xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/InstructionCost.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Transforms/Scalar.h"
96 #include "llvm/Transforms/Utils/BuildLibCalls.h"
97 #include "llvm/Transforms/Utils/Local.h"
98 #include "llvm/Transforms/Utils/LoopUtils.h"
99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <utility>
104 #include <vector>
105 
106 using namespace llvm;
107 
108 #define DEBUG_TYPE "loop-idiom"
109 
110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
112 STATISTIC(
113     NumShiftUntilBitTest,
114     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
115 STATISTIC(NumShiftUntilZero,
116           "Number of uncountable loops recognized as 'shift until zero' idiom");
117 
118 bool DisableLIRP::All;
119 static cl::opt<bool, true>
120     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
121                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
122                    cl::location(DisableLIRP::All), cl::init(false),
123                    cl::ReallyHidden);
124 
125 bool DisableLIRP::Memset;
126 static cl::opt<bool, true>
127     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
128                       cl::desc("Proceed with loop idiom recognize pass, but do "
129                                "not convert loop(s) to memset."),
130                       cl::location(DisableLIRP::Memset), cl::init(false),
131                       cl::ReallyHidden);
132 
133 bool DisableLIRP::Memcpy;
134 static cl::opt<bool, true>
135     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
136                       cl::desc("Proceed with loop idiom recognize pass, but do "
137                                "not convert loop(s) to memcpy."),
138                       cl::location(DisableLIRP::Memcpy), cl::init(false),
139                       cl::ReallyHidden);
140 
141 static cl::opt<bool> UseLIRCodeSizeHeurs(
142     "use-lir-code-size-heurs",
143     cl::desc("Use loop idiom recognition code size heuristics when compiling"
144              "with -Os/-Oz"),
145     cl::init(true), cl::Hidden);
146 
147 namespace {
148 
149 class LoopIdiomRecognize {
150   Loop *CurLoop = nullptr;
151   AliasAnalysis *AA;
152   DominatorTree *DT;
153   LoopInfo *LI;
154   ScalarEvolution *SE;
155   TargetLibraryInfo *TLI;
156   const TargetTransformInfo *TTI;
157   const DataLayout *DL;
158   OptimizationRemarkEmitter &ORE;
159   bool ApplyCodeSizeHeuristics;
160   std::unique_ptr<MemorySSAUpdater> MSSAU;
161 
162 public:
LoopIdiomRecognize(AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,MemorySSA * MSSA,const DataLayout * DL,OptimizationRemarkEmitter & ORE)163   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
164                               LoopInfo *LI, ScalarEvolution *SE,
165                               TargetLibraryInfo *TLI,
166                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
167                               const DataLayout *DL,
168                               OptimizationRemarkEmitter &ORE)
169       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
170     if (MSSA)
171       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
172   }
173 
174   bool runOnLoop(Loop *L);
175 
176 private:
177   using StoreList = SmallVector<StoreInst *, 8>;
178   using StoreListMap = MapVector<Value *, StoreList>;
179 
180   StoreListMap StoreRefsForMemset;
181   StoreListMap StoreRefsForMemsetPattern;
182   StoreList StoreRefsForMemcpy;
183   bool HasMemset;
184   bool HasMemsetPattern;
185   bool HasMemcpy;
186 
187   /// Return code for isLegalStore()
188   enum LegalStoreKind {
189     None = 0,
190     Memset,
191     MemsetPattern,
192     Memcpy,
193     UnorderedAtomicMemcpy,
194     DontUse // Dummy retval never to be used. Allows catching errors in retval
195             // handling.
196   };
197 
198   /// \name Countable Loop Idiom Handling
199   /// @{
200 
201   bool runOnCountableLoop();
202   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
203                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
204 
205   void collectStores(BasicBlock *BB);
206   LegalStoreKind isLegalStore(StoreInst *SI);
207   enum class ForMemset { No, Yes };
208   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
209                          ForMemset For);
210 
211   template <typename MemInst>
212   bool processLoopMemIntrinsic(
213       BasicBlock *BB,
214       bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
215       const SCEV *BECount);
216   bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
217   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
218 
219   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
220                                MaybeAlign StoreAlignment, Value *StoredVal,
221                                Instruction *TheStore,
222                                SmallPtrSetImpl<Instruction *> &Stores,
223                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
224                                bool NegStride, bool IsLoopMemset = false);
225   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
226   bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
227                                   unsigned StoreSize, MaybeAlign StoreAlign,
228                                   MaybeAlign LoadAlign, Instruction *TheStore,
229                                   Instruction *TheLoad,
230                                   const SCEVAddRecExpr *StoreEv,
231                                   const SCEVAddRecExpr *LoadEv,
232                                   const SCEV *BECount);
233   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
234                                  bool IsLoopMemset = false);
235 
236   /// @}
237   /// \name Noncountable Loop Idiom Handling
238   /// @{
239 
240   bool runOnNoncountableLoop();
241 
242   bool recognizePopcount();
243   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
244                                PHINode *CntPhi, Value *Var);
245   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
246   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
247                                 Instruction *CntInst, PHINode *CntPhi,
248                                 Value *Var, Instruction *DefX,
249                                 const DebugLoc &DL, bool ZeroCheck,
250                                 bool IsCntPhiUsedOutsideLoop);
251 
252   bool recognizeShiftUntilBitTest();
253   bool recognizeShiftUntilZero();
254 
255   /// @}
256 };
257 
258 class LoopIdiomRecognizeLegacyPass : public LoopPass {
259 public:
260   static char ID;
261 
LoopIdiomRecognizeLegacyPass()262   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
263     initializeLoopIdiomRecognizeLegacyPassPass(
264         *PassRegistry::getPassRegistry());
265   }
266 
runOnLoop(Loop * L,LPPassManager & LPM)267   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
268     if (DisableLIRP::All)
269       return false;
270 
271     if (skipLoop(L))
272       return false;
273 
274     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
275     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
276     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
277     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
278     TargetLibraryInfo *TLI =
279         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
280             *L->getHeader()->getParent());
281     const TargetTransformInfo *TTI =
282         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
283             *L->getHeader()->getParent());
284     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
285     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
286     MemorySSA *MSSA = nullptr;
287     if (MSSAAnalysis)
288       MSSA = &MSSAAnalysis->getMSSA();
289 
290     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
291     // pass.  Function analyses need to be preserved across loop transformations
292     // but ORE cannot be preserved (see comment before the pass definition).
293     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
294 
295     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
296     return LIR.runOnLoop(L);
297   }
298 
299   /// This transformation requires natural loop information & requires that
300   /// loop preheaders be inserted into the CFG.
getAnalysisUsage(AnalysisUsage & AU) const301   void getAnalysisUsage(AnalysisUsage &AU) const override {
302     AU.addRequired<TargetLibraryInfoWrapperPass>();
303     AU.addRequired<TargetTransformInfoWrapperPass>();
304     AU.addPreserved<MemorySSAWrapperPass>();
305     getLoopAnalysisUsage(AU);
306   }
307 };
308 
309 } // end anonymous namespace
310 
311 char LoopIdiomRecognizeLegacyPass::ID = 0;
312 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)313 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
314                                               LoopStandardAnalysisResults &AR,
315                                               LPMUpdater &) {
316   if (DisableLIRP::All)
317     return PreservedAnalyses::all();
318 
319   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
320 
321   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
322   // pass.  Function analyses need to be preserved across loop transformations
323   // but ORE cannot be preserved (see comment before the pass definition).
324   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
325 
326   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
327                          AR.MSSA, DL, ORE);
328   if (!LIR.runOnLoop(&L))
329     return PreservedAnalyses::all();
330 
331   auto PA = getLoopPassPreservedAnalyses();
332   if (AR.MSSA)
333     PA.preserve<MemorySSAAnalysis>();
334   return PA;
335 }
336 
337 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
338                       "Recognize loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)339 INITIALIZE_PASS_DEPENDENCY(LoopPass)
340 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
341 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
342 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
343                     "Recognize loop idioms", false, false)
344 
345 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
346 
deleteDeadInstruction(Instruction * I)347 static void deleteDeadInstruction(Instruction *I) {
348   I->replaceAllUsesWith(UndefValue::get(I->getType()));
349   I->eraseFromParent();
350 }
351 
352 //===----------------------------------------------------------------------===//
353 //
354 //          Implementation of LoopIdiomRecognize
355 //
356 //===----------------------------------------------------------------------===//
357 
runOnLoop(Loop * L)358 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
359   CurLoop = L;
360   // If the loop could not be converted to canonical form, it must have an
361   // indirectbr in it, just give up.
362   if (!L->getLoopPreheader())
363     return false;
364 
365   // Disable loop idiom recognition if the function's name is a common idiom.
366   StringRef Name = L->getHeader()->getParent()->getName();
367   if (Name == "memset" || Name == "memcpy")
368     return false;
369 
370   // Determine if code size heuristics need to be applied.
371   ApplyCodeSizeHeuristics =
372       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
373 
374   HasMemset = TLI->has(LibFunc_memset);
375   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
376   HasMemcpy = TLI->has(LibFunc_memcpy);
377 
378   if (HasMemset || HasMemsetPattern || HasMemcpy)
379     if (SE->hasLoopInvariantBackedgeTakenCount(L))
380       return runOnCountableLoop();
381 
382   return runOnNoncountableLoop();
383 }
384 
runOnCountableLoop()385 bool LoopIdiomRecognize::runOnCountableLoop() {
386   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
387   assert(!isa<SCEVCouldNotCompute>(BECount) &&
388          "runOnCountableLoop() called on a loop without a predictable"
389          "backedge-taken count");
390 
391   // If this loop executes exactly one time, then it should be peeled, not
392   // optimized by this pass.
393   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
394     if (BECst->getAPInt() == 0)
395       return false;
396 
397   SmallVector<BasicBlock *, 8> ExitBlocks;
398   CurLoop->getUniqueExitBlocks(ExitBlocks);
399 
400   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
401                     << CurLoop->getHeader()->getParent()->getName()
402                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
403                     << "\n");
404 
405   // The following transforms hoist stores/memsets into the loop pre-header.
406   // Give up if the loop has instructions that may throw.
407   SimpleLoopSafetyInfo SafetyInfo;
408   SafetyInfo.computeLoopSafetyInfo(CurLoop);
409   if (SafetyInfo.anyBlockMayThrow())
410     return false;
411 
412   bool MadeChange = false;
413 
414   // Scan all the blocks in the loop that are not in subloops.
415   for (auto *BB : CurLoop->getBlocks()) {
416     // Ignore blocks in subloops.
417     if (LI->getLoopFor(BB) != CurLoop)
418       continue;
419 
420     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
421   }
422   return MadeChange;
423 }
424 
getStoreStride(const SCEVAddRecExpr * StoreEv)425 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
426   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
427   return ConstStride->getAPInt();
428 }
429 
430 /// getMemSetPatternValue - If a strided store of the specified value is safe to
431 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
432 /// be passed in.  Otherwise, return null.
