xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/txg.c (revision ba2539a9805a0544ff82c0003cc02fe1eee5603d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Portions Copyright 2011 Martin Matuska <mm@FreeBSD.org>
24  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/callb.h>
34 
35 /*
36  * ZFS Transaction Groups
37  * ----------------------
38  *
39  * ZFS transaction groups are, as the name implies, groups of transactions
40  * that act on persistent state. ZFS asserts consistency at the granularity of
41  * these transaction groups. Each successive transaction group (txg) is
42  * assigned a 64-bit consecutive identifier. There are three active
43  * transaction group states: open, quiescing, or syncing. At any given time,
44  * there may be an active txg associated with each state; each active txg may
45  * either be processing, or blocked waiting to enter the next state. There may
46  * be up to three active txgs, and there is always a txg in the open state
47  * (though it may be blocked waiting to enter the quiescing state). In broad
48  * strokes, transactions -- operations that change in-memory structures -- are
49  * accepted into the txg in the open state, and are completed while the txg is
50  * in the open or quiescing states. The accumulated changes are written to
51  * disk in the syncing state.
52  *
53  * Open
54  *
55  * When a new txg becomes active, it first enters the open state. New
56  * transactions -- updates to in-memory structures -- are assigned to the
57  * currently open txg. There is always a txg in the open state so that ZFS can
58  * accept new changes (though the txg may refuse new changes if it has hit
59  * some limit). ZFS advances the open txg to the next state for a variety of
60  * reasons such as it hitting a time or size threshold, or the execution of an
61  * administrative action that must be completed in the syncing state.
62  *
63  * Quiescing
64  *
65  * After a txg exits the open state, it enters the quiescing state. The
66  * quiescing state is intended to provide a buffer between accepting new
67  * transactions in the open state and writing them out to stable storage in
68  * the syncing state. While quiescing, transactions can continue their
69  * operation without delaying either of the other states. Typically, a txg is
70  * in the quiescing state very briefly since the operations are bounded by
71  * software latencies rather than, say, slower I/O latencies. After all
72  * transactions complete, the txg is ready to enter the next state.
73  *
74  * Syncing
75  *
76  * In the syncing state, the in-memory state built up during the open and (to
77  * a lesser degree) the quiescing states is written to stable storage. The
78  * process of writing out modified data can, in turn modify more data. For
79  * example when we write new blocks, we need to allocate space for them; those
80  * allocations modify metadata (space maps)... which themselves must be
81  * written to stable storage. During the sync state, ZFS iterates, writing out
82  * data until it converges and all in-memory changes have been written out.
83  * The first such pass is the largest as it encompasses all the modified user
84  * data (as opposed to filesystem metadata). Subsequent passes typically have
85  * far less data to write as they consist exclusively of filesystem metadata.
86  *
87  * To ensure convergence, after a certain number of passes ZFS begins
88  * overwriting locations on stable storage that had been allocated earlier in
89  * the syncing state (and subsequently freed). ZFS usually allocates new
90  * blocks to optimize for large, continuous, writes. For the syncing state to
91  * converge however it must complete a pass where no new blocks are allocated
92  * since each allocation requires a modification of persistent metadata.
93  * Further, to hasten convergence, after a prescribed number of passes, ZFS
94  * also defers frees, and stops compressing.
95  *
96  * In addition to writing out user data, we must also execute synctasks during
97  * the syncing context. A synctask is the mechanism by which some
98  * administrative activities work such as creating and destroying snapshots or
99  * datasets. Note that when a synctask is initiated it enters the open txg,
100  * and ZFS then pushes that txg as quickly as possible to completion of the
101  * syncing state in order to reduce the latency of the administrative
102  * activity. To complete the syncing state, ZFS writes out a new uberblock,
103  * the root of the tree of blocks that comprise all state stored on the ZFS
104  * pool. Finally, if there is a quiesced txg waiting, we signal that it can
105  * now transition to the syncing state.
106  */
107 
108 static void txg_sync_thread(void *arg);
109 static void txg_quiesce_thread(void *arg);
110 
111 int zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */
112 
113 SYSCTL_DECL(_vfs_zfs);
114 SYSCTL_NODE(_vfs_zfs, OID_AUTO, txg, CTLFLAG_RW, 0, "ZFS TXG");
115 SYSCTL_INT(_vfs_zfs_txg, OID_AUTO, timeout, CTLFLAG_RWTUN, &zfs_txg_timeout, 0,
116     "Maximum seconds worth of delta per txg");
117 
118 /*
119  * Prepare the txg subsystem.
