINode &P : OuterExit->phis()) {
1521 if (P.getNumIncomingValues() != 1)
1522 continue;
1523 // Skip Phis with incoming values defined in the inner loop. Those should
1524 // already have been updated.
1525 auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1526 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1527 continue;
1528
1529 PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1530 NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1531 NewPhi->setIncomingBlock(0, OuterLatch);
1532 // We might have incoming edges from other BBs, i.e., the original outer
1533 // header.
1534 for (auto *Pred : predecessors(InnerLatch)) {
1535 if (Pred == OuterLatch)
1536 continue;
1537 NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1538 }
1539 NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1540 P.setIncomingValue(0, NewPhi);
1541 }
1542 }
1543
1544 // Now adjust the incoming blocks for the LCSSA PHIs.
1545 // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1546 // with the new latch.
1547 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1548 }
1549
adjustLoopBranches()1550 bool LoopInterchangeTransform::adjustLoopBranches() {
1551 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1552 std::vector<DominatorTree::UpdateType> DTUpdates;
1553
1554 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1555 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1556
1557 assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1558 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1559 InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1560 // Ensure that both preheaders do not contain PHI nodes and have single
1561 // predecessors. This allows us to move them easily. We use
1562 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1563 // preheaders do not satisfy those conditions.
1564 if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1565 !OuterLoopPreHeader->getUniquePredecessor())
1566 OuterLoopPreHeader =
1567 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1568 if (InnerLoopPreHeader == OuterLoop->getHeader())
1569 InnerLoopPreHeader =
1570 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1571
1572 // Adjust the loop preheader
1573 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1574 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1575 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1576 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1577 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1578 BasicBlock *InnerLoopLatchPredecessor =
1579 InnerLoopLatch->getUniquePredecessor();
1580 BasicBlock *InnerLoopLatchSuccessor;
1581 BasicBlock *OuterLoopLatchSuccessor;
1582
1583 BranchInst *OuterLoopLatchBI =
1584 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1585 BranchInst *InnerLoopLatchBI =
1586 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1587 BranchInst *OuterLoopHeaderBI =
1588 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1589 BranchInst *InnerLoopHeaderBI =
1590 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1591
1592 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1593 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1594 !InnerLoopHeaderBI)
1595 return false;
1596
1597 BranchInst *InnerLoopLatchPredecessorBI =
1598 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1599 BranchInst *OuterLoopPredecessorBI =
1600 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1601
1602 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1603 return false;
1604 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1605 if (!InnerLoopHeaderSuccessor)
1606 return false;
1607
1608 // Adjust Loop Preheader and headers.
1609 // The branches in the outer loop predecessor and the outer loop header can
1610 // be unconditional branches or conditional branches with duplicates. Consider
1611 // this when updating the successors.
1612 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1613 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1614 // The outer loop header might or might not branch to the outer latch.
1615 // We are guaranteed to branch to the inner loop preheader.
1616 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1617 // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1618 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1619 DTUpdates,
1620 /*MustUpdateOnce=*/false);
1621 }
1622 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1623 InnerLoopHeaderSuccessor, DTUpdates,
1624 /*MustUpdateOnce=*/false);
1625
1626 // Adjust reduction PHI's now that the incoming block has changed.
1627 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1628 OuterLoopHeader);
1629
1630 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1631 OuterLoopPreHeader, DTUpdates);
1632
1633 // -------------Adjust loop latches-----------
1634 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1635 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1636 else
1637 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1638
1639 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1640 InnerLoopLatchSuccessor, DTUpdates);
1641
1642
1643 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1644 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1645 else
1646 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1647
1648 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1649 OuterLoopLatchSuccessor, DTUpdates);
1650 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1651 DTUpdates);
1652
1653 DT->applyUpdates(DTUpdates);
1654 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1655 OuterLoopPreHeader);
1656
1657 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1658 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1659 InnerLoop, LI);
1660 // For PHIs in the exit block of the outer loop, outer's latch has been
1661 // replaced by Inners'.
1662 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1663
1664 // Now update the reduction PHIs in the inner and outer loop headers.
1665 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1666 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis()))
1667 InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1668 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis()))
1669 OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1670
1671 auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1672 (void)OuterInnerReductions;
1673
1674 // Now move the remaining reduction PHIs from outer to inner loop header and
1675 // vice versa. The PHI nodes must be part of a reduction across the inner and
1676 // outer loop and all the remains to do is and updating the incoming blocks.
1677 for (PHINode *PHI : OuterLoopPHIs) {
1678 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1679 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1680 }
1681 for (PHINode *PHI : InnerLoopPHIs) {
1682 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1683 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1684 }
1685
1686 // Update the incoming blocks for moved PHI nodes.
1687 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1688 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1689 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1690 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1691
1692 // Values defined in the outer loop header could be used in the inner loop
1693 // latch. In that case, we need to create LCSSA phis for them, because after
1694 // interchanging they will be defined in the new inner loop and used in the
1695 // new outer loop.
1696 IRBuilder<> Builder(OuterLoopHeader->getContext());
1697 SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1698 for (Instruction &I :
1699 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1700 MayNeedLCSSAPhis.push_back(&I);
1701 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1702
1703 return true;
1704 }
1705
adjustLoopLinks()1706 bool LoopInterchangeTransform::adjustLoopLinks() {
1707 // Adjust all branches in the inner and outer loop.
1708 bool Changed = adjustLoopBranches();
1709 if (Changed) {
1710 // We have interchanged the preheaders so we need to interchange the data in
1711 // the preheaders as well. This is because the content of the inner
1712 // preheader was previously executed inside the outer loop.
1713 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1714 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1715 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1716 }
1717 return Changed;
1718 }
1719
1720 /// Main LoopInterchange Pass.
1721 struct LoopInterchangeLegacyPass : public LoopPass {
1722 static char ID;
1723
LoopInterchangeLegacyPassLoopInterchangeLegacyPass1724 LoopInterchangeLegacyPass() : LoopPass(ID) {
1725 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1726 }
1727
getAnalysisUsageLoopInterchangeLegacyPass1728 void getAnalysisUsage(AnalysisUsage &AU) const override {
1729 AU.addRequired<DependenceAnalysisWrapperPass>();
1730 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1731
1732 getLoopAnalysisUsage(AU);
1733 }
1734
runOnLoopLoopInterchangeLegacyPass1735 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1736 if (skipLoop(L))
1737 return false;
1738
1739 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1740 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1741 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1742 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1743 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1744
1745 return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1746 }
1747 };
1748
1749 char LoopInterchangeLegacyPass::ID = 0;
1750
1751 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1752 "Interchanges loops for cache reuse", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)1753 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1754 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1755 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1756
1757 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1758 "Interchanges loops for cache reuse", false, false)
1759
1760 Pass *llvm::createLoopInterchangePass() {
1761 return new LoopInterchangeLegacyPass();
1762 }
1763
run(LoopNest & LN,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)1764 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1765 LoopAnalysisManager &AM,
1766 LoopStandardAnalysisResults &AR,
1767 LPMUpdater &U) {
1768 Function &F = *LN.getParent();
1769
1770 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1771 OptimizationRemarkEmitter ORE(&F);
1772 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
1773 return PreservedAnalyses::all();
1774 return getLoopPassPreservedAnalyses();
1775 }
1776