433 ///
434 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
435 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const DataLayout * DL)436 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
437   // FIXME: This could check for UndefValue because it can be merged into any
438   // other valid pattern.
439 
440   // If the value isn't a constant, we can't promote it to being in a constant
441   // array.  We could theoretically do a store to an alloca or something, but
442   // that doesn't seem worthwhile.
443   Constant *C = dyn_cast<Constant>(V);
444   if (!C)
445     return nullptr;
446 
447   // Only handle simple values that are a power of two bytes in size.
448   uint64_t Size = DL->getTypeSizeInBits(V->getType());
449   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
450     return nullptr;
451 
452   // Don't care enough about darwin/ppc to implement this.
453   if (DL->isBigEndian())
454     return nullptr;
455 
456   // Convert to size in bytes.
457   Size /= 8;
458 
459   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
460   // if the top and bottom are the same (e.g. for vectors and large integers).
461   if (Size > 16)
462     return nullptr;
463 
464   // If the constant is exactly 16 bytes, just use it.
465   if (Size == 16)
466     return C;
467 
468   // Otherwise, we'll use an array of the constants.
469   unsigned ArraySize = 16 / Size;
470   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
471   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
472 }
473 
474 LoopIdiomRecognize::LegalStoreKind
isLegalStore(StoreInst * SI)475 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
476   // Don't touch volatile stores.
477   if (SI->isVolatile())
478     return LegalStoreKind::None;
479   // We only want simple or unordered-atomic stores.
480   if (!SI->isUnordered())
481     return LegalStoreKind::None;
482 
483   // Avoid merging nontemporal stores.
484   if (SI->getMetadata(LLVMContext::MD_nontemporal))
485     return LegalStoreKind::None;
486 
487   Value *StoredVal = SI->getValueOperand();
488   Value *StorePtr = SI->getPointerOperand();
489 
490   // Don't convert stores of non-integral pointer types to memsets (which stores
491   // integers).
492   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
493     return LegalStoreKind::None;
494 
495   // Reject stores that are so large that they overflow an unsigned.
496   // When storing out scalable vectors we bail out for now, since the code
497   // below currently only works for constant strides.
498   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
499   if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
500       (SizeInBits.getFixedSize() >> 32) != 0)
501     return LegalStoreKind::None;
502 
503   // See if the pointer expression is an AddRec like {base,+,1} on the current
504   // loop, which indicates a strided store.  If we have something else, it's a
505   // random store we can't handle.
506   const SCEVAddRecExpr *StoreEv =
507       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
508   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
509     return LegalStoreKind::None;
510 
511   // Check to see if we have a constant stride.
512   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
513     return LegalStoreKind::None;
514 
515   // See if the store can be turned into a memset.
516 
517   // If the stored value is a byte-wise value (like i32 -1), then it may be
518   // turned into a memset of i8 -1, assuming that all the consecutive bytes
519   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
520   // but it can be turned into memset_pattern if the target supports it.
521   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
522 
523   // Note: memset and memset_pattern on unordered-atomic is yet not supported
524   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
525 
526   // If we're allowed to form a memset, and the stored value would be
527   // acceptable for memset, use it.
528   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
529       // Verify that the stored value is loop invariant.  If not, we can't
530       // promote the memset.
531       CurLoop->isLoopInvariant(SplatValue)) {
532     // It looks like we can use SplatValue.
533     return LegalStoreKind::Memset;
534   }
535   if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
536       // Don't create memset_pattern16s with address spaces.
537       StorePtr->getType()->getPointerAddressSpace() == 0 &&
538       getMemSetPatternValue(StoredVal, DL)) {
539     // It looks like we can use PatternValue!
540     return LegalStoreKind::MemsetPattern;
541   }
542 
543   // Otherwise, see if the store can be turned into a memcpy.
544   if (HasMemcpy && !DisableLIRP::Memcpy) {
545     // Check to see if the stride matches the size of the store.  If so, then we
546     // know that every byte is touched in the loop.
547     APInt Stride = getStoreStride(StoreEv);
548     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
549     if (StoreSize != Stride && StoreSize != -Stride)
550       return LegalStoreKind::None;
551 
552     // The store must be feeding a non-volatile load.
553     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
554 
555     // Only allow non-volatile loads
556     if (!LI || LI->isVolatile())
557       return LegalStoreKind::None;
558     // Only allow simple or unordered-atomic loads
559     if (!LI->isUnordered())
560       return LegalStoreKind::None;
561 
562     // See if the pointer expression is an AddRec like {base,+,1} on the current
563     // loop, which indicates a strided load.  If we have something else, it's a
564     // random load we can't handle.
565     const SCEVAddRecExpr *LoadEv =
566         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
567     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
568       return LegalStoreKind::None;
569 
570     // The store and load must share the same stride.
571     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
572       return LegalStoreKind::None;
573 
574     // Success.  This store can be converted into a memcpy.
575     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
576     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
577                            : LegalStoreKind::Memcpy;
578   }
579   // This store can't be transformed into a memset/memcpy.
580   return LegalStoreKind::None;
581 }
582 
collectStores(BasicBlock * BB)583 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
584   StoreRefsForMemset.clear();
585   StoreRefsForMemsetPattern.clear();
586   StoreRefsForMemcpy.clear();
587   for (Instruction &I : *BB) {
588     StoreInst *SI = dyn_cast<StoreInst>(&I);
589     if (!SI)
590       continue;
591 
592     // Make sure this is a strided store with a constant stride.
593     switch (isLegalStore(SI)) {
594     case LegalStoreKind::None:
595       // Nothing to do
596       break;
597     case LegalStoreKind::Memset: {
598       // Find the base pointer.
599       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
600       StoreRefsForMemset[Ptr].push_back(SI);
601     } break;
602     case LegalStoreKind::MemsetPattern: {
603       // Find the base pointer.
604       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
605       StoreRefsForMemsetPattern[Ptr].push_back(SI);
606     } break;
607     case LegalStoreKind::Memcpy:
608     case LegalStoreKind::UnorderedAtomicMemcpy:
609       StoreRefsForMemcpy.push_back(SI);
610       break;
611     default:
612       assert(false && "unhandled return value");
613       break;
614     }
615   }
616 }
617 
618 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
619 /// with the specified backedge count.  This block is known to be in the current
620 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)621 bool LoopIdiomRecognize::runOnLoopBlock(
622     BasicBlock *BB, const SCEV *BECount,
623     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
624   // We can only promote stores in this block if they are unconditionally
625   // executed in the loop.  For a block to be unconditionally executed, it has
626   // to dominate all the exit blocks of the loop.  Verify this now.
627   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
628     if (!DT->dominates(BB, ExitBlocks[i]))
629       return false;
630 
631   bool MadeChange = false;
632   // Look for store instructions, which may be optimized to memset/memcpy.
633   collectStores(BB);
634 
635   // Look for a single store or sets of stores with a common base, which can be
636   // optimized into a memset (memset_pattern).  The latter most commonly happens
637   // with structs and handunrolled loops.
638   for (auto &SL : StoreRefsForMemset)
639     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
640 
641   for (auto &SL : StoreRefsForMemsetPattern)
642     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
643 
644   // Optimize the store into a memcpy, if it feeds an similarly strided load.
645   for (auto &SI : StoreRefsForMemcpy)
646     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
647 
648   MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
649       BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
650   MadeChange |= processLoopMemIntrinsic<MemSetInst>(
651       BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
652 
653   return MadeChange;
654 }
655 
656 /// See if this store(s) can be promoted to a memset.
processLoopStores(SmallVectorImpl<StoreInst * > & SL,const SCEV * BECount,ForMemset For)657 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
658                                            const SCEV *BECount, ForMemset For) {
659   // Try to find consecutive stores that can be transformed into memsets.
660   SetVector<StoreInst *> Heads, Tails;
661   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
662 
663   // Do a quadratic search on all of the given stores and find
664   // all of the pairs of stores that follow each other.
665   SmallVector<unsigned, 16> IndexQueue;
666   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
667     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
668 
669     Value *FirstStoredVal = SL[i]->getValueOperand();
670     Value *FirstStorePtr = SL[i]->getPointerOperand();
671     const SCEVAddRecExpr *FirstStoreEv =
672         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
673     APInt FirstStride = getStoreStride(FirstStoreEv);
674     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
675 
676     // See if we can optimize just this store in isolation.
677     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
678       Heads.insert(SL[i]);
679       continue;
680     }
681 
682     Value *FirstSplatValue = nullptr;
683     Constant *FirstPatternValue = nullptr;
684 
685     if (For == ForMemset::Yes)
686       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
687     else
688       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
689 
690     assert((FirstSplatValue || FirstPatternValue) &&
691            "Expected either splat value or pattern value.");
692 
693     IndexQueue.clear();
694     // If a store has multiple consecutive store candidates, search Stores
695     // array according to the sequence: from i+1 to e, then from i-1 to 0.
696     // This is because usually pairing with immediate succeeding or preceding
697     // candidate create the best chance to find memset opportunity.
698     unsigned j = 0;
699     for (j = i + 1; j < e; ++j)
700       IndexQueue.push_back(j);
701     for (j = i; j > 0; --j)
702       IndexQueue.push_back(j - 1);
703 
704     for (auto &k : IndexQueue) {
705       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
706       Value *SecondStorePtr = SL[k]->getPointerOperand();
707       const SCEVAddRecExpr *SecondStoreEv =
708           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
709       APInt SecondStride = getStoreStride(SecondStoreEv);
710 
711       if (FirstStride != SecondStride)
712         continue;
713 
714       Value *SecondStoredVal = SL[k]->getValueOperand();
715       Value *SecondSplatValue = nullptr;
716       Constant *SecondPatternValue = nullptr;
717 
718       if (For == ForMemset::Yes)
719         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
720       else
721         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
722 
723       assert((SecondSplatValue || SecondPatternValue) &&
724              "Expected either splat value or pattern value.");
725 
726       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
727         if (For == ForMemset::Yes) {
728           if (isa<UndefValue>(FirstSplatValue))
729             FirstSplatValue = SecondSplatValue;
730           if (FirstSplatValue != SecondSplatValue)
731             continue;
732         } else {
733           if (isa<UndefValue>(FirstPatternValue))
734             FirstPatternValue = SecondPatternValue;
735           if (FirstPatternValue != SecondPatternValue)
736             continue;
737         }
738         Tails.insert(SL[k]);
739         Heads.insert(SL[i]);
740         ConsecutiveChain[SL[i]] = SL[k];
741         break;
742       }
743     }
744   }
745 
746   // We may run into multiple chains that merge into a single chain. We mark the
747   // stores that we transformed so that we don't visit the same store twice.
