xref: /netbsd-src/sys/arch/arm/vfp/vfp_init.c (revision 040f3e2bc695bf105f2ec65860ff68212c7f8e71)
1 /*      $NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $ */
2 
3 /*
4  * Copyright (c) 2008 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_cputypes.h"
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.78 2022/08/20 11:34:08 riastradh Exp $");
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/systm.h>
40 #include <sys/device.h>
41 #include <sys/kernel.h>
42 #include <sys/kthread.h>
43 #include <sys/proc.h>
44 #include <sys/cpu.h>
45 
46 #include <arm/locore.h>
47 #include <arm/pcb.h>
48 #include <arm/undefined.h>
49 #include <arm/vfpreg.h>
50 #include <arm/mcontext.h>
51 #include <arm/fpu.h>
52 
53 #include <uvm/uvm_extern.h>		/* for pmap.h */
54 
55 #include <crypto/aes/aes_impl.h>
56 #include <crypto/aes/arch/arm/aes_neon.h>
57 #include <crypto/chacha/arch/arm/chacha_neon.h>
58 #include <crypto/chacha/chacha_impl.h>
59 
60 #ifdef FPU_VFP
61 
62 #ifdef CPU_CORTEX
63 #define SETFPU __asm(".fpu\tvfpv4")
64 #else
65 #define SETFPU __asm(".fpu\tvfp")
66 #endif
67 SETFPU;
68 
69 /* FLDMD <X>, {d0-d15} */
70 static inline void
load_vfpregs_lo(const uint64_t * p)71 load_vfpregs_lo(const uint64_t *p)
72 {
73 	SETFPU;
74 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
75 }
76 
77 /* FSTMD <X>, {d0-d15} */
78 static inline void
save_vfpregs_lo(uint64_t * p)79 save_vfpregs_lo(uint64_t *p)
80 {
81 	SETFPU;
82 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
83 }
84 
85 #ifdef CPU_CORTEX
86 /* FLDMD <X>, {d16-d31} */
87 static inline void
load_vfpregs_hi(const uint64_t * p)88 load_vfpregs_hi(const uint64_t *p)
89 {
90 	SETFPU;
91 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
92 }
93 
94 /* FLDMD <X>, {d16-d31} */
95 static inline void
save_vfpregs_hi(uint64_t * p)96 save_vfpregs_hi(uint64_t *p)
97 {
98 	SETFPU;
99 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
100 }
101 #endif
102 
103 static inline void
load_vfpregs(const struct vfpreg * fregs)104 load_vfpregs(const struct vfpreg *fregs)
105 {
106 	load_vfpregs_lo(fregs->vfp_regs);
107 #ifdef CPU_CORTEX
108 #ifdef CPU_ARM11
109 	switch (curcpu()->ci_vfp_id) {
110 	case FPU_VFP_CORTEXA5:
111 	case FPU_VFP_CORTEXA7:
112 	case FPU_VFP_CORTEXA8:
113 	case FPU_VFP_CORTEXA9:
114 	case FPU_VFP_CORTEXA15:
115 	case FPU_VFP_CORTEXA15_QEMU:
116 	case FPU_VFP_CORTEXA53:
117 	case FPU_VFP_CORTEXA57:
118 #endif
119 		load_vfpregs_hi(fregs->vfp_regs);
120 #ifdef CPU_ARM11
121 		break;
122 	}
123 #endif
124 #endif
125 }
126 
127 static inline void
save_vfpregs(struct vfpreg * fregs)128 save_vfpregs(struct vfpreg *fregs)
129 {
130 	save_vfpregs_lo(fregs->vfp_regs);
131 #ifdef CPU_CORTEX
132 #ifdef CPU_ARM11
133 	switch (curcpu()->ci_vfp_id) {
134 	case FPU_VFP_CORTEXA5:
135 	case FPU_VFP_CORTEXA7:
136 	case FPU_VFP_CORTEXA8:
137 	case FPU_VFP_CORTEXA9:
138 	case FPU_VFP_CORTEXA15:
139 	case FPU_VFP_CORTEXA15_QEMU:
140 	case FPU_VFP_CORTEXA53:
141 	case FPU_VFP_CORTEXA57:
142 #endif
143 		save_vfpregs_hi(fregs->vfp_regs);
144 #ifdef CPU_ARM11
145 		break;
146 	}
147 #endif
148 #endif
149 }
150 
151 /* The real handler for VFP bounces.  */
152 static int vfp_handler(u_int, u_int, trapframe_t *, int);
153 #ifdef CPU_CORTEX
154 static int neon_handler(u_int, u_int, trapframe_t *, int);
155 #endif
156 
157 static void vfp_state_load(lwp_t *, u_int);
158 static void vfp_state_save(lwp_t *);
