1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists expressions from branches to a common dominator. It uses
10 // GVN (global value numbering) to discover expressions computing the same
11 // values. The primary goals of code-hoisting are:
12 // 1. To reduce the code size.
13 // 2. In some cases reduce critical path (by exposing more ILP).
14 //
15 // The algorithm factors out the reachability of values such that multiple
16 // queries to find reachability of values are fast. This is based on finding the
17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18 // are basically the dominance-frontiers in the inverse graph. So we introduce a
19 // data structure (CHI nodes) to keep track of values flowing out of a basic
20 // block. We only do this for values with multiple occurrences in the function
21 // as they are the potential hoistable candidates. This approach allows us to
22 // hoist instructions to a basic block with more than two successors, as well as
23 // deal with infinite loops in a trivial way.
24 //
25 // Limitations: This pass does not hoist fully redundant expressions because
26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27 // and after gvn-pre because gvn-pre creates opportunities for more instructions
28 // to be hoisted.
29 //
30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
31 // is disabled in the following cases.
32 // 1. Scalars across calls.
33 // 2. geps when corresponding load/store cannot be hoisted.
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/iterator_range.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/GlobalsModRef.h"
45 #include "llvm/Analysis/IteratedDominanceFrontier.h"
46 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/InitializePasses.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Scalar.h"
74 #include "llvm/Transforms/Scalar/GVN.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <iterator>
79 #include <memory>
80 #include <utility>
81 #include <vector>
82
83 using namespace llvm;
84
85 #define DEBUG_TYPE "gvn-hoist"
86
87 STATISTIC(NumHoisted, "Number of instructions hoisted");
88 STATISTIC(NumRemoved, "Number of instructions removed");
89 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
90 STATISTIC(NumLoadsRemoved, "Number of loads removed");
91 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
92 STATISTIC(NumStoresRemoved, "Number of stores removed");
93 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
94 STATISTIC(NumCallsRemoved, "Number of calls removed");
95
96 static cl::opt<int>
97 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
98 cl::desc("Max number of instructions to hoist "
99 "(default unlimited = -1)"));
100
101 static cl::opt<int> MaxNumberOfBBSInPath(
102 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
103 cl::desc("Max number of basic blocks on the path between "
104 "hoisting locations (default = 4, unlimited = -1)"));
105
106 static cl::opt<int> MaxDepthInBB(
107 "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
108 cl::desc("Hoist instructions from the beginning of the BB up to the "
109 "maximum specified depth (default = 100, unlimited = -1)"));
110
111 static cl::opt<int>
112 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
113 cl::desc("Maximum length of dependent chains to hoist "
114 "(default = 10, unlimited = -1)"));
115
116 namespace llvm {
117
118 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
119 using SmallVecInsn = SmallVector<Instruction *, 4>;
120 using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
121
122 // Each element of a hoisting list contains the basic block where to hoist and
123 // a list of instructions to be hoisted.
124 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
125
126 using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
127
128 // A map from a pair of VNs to all the instructions with those VNs.
129 using VNType = std::pair<unsigned, unsigned>;
130
131 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
132
133 // CHI keeps information about values flowing out of a basic block. It is
134 // similar to PHI but in the inverse graph, and used for outgoing values on each
135 // edge. For conciseness, it is computed only for instructions with multiple
136 // occurrences in the CFG because they are the only hoistable candidates.
137 // A (CHI[{V, B, I1}, {V, C, I2}]
138 // / \
139 // / \
140 // B(I1) C (I2)
141 // The Value number for both I1 and I2 is V, the CHI node will save the
142 // instruction as well as the edge where the value is flowing to.
143 struct CHIArg {
144 VNType VN;
145
146 // Edge destination (shows the direction of flow), may not be where the I is.
147 BasicBlock *Dest;
148
149 // The instruction (VN) which uses the values flowing out of CHI.
150 Instruction *I;
151
operator ==llvm::CHIArg152 bool operator==(const CHIArg &A) const { return VN == A.VN; }
operator !=llvm::CHIArg153 bool operator!=(const CHIArg &A) const { return !(*this == A); }
154 };
155
156 using CHIIt = SmallVectorImpl<CHIArg>::iterator;
157 using CHIArgs = iterator_range<CHIIt>;
158 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
159 using InValuesType =
160 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
161
162 // An invalid value number Used when inserting a single value number into
163 // VNtoInsns.
164 enum : unsigned { InvalidVN = ~2U };
165
166 // Records all scalar instructions candidate for code hoisting.
167 class InsnInfo {
168 VNtoInsns VNtoScalars;
169
170 public:
171 // Inserts I and its value number in VNtoScalars.
insert(Instruction * I,GVN::ValueTable & VN)172 void insert(Instruction *I, GVN::ValueTable &VN) {
173 // Scalar instruction.
174 unsigned V = VN.lookupOrAdd(I);
175 VNtoScalars[{V, InvalidVN}].push_back(I);
176 }
177
getVNTable() const178 const VNtoInsns &getVNTable() const { return VNtoScalars; }
179 };
180
181 // Records all load instructions candidate for code hoisting.
182 class LoadInfo {
183 VNtoInsns VNtoLoads;
184
185 public:
186 // Insert Load and the value number of its memory address in VNtoLoads.
insert(LoadInst * Load,GVN::ValueTable & VN)187 void insert(LoadInst *Load, GVN::ValueTable &VN) {
188 if (Load->isSimple()) {
189 unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
190 VNtoLoads[{V, InvalidVN}].push_back(Load);
191 }
192 }
193
getVNTable() const194 const VNtoInsns &getVNTable() const { return VNtoLoads; }
195 };
196
197 // Records all store instructions candidate for code hoisting.