120  */
121 void
txg_init(dsl_pool_t * dp,uint64_t txg)122 txg_init(dsl_pool_t *dp, uint64_t txg)
123 {
124 	tx_state_t *tx = &dp->dp_tx;
125 	int c;
126 	bzero(tx, sizeof (tx_state_t));
127 
128 	tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
129 
130 	for (c = 0; c < max_ncpus; c++) {
131 		int i;
132 
133 		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
134 		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
135 		    NULL);
136 		for (i = 0; i < TXG_SIZE; i++) {
137 			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
138 			    NULL);
139 			list_create(&tx->tx_cpu[c].tc_callbacks[i],
140 			    sizeof (dmu_tx_callback_t),
141 			    offsetof(dmu_tx_callback_t, dcb_node));
142 		}
143 	}
144 
145 	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
146 
147 	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
148 	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
149 	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
150 	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
151 	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
152 
153 	tx->tx_open_txg = txg;
154 }
155 
156 /*
157  * Close down the txg subsystem.
158  */
159 void
txg_fini(dsl_pool_t * dp)160 txg_fini(dsl_pool_t *dp)
161 {
162 	tx_state_t *tx = &dp->dp_tx;
163 	int c;
164 
165 	ASSERT(tx->tx_threads == 0);
166 
167 	mutex_destroy(&tx->tx_sync_lock);
168 
169 	cv_destroy(&tx->tx_sync_more_cv);
170 	cv_destroy(&tx->tx_sync_done_cv);
171 	cv_destroy(&tx->tx_quiesce_more_cv);
172 	cv_destroy(&tx->tx_quiesce_done_cv);
173 	cv_destroy(&tx->tx_exit_cv);
174 
175 	for (c = 0; c < max_ncpus; c++) {
176 		int i;
177 
178 		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
179 		mutex_destroy(&tx->tx_cpu[c].tc_lock);
180 		for (i = 0; i < TXG_SIZE; i++) {
181 			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
182 			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
183 		}
184 	}
185 
186 	if (tx->tx_commit_cb_taskq != NULL)
187 		taskq_destroy(tx->tx_commit_cb_taskq);
188 
189 	kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
190 
191 	bzero(tx, sizeof (tx_state_t));
192 }
193 
194 /*
195  * Start syncing transaction groups.
196  */
197 void
txg_sync_start(dsl_pool_t * dp)198 txg_sync_start(dsl_pool_t *dp)
199 {
200 	tx_state_t *tx = &dp->dp_tx;
201 
202 	mutex_enter(&tx->tx_sync_lock);
203 
204 	dprintf("pool %p\n", dp);
205 
206 	ASSERT(tx->tx_threads == 0);
207 
208 	tx->tx_threads = 2;
209 
210 	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
211 	    dp, 0, &p0, TS_RUN, minclsyspri);
212 
213 	/*
214 	 * The sync thread can need a larger-than-default stack size on
215 	 * 32-bit x86.  This is due in part to nested pools and
216 	 * scrub_visitbp() recursion.
217 	 */
218 	tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
219 	    dp, 0, &p0, TS_RUN, minclsyspri);
220 
221 	mutex_exit(&tx->tx_sync_lock);
222 }
223 
224 static void
txg_thread_enter(tx_state_t * tx,callb_cpr_t * cpr)225 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
226 {
227 	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
228 	mutex_enter(&tx->tx_sync_lock);
229 }
230 
231 static void
txg_thread_exit(tx_state_t * tx,callb_cpr_t * cpr,kthread_t ** tpp)232 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
233 {
234 	ASSERT(*tpp != NULL);
235 	*tpp = NULL;
236 	tx->tx_threads--;
237 	cv_broadcast(&tx->tx_exit_cv);
238 	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
239 	thread_exit();
240 }
241 
242 static void
txg_thread_wait(tx_state_t * tx,callb_cpr_t * cpr,kcondvar_t * cv,clock_t time)243 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
244 {
245 	CALLB_CPR_SAFE_BEGIN(cpr);
246 
247 	if (time)
248 		(void) cv_timedwait(cv, &tx->tx_sync_lock, time);
249 	else
250 		cv_wait(cv, &tx->tx_sync_lock);
251 
252 	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
253 }
254 
255 /*
256  * Stop syncing transaction groups.