159 static void vfp_state_release(lwp_t *);
160 
161 const pcu_ops_t arm_vfp_ops = {
162 	.pcu_id = PCU_FPU,
163 	.pcu_state_save = vfp_state_save,
164 	.pcu_state_load = vfp_state_load,
165 	.pcu_state_release = vfp_state_release,
166 };
167 
168 /* determine what bits can be changed */
169 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
170 /* default to run fast */
171 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
172 
173 #else
174 /* determine what bits can be changed */
175 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
176 #endif /* FPU_VFP */
177 
178 static int
vfp_fpscr_handler(u_int address,u_int insn,trapframe_t * frame,int fault_code)179 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
180 {
181 	struct lwp * const l = curlwp;
182 	const u_int regno = (insn >> 12) & 0xf;
183 	/*
184 	 * Only match move to/from the FPSCR register and we
185 	 * can't be using the SP,LR,PC as a source.
186 	 */
187 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
188 		return 1;
189 
190 	struct pcb * const pcb = lwp_getpcb(l);
191 
192 #ifdef FPU_VFP
193 	/*
194 	 * If FPU is valid somewhere, let's just reenable VFP and
195 	 * retry the instruction (only safe thing to do since the
196 	 * pcb has a stale copy).
197 	 */
198 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
199 		return 1;
200 
201 	if (__predict_false(!vfp_used_p(l))) {
202 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
203 	}
204 #endif
205 
206 	/*
207 	 * We now know the pcb has the saved copy.
208 	 */
209 	register_t * const regp = &frame->tf_r0 + regno;
210 	if (insn & 0x00100000) {
211 		*regp = pcb->pcb_vfp.vfp_fpscr;
212 	} else {
213 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
214 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
215 	}
216 
217 	curcpu()->ci_vfp_evs[0].ev_count++;
218 
219 	frame->tf_pc += INSN_SIZE;
220 	return 0;
221 }
222 
223 #ifndef FPU_VFP
224 void
vfp_detect(struct cpu_info * ci)225 vfp_detect(struct cpu_info *ci)
226 {
227 	ci->ci_vfp_id = 0;
228 	return;
229 }
230 /*
231  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
232  * instructions.
233  */
234 void
vfp_attach(struct cpu_info * ci)235 vfp_attach(struct cpu_info *ci)
236 {
237 	if (CPU_IS_PRIMARY(ci)) {
238 		replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
239 	}
240 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
241 	    ci->ci_cpuname, "vfp fpscr traps");
242 }
243 
244 #else
245 void
vfp_detect(struct cpu_info * ci)246 vfp_detect(struct cpu_info *ci)
247 {
248 
249 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
250 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
251 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
252 #if 0
253 		const uint32_t nsacr = armreg_nsacr_read();
254 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
255 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
256 			ci->ci_fp_id = 0;
257 			return;
258 		}
259 #endif
260 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
261 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
262 
263 		/*
264 		 * We first need to enable access to the coprocessors.
265 		 */
266 		uint32_t cpacr = armreg_cpacr_read();
267 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
268 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
269 		armreg_cpacr_write(cpacr);
270 
271 		isb();
272 
273 		/*
274 		 * If we could enable them, then they exist.