198 class StoreInfo {
199 VNtoInsns VNtoStores;
200
201 public:
202 // Insert the Store and a hash number of the store address and the stored
203 // value in VNtoStores.
insert(StoreInst * Store,GVN::ValueTable & VN)204 void insert(StoreInst *Store, GVN::ValueTable &VN) {
205 if (!Store->isSimple())
206 return;
207 // Hash the store address and the stored value.
208 Value *Ptr = Store->getPointerOperand();
209 Value *Val = Store->getValueOperand();
210 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
211 }
212
getVNTable() const213 const VNtoInsns &getVNTable() const { return VNtoStores; }
214 };
215
216 // Records all call instructions candidate for code hoisting.
217 class CallInfo {
218 VNtoInsns VNtoCallsScalars;
219 VNtoInsns VNtoCallsLoads;
220 VNtoInsns VNtoCallsStores;
221
222 public:
223 // Insert Call and its value numbering in one of the VNtoCalls* containers.
insert(CallInst * Call,GVN::ValueTable & VN)224 void insert(CallInst *Call, GVN::ValueTable &VN) {
225 // A call that doesNotAccessMemory is handled as a Scalar,
226 // onlyReadsMemory will be handled as a Load instruction,
227 // all other calls will be handled as stores.
228 unsigned V = VN.lookupOrAdd(Call);
229 auto Entry = std::make_pair(V, InvalidVN);
230
231 if (Call->doesNotAccessMemory())
232 VNtoCallsScalars[Entry].push_back(Call);
233 else if (Call->onlyReadsMemory())
234 VNtoCallsLoads[Entry].push_back(Call);
235 else
236 VNtoCallsStores[Entry].push_back(Call);
237 }
238
getScalarVNTable() const239 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
getLoadVNTable() const240 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
getStoreVNTable() const241 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
242 };
243
combineKnownMetadata(Instruction * ReplInst,Instruction * I)244 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
245 static const unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
246 LLVMContext::MD_alias_scope,
247 LLVMContext::MD_noalias,
248 LLVMContext::MD_range,
249 LLVMContext::MD_fpmath,
250 LLVMContext::MD_invariant_load,
251 LLVMContext::MD_invariant_group,
252 LLVMContext::MD_access_group};
253 combineMetadata(ReplInst, I, KnownIDs, true);
254 }
255
256 // This pass hoists common computations across branches sharing common
257 // dominator. The primary goal is to reduce the code size, and in some
258 // cases reduce critical path (by exposing more ILP).
259 class GVNHoist {
260 public:
GVNHoist(DominatorTree * DT,PostDominatorTree * PDT,AliasAnalysis * AA,MemoryDependenceResults * MD,MemorySSA * MSSA)261 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
262 MemoryDependenceResults *MD, MemorySSA *MSSA)
263 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
264 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
265
266 bool run(Function &F);
267
268 // Copied from NewGVN.cpp
269 // This function provides global ranking of operations so that we can place
270 // them in a canonical order. Note that rank alone is not necessarily enough
271 // for a complete ordering, as constants all have the same rank. However,
272 // generally, we will simplify an operation with all constants so that it
273 // doesn't matter what order they appear in.
274 unsigned int rank(const Value *V) const;
275
276 private:
277 GVN::ValueTable VN;
278 DominatorTree *DT;
279 PostDominatorTree *PDT;
280 AliasAnalysis *AA;
281 MemoryDependenceResults *MD;
282 MemorySSA *MSSA;
283 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
284 DenseMap<const Value *, unsigned> DFSNumber;
285 BBSideEffectsSet BBSideEffects;
286 DenseSet<const BasicBlock *> HoistBarrier;
287 SmallVector<BasicBlock *, 32> IDFBlocks;
288 unsigned NumFuncArgs;
289 const bool HoistingGeps = false;
290
291 enum InsKind { Unknown, Scalar, Load, Store };
292
293 // Return true when there are exception handling in BB.
294 bool hasEH(const BasicBlock *BB);
295
296 // Return true when I1 appears before I2 in the instructions of BB.
firstInBB(const Instruction * I1,const Instruction * I2)297 bool firstInBB(const Instruction *I1, const Instruction *I2) {
298 assert(I1->getParent() == I2->getParent());
299 unsigned I1DFS = DFSNumber.lookup(I1);
300 unsigned I2DFS = DFSNumber.lookup(I2);
301 assert(I1DFS && I2DFS);
302 return I1DFS < I2DFS;
303 }
304
305 // Return true when there are memory uses of Def in BB.
306 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
307 const BasicBlock *BB);
308
309 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
310 int &NBBsOnAllPaths);
311
312 // Return true when there are exception handling or loads of memory Def
313 // between Def and NewPt. This function is only called for stores: Def is
314 // the MemoryDef of the store to be hoisted.
315
316 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
317 // return true when the counter NBBsOnAllPaths reaces 0, except when it is
318 // initialized to -1 which is unlimited.
319 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
320 int &NBBsOnAllPaths);
321
322 // Return true when there are exception handling between HoistPt and BB.
323 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
324 // return true when the counter NBBsOnAllPaths reaches 0, except when it is
325 // initialized to -1 which is unlimited.
326 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
327 int &NBBsOnAllPaths);
328
329 // Return true when it is safe to hoist a memory load or store U from OldPt
330 // to NewPt.