257  */
258 void
txg_sync_stop(dsl_pool_t * dp)259 txg_sync_stop(dsl_pool_t *dp)
260 {
261 	tx_state_t *tx = &dp->dp_tx;
262 
263 	dprintf("pool %p\n", dp);
264 	/*
265 	 * Finish off any work in progress.
266 	 */
267 	ASSERT(tx->tx_threads == 2);
268 
269 	/*
270 	 * We need to ensure that we've vacated the deferred space_maps.
271 	 */
272 	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
273 
274 	/*
275 	 * Wake all sync threads and wait for them to die.
276 	 */
277 	mutex_enter(&tx->tx_sync_lock);
278 
279 	ASSERT(tx->tx_threads == 2);
280 
281 	tx->tx_exiting = 1;
282 
283 	cv_broadcast(&tx->tx_quiesce_more_cv);
284 	cv_broadcast(&tx->tx_quiesce_done_cv);
285 	cv_broadcast(&tx->tx_sync_more_cv);
286 
287 	while (tx->tx_threads != 0)
288 		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
289 
290 	tx->tx_exiting = 0;
291 
292 	mutex_exit(&tx->tx_sync_lock);
293 }
294 
295 uint64_t
txg_hold_open(dsl_pool_t * dp,txg_handle_t * th)296 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
297 {
298 	tx_state_t *tx = &dp->dp_tx;
299 	tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
300 	uint64_t txg;
301 
302 	mutex_enter(&tc->tc_open_lock);
303 	txg = tx->tx_open_txg;
304 
305 	mutex_enter(&tc->tc_lock);
306 	tc->tc_count[txg & TXG_MASK]++;
307 	mutex_exit(&tc->tc_lock);
308 
309 	th->th_cpu = tc;
310 	th->th_txg = txg;
311 
312 	return (txg);
313 }
314 
315 void
txg_rele_to_quiesce(txg_handle_t * th)316 txg_rele_to_quiesce(txg_handle_t *th)
317 {
318 	tx_cpu_t *tc = th->th_cpu;
319 
320 	ASSERT(!MUTEX_HELD(&tc->tc_lock));
321 	mutex_exit(&tc->tc_open_lock);
322 }
323 
324 void
txg_register_callbacks(txg_handle_t * th,list_t * tx_callbacks)325 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
326 {
327 	tx_cpu_t *tc = th->th_cpu;
328 	int g = th->th_txg & TXG_MASK;
329 
330 	mutex_enter(&tc->tc_lock);
331 	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
332 	mutex_exit(&tc->tc_lock);
333 }
334 
335 void
txg_rele_to_sync(txg_handle_t * th)336 txg_rele_to_sync(txg_handle_t *th)
337 {
338 	tx_cpu_t *tc = th->th_cpu;
339 	int g = th->th_txg & TXG_MASK;
340 
341 	mutex_enter(&tc->tc_lock);
342 	ASSERT(tc->tc_count[g] != 0);
343 	if (--tc->tc_count[g] == 0)
344 		cv_broadcast(&tc->tc_cv[g]);
345 	mutex_exit(&tc->tc_lock);
346 
347 	th->th_cpu = NULL;	/* defensive */
348 }
349 
350 /*
351  * Blocks until all transactions in the group are committed.
352  *
353  * On return, the transaction group has reached a stable state in which it can
354  * then be passed off to the syncing context.
355  */
356 static __noinline void
txg_quiesce(dsl_pool_t * dp,uint64_t txg)357 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
358 {
359 	tx_state_t *tx = &dp->dp_tx;
360 	int g = txg & TXG_MASK;
361 	int c;
362 
363 	/*
364 	 * Grab all tc_open_locks so nobody else can get into this txg.