275 		 */
276 		cpacr = armreg_cpacr_read();
277 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
278 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
279 		if (!vfp_p) {
280 			ci->ci_vfp_id = 0;
281 			return;
282 		}
283 	}
284 
285 	/* borrow the ci_vfd_id field for VFP detection */
286 	ci->ci_vfp_id = -1;
287 
288 	const uint32_t fpsid = armreg_fpsid_read();
289 	if (ci->ci_vfp_id == 0) {
290 		return;
291 	}
292 
293 	ci->ci_vfp_id = fpsid;
294 
295 	ci->ci_mvfr[0] = armreg_mvfr0_read();
296 	ci->ci_mvfr[1] = armreg_mvfr1_read();
297 
298 }
299 
300 void
vfp_attach(struct cpu_info * ci)301 vfp_attach(struct cpu_info *ci)
302 {
303 	const char *model = NULL;
304 
305 	switch (ci->ci_vfp_id & ~ VFP_FPSID_REV_MSK) {
306 	case FPU_VFP10_ARM10E:
307 		model = "VFP10 R1";
308 		break;
309 	case FPU_VFP11_ARM11:
310 		model = "VFP11";
311 		break;
312 	case FPU_VFP_MV88SV58XX:
313 		model = "VFP3";
314 		break;
315 	case FPU_VFP_CORTEXA5:
316 	case FPU_VFP_CORTEXA7:
317 	case FPU_VFP_CORTEXA8:
318 	case FPU_VFP_CORTEXA9:
319 	case FPU_VFP_CORTEXA12:
320 	case FPU_VFP_CORTEXA15:
321 	case FPU_VFP_CORTEXA15_QEMU:
322 	case FPU_VFP_CORTEXA17:
323 	case FPU_VFP_CORTEXA53:
324 	case FPU_VFP_CORTEXA57:
325 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
326 			model = "VFP 4.0+";
327 		} else {
328 			model = "NEON MPE (VFP 3.0+)";
329 			cpu_neon_present = 1;
330 		}
331 		break;
332 	default:
333 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
334 		    ci->ci_vfp_id);
335 		if (CPU_IS_PRIMARY(ci))
336 			replace_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
337 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
338 		    |VFP_FPSCR_RMODE;
339 		vfp_fpscr_default = 0;
340 		return;
341 	}
342 
343 	cpu_fpu_present = 1;
344 
345 	const uint32_t f0 = ci->ci_mvfr[0];
346 	const uint32_t f1 = ci->ci_mvfr[1];
347 	aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
348 	    device_unit(ci->ci_dev),
349 	    device_xname(ci->ci_dev),
350 	    model,
351 	    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
352 	    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
353 	    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
354 	    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
355 
356 	aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
357 	    device_unit(ci->ci_dev), f0, f1);
358 
359 	if (CPU_IS_PRIMARY(ci)) {
360 		cpu_media_and_vfp_features[0] = f0;
361 		cpu_media_and_vfp_features[1] = f1;
362 
363 		if (f0 & ARM_MVFR0_ROUNDING_MASK) {
364 			vfp_fpscr_changable |= VFP_FPSCR_RMODE;
365 		}
366 		if (f1 & ARM_MVFR0_EXCEPT_MASK) {
367 			vfp_fpscr_changable |= VFP_FPSCR_ESUM;
368 		}
369 		// If hardware supports propagation of NaNs, select it.
370 		if (f1 & ARM_MVFR1_D_NAN_MASK) {
371 			vfp_fpscr_default &= ~VFP_FPSCR_DN;
372 			vfp_fpscr_changable |= VFP_FPSCR_DN;
373 		}
374 		// If hardware supports denormalized numbers, use it.
375 		if (f1 & ARM_MVFR1_FTZ_MASK) {
376 			vfp_fpscr_default &= ~VFP_FPSCR_FZ;
377 			vfp_fpscr_changable |= VFP_FPSCR_FZ;
378 		}
379 
380 		replace_coproc_handler(VFP_COPROC, vfp_handler);
381 		install_coproc_handler(VFP_COPROC2, vfp_handler);
382 #ifdef CPU_CORTEX
383 		if (cpu_neon_present) {
384 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
385 			    neon_handler);
386 			aes_md_init(&aes_neon_impl);
387 			chacha_md_init(&chacha_neon_impl);
388 		}
389 #endif
390 	}
391 
392 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
393 	    ci->ci_cpuname, "vfp coproc use");
394 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
395 	    ci->ci_cpuname, "vfp coproc re-use");
396 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
397 	    ci->ci_cpuname, "vfp coproc fault");
398 }
399 
400 /* The real handler for VFP bounces.  */
401 static int
vfp_handler(u_int address,u_int insn,trapframe_t * frame,int fault_code)402 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
403 {
404 	struct cpu_info * const ci = curcpu();
405 	uint32_t fpexc;
406 
407 	/* This shouldn't ever happen.  */
408 	if (fault_code != FAULT_USER &&
409 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
410 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
411 
412 	if (ci->ci_vfp_id == 0) {
413 		/* No VFP detected, just fault.  */
414 		return 1;
415 	}
416 
417 	/*
418 	 * If we already own the FPU and it's enabled (and no exception), raise
419 	 * SIGILL.  If there is an exception, raise SIGFPE.