331 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
332 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths);
333
334 // Return true when it is safe to hoist scalar instructions from all blocks in
335 // WL to HoistBB.
safeToHoistScalar(const BasicBlock * HoistBB,const BasicBlock * BB,int & NBBsOnAllPaths)336 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
337 int &NBBsOnAllPaths) {
338 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
339 }
340
341 // In the inverse CFG, the dominance frontier of basic block (BB) is the
342 // point where ANTIC needs to be computed for instructions which are going
343 // to be hoisted. Since this point does not change during gvn-hoist,
344 // we compute it only once (on demand).
345 // The ides is inspired from:
346 // "Partial Redundancy Elimination in SSA Form"
347 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
348 // They use similar idea in the forward graph to find fully redundant and
349 // partially redundant expressions, here it is used in the inverse graph to
350 // find fully anticipable instructions at merge point (post-dominator in
351 // the inverse CFG).
352 // Returns the edge via which an instruction in BB will get the values from.
353
354 // Returns true when the values are flowing out to each edge.
355 bool valueAnticipable(CHIArgs C, Instruction *TI) const;
356
357 // Check if it is safe to hoist values tracked by CHI in the range
358 // [Begin, End) and accumulate them in Safe.
359 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
360 SmallVectorImpl<CHIArg> &Safe);
361
362 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
363
364 // Push all the VNs corresponding to BB into RenameStack.
365 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
366 RenameStackType &RenameStack);
367
368 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
369 RenameStackType &RenameStack);
370
371 // Walk the post-dominator tree top-down and use a stack for each value to
372 // store the last value you see. When you hit a CHI from a given edge, the
373 // value to use as the argument is at the top of the stack, add the value to
374 // CHI and pop.
insertCHI(InValuesType & ValueBBs,OutValuesType & CHIBBs)375 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
376 auto Root = PDT->getNode(nullptr);
377 if (!Root)
378 return;
379 // Depth first walk on PDom tree to fill the CHIargs at each PDF.
380 RenameStackType RenameStack;
381 for (auto Node : depth_first(Root)) {
382 BasicBlock *BB = Node->getBlock();
383 if (!BB)
384 continue;
385
386 // Collect all values in BB and push to stack.
387 fillRenameStack(BB, ValueBBs, RenameStack);
388
389 // Fill outgoing values in each CHI corresponding to BB.
390 fillChiArgs(BB, CHIBBs, RenameStack);
391 }
392 }
393
394 // Walk all the CHI-nodes to find ones which have a empty-entry and remove
395 // them Then collect all the instructions which are safe to hoist and see if
396 // they form a list of anticipable values. OutValues contains CHIs
397 // corresponding to each basic block.
398 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
399 HoistingPointList &HPL);
400
401 // Compute insertion points for each values which can be fully anticipated at
402 // a dominator. HPL contains all such values.
computeInsertionPoints(const VNtoInsns & Map,HoistingPointList & HPL,InsKind K)403 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
404 InsKind K) {
405 // Sort VNs based on their rankings
406 std::vector<VNType> Ranks;
407 for (const auto &Entry : Map) {
408 Ranks.push_back(Entry.first);
409 }
410
411 // TODO: Remove fully-redundant expressions.
412 // Get instruction from the Map, assume that all the Instructions
413 // with same VNs have same rank (this is an approximation).
414 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
415 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
416 });
417
418 // - Sort VNs according to their rank, and start with lowest ranked VN
419 // - Take a VN and for each instruction with same VN
420 // - Find the dominance frontier in the inverse graph (PDF)
421 // - Insert the chi-node at PDF
422 // - Remove the chi-nodes with missing entries
423 // - Remove values from CHI-nodes which do not truly flow out, e.g.,
424 // modified along the path.
425 // - Collect the remaining values that are still anticipable
426 SmallVector<BasicBlock *, 2> IDFBlocks;
427 ReverseIDFCalculator IDFs(*PDT);
428 OutValuesType OutValue;
429 InValuesType InValue;
430 for (const auto &R : Ranks) {
431 const SmallVecInsn &V = Map.lookup(R);
432 if (V.size() < 2)
433 continue;
434 const VNType &VN = R;
435 SmallPtrSet<BasicBlock *, 2> VNBlocks;
436 for (auto &I : V) {
437 BasicBlock *BBI = I->getParent();
438 if (!hasEH(BBI))
439 VNBlocks.insert(BBI);
440 }
441 // Compute the Post Dominance Frontiers of each basic block
442 // The dominance frontier of a live block X in the reverse
443 // control graph is the set of blocks upon which X is control
444 // dependent. The following sequence computes the set of blocks
445 // which currently have dead terminators that are control
446 // dependence sources of a block which is in NewLiveBlocks.
447 IDFs.setDefiningBlocks(VNBlocks);
448 IDFBlocks.clear();
449 IDFs.calculate(IDFBlocks);
450
451 // Make a map of BB vs instructions to be hoisted.
452 for (unsigned i = 0; i < V.size(); ++i) {
453 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
454 }
455 // Insert empty CHI node for this VN. This is used to factor out
456 // basic blocks where the ANTIC can potentially change.
457 CHIArg EmptyChi = {VN, nullptr, nullptr};
458 for (auto *IDFBB : IDFBlocks) {
459 for (unsigned i = 0; i < V.size(); ++i) {
460 // Ignore spurious PDFs.
461 if (DT->properlyDominates(IDFBB, V[i]->getParent())) {
462 OutValue[IDFBB].push_back(EmptyChi);
463 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: "
464 << IDFBB->getName() << ", for Insn: " << *V[i]);
465 }
466 }
467 }
468 }
469
470 // Insert CHI args at each PDF to iterate on factored graph of
471 // control dependence.