748   SmallPtrSet<Value *, 16> TransformedStores;
749   bool Changed = false;
750 
751   // For stores that start but don't end a link in the chain:
752   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
753        it != e; ++it) {
754     if (Tails.count(*it))
755       continue;
756 
757     // We found a store instr that starts a chain. Now follow the chain and try
758     // to transform it.
759     SmallPtrSet<Instruction *, 8> AdjacentStores;
760     StoreInst *I = *it;
761 
762     StoreInst *HeadStore = I;
763     unsigned StoreSize = 0;
764 
765     // Collect the chain into a list.
766     while (Tails.count(I) || Heads.count(I)) {
767       if (TransformedStores.count(I))
768         break;
769       AdjacentStores.insert(I);
770 
771       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
772       // Move to the next value in the chain.
773       I = ConsecutiveChain[I];
774     }
775 
776     Value *StoredVal = HeadStore->getValueOperand();
777     Value *StorePtr = HeadStore->getPointerOperand();
778     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
779     APInt Stride = getStoreStride(StoreEv);
780 
781     // Check to see if the stride matches the size of the stores.  If so, then
782     // we know that every byte is touched in the loop.
783     if (StoreSize != Stride && StoreSize != -Stride)
784       continue;
785 
786     bool NegStride = StoreSize == -Stride;
787 
788     if (processLoopStridedStore(StorePtr, StoreSize,
789                                 MaybeAlign(HeadStore->getAlignment()),
790                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
791                                 BECount, NegStride)) {
792       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
793       Changed = true;
794     }
795   }
796 
797   return Changed;
798 }
799 
800 /// processLoopMemIntrinsic - Template function for calling different processor
801 /// functions based on mem instrinsic type.
802 template <typename MemInst>
processLoopMemIntrinsic(BasicBlock * BB,bool (LoopIdiomRecognize::* Processor)(MemInst *,const SCEV *),const SCEV * BECount)803 bool LoopIdiomRecognize::processLoopMemIntrinsic(
804     BasicBlock *BB,
805     bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
806     const SCEV *BECount) {
807   bool MadeChange = false;
808   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
809     Instruction *Inst = &*I++;
810     // Look for memory instructions, which may be optimized to a larger one.
811     if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
812       WeakTrackingVH InstPtr(&*I);
813       if (!(this->*Processor)(MI, BECount))
814         continue;
815       MadeChange = true;
816 
817       // If processing the instruction invalidated our iterator, start over from
818       // the top of the block.
819       if (!InstPtr)
820         I = BB->begin();
821     }
822   }
823   return MadeChange;
824 }
825 
826 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
processLoopMemCpy(MemCpyInst * MCI,const SCEV * BECount)827 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
828                                            const SCEV *BECount) {
829   // We can only handle non-volatile memcpys with a constant size.
830   if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
831     return false;
832 
833   // If we're not allowed to hack on memcpy, we fail.
834   if (!HasMemcpy || DisableLIRP::Memcpy)
835     return false;
836 
837   Value *Dest = MCI->getDest();
838   Value *Source = MCI->getSource();
839   if (!Dest || !Source)
840     return false;
841 
842   // See if the load and store pointer expressions are AddRec like {base,+,1} on
843   // the current loop, which indicates a strided load and store.  If we have
844   // something else, it's a random load or store we can't handle.
845   const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
846   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
847     return false;
848   const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
849   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
850     return false;
851 
852   // Reject memcpys that are so large that they overflow an unsigned.
853   uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
854   if ((SizeInBytes >> 32) != 0)
855     return false;
856 
857   // Check if the stride matches the size of the memcpy. If so, then we know
858   // that every byte is touched in the loop.
859   const SCEVConstant *StoreStride =
860       dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
861   const SCEVConstant *LoadStride =
862       dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
863   if (!StoreStride || !LoadStride)
864     return false;
865 
866   APInt StoreStrideValue = StoreStride->getAPInt();
867   APInt LoadStrideValue = LoadStride->getAPInt();
868   // Huge stride value - give up
869   if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
870     return false;
871 
872   if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
873     ORE.emit([&]() {
874       return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
875              << ore::NV("Inst", "memcpy") << " in "
876              << ore::NV("Function", MCI->getFunction())
877              << " function will not be hoised: "
878              << ore::NV("Reason", "memcpy size is not equal to stride");
879     });
880     return false;
881   }
882 
883   int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
884   int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
885   // Check if the load stride matches the store stride.
886   if (StoreStrideInt != LoadStrideInt)
887     return false;
888 
889   return processLoopStoreOfLoopLoad(Dest, Source, (unsigned)SizeInBytes,
890                                     MCI->getDestAlign(), MCI->getSourceAlign(),
891                                     MCI, MCI, StoreEv, LoadEv, BECount);
892 }
893 
894 /// processLoopMemSet - See if this memset can be promoted to a large memset.
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)895 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
896                                            const SCEV *BECount) {
897   // We can only handle non-volatile memsets with a constant size.
898   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
899     return false;
900 
901   // If we're not allowed to hack on memset, we fail.
902   if (!HasMemset || DisableLIRP::Memset)
903     return false;
904 
905   Value *Pointer = MSI->getDest();
906 
907   // See if the pointer expression is an AddRec like {base,+,1} on the current
908   // loop, which indicates a strided store.  If we have something else, it's a
909   // random store we can't handle.
910   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
911   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
912     return false;
913 
914   // Reject memsets that are so large that they overflow an unsigned.
915   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
916   if ((SizeInBytes >> 32) != 0)
917     return false;
918 
919   // Check to see if the stride matches the size of the memset.  If so, then we
920   // know that every byte is touched in the loop.
921   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
922   if (!ConstStride)
923     return false;
924 
925   APInt Stride = ConstStride->getAPInt();
926   if (SizeInBytes != Stride && SizeInBytes != -Stride)
927     return false;
928 
929   // Verify that the memset value is loop invariant.  If not, we can't promote
930   // the memset.
931   Value *SplatValue = MSI->getValue();
932   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
933     return false;
934 
935   SmallPtrSet<Instruction *, 1> MSIs;
936   MSIs.insert(MSI);
937   bool NegStride = SizeInBytes == -Stride;
938   return processLoopStridedStore(
939       Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
940       SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
941 }
942 
943 /// mayLoopAccessLocation - Return true if the specified loop might access the
944 /// specified pointer location, which is a loop-strided access.  The 'Access'
945 /// argument specifies what the verboten forms of access are (read or write).
946 static bool
mayLoopAccessLocation(Value * Ptr,ModRefInfo Access,Loop * L,const SCEV * BECount,unsigned StoreSize,AliasAnalysis & AA,SmallPtrSetImpl<Instruction * > & IgnoredStores)947 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
948                       const SCEV *BECount, unsigned StoreSize,
949                       AliasAnalysis &AA,
950                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
951   // Get the location that may be stored across the loop.  Since the access is
952   // strided positively through memory, we say that the modified location starts
953   // at the pointer and has infinite size.
954   LocationSize AccessSize = LocationSize::afterPointer();
955 
956   // If the loop iterates a fixed number of times, we can refine the access size
957   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
958   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
959     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
960                                        StoreSize);
961 
962   // TODO: For this to be really effective, we have to dive into the pointer
963   // operand in the store.  Store to &A[i] of 100 will always return may alias
964   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
965   // which will then no-alias a store to &A[100].
966   MemoryLocation StoreLoc(Ptr, AccessSize);
967 
968   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
969        ++BI)
970     for (Instruction &I : **BI)
971       if (IgnoredStores.count(&I) == 0 &&
972           isModOrRefSet(
973               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
974         return true;
975 
976   return false;
977 }
978 
979 // If we have a negative stride, Start refers to the end of the memory location
980 // we're trying to memset.  Therefore, we need to recompute the base pointer,
981 // which is just Start - BECount*Size.
getStartForNegStride(const SCEV * Start,const SCEV * BECount,Type * IntPtr,unsigned StoreSize,ScalarEvolution * SE)982 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
983                                         Type *IntPtr, unsigned StoreSize,
984                                         ScalarEvolution *SE) {
985   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
986   if (StoreSize != 1)
987     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
988                            SCEV::FlagNUW);
989   return SE->getMinusSCEV(Start, Index);
990 }
991 
992 /// Compute the number of bytes as a SCEV from the backedge taken count.
993 ///
994 /// This also maps the SCEV into the provided type and tries to handle the
995 /// computation in a way that will fold cleanly.
getNumBytes(const SCEV * BECount,Type * IntPtr,unsigned StoreSize,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)996 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
997                                unsigned StoreSize, Loop *CurLoop,
998                                const DataLayout *DL, ScalarEvolution *SE) {
999   const SCEV *NumBytesS;
1000   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1001   // pointer size if it isn't already.
1002   //
1003   // If we're going to need to zero extend the BE count, check if we can add
1004   // one to it prior to zero extending without overflow. Provided this is safe,
1005   // it allows better simplification of the +1.
1006   if (DL->getTypeSizeInBits(BECount->getType()).getFixedSize() <
1007           DL->getTypeSizeInBits(IntPtr).getFixedSize() &&
1008       SE->isLoopEntryGuardedByCond(
1009           CurLoop, ICmpInst::ICMP_NE, BECount,
1010           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
1011     NumBytesS = SE->getZeroExtendExpr(
1012         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
1013         IntPtr);
1014   } else {
1015     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
1016                                SE->getOne(IntPtr), SCEV::FlagNUW);
1017   }
1018 
1019   // And scale it based on the store size.
1020   if (StoreSize != 1) {
1021     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1022                                SCEV::FlagNUW);
1023   }
1024   return NumBytesS;
1025 }
1026 
1027 /// processLoopStridedStore - We see a strided store of some value.  If we can
1028 /// transform this into a memset or memset_pattern in the loop preheader, do so.
processLoopStridedStore(Value * DestPtr,unsigned StoreSize,MaybeAlign StoreAlignment,Value * StoredVal,Instruction * TheStore,SmallPtrSetImpl<Instruction * > & Stores,const SCEVAddRecExpr * Ev,const SCEV * BECount,bool NegStride,bool IsLoopMemset)1029 bool LoopIdiomRecognize::processLoopStridedStore(
1030     Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
1031     Value *StoredVal, Instruction *TheStore,
1032     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1033     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
1034   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1035   Constant *PatternValue = nullptr;
1036 
1037   if (!SplatValue)
1038     PatternValue = getMemSetPatternValue(StoredVal, DL);
1039 
1040   assert((SplatValue || PatternValue) &&
1041          "Expected either splat value or pattern value.");
1042 
1043   // The trip count of the loop and the base pointer of the addrec SCEV is
1044   // guaranteed to be loop invariant, which means that it should dominate the
1045   // header.  This allows us to insert code for it in the preheader.
1046   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1047   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1048   IRBuilder<> Builder(Preheader->getTerminator());
1049   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1050   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1051 
1052   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
1053   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1054 
1055   bool Changed = false;
1056   const SCEV *Start = Ev->getStart();
1057   // Handle negative strided loops.