420 	 */
421 	if (curlwp->l_pcu_cpu[PCU_FPU] == ci) {
422 		KASSERT(ci->ci_pcu_curlwp[PCU_FPU] == curlwp);
423 
424 		fpexc = armreg_fpexc_read();
425 		if (fpexc & VFP_FPEXC_EN) {
426 			if ((fpexc & VFP_FPEXC_EX) == 0) {
427 				return 1;	/* SIGILL */
428 			} else {
429 				goto fpe;	/* SIGFPE; skip pcu_load(9) */
430 			}
431 		}
432 	}
433 
434 	/*
435 	 * Make sure we own the FP.
436 	 */
437 	pcu_load(&arm_vfp_ops);
438 
439 	fpexc = armreg_fpexc_read();
440 	if (fpexc & VFP_FPEXC_EX) {
441 		ksiginfo_t ksi;
442 		KASSERT(fpexc & VFP_FPEXC_EN);
443 
444 fpe:
445 		curcpu()->ci_vfp_evs[2].ev_count++;
446 
447 		/*
448 		 * Need the clear the exception condition so any signal
449 		 * and future use can proceed.
450 		 */
451 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
452 
453 		pcu_save(&arm_vfp_ops, curlwp);
454 
455 		/*
456 		 * XXX Need to emulate bounce instructions here to get correct
457 		 * XXX exception codes, etc.
458 		 */
459 		KSI_INIT_TRAP(&ksi);
460 		ksi.ksi_signo = SIGFPE;
461 		if (fpexc & VFP_FPEXC_IXF)
462 			ksi.ksi_code = FPE_FLTRES;
463 		else if (fpexc & VFP_FPEXC_UFF)
464 			ksi.ksi_code = FPE_FLTUND;
465 		else if (fpexc & VFP_FPEXC_OFF)
466 			ksi.ksi_code = FPE_FLTOVF;
467 		else if (fpexc & VFP_FPEXC_DZF)
468 			ksi.ksi_code = FPE_FLTDIV;
469 		else if (fpexc & VFP_FPEXC_IOF)
470 			ksi.ksi_code = FPE_FLTINV;
471 		ksi.ksi_addr = (uint32_t *)address;
472 		ksi.ksi_trap = 0;
473 		trapsignal(curlwp, &ksi);
474 		return 0;
475 	}
476 
477 	/* Need to restart the faulted instruction.  */
478 //	frame->tf_pc -= INSN_SIZE;
479 	return 0;
480 }
481 
482 #ifdef CPU_CORTEX
483 /* The real handler for NEON bounces.  */
484 static int
neon_handler(u_int address,u_int insn,trapframe_t * frame,int fault_code)485 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
486 {
487 	struct cpu_info * const ci = curcpu();
488 
489 	if (ci->ci_vfp_id == 0)
490 		/* No VFP detected, just fault.  */
491 		return 1;
492 
493 	if ((insn & 0xfe000000) != 0xf2000000
494 	    && (insn & 0xfe000000) != 0xf4000000)
495 		/* Not NEON instruction, just fault.  */
496 		return 1;
497 
498 	/* This shouldn't ever happen.  */
499 	if (fault_code != FAULT_USER &&
500 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
501 		panic("NEON fault in non-user mode");
502 
503 	/* if we already own the FPU and it's enabled, raise SIGILL */
504 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
505 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
506 		return 1;
507 
508 	pcu_load(&arm_vfp_ops);
509 
510 	/* Need to restart the faulted instruction.  */
511 //	frame->tf_pc -= INSN_SIZE;
512 	return 0;
513 }
514 #endif
515 
516 static void
vfp_state_load(lwp_t * l,u_int flags)517 vfp_state_load(lwp_t *l, u_int flags)
518 {
519 	struct pcb * const pcb = lwp_getpcb(l);
520 	struct vfpreg * const fregs = &pcb->pcb_vfp;
521 
522 	/*
523 	 * Instrument VFP usage -- if a process has not previously
524 	 * used the VFP, mark it as having used VFP for the first time,
525 	 * and count this event.