472 insertCHI(InValue, OutValue);
473 // Using the CHI args inserted at each PDF, find fully anticipable values.
474 findHoistableCandidates(OutValue, K, HPL);
475 }
476
477 // Return true when all operands of Instr are available at insertion point
478 // HoistPt. When limiting the number of hoisted expressions, one could hoist
479 // a load without hoisting its access function. So before hoisting any
480 // expression, make sure that all its operands are available at insert point.
481 bool allOperandsAvailable(const Instruction *I,
482 const BasicBlock *HoistPt) const;
483
484 // Same as allOperandsAvailable with recursive check for GEP operands.
485 bool allGepOperandsAvailable(const Instruction *I,
486 const BasicBlock *HoistPt) const;
487
488 // Make all operands of the GEP available.
489 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
490 const SmallVecInsn &InstructionsToHoist,
491 Instruction *Gep) const;
492
493 void updateAlignment(Instruction *I, Instruction *Repl);
494
495 // Remove all the instructions in Candidates and replace their usage with
496 // Repl. Returns the number of instructions removed.
497 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
498 MemoryUseOrDef *NewMemAcc);
499
500 // Replace all Memory PHI usage with NewMemAcc.
501 void raMPHIuw(MemoryUseOrDef *NewMemAcc);
502
503 // Remove all other instructions and replace them with Repl.
504 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
505 BasicBlock *DestBB, bool MoveAccess);
506
507 // In the case Repl is a load or a store, we make all their GEPs
508 // available: GEPs are not hoisted by default to avoid the address
509 // computations to be hoisted without the associated load or store.
510 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
511 const SmallVecInsn &InstructionsToHoist) const;
512
513 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL);
514
515 // Hoist all expressions. Returns Number of scalars hoisted
516 // and number of non-scalars hoisted.
517 std::pair<unsigned, unsigned> hoistExpressions(Function &F);
518 };
519
520 class GVNHoistLegacyPass : public FunctionPass {
521 public:
522 static char ID;
523
GVNHoistLegacyPass()524 GVNHoistLegacyPass() : FunctionPass(ID) {
525 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
526 }
527
runOnFunction(Function & F)528 bool runOnFunction(Function &F) override {
529 if (skipFunction(F))
530 return false;
531 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
532 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
533 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
534 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
535 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
536
537 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
538 return G.run(F);
539 }
540
getAnalysisUsage(AnalysisUsage & AU) const541 void getAnalysisUsage(AnalysisUsage &AU) const override {
542 AU.addRequired<DominatorTreeWrapperPass>();
543 AU.addRequired<PostDominatorTreeWrapperPass>();
544 AU.addRequired<AAResultsWrapperPass>();
545 AU.addRequired<MemoryDependenceWrapperPass>();
546 AU.addRequired<MemorySSAWrapperPass>();
547 AU.addPreserved<DominatorTreeWrapperPass>();
548 AU.addPreserved<MemorySSAWrapperPass>();
549 AU.addPreserved<GlobalsAAWrapperPass>();
550 }
551 };
552
run(Function & F)553 bool GVNHoist::run(Function &F) {
554 NumFuncArgs = F.arg_size();
555 VN.setDomTree(DT);
556 VN.setAliasAnalysis(AA);
557 VN.setMemDep(MD);
558 bool Res = false;
559 // Perform DFS Numbering of instructions.
560 unsigned BBI = 0;
561 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
562 DFSNumber[BB] = ++BBI;
563 unsigned I = 0;
564 for (auto &Inst : *BB)
565 DFSNumber[&Inst] = ++I;
566 }
567
568 int ChainLength = 0;
569
570 // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
571 while (true) {
572 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
573 return Res;
574
575 auto HoistStat = hoistExpressions(F);
576 if (HoistStat.first + HoistStat.second == 0)
577 return Res;
578
579 if (HoistStat.second > 0)
580 // To address a limitation of the current GVN, we need to rerun the
581 // hoisting after we hoisted loads or stores in order to be able to
582 // hoist all scalars dependent on the hoisted ld/st.
583 VN.clear();
584
585 Res = true;
586 }
587
588 return Res;
589 }
590
rank(const Value * V) const591 unsigned int GVNHoist::rank(const Value *V) const {
592 // Prefer constants to undef to anything else
593 // Undef is a constant, have to check it first.
594 // Prefer smaller constants to constantexprs
595 if (isa<ConstantExpr>(V))
596 return 2;
597 if (isa<UndefValue>(V))
598 return 1;
599 if (isa<Constant>(V))
600 return 0;
601 else if (auto *A = dyn_cast<Argument>(V))
602 return 3 + A->getArgNo();
603
604 // Need to shift the instruction DFS by number of arguments + 3 to account
605 // for the constant and argument ranking above.
606 auto Result = DFSNumber.lookup(V);
607 if (Result > 0)
608 return 4 + NumFuncArgs + Result;
609 // Unreachable or something else, just return a really large number.
610 return ~0;
611 }
612
hasEH(const BasicBlock * BB)613 bool GVNHoist::hasEH(const BasicBlock *BB) {
614 auto It = BBSideEffects.find(BB);
615 if (It != BBSideEffects.end())
616 return It->second;
617
618 if (BB->isEHPad() || BB->hasAddressTaken()) {
619 BBSideEffects[BB] = true;
620 return true;
621 }
622
623 if (BB->getTerminator()->mayThrow()) {
624 BBSideEffects[BB] = true;
625 return true;
626 }
627
628 BBSideEffects[BB] = false;
629 return false;
630 }
631
hasMemoryUse(const Instruction * NewPt,MemoryDef * Def,const BasicBlock * BB)632 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
633 const BasicBlock *BB) {
634 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
635 if (!Acc)
636 return false;
637
638 Instruction *OldPt = Def->getMemoryInst();
639 const BasicBlock *OldBB = OldPt->getParent();
640 const BasicBlock *NewBB = NewPt->getParent();
641 bool ReachedNewPt = false;
642
643 for (const MemoryAccess &MA : *Acc)
644 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
645 Instruction *Insn = MU->getMemoryInst();
646
647 // Do not check whether MU aliases Def when MU occurs after OldPt.