1058   if (NegStride)
1059     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
1060 
1061   // TODO: ideally we should still be able to generate memset if SCEV expander
1062   // is taught to generate the dependencies at the latest point.
1063   if (!isSafeToExpand(Start, *SE))
1064     return Changed;
1065 
1066   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
1067   // this into a memset in the loop preheader now if we want.  However, this
1068   // would be unsafe to do if there is anything else in the loop that may read
1069   // or write to the aliased location.  Check for any overlap by generating the
1070   // base pointer and checking the region.
1071   Value *BasePtr =
1072       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1073 
1074   // From here on out, conservatively report to the pass manager that we've
1075   // changed the IR, even if we later clean up these added instructions. There
1076   // may be structural differences e.g. in the order of use lists not accounted
1077   // for in just a textual dump of the IR. This is written as a variable, even
1078   // though statically all the places this dominates could be replaced with
1079   // 'true', with the hope that anyone trying to be clever / "more precise" with
1080   // the return value will read this comment, and leave them alone.
1081   Changed = true;
1082 
1083   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1084                             StoreSize, *AA, Stores))
1085     return Changed;
1086 
1087   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1088     return Changed;
1089 
1090   // Okay, everything looks good, insert the memset.
1091 
1092   const SCEV *NumBytesS =
1093       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1094 
1095   // TODO: ideally we should still be able to generate memset if SCEV expander
1096   // is taught to generate the dependencies at the latest point.
1097   if (!isSafeToExpand(NumBytesS, *SE))
1098     return Changed;
1099 
1100   Value *NumBytes =
1101       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1102 
1103   CallInst *NewCall;
1104   if (SplatValue) {
1105     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
1106                                    MaybeAlign(StoreAlignment));
1107   } else {
1108     // Everything is emitted in default address space
1109     Type *Int8PtrTy = DestInt8PtrTy;
1110 
1111     Module *M = TheStore->getModule();
1112     StringRef FuncName = "memset_pattern16";
1113     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1114                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
1115     inferLibFuncAttributes(M, FuncName, *TLI);
1116 
1117     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1118     // an constant array of 16-bytes.  Plop the value into a mergable global.
1119     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1120                                             GlobalValue::PrivateLinkage,
1121                                             PatternValue, ".memset_pattern");
1122     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1123     GV->setAlignment(Align(16));
1124     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1125     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1126   }
1127   NewCall->setDebugLoc(TheStore->getDebugLoc());
1128 
1129   if (MSSAU) {
1130     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1131         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1132     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1133   }
1134 
1135   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1136                     << "    from store to: " << *Ev << " at: " << *TheStore
1137                     << "\n");
1138 
1139   ORE.emit([&]() {
1140     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
1141                               NewCall->getDebugLoc(), Preheader)
1142            << "Transformed loop-strided store in "
1143            << ore::NV("Function", TheStore->getFunction())
1144            << " function into a call to "
1145            << ore::NV("NewFunction", NewCall->getCalledFunction())
1146            << "() intrinsic";
1147   });
1148 
1149   // Okay, the memset has been formed.  Zap the original store and anything that
1150   // feeds into it.
1151   for (auto *I : Stores) {
1152     if (MSSAU)
1153       MSSAU->removeMemoryAccess(I, true);
1154     deleteDeadInstruction(I);
1155   }
1156   if (MSSAU && VerifyMemorySSA)
1157     MSSAU->getMemorySSA()->verifyMemorySSA();
1158   ++NumMemSet;
1159   ExpCleaner.markResultUsed();
1160   return true;
1161 }
1162 
1163 /// If the stored value is a strided load in the same loop with the same stride
1164 /// this may be transformable into a memcpy.  This kicks in for stuff like
1165 /// for (i) A[i] = B[i];
processLoopStoreOfLoopLoad(StoreInst * SI,const SCEV * BECount)1166 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1167                                                     const SCEV *BECount) {
1168   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1169 
1170   Value *StorePtr = SI->getPointerOperand();
1171   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1172   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1173 
1174   // The store must be feeding a non-volatile load.
1175   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1176   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1177 
1178   // See if the pointer expression is an AddRec like {base,+,1} on the current
1179   // loop, which indicates a strided load.  If we have something else, it's a
1180   // random load we can't handle.
1181   Value *LoadPtr = LI->getPointerOperand();
1182   const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1183   return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSize,
1184                                     SI->getAlign(), LI->getAlign(), SI, LI,
1185                                     StoreEv, LoadEv, BECount);
1186 }
1187 
processLoopStoreOfLoopLoad(Value * DestPtr,Value * SourcePtr,unsigned StoreSize,MaybeAlign StoreAlign,MaybeAlign LoadAlign,Instruction * TheStore,Instruction * TheLoad,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)1188 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1189     Value *DestPtr, Value *SourcePtr, unsigned StoreSize, MaybeAlign StoreAlign,
1190     MaybeAlign LoadAlign, Instruction *TheStore, Instruction *TheLoad,
1191     const SCEVAddRecExpr *StoreEv, const SCEVAddRecExpr *LoadEv,
1192     const SCEV *BECount) {
1193   // The trip count of the loop and the base pointer of the addrec SCEV is
1194   // guaranteed to be loop invariant, which means that it should dominate the
1195   // header.  This allows us to insert code for it in the preheader.
1196   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1197   IRBuilder<> Builder(Preheader->getTerminator());
1198   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1199 
1200   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1201 
1202   bool Changed = false;
1203   const SCEV *StrStart = StoreEv->getStart();
1204   unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1205   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1206 
1207   APInt Stride = getStoreStride(StoreEv);
1208   bool NegStride = StoreSize == -Stride;
1209 
1210   // Handle negative strided loops.
1211   if (NegStride)
1212     StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1213 
1214   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1215   // this into a memcpy in the loop preheader now if we want.  However, this
1216   // would be unsafe to do if there is anything else in the loop that may read
1217   // or write the memory region we're storing to.  This includes the load that
1218   // feeds the stores.  Check for an alias by generating the base address and
1219   // checking everything.
1220   Value *StoreBasePtr = Expander.expandCodeFor(
1221       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1222 
1223   // From here on out, conservatively report to the pass manager that we've
1224   // changed the IR, even if we later clean up these added instructions. There
1225   // may be structural differences e.g. in the order of use lists not accounted
1226   // for in just a textual dump of the IR. This is written as a variable, even
1227   // though statically all the places this dominates could be replaced with
1228   // 'true', with the hope that anyone trying to be clever / "more precise" with
1229   // the return value will read this comment, and leave them alone.
1230   Changed = true;
1231 
1232   SmallPtrSet<Instruction *, 1> Stores;
1233   Stores.insert(TheStore);
1234 
1235   bool IsMemCpy = isa<MemCpyInst>(TheStore);
1236   const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1237 
1238   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1239                             StoreSize, *AA, Stores)) {
1240     ORE.emit([&]() {
1241       return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1242                                       TheStore)
1243              << ore::NV("Inst", InstRemark) << " in "
1244              << ore::NV("Function", TheStore->getFunction())
1245              << " function will not be hoisted: "
1246              << ore::NV("Reason", "The loop may access store location");
1247     });
1248     return Changed;
1249   }
1250 
1251   const SCEV *LdStart = LoadEv->getStart();
1252   unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1253 
1254   // Handle negative strided loops.
1255   if (NegStride)
1256     LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1257 
1258   // For a memcpy, we have to make sure that the input array is not being
1259   // mutated by the loop.
1260   Value *LoadBasePtr = Expander.expandCodeFor(
1261       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1262 
1263   // If the store is a memcpy instruction, we must check if it will write to
1264   // the load memory locations. So remove it from the ignored stores.
1265   if (IsMemCpy)
1266     Stores.erase(TheStore);
1267   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1268                             StoreSize, *AA, Stores)) {
1269     ORE.emit([&]() {
1270       return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1271              << ore::NV("Inst", InstRemark) << " in "
1272              << ore::NV("Function", TheStore->getFunction())
1273              << " function will not be hoisted: "
1274              << ore::NV("Reason", "The loop may access load location");
1275     });
1276     return Changed;
1277   }
1278 
1279   if (avoidLIRForMultiBlockLoop())
1280     return Changed;
1281 
1282   // Okay, everything is safe, we can transform this!
1283 
1284   const SCEV *NumBytesS =
1285       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1286 
1287   Value *NumBytes =
1288       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1289 
1290   CallInst *NewCall = nullptr;
1291   // Check whether to generate an unordered atomic memcpy:
1292   //  If the load or store are atomic, then they must necessarily be unordered
1293   //  by previous checks.
1294   if (!TheStore->isAtomic() && !TheLoad->isAtomic())
1295     NewCall = Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr,
1296                                    LoadAlign, NumBytes);
1297   else {
1298     // We cannot allow unaligned ops for unordered load/store, so reject
1299     // anything where the alignment isn't at least the element size.
1300     assert((StoreAlign.hasValue() && LoadAlign.hasValue()) &&
1301            "Expect unordered load/store to have align.");
1302     if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize)
1303       return Changed;
1304 
1305     // If the element.atomic memcpy is not lowered into explicit
1306     // loads/stores later, then it will be lowered into an element-size
1307     // specific lib call. If the lib call doesn't exist for our store size, then
1308     // we shouldn't generate the memcpy.
1309     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1310       return Changed;
1311 
1312     // Create the call.
1313     // Note that unordered atomic loads/stores are *required* by the spec to
1314     // have an alignment but non-atomic loads/stores may not.
1315     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1316         StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(),
1317         NumBytes, StoreSize);
1318   }
1319   NewCall->setDebugLoc(TheStore->getDebugLoc());
1320 
1321   if (MSSAU) {
1322     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1323         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1324     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1325   }
1326 
1327   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1328                     << "    from load ptr=" << *LoadEv << " at: " << *TheLoad
1329                     << "\n"
1330                     << "    from store ptr=" << *StoreEv << " at: " << *TheStore
1331                     << "\n");
1332 
1333   ORE.emit([&]() {
1334     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1335                               NewCall->getDebugLoc(), Preheader)
1336            << "Formed a call to "
1337            << ore::NV("NewFunction", NewCall->getCalledFunction())
1338            << "() intrinsic from " << ore::NV("Inst", InstRemark)
1339            << " instruction in " << ore::NV("Function", TheStore->getFunction())
1340            << " function";
1341   });
1342 
1343   // Okay, the memcpy has been formed.  Zap the original store and anything that
1344   // feeds into it.