365 	 */
366 	for (c = 0; c < max_ncpus; c++)
367 		mutex_enter(&tx->tx_cpu[c].tc_open_lock);
368 
369 	ASSERT(txg == tx->tx_open_txg);
370 	tx->tx_open_txg++;
371 	tx->tx_open_time = gethrtime();
372 
373 	DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
374 	DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
375 
376 	/*
377 	 * Now that we've incremented tx_open_txg, we can let threads
378 	 * enter the next transaction group.
379 	 */
380 	for (c = 0; c < max_ncpus; c++)
381 		mutex_exit(&tx->tx_cpu[c].tc_open_lock);
382 
383 	/*
384 	 * Quiesce the transaction group by waiting for everyone to txg_exit().
385 	 */
386 	for (c = 0; c < max_ncpus; c++) {
387 		tx_cpu_t *tc = &tx->tx_cpu[c];
388 		mutex_enter(&tc->tc_lock);
389 		while (tc->tc_count[g] != 0)
390 			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
391 		mutex_exit(&tc->tc_lock);
392 	}
393 }
394 
395 static void
txg_do_callbacks(void * arg)396 txg_do_callbacks(void *arg)
397 {
398 	list_t *cb_list = arg;
399 
400 	dmu_tx_do_callbacks(cb_list, 0);
401 
402 	list_destroy(cb_list);
403 
404 	kmem_free(cb_list, sizeof (list_t));
405 }
406 
407 /*
408  * Dispatch the commit callbacks registered on this txg to worker threads.
409  *
410  * If no callbacks are registered for a given TXG, nothing happens.
411  * This function creates a taskq for the associated pool, if needed.
412  */
413 static void
txg_dispatch_callbacks(dsl_pool_t * dp,uint64_t txg)414 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
415 {
416 	int c;
417 	tx_state_t *tx = &dp->dp_tx;
418 	list_t *cb_list;
419 
420 	for (c = 0; c < max_ncpus; c++) {
421 		tx_cpu_t *tc = &tx->tx_cpu[c];
422 		/*
423 		 * No need to lock tx_cpu_t at this point, since this can
424 		 * only be called once a txg has been synced.
425 		 */
426 
427 		int g = txg & TXG_MASK;
428 
429 		if (list_is_empty(&tc->tc_callbacks[g]))
430 			continue;
431 
432 		if (tx->tx_commit_cb_taskq == NULL) {
433 			/*
434 			 * Commit callback taskq hasn't been created yet.
435 			 */
436 			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
437 			    max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
438 			    TASKQ_PREPOPULATE);
439 		}
440 
441 		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
442 		list_create(cb_list, sizeof (dmu_tx_callback_t),
443 		    offsetof(dmu_tx_callback_t, dcb_node));
444 
445 		list_move_tail(cb_list, &tc->tc_callbacks[g]);
446 
447 		(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
448 		    txg_do_callbacks, cb_list, TQ_SLEEP);
449 	}
450 }
451 
452 static void
txg_sync_thread(void * arg)453 txg_sync_thread(void *arg)
454 {
455 	dsl_pool_t *dp = arg;
456 	spa_t *spa = dp->dp_spa;
457 	tx_state_t *tx = &dp->dp_tx;
458 	callb_cpr_t cpr;
459 	uint64_t start, delta;
460 
461 	txg_thread_enter(tx, &cpr);
462 
463 	start = delta = 0;
464 	for (;;) {
465 		uint64_t timeout = zfs_txg_timeout * hz;
466 		uint64_t timer;
467 		uint64_t txg;
468 
469 		/*
470 		 * We sync when we're scanning, there's someone waiting
471 		 * on us, or the quiesce thread has handed off a txg to
472 		 * us, or we have reached our timeout.
473 		 */
474 		timer = (delta >= timeout ? 0 : timeout - delta);
475 		while (!dsl_scan_active(dp->dp_scan) &&
476 		    !tx->tx_exiting && timer > 0 &&
477 		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
478 		    tx->tx_quiesced_txg == 0 &&
479 		    dp->dp_dirty_total < zfs_dirty_data_sync) {
480 			dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
481 			    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
482 			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
483 			delta = ddi_get_lbolt() - start;
484 			timer = (delta > timeout ? 0 : timeout - delta);
485 		}
486 
487 		/*
488 		 * Wait until the quiesce thread hands off a txg to us,
489 		 * prompting it to do so if necessary.