648 if (BB == OldBB && firstInBB(OldPt, Insn))
649 break;
650
651 // Do not check whether MU aliases Def when MU occurs before NewPt.
652 if (BB == NewBB) {
653 if (!ReachedNewPt) {
654 if (firstInBB(Insn, NewPt))
655 continue;
656 ReachedNewPt = true;
657 }
658 }
659 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
660 return true;
661 }
662
663 return false;
664 }
665
hasEHhelper(const BasicBlock * BB,const BasicBlock * SrcBB,int & NBBsOnAllPaths)666 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
667 int &NBBsOnAllPaths) {
668 // Stop walk once the limit is reached.
669 if (NBBsOnAllPaths == 0)
670 return true;
671
672 // Impossible to hoist with exceptions on the path.
673 if (hasEH(BB))
674 return true;
675
676 // No such instruction after HoistBarrier in a basic block was
677 // selected for hoisting so instructions selected within basic block with
678 // a hoist barrier can be hoisted.
679 if ((BB != SrcBB) && HoistBarrier.count(BB))
680 return true;
681
682 return false;
683 }
684
hasEHOrLoadsOnPath(const Instruction * NewPt,MemoryDef * Def,int & NBBsOnAllPaths)685 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
686 int &NBBsOnAllPaths) {
687 const BasicBlock *NewBB = NewPt->getParent();
688 const BasicBlock *OldBB = Def->getBlock();
689 assert(DT->dominates(NewBB, OldBB) && "invalid path");
690 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
691 "def does not dominate new hoisting point");
692
693 // Walk all basic blocks reachable in depth-first iteration on the inverse
694 // CFG from OldBB to NewBB. These blocks are all the blocks that may be
695 // executed between the execution of NewBB and OldBB. Hoisting an expression
696 // from OldBB into NewBB has to be safe on all execution paths.
697 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
698 const BasicBlock *BB = *I;
699 if (BB == NewBB) {
700 // Stop traversal when reaching HoistPt.
701 I.skipChildren();
702 continue;
703 }
704
705 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
706 return true;
707
708 // Check that we do not move a store past loads.
709 if (hasMemoryUse(NewPt, Def, BB))
710 return true;
711
712 // -1 is unlimited number of blocks on all paths.
713 if (NBBsOnAllPaths != -1)
714 --NBBsOnAllPaths;
715
716 ++I;
717 }
718
719 return false;
720 }
721
hasEHOnPath(const BasicBlock * HoistPt,const BasicBlock * SrcBB,int & NBBsOnAllPaths)722 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
723 int &NBBsOnAllPaths) {
724 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
725
726 // Walk all basic blocks reachable in depth-first iteration on
727 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
728 // blocks that may be executed between the execution of NewHoistPt and
729 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
730 // on all execution paths.
731 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
732 const BasicBlock *BB = *I;
733 if (BB == HoistPt) {
734 // Stop traversal when reaching NewHoistPt.
735 I.skipChildren();
736 continue;
737 }
738
739 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
740 return true;
741
742 // -1 is unlimited number of blocks on all paths.
743 if (NBBsOnAllPaths != -1)
744 --NBBsOnAllPaths;
745
746 ++I;
747 }
748
749 return false;
750 }
751
safeToHoistLdSt(const Instruction * NewPt,const Instruction * OldPt,MemoryUseOrDef * U,GVNHoist::InsKind K,int & NBBsOnAllPaths)752 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt,
753 const Instruction *OldPt, MemoryUseOrDef *U,
754 GVNHoist::InsKind K, int &NBBsOnAllPaths) {
755 // In place hoisting is safe.
756 if (NewPt == OldPt)
757 return true;
758
759 const BasicBlock *NewBB = NewPt->getParent();
760 const BasicBlock *OldBB = OldPt->getParent();
761 const BasicBlock *UBB = U->getBlock();
762
763 // Check for dependences on the Memory SSA.
764 MemoryAccess *D = U->getDefiningAccess();
765 BasicBlock *DBB = D->getBlock();
766 if (DT->properlyDominates(NewBB, DBB))
767 // Cannot move the load or store to NewBB above its definition in DBB.
768 return false;
769
770 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
771 if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
772 if (!firstInBB(UD->getMemoryInst(), NewPt))
773 // Cannot move the load or store to NewPt above its definition in D.
774 return false;
775
776 // Check for unsafe hoistings due to side effects.
777 if (K == InsKind::Store) {
778 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
779 return false;
780 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
781 return false;
782
783 if (UBB == NewBB) {
784 if (DT->properlyDominates(DBB, NewBB))
785 return true;
786 assert(UBB == DBB);
787 assert(MSSA->locallyDominates(D, U));
788 }
789
790 // No side effects: it is safe to hoist.
791 return true;
792 }
793
valueAnticipable(CHIArgs C,Instruction * TI) const794 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const {
795 if (TI->getNumSuccessors() > (unsigned)size(C))
796 return false; // Not enough args in this CHI.
797
798 for (auto CHI : C) {
799 // Find if all the edges have values flowing out of BB.