1345   if (MSSAU)
1346     MSSAU->removeMemoryAccess(TheStore, true);
1347   deleteDeadInstruction(TheStore);
1348   if (MSSAU && VerifyMemorySSA)
1349     MSSAU->getMemorySSA()->verifyMemorySSA();
1350   ++NumMemCpy;
1351   ExpCleaner.markResultUsed();
1352   return true;
1353 }
1354 
1355 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1356 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1357 //
avoidLIRForMultiBlockLoop(bool IsMemset,bool IsLoopMemset)1358 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1359                                                    bool IsLoopMemset) {
1360   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1361     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1362       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1363                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1364                         << " avoided: multi-block top-level loop\n");
1365       return true;
1366     }
1367   }
1368 
1369   return false;
1370 }
1371 
runOnNoncountableLoop()1372 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1373   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1374                     << CurLoop->getHeader()->getParent()->getName()
1375                     << "] Noncountable Loop %"
1376                     << CurLoop->getHeader()->getName() << "\n");
1377 
1378   return recognizePopcount() || recognizeAndInsertFFS() ||
1379          recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1380 }
1381 
1382 /// Check if the given conditional branch is based on the comparison between
1383 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1384 /// true), the control yields to the loop entry. If the branch matches the
1385 /// behavior, the variable involved in the comparison is returned. This function
1386 /// will be called to see if the precondition and postcondition of the loop are
1387 /// in desirable form.
matchCondition(BranchInst * BI,BasicBlock * LoopEntry,bool JmpOnZero=false)1388 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1389                              bool JmpOnZero = false) {
1390   if (!BI || !BI->isConditional())
1391     return nullptr;
1392 
1393   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1394   if (!Cond)
1395     return nullptr;
1396 
1397   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1398   if (!CmpZero || !CmpZero->isZero())
1399     return nullptr;
1400 
1401   BasicBlock *TrueSucc = BI->getSuccessor(0);
1402   BasicBlock *FalseSucc = BI->getSuccessor(1);
1403   if (JmpOnZero)
1404     std::swap(TrueSucc, FalseSucc);
1405 
1406   ICmpInst::Predicate Pred = Cond->getPredicate();
1407   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1408       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1409     return Cond->getOperand(0);
1410 
1411   return nullptr;
1412 }
1413 
1414 // Check if the recurrence variable `VarX` is in the right form to create
1415 // the idiom. Returns the value coerced to a PHINode if so.
getRecurrenceVar(Value * VarX,Instruction * DefX,BasicBlock * LoopEntry)1416 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1417                                  BasicBlock *LoopEntry) {
1418   auto *PhiX = dyn_cast<PHINode>(VarX);
1419   if (PhiX && PhiX->getParent() == LoopEntry &&
1420       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1421     return PhiX;
1422   return nullptr;
1423 }
1424 
1425 /// Return true iff the idiom is detected in the loop.
1426 ///
1427 /// Additionally:
1428 /// 1) \p CntInst is set to the instruction counting the population bit.
1429 /// 2) \p CntPhi is set to the corresponding phi node.
1430 /// 3) \p Var is set to the value whose population bits are being counted.
1431 ///
1432 /// The core idiom we are trying to detect is:
1433 /// \code
1434 ///    if (x0 != 0)
1435 ///      goto loop-exit // the precondition of the loop
1436 ///    cnt0 = init-val;
1437 ///    do {
1438 ///       x1 = phi (x0, x2);
1439 ///       cnt1 = phi(cnt0, cnt2);
1440 ///
1441 ///       cnt2 = cnt1 + 1;
1442 ///        ...
1443 ///       x2 = x1 & (x1 - 1);
1444 ///        ...
1445 ///    } while(x != 0);
1446 ///
1447 /// loop-exit:
1448 /// \endcode
detectPopcountIdiom(Loop * CurLoop,BasicBlock * PreCondBB,Instruction * & CntInst,PHINode * & CntPhi,Value * & Var)1449 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1450                                 Instruction *&CntInst, PHINode *&CntPhi,
1451                                 Value *&Var) {
1452   // step 1: Check to see if the look-back branch match this pattern:
1453   //    "if (a!=0) goto loop-entry".
1454   BasicBlock *LoopEntry;
1455   Instruction *DefX2, *CountInst;
1456   Value *VarX1, *VarX0;
1457   PHINode *PhiX, *CountPhi;
1458 
1459   DefX2 = CountInst = nullptr;
1460   VarX1 = VarX0 = nullptr;
1461   PhiX = CountPhi = nullptr;
1462   LoopEntry = *(CurLoop->block_begin());
1463 
1464   // step 1: Check if the loop-back branch is in desirable form.
1465   {
1466     if (Value *T = matchCondition(
1467             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1468       DefX2 = dyn_cast<Instruction>(T);
1469     else
1470       return false;
1471   }
1472 
1473   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1474   {
1475     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1476       return false;
1477 
1478     BinaryOperator *SubOneOp;
1479 
1480     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1481       VarX1 = DefX2->getOperand(1);
1482     else {
1483       VarX1 = DefX2->getOperand(0);
1484       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1485     }
1486     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1487       return false;
1488 
1489     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1490     if (!Dec ||
1491         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1492           (SubOneOp->getOpcode() == Instruction::Add &&
1493            Dec->isMinusOne()))) {
1494       return false;
1495     }
1496   }
1497 
1498   // step 3: Check the recurrence of variable X
1499   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1500   if (!PhiX)
1501     return false;
1502 
1503   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1504   {
1505     CountInst = nullptr;
1506     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1507                               IterE = LoopEntry->end();
1508          Iter != IterE; Iter++) {
1509       Instruction *Inst = &*Iter;
1510       if (Inst->getOpcode() != Instruction::Add)
1511         continue;
1512 
1513       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1514       if (!Inc || !Inc->isOne())
1515         continue;
1516 
1517       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1518       if (!Phi)
1519         continue;
1520 
1521       // Check if the result of the instruction is live of the loop.
1522       bool LiveOutLoop = false;
1523       for (User *U : Inst->users()) {
1524         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1525           LiveOutLoop = true;
1526           break;
1527         }
1528       }
1529 
1530       if (LiveOutLoop) {
1531         CountInst = Inst;
1532         CountPhi = Phi;
1533         break;
1534       }
1535     }
1536 
1537     if (!CountInst)
1538       return false;
1539   }
1540 
1541   // step 5: check if the precondition is in this form:
1542   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1543   {
1544     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1545     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1546     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1547       return false;
1548 
1549     CntInst = CountInst;
1550     CntPhi = CountPhi;
1551     Var = T;
1552   }
1553 
1554   return true;
1555 }
1556 
1557 /// Return true if the idiom is detected in the loop.
1558 ///
1559 /// Additionally:
1560 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1561 ///       or nullptr if there is no such.
1562 /// 2) \p CntPhi is set to the corresponding phi node
1563 ///       or nullptr if there is no such.
1564 /// 3) \p Var is set to the value whose CTLZ could be used.
1565 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1566 ///
1567 /// The core idiom we are trying to detect is:
1568 /// \code
1569 ///    if (x0 == 0)
1570 ///      goto loop-exit // the precondition of the loop
1571 ///    cnt0 = init-val;
1572 ///    do {
1573 ///       x = phi (x0, x.next);   //PhiX
1574 ///       cnt = phi(cnt0, cnt.next);
1575 ///
1576 ///       cnt.next = cnt + 1;
1577 ///        ...
1578 ///       x.next = x >> 1;   // DefX
1579 ///        ...
1580 ///    } while(x.next != 0);
1581 ///
1582 /// loop-exit:
1583 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,const DataLayout & DL,Intrinsic::ID & IntrinID,Value * & InitX,Instruction * & CntInst,PHINode * & CntPhi,Instruction * & DefX)1584 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1585                                       Intrinsic::ID &IntrinID, Value *&InitX,
1586                                       Instruction *&CntInst, PHINode *&CntPhi,
1587                                       Instruction *&DefX) {
1588   BasicBlock *LoopEntry;
1589   Value *VarX = nullptr;
1590 
1591   DefX = nullptr;
1592   CntInst = nullptr;
1593   CntPhi = nullptr;
1594   LoopEntry = *(CurLoop->block_begin());
1595 
1596   // step 1: Check if the loop-back branch is in desirable form.
1597   if (Value *T = matchCondition(
1598           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1599     DefX = dyn_cast<Instruction>(T);
1600   else
1601     return false;
1602 
1603   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1604   if (!DefX || !DefX->isShift())
1605     return false;
1606   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1607                                                      Intrinsic::ctlz;
1608   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1609   if (!Shft || !Shft->isOne())
1610     return false;
1611   VarX = DefX->getOperand(0);
1612 
1613   // step 3: Check the recurrence of variable X
1614   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1615   if (!PhiX)
1616     return false;
1617 
1618   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1619 
1620   // Make sure the initial value can't be negative otherwise the ashr in the
1621   // loop might never reach zero which would make the loop infinite.
1622   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1623     return false;
1624 
1625   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1626   //         or cnt.next = cnt + -1.
1627   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1628   //       then all uses of "cnt.next" could be optimized to the trip count
1629   //       plus "cnt0". Currently it is not optimized.
1630   //       This step could be used to detect POPCNT instruction:
1631   //       cnt.next = cnt + (x.next & 1)
1632   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1633                             IterE = LoopEntry->end();
1634        Iter != IterE; Iter++) {
1635     Instruction *Inst = &*Iter;
1636     if (Inst->getOpcode() != Instruction::Add)
1637       continue;
1638 
1639     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1640     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1641       continue;
1642 
1643     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1644     if (!Phi)
1645       continue;
1646 
1647     CntInst = Inst;
1648     CntPhi = Phi;
1649     break;
1650   }
1651   if (!CntInst)
1652     return false;
1653 
1654   return true;
1655 }
1656 
1657 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1658 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1659 /// trip count returns true; otherwise, returns false.
recognizeAndInsertFFS()1660 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1661   // Give up if the loop has multiple blocks or multiple backedges.
1662   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1663     return false;
1664 
1665   Intrinsic::ID IntrinID;
1666   Value *InitX;
1667   Instruction *DefX = nullptr;
1668   PHINode *CntPhi = nullptr;
1669   Instruction *CntInst = nullptr;
1670   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1671   // this is always 6.
1672   size_t IdiomCanonicalSize = 6;
1673 
1674   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1675                                  CntInst, CntPhi, DefX))
1676     return false;
1677 
1678   bool IsCntPhiUsedOutsideLoop = false;
1679   for (User *U : CntPhi->users())
1680     if (!CurLoop->contains(cast<Instruction>(U))) {
1681       IsCntPhiUsedOutsideLoop = true;
1682       break;
1683     }
1684   bool IsCntInstUsedOutsideLoop = false;
1685   for (User *U : CntInst->users())
1686     if (!CurLoop->contains(cast<Instruction>(U))) {
1687       IsCntInstUsedOutsideLoop = true;
1688       break;
1689     }
1690   // If both CntInst and CntPhi are used outside the loop the profitability
1691   // is questionable.
1692   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1693     return false;
1694 
1695   // For some CPUs result of CTLZ(X) intrinsic is undefined
1696   // when X is 0. If we can not guarantee X != 0, we need to check this
1697   // when expand.