526 	 *
527 	 * If a process has used the VFP, count a "used VFP, and took
528 	 * a trap to use it again" event.
529 	 */
530 	if (__predict_false((flags & PCU_VALID) == 0)) {
531 		curcpu()->ci_vfp_evs[0].ev_count++;
532 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
533 	} else {
534 		curcpu()->ci_vfp_evs[1].ev_count++;
535 	}
536 
537 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
538 	/*
539 	 * If the VFP is already enabled we must be bouncing an instruction.
540 	 */
541 	if (flags & PCU_REENABLE) {
542 		uint32_t fpexc = armreg_fpexc_read();
543 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
544 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
545 		return;
546 	}
547 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
548 
549 	/*
550 	 * Load and Enable the VFP (so that we can write the registers).
551 	 */
552 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
553 	armreg_fpexc_write(fregs->vfp_fpexc);
554 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
555 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
556 
557 	load_vfpregs(fregs);
558 	armreg_fpscr_write(fregs->vfp_fpscr);
559 
560 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
561 		/* Need to restore the exception handling state.  */
562 		armreg_fpinst_write(fregs->vfp_fpinst);
563 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
564 			armreg_fpinst2_write(fregs->vfp_fpinst2);
565 	}
566 }
567 
568 void
vfp_state_save(lwp_t * l)569 vfp_state_save(lwp_t *l)
570 {
571 	struct pcb * const pcb = lwp_getpcb(l);
572 	struct vfpreg * const fregs = &pcb->pcb_vfp;
573 	uint32_t fpexc = armreg_fpexc_read();
574 
575 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
576 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
577 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
578 	/*
579 	 * Enable the VFP (so we can read the registers).
580 	 * Make sure the exception bit is cleared so that we can
581 	 * safely dump the registers.
582 	 */
583 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
584 
585 	fregs->vfp_fpexc = fpexc;
586 	if (fpexc & VFP_FPEXC_EX) {
587 		/* Need to save the exception handling state */
588 		fregs->vfp_fpinst = armreg_fpinst_read();
589 		if (fpexc & VFP_FPEXC_FP2V)
590 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
591 	}
592 	fregs->vfp_fpscr = armreg_fpscr_read();
593 	save_vfpregs(fregs);
594 
595 	/* Disable the VFP.  */
596 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
597 }
598 
599 void
vfp_state_release(lwp_t * l)600 vfp_state_release(lwp_t *l)
601 {
602 	struct pcb * const pcb = lwp_getpcb(l);
603 
604 	/*
605 	 * Now mark the VFP as disabled (and our state
606 	 * has been already saved or is being discarded).
607 	 */
608 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
609 
610 	/*
611 	 * Turn off the FPU so the next time a VFP instruction is issued
612 	 * an exception happens.  We don't know if this LWP's state was
613 	 * loaded but if we turned off the FPU for some other LWP, when
614 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
615 	 * is still set so it just restore fpexc and return since its
616 	 * contents are still sitting in the VFP.
617 	 */
618 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
619 }
620 
621 void
vfp_savecontext(lwp_t * l)622 vfp_savecontext(lwp_t *l)
623 {
624 	pcu_save(&arm_vfp_ops, l);
625 }
626 
627 void
vfp_discardcontext(lwp_t * l,bool used_p)628 vfp_discardcontext(lwp_t *l, bool used_p)
629 {
630 	pcu_discard(&arm_vfp_ops, l, used_p);
631 }
632 
633 bool
vfp_used_p(const lwp_t * l)634 vfp_used_p(const lwp_t *l)
635 {
636 	return pcu_valid_p(&arm_vfp_ops, l);
637 }
638 
639 void
vfp_getcontext(struct lwp * l,mcontext_t * mcp,int * flagsp)640 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
641 {
642 	if (vfp_used_p(l)) {
643 		const struct pcb * const pcb = lwp_getpcb(l);
644 
645 		pcu_save(&arm_vfp_ops, l);
646 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
647 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
648 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
649 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
650 	}
651 }
652 
653 void
vfp_setcontext(struct lwp * l,const mcontext_t * mcp)654 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
655 {
656 	struct pcb * const pcb = lwp_getpcb(l);
657 
658 	pcu_discard(&arm_vfp_ops, l, true);
659 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
660 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
661 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
662 }
663 
664 /*
665  * True if this is a system thread with its own private FPU state.