800 if (!llvm::is_contained(successors(TI), CHI.Dest))
801 return false;
802 }
803 return true;
804 }
805
checkSafety(CHIArgs C,BasicBlock * BB,GVNHoist::InsKind K,SmallVectorImpl<CHIArg> & Safe)806 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K,
807 SmallVectorImpl<CHIArg> &Safe) {
808 int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
809 for (auto CHI : C) {
810 Instruction *Insn = CHI.I;
811 if (!Insn) // No instruction was inserted in this CHI.
812 continue;
813 if (K == InsKind::Scalar) {
814 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
815 Safe.push_back(CHI);
816 } else {
817 auto *T = BB->getTerminator();
818 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn))
819 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths))
820 Safe.push_back(CHI);
821 }
822 }
823 }
824
fillRenameStack(BasicBlock * BB,InValuesType & ValueBBs,GVNHoist::RenameStackType & RenameStack)825 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
826 GVNHoist::RenameStackType &RenameStack) {
827 auto it1 = ValueBBs.find(BB);
828 if (it1 != ValueBBs.end()) {
829 // Iterate in reverse order to keep lower ranked values on the top.
830 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
831 // Get the value of instruction I
832 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
833 RenameStack[VI.first].push_back(VI.second);
834 }
835 }
836 }
837
fillChiArgs(BasicBlock * BB,OutValuesType & CHIBBs,GVNHoist::RenameStackType & RenameStack)838 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
839 GVNHoist::RenameStackType &RenameStack) {
840 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
841 for (auto Pred : predecessors(BB)) {
842 auto P = CHIBBs.find(Pred);
843 if (P == CHIBBs.end()) {
844 continue;
845 }
846 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
847 // A CHI is found (BB -> Pred is an edge in the CFG)
848 // Pop the stack until Top(V) = Ve.
849 auto &VCHI = P->second;
850 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
851 CHIArg &C = *It;
852 if (!C.Dest) {
853 auto si = RenameStack.find(C.VN);
854 // The Basic Block where CHI is must dominate the value we want to
855 // track in a CHI. In the PDom walk, there can be values in the
856 // stack which are not control dependent e.g., nested loop.
857 if (si != RenameStack.end() && si->second.size() &&
858 DT->properlyDominates(Pred, si->second.back()->getParent())) {
859 C.Dest = BB; // Assign the edge
860 C.I = si->second.pop_back_val(); // Assign the argument
861 LLVM_DEBUG(dbgs()
862 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
863 << ", VN: " << C.VN.first << ", " << C.VN.second);
864 }
865 // Move to next CHI of a different value
866 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; });
867 } else
868 ++It;
869 }
870 }
871 }
872
findHoistableCandidates(OutValuesType & CHIBBs,GVNHoist::InsKind K,HoistingPointList & HPL)873 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs,
874 GVNHoist::InsKind K,
875 HoistingPointList &HPL) {
876 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
877
878 // CHIArgs now have the outgoing values, so check for anticipability and
879 // accumulate hoistable candidates in HPL.
880 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
881 BasicBlock *BB = A.first;
882 SmallVectorImpl<CHIArg> &CHIs = A.second;
883 // Vector of PHIs contains PHIs for different instructions.
884 // Sort the args according to their VNs, such that identical
885 // instructions are together.
886 llvm::stable_sort(CHIs, cmpVN);
887 auto TI = BB->getTerminator();
888 auto B = CHIs.begin();
889 // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
890 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; });
891 auto PrevIt = CHIs.begin();
892 while (PrevIt != PHIIt) {
893 // Collect values which satisfy safety checks.
894 SmallVector<CHIArg, 2> Safe;
895 // We check for safety first because there might be multiple values in
896 // the same path, some of which are not safe to be hoisted, but overall
897 // each edge has at least one value which can be hoisted, making the
898 // value anticipable along that path.
899 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
900
901 // List of safe values should be anticipable at TI.
902 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
903 HPL.push_back({BB, SmallVecInsn()});
904 SmallVecInsn &V = HPL.back().second;
905 for (auto B : Safe)
906 V.push_back(B.I);
907 }
908
909 // Check other VNs
910 PrevIt = PHIIt;
911 PHIIt = std::find_if(PrevIt, CHIs.end(),
912 [PrevIt](CHIArg &A) { return A != *PrevIt; });
913 }
914 }
915 }
916
allOperandsAvailable(const Instruction * I,const BasicBlock * HoistPt) const917 bool GVNHoist::allOperandsAvailable(const Instruction *I,
918 const BasicBlock *HoistPt) const {
919 for (const Use &Op : I->operands())
920 if (const auto *Inst = dyn_cast<Instruction>(&Op))
921 if (!DT->dominates(Inst->getParent(), HoistPt))
922 return false;
923
924 return true;
925 }
926
allGepOperandsAvailable(const Instruction * I,const BasicBlock * HoistPt) const927 bool GVNHoist::allGepOperandsAvailable(const Instruction *I,
928 const BasicBlock *HoistPt) const {
929 for (const Use &Op : I->operands())
930 if (const auto *Inst = dyn_cast<Instruction>(&Op))
931 if (!DT->dominates(Inst->getParent(), HoistPt)) {
932 if (const GetElementPtrInst *GepOp =
933 dyn_cast<GetElementPtrInst>(Inst)) {
934 if (!allGepOperandsAvailable(GepOp, HoistPt))
935 return false;
936 // Gep is available if all operands of GepOp are available.
937 } else {
938 // Gep is not available if it has operands other than GEPs that are
939 // defined in blocks not dominating HoistPt.