1698   bool ZeroCheck = false;
1699   // It is safe to assume Preheader exist as it was checked in
1700   // parent function RunOnLoop.
1701   BasicBlock *PH = CurLoop->getLoopPreheader();
1702 
1703   // If we are using the count instruction outside the loop, make sure we
1704   // have a zero check as a precondition. Without the check the loop would run
1705   // one iteration for before any check of the input value. This means 0 and 1
1706   // would have identical behavior in the original loop and thus
1707   if (!IsCntPhiUsedOutsideLoop) {
1708     auto *PreCondBB = PH->getSinglePredecessor();
1709     if (!PreCondBB)
1710       return false;
1711     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1712     if (!PreCondBI)
1713       return false;
1714     if (matchCondition(PreCondBI, PH) != InitX)
1715       return false;
1716     ZeroCheck = true;
1717   }
1718 
1719   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1720   // profitable if we delete the loop.
1721 
1722   // the loop has only 6 instructions:
1723   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1724   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1725   //  %shr = ashr %n.addr.0, 1
1726   //  %tobool = icmp eq %shr, 0
1727   //  %inc = add nsw %i.0, 1
1728   //  br i1 %tobool
1729 
1730   const Value *Args[] = {InitX,
1731                          ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1732 
1733   // @llvm.dbg doesn't count as they have no semantic effect.
1734   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1735   uint32_t HeaderSize =
1736       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1737 
1738   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1739   InstructionCost Cost =
1740     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1741   if (HeaderSize != IdiomCanonicalSize &&
1742       Cost > TargetTransformInfo::TCC_Basic)
1743     return false;
1744 
1745   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1746                            DefX->getDebugLoc(), ZeroCheck,
1747                            IsCntPhiUsedOutsideLoop);
1748   return true;
1749 }
1750 
1751 /// Recognizes a population count idiom in a non-countable loop.
1752 ///
1753 /// If detected, transforms the relevant code to issue the popcount intrinsic
1754 /// function call, and returns true; otherwise, returns false.
recognizePopcount()1755 bool LoopIdiomRecognize::recognizePopcount() {
1756   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1757     return false;
1758 
1759   // Counting population are usually conducted by few arithmetic instructions.
1760   // Such instructions can be easily "absorbed" by vacant slots in a
1761   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1762   // in a compact loop.
1763 
1764   // Give up if the loop has multiple blocks or multiple backedges.
1765   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1766     return false;
1767 
1768   BasicBlock *LoopBody = *(CurLoop->block_begin());
1769   if (LoopBody->size() >= 20) {
1770     // The loop is too big, bail out.
1771     return false;
1772   }
1773 
1774   // It should have a preheader containing nothing but an unconditional branch.
1775   BasicBlock *PH = CurLoop->getLoopPreheader();
1776   if (!PH || &PH->front() != PH->getTerminator())
1777     return false;
1778   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1779   if (!EntryBI || EntryBI->isConditional())
1780     return false;
1781 
1782   // It should have a precondition block where the generated popcount intrinsic
1783   // function can be inserted.
1784   auto *PreCondBB = PH->getSinglePredecessor();
1785   if (!PreCondBB)
1786     return false;
1787   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1788   if (!PreCondBI || PreCondBI->isUnconditional())
1789     return false;
1790 
1791   Instruction *CntInst;
1792   PHINode *CntPhi;
1793   Value *Val;
1794   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1795     return false;
1796 
1797   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1798   return true;
1799 }
1800 
createPopcntIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL)1801 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1802                                        const DebugLoc &DL) {
1803   Value *Ops[] = {Val};
1804   Type *Tys[] = {Val->getType()};
1805 
1806   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1807   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1808   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1809   CI->setDebugLoc(DL);
1810 
1811   return CI;
1812 }
1813 
createFFSIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL,bool ZeroCheck,Intrinsic::ID IID)1814 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1815                                     const DebugLoc &DL, bool ZeroCheck,
1816                                     Intrinsic::ID IID) {
1817   Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
1818   Type *Tys[] = {Val->getType()};
1819 
1820   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1821   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1822   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1823   CI->setDebugLoc(DL);
1824 
1825   return CI;
1826 }
1827 
1828 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1829 /// loop:
1830 ///   CntPhi = PHI [Cnt0, CntInst]
1831 ///   PhiX = PHI [InitX, DefX]
1832 ///   CntInst = CntPhi + 1
1833 ///   DefX = PhiX >> 1
1834 ///   LOOP_BODY
1835 ///   Br: loop if (DefX != 0)
1836 /// Use(CntPhi) or Use(CntInst)
1837 ///
1838 /// Into:
1839 /// If CntPhi used outside the loop:
1840 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1841 ///   Count = CountPrev + 1
1842 /// else
1843 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1844 /// loop:
1845 ///   CntPhi = PHI [Cnt0, CntInst]
1846 ///   PhiX = PHI [InitX, DefX]
1847 ///   PhiCount = PHI [Count, Dec]
1848 ///   CntInst = CntPhi + 1
1849 ///   DefX = PhiX >> 1
1850 ///   Dec = PhiCount - 1
1851 ///   LOOP_BODY
1852 ///   Br: loop if (Dec != 0)
1853 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1854 /// or
1855 /// Use(Count + Cnt0) // Use(CntInst)
1856 ///
1857 /// If LOOP_BODY is empty the loop will be deleted.
1858 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
transformLoopToCountable(Intrinsic::ID IntrinID,BasicBlock * Preheader,Instruction * CntInst,PHINode * CntPhi,Value * InitX,Instruction * DefX,const DebugLoc & DL,bool ZeroCheck,bool IsCntPhiUsedOutsideLoop)1859 void LoopIdiomRecognize::transformLoopToCountable(
1860     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1861     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1862     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1863   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1864 
1865   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1866   IRBuilder<> Builder(PreheaderBr);
1867   Builder.SetCurrentDebugLocation(DL);
1868 
1869   // If there are no uses of CntPhi crate:
1870   //   Count = BitWidth - CTLZ(InitX);
1871   //   NewCount = Count;
1872   // If there are uses of CntPhi create:
1873   //   NewCount = BitWidth - CTLZ(InitX >> 1);
1874   //   Count = NewCount + 1;
1875   Value *InitXNext;
1876   if (IsCntPhiUsedOutsideLoop) {
1877     if (DefX->getOpcode() == Instruction::AShr)
1878       InitXNext = Builder.CreateAShr(InitX, 1);
1879     else if (DefX->getOpcode() == Instruction::LShr)
1880       InitXNext = Builder.CreateLShr(InitX, 1);
1881     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1882       InitXNext = Builder.CreateShl(InitX, 1);
1883     else
1884       llvm_unreachable("Unexpected opcode!");
1885   } else
1886     InitXNext = InitX;
1887   Value *Count =
1888       createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1889   Type *CountTy = Count->getType();
1890   Count = Builder.CreateSub(
1891       ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
1892   Value *NewCount = Count;
1893   if (IsCntPhiUsedOutsideLoop)
1894     Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
1895 
1896   NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
1897 
1898   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1899   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
1900     // If the counter was being incremented in the loop, add NewCount to the
1901     // counter's initial value, but only if the initial value is not zero.
1902     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1903     if (!InitConst || !InitConst->isZero())
1904       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1905   } else {
1906     // If the count was being decremented in the loop, subtract NewCount from
1907     // the counter's initial value.
1908     NewCount = Builder.CreateSub(CntInitVal, NewCount);
1909   }
1910 
1911   // Step 2: Insert new IV and loop condition:
1912   // loop:
1913   //   ...
1914   //   PhiCount = PHI [Count, Dec]
1915   //   ...
1916   //   Dec = PhiCount - 1
1917   //   ...
1918   //   Br: loop if (Dec != 0)
1919   BasicBlock *Body = *(CurLoop->block_begin());
1920   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1921   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1922 
1923   PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
1924 
1925   Builder.SetInsertPoint(LbCond);
1926   Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
1927       TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
1928 
1929   TcPhi->addIncoming(Count, Preheader);
1930   TcPhi->addIncoming(TcDec, Body);
1931 
1932   CmpInst::Predicate Pred =
1933       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1934   LbCond->setPredicate(Pred);
1935   LbCond->setOperand(0, TcDec);
1936   LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
1937 
1938   // Step 3: All the references to the original counter outside
1939   //  the loop are replaced with the NewCount
1940   if (IsCntPhiUsedOutsideLoop)
1941     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1942   else
1943     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1944 
1945   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1946   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1947   SE->forgetLoop(CurLoop);
1948 }
1949 
transformLoopToPopcount(BasicBlock * PreCondBB,Instruction * CntInst,PHINode * CntPhi,Value * Var)1950 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1951                                                  Instruction *CntInst,
1952                                                  PHINode *CntPhi, Value *Var) {
1953   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1954   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1955   const DebugLoc &DL = CntInst->getDebugLoc();
1956 
1957   // Assuming before transformation, the loop is following:
1958   //  if (x) // the precondition
1959   //     do { cnt++; x &= x - 1; } while(x);
1960 
1961   // Step 1: Insert the ctpop instruction at the end of the precondition block
1962   IRBuilder<> Builder(PreCondBr);
1963   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1964   {
1965     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1966     NewCount = PopCntZext =
1967         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1968 
1969     if (NewCount != PopCnt)
1970       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1971 
1972     // TripCnt is exactly the number of iterations the loop has
1973     TripCnt = NewCount;
1974 
1975     // If the population counter's initial value is not zero, insert Add Inst.
1976     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1977     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1978     if (!InitConst || !InitConst->isZero()) {
1979       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1980       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1981     }
1982   }
1983 
1984   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1985   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1986   //   function would be partial dead code, and downstream passes will drag
1987   //   it back from the precondition block to the preheader.
1988   {
1989     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1990 
1991     Value *Opnd0 = PopCntZext;
1992     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1993     if (PreCond->getOperand(0) != Var)
1994       std::swap(Opnd0, Opnd1);
1995 
1996     ICmpInst *NewPreCond = cast<ICmpInst>(
1997         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1998     PreCondBr->setCondition(NewPreCond);
1999 
2000     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2001   }
2002 
2003   // Step 3: Note that the population count is exactly the trip count of the
2004   // loop in question, which enable us to convert the loop from noncountable
2005   // loop into a countable one. The benefit is twofold:
2006   //
2007   //  - If the loop only counts population, the entire loop becomes dead after
2008   //    the transformation. It is a lot easier to prove a countable loop dead
2009   //    than to prove a noncountable one. (In some C dialects, an infinite loop
2010   //    isn't dead even if it computes nothing useful. In general, DCE needs
2011   //    to prove a noncountable loop finite before safely delete it.)
2012   //
2013   //  - If the loop also performs something else, it remains alive.