490 		 */
491 		while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
492 			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
493 				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
494 			cv_broadcast(&tx->tx_quiesce_more_cv);
495 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
496 		}
497 
498 		if (tx->tx_exiting)
499 			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
500 
501 		/*
502 		 * Consume the quiesced txg which has been handed off to
503 		 * us.  This may cause the quiescing thread to now be
504 		 * able to quiesce another txg, so we must signal it.
505 		 */
506 		txg = tx->tx_quiesced_txg;
507 		tx->tx_quiesced_txg = 0;
508 		tx->tx_syncing_txg = txg;
509 		DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
510 		cv_broadcast(&tx->tx_quiesce_more_cv);
511 
512 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
513 		    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
514 		mutex_exit(&tx->tx_sync_lock);
515 
516 		start = ddi_get_lbolt();
517 		spa_sync(spa, txg);
518 		delta = ddi_get_lbolt() - start;
519 
520 		mutex_enter(&tx->tx_sync_lock);
521 		tx->tx_synced_txg = txg;
522 		tx->tx_syncing_txg = 0;
523 		DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
524 		cv_broadcast(&tx->tx_sync_done_cv);
525 
526 		/*
527 		 * Dispatch commit callbacks to worker threads.
528 		 */
529 		txg_dispatch_callbacks(dp, txg);
530 	}
531 }
532 
533 static void
txg_quiesce_thread(void * arg)534 txg_quiesce_thread(void *arg)
535 {
536 	dsl_pool_t *dp = arg;
537 	tx_state_t *tx = &dp->dp_tx;
538 	callb_cpr_t cpr;
539 
540 	txg_thread_enter(tx, &cpr);
541 
542 	for (;;) {
543 		uint64_t txg;
544 
545 		/*
546 		 * We quiesce when there's someone waiting on us.
547 		 * However, we can only have one txg in "quiescing" or
548 		 * "quiesced, waiting to sync" state.  So we wait until
549 		 * the "quiesced, waiting to sync" txg has been consumed
550 		 * by the sync thread.
551 		 */
552 		while (!tx->tx_exiting &&
553 		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
554 		    tx->tx_quiesced_txg != 0))
555 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
556 
557 		if (tx->tx_exiting)
558 			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
559 
560 		txg = tx->tx_open_txg;
561 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
562 		    txg, tx->tx_quiesce_txg_waiting,
563 		    tx->tx_sync_txg_waiting);
564 		mutex_exit(&tx->tx_sync_lock);
565 		txg_quiesce(dp, txg);
566 		mutex_enter(&tx->tx_sync_lock);
567 
568 		/*
569 		 * Hand this txg off to the sync thread.
570 		 */
571 		dprintf("quiesce done, handing off txg %llu\n", txg);
572 		tx->tx_quiesced_txg = txg;
573 		DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
574 		cv_broadcast(&tx->tx_sync_more_cv);
575 		cv_broadcast(&tx->tx_quiesce_done_cv);
576 	}
577 }
578 
579 /*
580  * Delay this thread by delay nanoseconds if we are still in the open
581  * transaction group and there is already a waiting txg quiesing or quiesced.
582  * Abort the delay if this txg stalls or enters the quiesing state.