940 return false;
941 }
942 }
943 return true;
944 }
945
makeGepsAvailable(Instruction * Repl,BasicBlock * HoistPt,const SmallVecInsn & InstructionsToHoist,Instruction * Gep) const946 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
947 const SmallVecInsn &InstructionsToHoist,
948 Instruction *Gep) const {
949 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
950
951 Instruction *ClonedGep = Gep->clone();
952 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
953 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
954 // Check whether the operand is already available.
955 if (DT->dominates(Op->getParent(), HoistPt))
956 continue;
957
958 // As a GEP can refer to other GEPs, recursively make all the operands
959 // of this GEP available at HoistPt.
960 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
961 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
962 }
963
964 // Copy Gep and replace its uses in Repl with ClonedGep.
965 ClonedGep->insertBefore(HoistPt->getTerminator());
966
967 // Conservatively discard any optimization hints, they may differ on the
968 // other paths.
969 ClonedGep->dropUnknownNonDebugMetadata();
970
971 // If we have optimization hints which agree with each other along different
972 // paths, preserve them.
973 for (const Instruction *OtherInst : InstructionsToHoist) {
974 const GetElementPtrInst *OtherGep;
975 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
976 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
977 else
978 OtherGep = cast<GetElementPtrInst>(
979 cast<StoreInst>(OtherInst)->getPointerOperand());
980 ClonedGep->andIRFlags(OtherGep);
981 }
982
983 // Replace uses of Gep with ClonedGep in Repl.
984 Repl->replaceUsesOfWith(Gep, ClonedGep);
985 }
986
updateAlignment(Instruction * I,Instruction * Repl)987 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) {
988 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
989 ReplacementLoad->setAlignment(
990 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
991 ++NumLoadsRemoved;
992 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
993 ReplacementStore->setAlignment(
994 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign()));
995 ++NumStoresRemoved;
996 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
997 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(),
998 cast<AllocaInst>(I)->getAlign()));
999 } else if (isa<CallInst>(Repl)) {
1000 ++NumCallsRemoved;
1001 }
1002 }
1003
rauw(const SmallVecInsn & Candidates,Instruction * Repl,MemoryUseOrDef * NewMemAcc)1004 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl,
1005 MemoryUseOrDef *NewMemAcc) {
1006 unsigned NR = 0;
1007 for (Instruction *I : Candidates) {
1008 if (I != Repl) {
1009 ++NR;
1010 updateAlignment(I, Repl);
1011 if (NewMemAcc) {
1012 // Update the uses of the old MSSA access with NewMemAcc.
1013 MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
1014 OldMA->replaceAllUsesWith(NewMemAcc);
1015 MSSAUpdater->removeMemoryAccess(OldMA);
1016 }
1017
1018 Repl->andIRFlags(I);
1019 combineKnownMetadata(Repl, I);
1020 I->replaceAllUsesWith(Repl);
1021 // Also invalidate the Alias Analysis cache.
1022 MD->removeInstruction(I);
1023 I->eraseFromParent();
1024 }
1025 }
1026 return NR;
1027 }
1028
raMPHIuw(MemoryUseOrDef * NewMemAcc)1029 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) {
1030 SmallPtrSet<MemoryPhi *, 4> UsePhis;
1031 for (User *U : NewMemAcc->users())
1032 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
1033 UsePhis.insert(Phi);
1034
1035 for (MemoryPhi *Phi : UsePhis) {
1036 auto In = Phi->incoming_values();
1037 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
1038 Phi->replaceAllUsesWith(NewMemAcc);
1039 MSSAUpdater->removeMemoryAccess(Phi);
1040 }
1041 }
1042 }
1043
removeAndReplace(const SmallVecInsn & Candidates,Instruction * Repl,BasicBlock * DestBB,bool MoveAccess)1044 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates,
1045 Instruction *Repl, BasicBlock *DestBB,
1046 bool MoveAccess) {
1047 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
1048 if (MoveAccess && NewMemAcc) {
1049 // The definition of this ld/st will not change: ld/st hoisting is
1050 // legal when the ld/st is not moved past its current definition.
1051 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator);
1052 }
1053
1054 // Replace all other instructions with Repl with memory access NewMemAcc.
1055 unsigned NR = rauw(Candidates, Repl, NewMemAcc);
1056
1057 // Remove MemorySSA phi nodes with the same arguments.
1058 if (NewMemAcc)
1059 raMPHIuw(NewMemAcc);
1060 return NR;
1061 }
1062
makeGepOperandsAvailable(Instruction * Repl,BasicBlock * HoistPt,const SmallVecInsn & InstructionsToHoist) const1063 bool GVNHoist::makeGepOperandsAvailable(
1064 Instruction *Repl, BasicBlock *HoistPt,
1065 const SmallVecInsn &InstructionsToHoist) const {
1066 // Check whether the GEP of a ld/st can be synthesized at HoistPt.
1067 GetElementPtrInst *Gep = nullptr;
1068 Instruction *Val = nullptr;
1069 if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
1070 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
1071 } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
1072 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
1073 Val = dyn_cast<Instruction>(St->getValueOperand());
1074 // Check that the stored value is available.
1075 if (Val) {
1076 if (isa<GetElementPtrInst>(Val)) {
1077 // Check whether we can compute the GEP at HoistPt.
1078 if (!allGepOperandsAvailable(Val, HoistPt))
1079 return false;
1080 } else if (!DT->dominates(Val->getParent(), HoistPt))
1081 return false;
1082 }
1083 }
1084
1085 // Check whether we can compute the Gep at HoistPt.