2014   //    Since it is transformed to countable form, it can be aggressively
2015   //    optimized by some optimizations which are in general not applicable
2016   //    to a noncountable loop.
2017   //
2018   // After this step, this loop (conceptually) would look like following:
2019   //   newcnt = __builtin_ctpop(x);
2020   //   t = newcnt;
2021   //   if (x)
2022   //     do { cnt++; x &= x-1; t--) } while (t > 0);
2023   BasicBlock *Body = *(CurLoop->block_begin());
2024   {
2025     auto *LbBr = cast<BranchInst>(Body->getTerminator());
2026     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2027     Type *Ty = TripCnt->getType();
2028 
2029     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
2030 
2031     Builder.SetInsertPoint(LbCond);
2032     Instruction *TcDec = cast<Instruction>(
2033         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2034                           "tcdec", false, true));
2035 
2036     TcPhi->addIncoming(TripCnt, PreHead);
2037     TcPhi->addIncoming(TcDec, Body);
2038 
2039     CmpInst::Predicate Pred =
2040         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2041     LbCond->setPredicate(Pred);
2042     LbCond->setOperand(0, TcDec);
2043     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2044   }
2045 
2046   // Step 4: All the references to the original population counter outside
2047   //  the loop are replaced with the NewCount -- the value returned from
2048   //  __builtin_ctpop().
2049   CntInst->replaceUsesOutsideBlock(NewCount, Body);
2050 
2051   // step 5: Forget the "non-computable" trip-count SCEV associated with the
2052   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2053   SE->forgetLoop(CurLoop);
2054 }
2055 
2056 /// Match loop-invariant value.
2057 template <typename SubPattern_t> struct match_LoopInvariant {
2058   SubPattern_t SubPattern;
2059   const Loop *L;
2060 
match_LoopInvariantmatch_LoopInvariant2061   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2062       : SubPattern(SP), L(L) {}
2063 
matchmatch_LoopInvariant2064   template <typename ITy> bool match(ITy *V) {
2065     return L->isLoopInvariant(V) && SubPattern.match(V);
2066   }
2067 };
2068 
2069 /// Matches if the value is loop-invariant.
2070 template <typename Ty>
m_LoopInvariant(const Ty & M,const Loop * L)2071 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2072   return match_LoopInvariant<Ty>(M, L);
2073 }
2074 
2075 /// Return true if the idiom is detected in the loop.
2076 ///
2077 /// The core idiom we are trying to detect is:
2078 /// \code
2079 ///   entry:
2080 ///     <...>
2081 ///     %bitmask = shl i32 1, %bitpos
2082 ///     br label %loop
2083 ///
2084 ///   loop:
2085 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2086 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2087 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2088 ///     %x.next = shl i32 %x.curr, 1
2089 ///     <...>
2090 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2091 ///
2092 ///   end:
2093 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2094 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2095 ///     <...>
2096 /// \endcode
detectShiftUntilBitTestIdiom(Loop * CurLoop,Value * & BaseX,Value * & BitMask,Value * & BitPos,Value * & CurrX,Instruction * & NextX)2097 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2098                                          Value *&BitMask, Value *&BitPos,
2099                                          Value *&CurrX, Instruction *&NextX) {
2100   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2101              " Performing shift-until-bittest idiom detection.\n");
2102 
2103   // Give up if the loop has multiple blocks or multiple backedges.
2104   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2105     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2106     return false;
2107   }
2108 
2109   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2110   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2111   assert(LoopPreheaderBB && "There is always a loop preheader.");
2112 
2113   using namespace PatternMatch;
2114 
2115   // Step 1: Check if the loop backedge is in desirable form.
2116 
2117   ICmpInst::Predicate Pred;
2118   Value *CmpLHS, *CmpRHS;
2119   BasicBlock *TrueBB, *FalseBB;
2120   if (!match(LoopHeaderBB->getTerminator(),
2121              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2122                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2123     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2124     return false;
2125   }
2126 
2127   // Step 2: Check if the backedge's condition is in desirable form.
2128 
2129   auto MatchVariableBitMask = [&]() {
2130     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2131            match(CmpLHS,
2132                  m_c_And(m_Value(CurrX),
2133                          m_CombineAnd(
2134                              m_Value(BitMask),
2135                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2136                                              CurLoop))));
2137   };
2138   auto MatchConstantBitMask = [&]() {
2139     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2140            match(CmpLHS, m_And(m_Value(CurrX),
2141                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2142            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2143   };
2144   auto MatchDecomposableConstantBitMask = [&]() {
2145     APInt Mask;
2146     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2147            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2148            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2149            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2150   };
2151 
2152   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2153       !MatchDecomposableConstantBitMask()) {
2154     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2155     return false;
2156   }
2157 
2158   // Step 3: Check if the recurrence is in desirable form.
2159   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2160   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2161     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2162     return false;
2163   }
2164 
2165   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2166   NextX =
2167       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2168 
2169   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2170     // FIXME: support right-shift?
2171     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2172     return false;
2173   }
2174 
2175   // Step 4: Check if the backedge's destinations are in desirable form.
2176 
2177   assert(ICmpInst::isEquality(Pred) &&
2178          "Should only get equality predicates here.");
2179 
2180   // cmp-br is commutative, so canonicalize to a single variant.
2181   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2182     Pred = ICmpInst::getInversePredicate(Pred);
2183     std::swap(TrueBB, FalseBB);
2184   }
2185 
2186   // We expect to exit loop when comparison yields false,
2187   // so when it yields true we should branch back to loop header.
2188   if (TrueBB != LoopHeaderBB) {
2189     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2190     return false;
2191   }
2192 
2193   // Okay, idiom checks out.
2194   return true;
2195 }
2196 
2197 /// Look for the following loop:
2198 /// \code
2199 ///   entry:
2200 ///     <...>
2201 ///     %bitmask = shl i32 1, %bitpos
2202 ///     br label %loop
2203 ///
2204 ///   loop:
2205 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2206 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2207 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2208 ///     %x.next = shl i32 %x.curr, 1
2209 ///     <...>
2210 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2211 ///
2212 ///   end:
2213 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2214 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2215 ///     <...>
2216 /// \endcode
2217 ///
2218 /// And transform it into:
2219 /// \code
2220 ///   entry:
2221 ///     %bitmask = shl i32 1, %bitpos
2222 ///     %lowbitmask = add i32 %bitmask, -1
2223 ///     %mask = or i32 %lowbitmask, %bitmask
2224 ///     %x.masked = and i32 %x, %mask
2225 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2226 ///                                                         i1 true)
2227 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2228 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2229 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2230 ///     %tripcount = add i32 %backedgetakencount, 1
2231 ///     %x.curr = shl i32 %x, %backedgetakencount
2232 ///     %x.next = shl i32 %x, %tripcount
2233 ///     br label %loop
2234 ///
2235 ///   loop:
2236 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2237 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2238 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2239 ///     <...>
2240 ///     br i1 %loop.ivcheck, label %end, label %loop
2241 ///
2242 ///   end:
2243 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2244 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2245 ///     <...>
2246 /// \endcode
recognizeShiftUntilBitTest()2247 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2248   bool MadeChange = false;
2249 
2250   Value *X, *BitMask, *BitPos, *XCurr;
2251   Instruction *XNext;
2252   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2253                                     XNext)) {
2254     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2255                " shift-until-bittest idiom detection failed.\n");
2256     return MadeChange;
2257   }
2258   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2259 
2260   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2261   // but is it profitable to transform?
2262 
2263   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2264   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2265   assert(LoopPreheaderBB && "There is always a loop preheader.");
2266 
2267   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2268   assert(SuccessorBB && "There is only a single successor.");
2269 
2270   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2271   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2272 
2273   Intrinsic::ID IntrID = Intrinsic::ctlz;
2274   Type *Ty = X->getType();
2275   unsigned Bitwidth = Ty->getScalarSizeInBits();
2276 
2277   TargetTransformInfo::TargetCostKind CostKind =
2278       TargetTransformInfo::TCK_SizeAndLatency;
2279 
2280   // The rewrite is considered to be unprofitable iff and only iff the
2281   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2282   // making the loop countable, even if nothing else changes.
2283   IntrinsicCostAttributes Attrs(
2284       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2285   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2286   if (Cost > TargetTransformInfo::TCC_Basic) {
2287     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2288                " Intrinsic is too costly, not beneficial\n");
2289     return MadeChange;
2290   }
2291   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2292       TargetTransformInfo::TCC_Basic) {
2293     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2294     return MadeChange;
2295   }
2296 
2297   // Ok, transform appears worthwhile.
2298   MadeChange = true;
2299 
2300   // Step 1: Compute the loop trip count.
2301 
2302   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2303                                         BitPos->getName() + ".lowbitmask");
2304   Value *Mask =
2305       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2306   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2307   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2308       IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2309       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2310   Value *XMaskedNumActiveBits = Builder.CreateSub(
2311       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2312       XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2313       /*HasNSW=*/Bitwidth != 2);
2314   Value *XMaskedLeadingOnePos =
2315       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2316                         XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2317                         /*HasNSW=*/Bitwidth > 2);
2318 
2319   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2320       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2321       /*HasNUW=*/true, /*HasNSW=*/true);
2322   // We know loop's backedge-taken count, but what's loop's trip count?
2323   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2324   Value *LoopTripCount =
2325       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2326                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2327                         /*HasNSW=*/Bitwidth != 2);
2328 
2329   // Step 2: Compute the recurrence's final value without a loop.
2330 
2331   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2332   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2333   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2334   NewX->takeName(XCurr);
2335   if (auto *I = dyn_cast<Instruction>(NewX))
2336     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2337 
2338   Value *NewXNext;
2339   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2340   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2341   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2342   // that isn't the case, we'll need to emit an alternative, safe IR.
2343   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2344       PatternMatch::match(
2345           BitPos, PatternMatch::m_SpecificInt_ICMP(
2346                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2347                                                Ty->getScalarSizeInBits() - 1))))
2348     NewXNext = Builder.CreateShl(X, LoopTripCount);
2349   else {
2350     // Otherwise, just additionally shift by one. It's the smallest solution,
2351     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2352     // and select 0 instead.
2353     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2354   }
2355 
2356   NewXNext->takeName(XNext);
2357   if (auto *I = dyn_cast<Instruction>(NewXNext))
2358     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2359 
2360   // Step 3: Adjust the successor basic block to recieve the computed
2361   //         recurrence's final value instead of the recurrence itself.
2362 
2363   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2364   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2365 
2366   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2367 
2368   // The new canonical induction variable.
2369   Builder.SetInsertPoint(&LoopHeaderBB->front());
2370   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2371 
2372   // The induction itself.
2373   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2374   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2375   auto *IVNext =
2376       Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2377                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2378 
2379   // The loop trip count check.
2380   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2381                                        CurLoop->getName() + ".ivcheck");
2382   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2383   LoopHeaderBB->getTerminator()->eraseFromParent();
2384 
2385   // Populate the IV PHI.