666  */
667 static inline bool
lwp_system_fpu_p(struct lwp * l)668 lwp_system_fpu_p(struct lwp *l)
669 {
670 
671 	return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
672 	    (LW_SYSTEM|LW_SYSTEM_FPU);
673 }
674 
675 static const struct vfpreg zero_vfpreg;
676 
677 void
fpu_kern_enter(void)678 fpu_kern_enter(void)
679 {
680 	struct cpu_info *ci;
681 	uint32_t fpexc;
682 	int s;
683 
684 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
685 		KASSERT(!cpu_softintr_p());
686 		return;
687 	}
688 
689 	/*
690 	 * Block interrupts up to IPL_VM.  We must block preemption
691 	 * since -- if this is a user thread -- there is nowhere to
692 	 * save the kernel fpu state, and if we want this to be usable
693 	 * in interrupts, we can't let interrupts interfere with the
694 	 * fpu state in use since there's nowhere for them to save it.
695 	 */
696 	s = splvm();
697 	ci = curcpu();
698 #if 0
699 	/*
700 	 * Can't assert this because if the caller holds a spin lock at
701 	 * IPL_VM, and previously held and released a spin lock at
702 	 * higher IPL, the IPL remains raised above IPL_VM.
703 	 */
704 	KASSERTMSG(ci->ci_cpl <= IPL_VM || cold, "cpl=%d", ci->ci_cpl);
705 #endif
706 	KASSERT(ci->ci_kfpu_spl == -1);
707 	ci->ci_kfpu_spl = s;
708 
709 	/* Save any fpu state on the current CPU.  */
710 	pcu_save_all_on_cpu();
711 
712 	/* Enable the fpu.  */
713 	fpexc = armreg_fpexc_read();
714 	fpexc |= VFP_FPEXC_EN;
715 	fpexc &= ~VFP_FPEXC_EX;
716 	armreg_fpexc_write(fpexc);
717 }
718 
719 void
fpu_kern_leave(void)720 fpu_kern_leave(void)
721 {
722 	struct cpu_info *ci = curcpu();
723 	int s;
724 	uint32_t fpexc;
725 
726 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
727 		KASSERT(!cpu_softintr_p());
728 		return;
729 	}
730 
731 #if 0
732 	/*
733 	 * Can't assert this because if the caller holds a spin lock at
734 	 * IPL_VM, and previously held and released a spin lock at
735 	 * higher IPL, the IPL remains raised above IPL_VM.
736 	 */
737 	KASSERT(ci->ci_cpl == IPL_VM || cold);
738 #endif
739 	KASSERT(ci->ci_kfpu_spl != -1);
740 
741 	/*
742 	 * Zero the fpu registers; otherwise we might leak secrets
743 	 * through Spectre-class attacks to userland, even if there are
744 	 * no bugs in fpu state management.
745 	 */
746 	load_vfpregs(&zero_vfpreg);
747 
748 	/*
749 	 * Disable the fpu so that the kernel can't accidentally use
750 	 * it again.
751 	 */
752 	fpexc = armreg_fpexc_read();
753 	fpexc &= ~VFP_FPEXC_EN;
754 	armreg_fpexc_write(fpexc);
755 
756 	/* Restore interrupts.  */
757 	s = ci->ci_kfpu_spl;
758 	ci->ci_kfpu_spl = -1;
759 	splx(s);
760 }
761 
762 void
kthread_fpu_enter_md(void)763 kthread_fpu_enter_md(void)
764 {
765 
766 	pcu_load(&arm_vfp_ops);
767 }
768 
769 void
kthread_fpu_exit_md(void)770 kthread_fpu_exit_md(void)
771 {
772 
773 	/* XXX Should vfp_state_release zero the registers itself?  */
774 	load_vfpregs(&zero_vfpreg);
775 	vfp_discardcontext(curlwp, 0);
776 }
777 
778 #endif /* FPU_VFP */
779