1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149 #include "cgraph.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
154
155 /* Possible lattice values. */
156 typedef enum
157 {
158 UNINITIALIZED,
159 UNDEFINED,
160 CONSTANT,
161 VARYING
162 } ccp_lattice_t;
163
164 class ccp_prop_value_t {
165 public:
166 /* Lattice value. */
167 ccp_lattice_t lattice_val;
168
169 /* Propagated value. */
170 tree value;
171
172 /* Mask that applies to the propagated value during CCP. For X
173 with a CONSTANT lattice value X & ~mask == value & ~mask. The
174 zero bits in the mask cover constant values. The ones mean no
175 information. */
176 widest_int mask;
177 };
178
179 class ccp_propagate : public ssa_propagation_engine
180 {
181 public:
182 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
183 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
184 };
185
186 /* Array of propagated constant values. After propagation,
187 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
188 the constant is held in an SSA name representing a memory store
189 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
190 memory reference used to store (i.e., the LHS of the assignment
191 doing the store). */
192 static ccp_prop_value_t *const_val;
193 static unsigned n_const_val;
194
195 static void canonicalize_value (ccp_prop_value_t *);
196 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
197
198 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
199
200 static void
dump_lattice_value(FILE * outf,const char * prefix,ccp_prop_value_t val)201 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
202 {
203 switch (val.lattice_val)
204 {
205 case UNINITIALIZED:
206 fprintf (outf, "%sUNINITIALIZED", prefix);
207 break;
208 case UNDEFINED:
209 fprintf (outf, "%sUNDEFINED", prefix);
210 break;
211 case VARYING:
212 fprintf (outf, "%sVARYING", prefix);
213 break;
214 case CONSTANT:
215 if (TREE_CODE (val.value) != INTEGER_CST
216 || val.mask == 0)
217 {
218 fprintf (outf, "%sCONSTANT ", prefix);
219 print_generic_expr (outf, val.value, dump_flags);
220 }
221 else
222 {
223 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
224 val.mask);
225 fprintf (outf, "%sCONSTANT ", prefix);
226 print_hex (cval, outf);
227 fprintf (outf, " (");
228 print_hex (val.mask, outf);
229 fprintf (outf, ")");
230 }
231 break;
232 default:
233 gcc_unreachable ();
234 }
235 }
236
237
238 /* Print lattice value VAL to stderr. */
239
240 void debug_lattice_value (ccp_prop_value_t val);
241
242 DEBUG_FUNCTION void
debug_lattice_value(ccp_prop_value_t val)243 debug_lattice_value (ccp_prop_value_t val)
244 {
245 dump_lattice_value (stderr, "", val);
246 fprintf (stderr, "\n");
247 }
248
249 /* Extend NONZERO_BITS to a full mask, based on sgn. */
250
251 static widest_int
extend_mask(const wide_int & nonzero_bits,signop sgn)252 extend_mask (const wide_int &nonzero_bits, signop sgn)
253 {
254 return widest_int::from (nonzero_bits, sgn);
255 }
256
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
259 values:
260
261 1- Global and static variables that are declared constant are
262 considered CONSTANT.