1086 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
1087 return false;
1088
1089 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1090
1091 if (Val && isa<GetElementPtrInst>(Val))
1092 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1093
1094 return true;
1095 }
1096
hoist(HoistingPointList & HPL)1097 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) {
1098 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1099 for (const HoistingPointInfo &HP : HPL) {
1100 // Find out whether we already have one of the instructions in HoistPt,
1101 // in which case we do not have to move it.
1102 BasicBlock *DestBB = HP.first;
1103 const SmallVecInsn &InstructionsToHoist = HP.second;
1104 Instruction *Repl = nullptr;
1105 for (Instruction *I : InstructionsToHoist)
1106 if (I->getParent() == DestBB)
1107 // If there are two instructions in HoistPt to be hoisted in place:
1108 // update Repl to be the first one, such that we can rename the uses
1109 // of the second based on the first.
1110 if (!Repl || firstInBB(I, Repl))
1111 Repl = I;
1112
1113 // Keep track of whether we moved the instruction so we know whether we
1114 // should move the MemoryAccess.
1115 bool MoveAccess = true;
1116 if (Repl) {
1117 // Repl is already in HoistPt: it remains in place.
1118 assert(allOperandsAvailable(Repl, DestBB) &&
1119 "instruction depends on operands that are not available");
1120 MoveAccess = false;
1121 } else {
1122 // When we do not find Repl in HoistPt, select the first in the list
1123 // and move it to HoistPt.
1124 Repl = InstructionsToHoist.front();
1125
1126 // We can move Repl in HoistPt only when all operands are available.
1127 // The order in which hoistings are done may influence the availability
1128 // of operands.
1129 if (!allOperandsAvailable(Repl, DestBB)) {
1130 // When HoistingGeps there is nothing more we can do to make the
1131 // operands available: just continue.
1132 if (HoistingGeps)
1133 continue;
1134
1135 // When not HoistingGeps we need to copy the GEPs.
1136 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1137 continue;
1138 }
1139
1140 // Move the instruction at the end of HoistPt.
1141 Instruction *Last = DestBB->getTerminator();
1142 MD->removeInstruction(Repl);
1143 Repl->moveBefore(Last);
1144
1145 DFSNumber[Repl] = DFSNumber[Last]++;
1146 }
1147
1148 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1149
1150 if (isa<LoadInst>(Repl))
1151 ++NL;
1152 else if (isa<StoreInst>(Repl))
1153 ++NS;
1154 else if (isa<CallInst>(Repl))
1155 ++NC;
1156 else // Scalar
1157 ++NI;
1158 }
1159
1160 if (MSSA && VerifyMemorySSA)
1161 MSSA->verifyMemorySSA();
1162
1163 NumHoisted += NL + NS + NC + NI;
1164 NumRemoved += NR;
1165 NumLoadsHoisted += NL;
1166 NumStoresHoisted += NS;
1167 NumCallsHoisted += NC;
1168 return {NI, NL + NC + NS};
1169 }
1170
hoistExpressions(Function & F)1171 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) {
1172 InsnInfo II;
1173 LoadInfo LI;
1174 StoreInfo SI;
1175 CallInfo CI;
1176 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1177 int InstructionNb = 0;
1178 for (Instruction &I1 : *BB) {
1179 // If I1 cannot guarantee progress, subsequent instructions
1180 // in BB cannot be hoisted anyways.
1181 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
1182 HoistBarrier.insert(BB);
1183 break;
1184 }
1185 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1186 // deeper may increase the register pressure and compilation time.
1187 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1188 break;
1189
1190 // Do not value number terminator instructions.
1191 if (I1.isTerminator())
1192 break;
1193
1194 if (auto *Load = dyn_cast<LoadInst>(&I1))
1195 LI.insert(Load, VN);
1196 else if (auto *Store = dyn_cast<StoreInst>(&I1))
1197 SI.insert(Store, VN);
1198 else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1199 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1200 if (isa<DbgInfoIntrinsic>(Intr) ||
1201 Intr->getIntrinsicID() == Intrinsic::assume ||
1202 Intr->getIntrinsicID() == Intrinsic::sideeffect)
1203 continue;
1204 }
1205 if (Call->mayHaveSideEffects())
1206 break;
1207
1208 if (Call->isConvergent())
1209 break;
1210
1211 CI.insert(Call, VN);
1212 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1213 // Do not hoist scalars past calls that may write to memory because
1214 // that could result in spills later. geps are handled separately.
1215 // TODO: We can relax this for targets like AArch64 as they have more
1216 // registers than X86.
1217 II.insert(&I1, VN);
1218 }
1219 }
1220
1221 HoistingPointList HPL;
1222 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1223 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1224 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1225 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1226 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1227 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1228 return hoist(HPL);
1229 }
1230
1231 } // end namespace llvm
1232
run(Function & F,FunctionAnalysisManager & AM)1233 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
1234 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1235 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1236 AliasAnalysis &AA = AM.getResult<AAManager>(F);
1237 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1238 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1239 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1240 if (!G.run(F))
1241 return PreservedAnalyses::all();
1242
1243 PreservedAnalyses PA;
1244 PA.preserve<DominatorTreeAnalysis>();
1245 PA.preserve<MemorySSAAnalysis>();
1246 return PA;
1247 }
1248
1249 char GVNHoistLegacyPass::ID = 0;
1250
1251 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
1252 "Early GVN Hoisting of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)1253 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1254 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1255 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1256 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1257 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1258 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
1259 "Early GVN Hoisting of Expressions", false, false)
1260
1261 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
1262