583  */
584 void
txg_delay(dsl_pool_t * dp,uint64_t txg,hrtime_t delay,hrtime_t resolution)585 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
586 {
587 	tx_state_t *tx = &dp->dp_tx;
588 	hrtime_t start = gethrtime();
589 
590 	/* don't delay if this txg could transition to quiescing immediately */
591 	if (tx->tx_open_txg > txg ||
592 	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
593 		return;
594 
595 	mutex_enter(&tx->tx_sync_lock);
596 	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
597 		mutex_exit(&tx->tx_sync_lock);
598 		return;
599 	}
600 
601 	while (gethrtime() - start < delay &&
602 	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
603 		(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
604 		    &tx->tx_sync_lock, delay, resolution, 0);
605 	}
606 
607 	mutex_exit(&tx->tx_sync_lock);
608 }
609 
610 void
txg_wait_synced(dsl_pool_t * dp,uint64_t txg)611 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
612 {
613 	tx_state_t *tx = &dp->dp_tx;
614 
615 	ASSERT(!dsl_pool_config_held(dp));
616 
617 	mutex_enter(&tx->tx_sync_lock);
618 	ASSERT(tx->tx_threads == 2);
619 	if (txg == 0)
620 		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
621 	if (tx->tx_sync_txg_waiting < txg)
622 		tx->tx_sync_txg_waiting = txg;
623 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
624 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
625 	while (tx->tx_synced_txg < txg) {
626 		dprintf("broadcasting sync more "
627 		    "tx_synced=%llu waiting=%llu dp=%p\n",
628 		    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
629 		cv_broadcast(&tx->tx_sync_more_cv);
630 		cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
631 	}
632 	mutex_exit(&tx->tx_sync_lock);
633 }
634 
635 void
txg_wait_open(dsl_pool_t * dp,uint64_t txg)636 txg_wait_open(dsl_pool_t *dp, uint64_t txg)
637 {
638 	tx_state_t *tx = &dp->dp_tx;
639 
640 	ASSERT(!dsl_pool_config_held(dp));
641 
642 	mutex_enter(&tx->tx_sync_lock);
643 	ASSERT(tx->tx_threads == 2);
644 	if (txg == 0)
645 		txg = tx->tx_open_txg + 1;
646 	if (tx->tx_quiesce_txg_waiting < txg)
647 		tx->tx_quiesce_txg_waiting = txg;
648 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
649 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
650 	while (tx->tx_open_txg < txg) {
651 		cv_broadcast(&tx->tx_quiesce_more_cv);
652 		cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
653 	}
654 	mutex_exit(&tx->tx_sync_lock);
655 }
656 
657 /*
658  * If there isn't a txg syncing or in the pipeline, push another txg through
659  * the pipeline by queiscing the open txg.
660  */
661 void
txg_kick(dsl_pool_t * dp)662 txg_kick(dsl_pool_t *dp)
663 {
664 	tx_state_t *tx = &dp->dp_tx;
665 
666 	ASSERT(!dsl_pool_config_held(dp));
667 
668 	mutex_enter(&tx->tx_sync_lock);
669 	if (tx->tx_syncing_txg == 0 &&
670 	    tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
671 	    tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
672 	    tx->tx_quiesced_txg <= tx->tx_synced_txg) {
673 		tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
674 		cv_broadcast(&tx->tx_quiesce_more_cv);
675 	}
676 	mutex_exit(&tx->tx_sync_lock);
677 }
678 
679 boolean_t
txg_stalled(dsl_pool_t * dp)680 txg_stalled(dsl_pool_t *dp)
681 {
682 	tx_state_t *tx = &dp->dp_tx;
683 	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
684 }
685 
686 boolean_t
txg_sync_waiting(dsl_pool_t * dp)687 txg_sync_waiting(dsl_pool_t *dp)
688 {
689 	tx_state_t *tx = &dp->dp_tx;
690 
691 	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
692 	    tx->tx_quiesced_txg != 0);
693 }
694 
695 /*
696  * Per-txg object lists.
697  */
698 void
txg_list_create(txg_list_t * tl,size_t offset)699 txg_list_create(txg_list_t *tl, size_t offset)
700 {
701 	int t;
702 
703 	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
704 
705 	tl->tl_offset = offset;
706 
707 	for (t = 0; t < TXG_SIZE; t++)
708 		tl->tl_head[t] = NULL;
709 }
710 
711 void
txg_list_destroy(txg_list_t * tl)712 txg_list_destroy(txg_list_t *tl)
713 {
714 	int t;
715 
716 	for (t = 0; t < TXG_SIZE; t++)
717 		ASSERT(txg_list_empty(tl, t));
718 
719 	mutex_destroy(&tl->tl_lock);
720 }
721 
722 boolean_t
txg_list_empty(txg_list_t * tl,uint64_t txg)723 txg_list_empty(txg_list_t *tl, uint64_t txg)
724 {
725 	return (tl->tl_head[txg & TXG_MASK] == NULL);
726 }
727 
728 /*
729  * Returns true if all txg lists are empty.
730  *
731  * Warning: this is inherently racy (an item could be added immediately after this
732  * function returns). We don't bother with the lock because it wouldn't change the
733  * semantics.