263
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
268
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
271
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
274
275 static ccp_prop_value_t
get_default_value(tree var)276 get_default_value (tree var)
277 {
278 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
279 gimple *stmt;
280
281 stmt = SSA_NAME_DEF_STMT (var);
282
283 if (gimple_nop_p (stmt))
284 {
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var)
290 && SSA_NAME_VAR (var)
291 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
292 val.lattice_val = UNDEFINED;
293 else
294 {
295 val.lattice_val = VARYING;
296 val.mask = -1;
297 if (flag_tree_bit_ccp)
298 {
299 wide_int nonzero_bits = get_nonzero_bits (var);
300 tree value;
301 widest_int mask;
302
303 if (SSA_NAME_VAR (var)
304 && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
305 && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
306 {
307 val.lattice_val = CONSTANT;
308 val.value = value;
309 widest_int ipa_value = wi::to_widest (value);
310 /* Unknown bits from IPA CP must be equal to zero. */
311 gcc_assert (wi::bit_and (ipa_value, mask) == 0);
312 val.mask = mask;
313 if (nonzero_bits != -1)
314 val.mask &= extend_mask (nonzero_bits,
315 TYPE_SIGN (TREE_TYPE (var)));
316 }
317 else if (nonzero_bits != -1)
318 {
319 val.lattice_val = CONSTANT;
320 val.value = build_zero_cst (TREE_TYPE (var));
321 val.mask = extend_mask (nonzero_bits,
322 TYPE_SIGN (TREE_TYPE (var)));
323 }
324 }
325 }
326 }
327 else if (is_gimple_assign (stmt))
328 {
329 tree cst;
330 if (gimple_assign_single_p (stmt)
331 && DECL_P (gimple_assign_rhs1 (stmt))
332 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
333 {
334 val.lattice_val = CONSTANT;
335 val.value = cst;
336 }
337 else
338 {
339 /* Any other variable defined by an assignment is considered
340 UNDEFINED. */
341 val.lattice_val = UNDEFINED;
342 }
343 }
344 else if ((is_gimple_call (stmt)
345 && gimple_call_lhs (stmt) != NULL_TREE)
346 || gimple_code (stmt) == GIMPLE_PHI)
347 {
348 /* A variable defined by a call or a PHI node is considered
349 UNDEFINED. */
350 val.lattice_val = UNDEFINED;
351 }
352 else
353 {
354 /* Otherwise, VAR will never take on a constant value. */
355 val.lattice_val = VARYING;
356 val.mask = -1;
357 }
358
359 return val;
360 }
361
362
363 /* Get the constant value associated with variable VAR. */
364
365 static inline ccp_prop_value_t *
get_value(tree var)366 get_value (tree var)
367 {
368 ccp_prop_value_t *val;
369
370 if (const_val == NULL
371 || SSA_NAME_VERSION (var) >= n_const_val)
372 return NULL;
373
374 val = &const_val[SSA_NAME_VERSION (var)];
375 if (val->lattice_val == UNINITIALIZED)
376 *val = get_default_value (var);
377
378 canonicalize_value (val);
379
380 return val;
381 }
382
383 /* Return the constant tree value associated with VAR. */
384
385 static inline tree
get_constant_value(tree var)386 get_constant_value (tree var)
387 {
388 ccp_prop_value_t *val;
389 if (TREE_CODE (var) != SSA_NAME)
390 {
391 if (is_gimple_min_invariant (var))
392 return var;
393 return NULL_TREE;
394 }
395 val = get_value (var);
396 if (val
397 && val->lattice_val == CONSTANT
398 && (TREE_CODE (val->value) != INTEGER_CST
399 || val->mask == 0))
400 return val->value;
401 return NULL_TREE;
402 }
403
404 /* Sets the value associated with VAR to VARYING. */
405
406 static inline void
set_value_varying(tree var)407 set_value_varying (tree var)
408 {
409 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
410
411 val->lattice_val = VARYING;
412 val->value = NULL_TREE;
413 val->mask = -1;
414 }
415
416 /* For integer constants, make sure to drop TREE_OVERFLOW. */
417
418 static void
canonicalize_value(ccp_prop_value_t * val)419 canonicalize_value (ccp_prop_value_t *val)
420 {
421 if (val->lattice_val != CONSTANT)
422 return;
423
424 if (TREE_OVERFLOW_P (val->value))
425 val->value = drop_tree_overflow (val->value);
426 }
427
428 /* Return whether the lattice transition is valid. */
429
430 static bool
valid_lattice_transition(ccp_prop_value_t old_val,ccp_prop_value_t new_val)431 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
432 {
433 /* Lattice transitions must always be monotonically increasing in
434 value. */
435 if (old_val.lattice_val < new_val.lattice_val)
436 return true;
437
438 if (old_val.lattice_val != new_val.lattice_val)
439 return false;
440
441 if (!old_val.value && !new_val.value)