2386   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2387   IV->addIncoming(IVNext, LoopHeaderBB);
2388 
2389   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2390   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2391 
2392   SE->forgetLoop(CurLoop);
2393 
2394   // Other passes will take care of actually deleting the loop if possible.
2395 
2396   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2397 
2398   ++NumShiftUntilBitTest;
2399   return MadeChange;
2400 }
2401 
2402 /// Return true if the idiom is detected in the loop.
2403 ///
2404 /// The core idiom we are trying to detect is:
2405 /// \code
2406 ///   entry:
2407 ///     <...>
2408 ///     %start = <...>
2409 ///     %extraoffset = <...>
2410 ///     <...>
2411 ///     br label %for.cond
2412 ///
2413 ///   loop:
2414 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2415 ///     %nbits = add nsw i8 %iv, %extraoffset
2416 ///     %val.shifted = lshr i8 %val, %nbits
2417 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2418 ///     %iv.next = add i8 %iv, 1
2419 ///     <...>
2420 ///     br i1 %val.shifted.iszero, label %end, label %loop
2421 ///
2422 ///   end:
2423 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2424 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2425 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2426 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2427 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2428 ///     <...>
2429 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,ScalarEvolution * SE,Instruction * & ValShiftedIsZero,Instruction * & IV,Value * & Start,Value * & Val,const SCEV * & ExtraOffsetExpr,bool & InvertedCond)2430 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2431                                       Instruction *&ValShiftedIsZero,
2432                                       Instruction *&IV, Value *&Start,
2433                                       Value *&Val, const SCEV *&ExtraOffsetExpr,
2434                                       bool &InvertedCond) {
2435   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2436              " Performing shift-until-zero idiom detection.\n");
2437 
2438   // Give up if the loop has multiple blocks or multiple backedges.
2439   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2440     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2441     return false;
2442   }
2443 
2444   Instruction *ValShifted, *NBits, *IVNext;
2445   Value *ExtraOffset;
2446 
2447   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2448   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2449   assert(LoopPreheaderBB && "There is always a loop preheader.");
2450 
2451   using namespace PatternMatch;
2452 
2453   // Step 1: Check if the loop backedge, condition is in desirable form.
2454 
2455   ICmpInst::Predicate Pred;
2456   BasicBlock *TrueBB, *FalseBB;
2457   if (!match(LoopHeaderBB->getTerminator(),
2458              m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2459                   m_BasicBlock(FalseBB))) ||
2460       !match(ValShiftedIsZero,
2461              m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2462       !ICmpInst::isEquality(Pred)) {
2463     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2464     return false;
2465   }
2466 
2467   // Step 2: Check if the comparison's operand is in desirable form.
2468 
2469   if (!match(ValShifted, m_LShr(m_Value(Val), m_Instruction(NBits)))) {
2470     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2471     return false;
2472   }
2473 
2474   // Step 3: Check if the shift amount is in desirable form.
2475 
2476   if (match(NBits, m_c_Add(m_Instruction(IV),
2477                            m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2478       (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2479     ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2480   else if (match(NBits,
2481                  m_Sub(m_Instruction(IV),
2482                        m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2483            NBits->hasNoSignedWrap())
2484     ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2485   else {
2486     IV = NBits;
2487     ExtraOffsetExpr = SE->getZero(NBits->getType());
2488   }
2489 
2490   // Step 4: Check if the recurrence is in desirable form.
2491   auto *IVPN = dyn_cast<PHINode>(IV);
2492   if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2493     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2494     return false;
2495   }
2496 
2497   Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2498   IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2499 
2500   if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2501     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2502     return false;
2503   }
2504 
2505   // Step 4: Check if the backedge's destinations are in desirable form.
2506 
2507   assert(ICmpInst::isEquality(Pred) &&
2508          "Should only get equality predicates here.");
2509 
2510   // cmp-br is commutative, so canonicalize to a single variant.
2511   InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2512   if (InvertedCond) {
2513     Pred = ICmpInst::getInversePredicate(Pred);
2514     std::swap(TrueBB, FalseBB);
2515   }
2516 
2517   // We expect to exit loop when comparison yields true,
2518   // so when it yields false we should branch back to loop header.
2519   if (FalseBB != LoopHeaderBB) {
2520     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2521     return false;
2522   }
2523 
2524   // Okay, idiom checks out.
2525   return true;
2526 }
2527 
2528 /// Look for the following loop:
2529 /// \code
2530 ///   entry:
2531 ///     <...>
2532 ///     %start = <...>
2533 ///     %extraoffset = <...>
2534 ///     <...>
2535 ///     br label %for.cond
2536 ///
2537 ///   loop:
2538 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2539 ///     %nbits = add nsw i8 %iv, %extraoffset
2540 ///     %val.shifted = lshr i8 %val, %nbits
2541 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2542 ///     %iv.next = add i8 %iv, 1
2543 ///     <...>
2544 ///     br i1 %val.shifted.iszero, label %end, label %loop
2545 ///
2546 ///   end:
2547 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2548 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2549 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2550 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2551 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2552 ///     <...>
2553 /// \endcode
2554 ///
2555 /// And transform it into:
2556 /// \code
2557 ///   entry:
2558 ///     <...>
2559 ///     %start = <...>
2560 ///     %extraoffset = <...>
2561 ///     <...>
2562 ///     %val.numleadingzeros = call i8 @llvm.ctlz.i8(i8 %val, i1 0)
2563 ///     %val.numactivebits = sub i8 8, %val.numleadingzeros
2564 ///     %extraoffset.neg = sub i8 0, %extraoffset
2565 ///     %tmp = add i8 %val.numactivebits, %extraoffset.neg
2566 ///     %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2567 ///     %loop.tripcount = sub i8 %iv.final, %start
2568 ///     br label %loop
2569 ///
2570 ///   loop:
2571 ///     %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2572 ///     %loop.iv.next = add i8 %loop.iv, 1
2573 ///     %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2574 ///     %iv = add i8 %loop.iv, %start
2575 ///     <...>
2576 ///     br i1 %loop.ivcheck, label %end, label %loop
2577 ///
2578 ///   end:
2579 ///     %iv.res = phi i8 [ %iv.final, %loop ] <...>
2580 ///     <...>
2581 /// \endcode
recognizeShiftUntilZero()2582 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2583   bool MadeChange = false;
2584 
2585   Instruction *ValShiftedIsZero, *IV;
2586   Value *Start, *Val;
2587   const SCEV *ExtraOffsetExpr;
2588   bool InvertedCond;
2589   if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IV, Start, Val,
2590                                  ExtraOffsetExpr, InvertedCond)) {
2591     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2592                " shift-until-zero idiom detection failed.\n");
2593     return MadeChange;
2594   }
2595   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2596 
2597   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2598   // but is it profitable to transform?
2599 
2600   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2601   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2602   assert(LoopPreheaderBB && "There is always a loop preheader.");
2603 
2604   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2605   assert(SuccessorBB && "There is only a single successor.");
2606 
2607   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2608   Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2609 
2610   Intrinsic::ID IntrID = Intrinsic::ctlz;
2611   Type *Ty = Val->getType();
2612   unsigned Bitwidth = Ty->getScalarSizeInBits();
2613 
2614   TargetTransformInfo::TargetCostKind CostKind =
2615       TargetTransformInfo::TCK_SizeAndLatency;
2616 
2617   // The rewrite is considered to be unprofitable iff and only iff the
2618   // intrinsic we'll use are not cheap. Note that we are okay with *just*
2619   // making the loop countable, even if nothing else changes.
2620   IntrinsicCostAttributes Attrs(
2621       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()});
2622   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2623   if (Cost > TargetTransformInfo::TCC_Basic) {
2624     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2625                " Intrinsic is too costly, not beneficial\n");
2626     return MadeChange;
2627   }
2628 
2629   // Ok, transform appears worthwhile.
2630   MadeChange = true;
2631 
2632   bool OffsetIsZero = false;
2633   if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2634     OffsetIsZero = ExtraOffsetExprC->isZero();
2635 
2636   // Step 1: Compute the loop's final IV value / trip count.
2637 
2638   CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2639       IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()},
2640       /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2641   Value *ValNumActiveBits = Builder.CreateSub(
2642       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2643       Val->getName() + ".numactivebits", /*HasNUW=*/true,
2644       /*HasNSW=*/Bitwidth != 2);
2645 
2646   SCEVExpander Expander(*SE, *DL, "loop-idiom");
2647   Expander.setInsertPoint(&*Builder.GetInsertPoint());
2648   Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2649 
2650   Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2651       ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2652       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2653   Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2654                                            {ValNumActiveBitsOffset, Start},
2655                                            /*FMFSource=*/nullptr, "iv.final");
2656 
2657   auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2658       IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2659       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2660   // FIXME: or when the offset was `add nuw`
2661 
2662   // We know loop's backedge-taken count, but what's loop's trip count?
2663   Value *LoopTripCount =
2664       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2665                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2666                         /*HasNSW=*/Bitwidth != 2);
2667 
2668   // Step 2: Adjust the successor basic block to recieve the original
2669   //         induction variable's final value instead of the orig. IV itself.
2670 
2671   IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2672 
2673   // Step 3: Rewrite the loop into a countable form, with canonical IV.
2674 
2675   // The new canonical induction variable.
2676   Builder.SetInsertPoint(&LoopHeaderBB->front());
2677   auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2678 
2679   // The induction itself.
2680   Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI());
2681   auto *CIVNext =
2682       Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2683                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2684 
2685   // The loop trip count check.
2686   auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2687                                         CurLoop->getName() + ".ivcheck");
2688   auto *NewIVCheck = CIVCheck;
2689   if (InvertedCond) {
2690     NewIVCheck = Builder.CreateNot(CIVCheck);
2691     NewIVCheck->takeName(ValShiftedIsZero);
2692   }
2693 
2694   // The original IV, but rebased to be an offset to the CIV.
2695   auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2696                                      /*HasNSW=*/true); // FIXME: what about NUW?
2697   IVDePHId->takeName(IV);
2698 
2699   // The loop terminator.
2700   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2701   Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2702   LoopHeaderBB->getTerminator()->eraseFromParent();
2703 
2704   // Populate the IV PHI.
2705   CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2706   CIV->addIncoming(CIVNext, LoopHeaderBB);
2707 
2708   // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2709   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2710 
2711   SE->forgetLoop(CurLoop);
2712 
2713   // Step 5: Try to cleanup the loop's body somewhat.
2714   IV->replaceAllUsesWith(IVDePHId);
2715   IV->eraseFromParent();
2716 
2717   ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2718   ValShiftedIsZero->eraseFromParent();
2719 
2720   // Other passes will take care of actually deleting the loop if possible.
2721 
2722   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2723 
2724   ++NumShiftUntilZero;
2725   return MadeChange;
2726 }
2727