734  */
735 boolean_t
txg_all_lists_empty(txg_list_t * tl)736 txg_all_lists_empty(txg_list_t *tl)
737 {
738 	for (int i = 0; i < TXG_SIZE; i++) {
739 		if (!txg_list_empty(tl, i)) {
740 			return (B_FALSE);
741 		}
742 	}
743 	return (B_TRUE);
744 }
745 
746 /*
747  * Add an entry to the list (unless it's already on the list).
748  * Returns B_TRUE if it was actually added.
749  */
750 boolean_t
txg_list_add(txg_list_t * tl,void * p,uint64_t txg)751 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
752 {
753 	int t = txg & TXG_MASK;
754 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
755 	boolean_t add;
756 
757 	mutex_enter(&tl->tl_lock);
758 	add = (tn->tn_member[t] == 0);
759 	if (add) {
760 		tn->tn_member[t] = 1;
761 		tn->tn_next[t] = tl->tl_head[t];
762 		tl->tl_head[t] = tn;
763 	}
764 	mutex_exit(&tl->tl_lock);
765 
766 	return (add);
767 }
768 
769 /*
770  * Add an entry to the end of the list, unless it's already on the list.
771  * (walks list to find end)
772  * Returns B_TRUE if it was actually added.
773  */
774 boolean_t
txg_list_add_tail(txg_list_t * tl,void * p,uint64_t txg)775 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
776 {
777 	int t = txg & TXG_MASK;
778 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
779 	boolean_t add;
780 
781 	mutex_enter(&tl->tl_lock);
782 	add = (tn->tn_member[t] == 0);
783 	if (add) {
784 		txg_node_t **tp;
785 
786 		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
787 			continue;
788 
789 		tn->tn_member[t] = 1;
790 		tn->tn_next[t] = NULL;
791 		*tp = tn;
792 	}
793 	mutex_exit(&tl->tl_lock);
794 
795 	return (add);
796 }
797 
798 /*
799  * Remove the head of the list and return it.
800  */
801 void *
txg_list_remove(txg_list_t * tl,uint64_t txg)802 txg_list_remove(txg_list_t *tl, uint64_t txg)
803 {
804 	int t = txg & TXG_MASK;
805 	txg_node_t *tn;
806 	void *p = NULL;
807 
808 	mutex_enter(&tl->tl_lock);
809 	if ((tn = tl->tl_head[t]) != NULL) {
810 		p = (char *)tn - tl->tl_offset;
811 		tl->tl_head[t] = tn->tn_next[t];
812 		tn->tn_next[t] = NULL;
813 		tn->tn_member[t] = 0;
814 	}
815 	mutex_exit(&tl->tl_lock);
816 
817 	return (p);
818 }
819 
820 /*
821  * Remove a specific item from the list and return it.
822  */
823 void *
txg_list_remove_this(txg_list_t * tl,void * p,uint64_t txg)824 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
825 {
826 	int t = txg & TXG_MASK;
827 	txg_node_t *tn, **tp;
828 
829 	mutex_enter(&tl->tl_lock);
830 
831 	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
832 		if ((char *)tn - tl->tl_offset == p) {
833 			*tp = tn->tn_next[t];
834 			tn->tn_next[t] = NULL;
835 			tn->tn_member[t] = 0;
836 			mutex_exit(&tl->tl_lock);
837 			return (p);
838 		}
839 	}
840 
841 	mutex_exit(&tl->tl_lock);
842 
843 	return (NULL);
844 }
845 
846 boolean_t
txg_list_member(txg_list_t * tl,void * p,uint64_t txg)847 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
848 {
849 	int t = txg & TXG_MASK;
850 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
851 
852 	return (tn->tn_member[t] != 0);
853 }
854 
855 /*
856  * Walk a txg list -- only safe if you know it's not changing.
857  */
858 void *
txg_list_head(txg_list_t * tl,uint64_t txg)859 txg_list_head(txg_list_t *tl, uint64_t txg)
860 {
861 	int t = txg & TXG_MASK;
862 	txg_node_t *tn = tl->tl_head[t];
863 
864 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
865 }
866 
867 void *
txg_list_next(txg_list_t * tl,void * p,uint64_t txg)868 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
869 {
870 	int t = txg & TXG_MASK;
871 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
872 
873 	tn = tn->tn_next[t];
874 
875 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
876 }
877