442 return true;
443
444 /* Now both lattice values are CONSTANT. */
445
446 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
447 when only a single copy edge is executable. */
448 if (TREE_CODE (old_val.value) == SSA_NAME
449 && TREE_CODE (new_val.value) == SSA_NAME)
450 return true;
451
452 /* Allow transitioning from a constant to a copy. */
453 if (is_gimple_min_invariant (old_val.value)
454 && TREE_CODE (new_val.value) == SSA_NAME)
455 return true;
456
457 /* Allow transitioning from PHI <&x, not executable> == &x
458 to PHI <&x, &y> == common alignment. */
459 if (TREE_CODE (old_val.value) != INTEGER_CST
460 && TREE_CODE (new_val.value) == INTEGER_CST)
461 return true;
462
463 /* Bit-lattices have to agree in the still valid bits. */
464 if (TREE_CODE (old_val.value) == INTEGER_CST
465 && TREE_CODE (new_val.value) == INTEGER_CST)
466 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
467 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
468
469 /* Otherwise constant values have to agree. */
470 if (operand_equal_p (old_val.value, new_val.value, 0))
471 return true;
472
473 /* At least the kinds and types should agree now. */
474 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
475 || !types_compatible_p (TREE_TYPE (old_val.value),
476 TREE_TYPE (new_val.value)))
477 return false;
478
479 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
480 to non-NaN. */
481 tree type = TREE_TYPE (new_val.value);
482 if (SCALAR_FLOAT_TYPE_P (type)
483 && !HONOR_NANS (type))
484 {
485 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
486 return true;
487 }
488 else if (VECTOR_FLOAT_TYPE_P (type)
489 && !HONOR_NANS (type))
490 {
491 unsigned int count
492 = tree_vector_builder::binary_encoded_nelts (old_val.value,
493 new_val.value);
494 for (unsigned int i = 0; i < count; ++i)
495 if (!REAL_VALUE_ISNAN
496 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
497 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
498 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
499 return false;
500 return true;
501 }
502 else if (COMPLEX_FLOAT_TYPE_P (type)
503 && !HONOR_NANS (type))
504 {
505 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
506 && !operand_equal_p (TREE_REALPART (old_val.value),
507 TREE_REALPART (new_val.value), 0))
508 return false;
509 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
510 && !operand_equal_p (TREE_IMAGPART (old_val.value),
511 TREE_IMAGPART (new_val.value), 0))
512 return false;
513 return true;
514 }
515 return false;
516 }
517
518 /* Set the value for variable VAR to NEW_VAL. Return true if the new
519 value is different from VAR's previous value. */
520
521 static bool
set_lattice_value(tree var,ccp_prop_value_t * new_val)522 set_lattice_value (tree var, ccp_prop_value_t *new_val)
523 {
524 /* We can deal with old UNINITIALIZED values just fine here. */
525 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
526
527 canonicalize_value (new_val);
528
529 /* We have to be careful to not go up the bitwise lattice
530 represented by the mask. Instead of dropping to VARYING
531 use the meet operator to retain a conservative value.
532 Missed optimizations like PR65851 makes this necessary.
533 It also ensures we converge to a stable lattice solution. */
534 if (old_val->lattice_val != UNINITIALIZED)
535 ccp_lattice_meet (new_val, old_val);
536
537 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
538
539 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
540 caller that this was a non-transition. */
541 if (old_val->lattice_val != new_val->lattice_val
542 || (new_val->lattice_val == CONSTANT
543 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
544 || (TREE_CODE (new_val->value) == INTEGER_CST
545 && (new_val->mask != old_val->mask
546 || (wi::bit_and_not (wi::to_widest (old_val->value),
547 new_val->mask)
548 != wi::bit_and_not (wi::to_widest (new_val->value),
549 new_val->mask))))
550 || (TREE_CODE (new_val->value) != INTEGER_CST
551 && !operand_equal_p (new_val->value, old_val->value, 0)))))
552 {
553 /* ??? We would like to delay creation of INTEGER_CSTs from
554 partially constants here. */
555
556 if (dump_file && (dump_flags & TDF_DETAILS))
557 {
558 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
559 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
560 }
561
562 *old_val = *new_val;
563
564 gcc_assert (new_val->lattice_val != UNINITIALIZED);
565 return true;
566 }
567
568 return false;
569 }
570
571 static ccp_prop_value_t get_value_for_expr (tree, bool);
572 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
573 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
574 signop, int, const widest_int &, const widest_int &,
575 signop, int, const widest_int &, const widest_int &);
576
577 /* Return a widest_int that can be used for bitwise simplifications
578 from VAL. */
579
580 static widest_int
value_to_wide_int(ccp_prop_value_t val)581 value_to_wide_int (ccp_prop_value_t val)
582 {
583 if (val.value
584 && TREE_CODE (val.value) == INTEGER_CST)
585 return wi::to_widest (val.value);
586
587 return 0;
588 }
589
590 /* Return the value for the address expression EXPR based on alignment
591 information. */
592
593 static ccp_prop_value_t
get_value_from_alignment(tree expr)594 get_value_from_alignment (tree expr)
595 {
596 tree type = TREE_TYPE (expr);
597 ccp_prop_value_t val;
598 unsigned HOST_WIDE_INT bitpos;
599 unsigned int align;
600
601 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
602
603 get_pointer_alignment_1 (expr, &align, &bitpos);
604 val.mask = wi::bit_and_not
605 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
606 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
607 : -1,
608 align / BITS_PER_UNIT - 1);
609 val.lattice_val
610 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
611 if (val.lattice_val == CONSTANT)
612 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
613 else
614 val.value = NULL_TREE;
615
616 return val;
617 }
618
619 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
620 return constant bits extracted from alignment information for
621 invariant addresses. */
622
623 static ccp_prop_value_t
get_value_for_expr(tree expr,bool for_bits_p)624 get_value_for_expr (tree expr, bool for_bits_p)
625 {
626 ccp_prop_value_t val;
627
628 if (TREE_CODE (expr) == SSA_NAME)
629 {
630 ccp_prop_value_t *val_ = get_value (expr);
631 if (val_)
632 val = *val_;
633 else
634 {
635 val.lattice_val = VARYING;
636 val.value = NULL_TREE;
637 val.mask = -1;
638 }
639 if (for_bits_p
640 && val.lattice_val == CONSTANT)
641 {
642 if (TREE_CODE (val.value) == ADDR_EXPR)
643 val = get_value_from_alignment (val.value);
644 else if (TREE_CODE (val.value) != INTEGER_CST)
645 {
646 val.lattice_val = VARYING;
647 val.value = NULL_TREE;
648 val.mask = -1;
649 }
650 }
651 /* Fall back to a copy value. */
652 if (!for_bits_p
653 && val.lattice_val == VARYING
654 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
655 {
656 val.lattice_val = CONSTANT;
657 val.value = expr;
658 val.mask = -1;
659 }
660 }
661 else if (is_gimple_min_invariant (expr)
662 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
663 {
664 val.lattice_val = CONSTANT;
665 val.value = expr;
666 val.mask = 0;
667 canonicalize_value (&val);
668 }
669 else if (TREE_CODE (expr) == ADDR_EXPR)
670 val = get_value_from_alignment (expr);
671 else
672 {
673 val.lattice_val = VARYING;
674 val.mask = -1;
675 val.value = NULL_TREE;
676 }
677
678 if (val.lattice_val == VARYING
679 && TYPE_UNSIGNED (TREE_TYPE (expr)))
680 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
681
682 return val;
683 }
684
685 /* Return the likely CCP lattice value for STMT.
686
687 If STMT has no operands, then return CONSTANT.
688
689 Else if undefinedness of operands of STMT cause its value to be
690 undefined, then return UNDEFINED.
691
692 Else if any operands of STMT are constants, then return CONSTANT.
693
694 Else return VARYING. */
695
696 static ccp_lattice_t
likely_value(gimple * stmt)697 likely_value (gimple *stmt)
698 {
699 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
700 bool has_nsa_operand;
701 tree use;
702 ssa_op_iter iter;
703 unsigned i;
704
705 enum gimple_code code = gimple_code (stmt);
706
707 /* This function appears to be called only for assignments, calls,
708 conditionals, and switches, due to the logic in visit_stmt. */
709 gcc_assert (code == GIMPLE_ASSIGN
710 || code == GIMPLE_CALL
711 || code == GIMPLE_COND
712 || code == GIMPLE_SWITCH);
713
714 /* If the statement has volatile operands, it won't fold to a
715 constant value. */
716 if (gimple_has_volatile_ops (stmt))
717 return VARYING;
718
719 /* Arrive here for more complex cases. */
720 has_constant_operand = false;
721 has_undefined_operand = false;
722 all_undefined_operands = true;
723 has_nsa_operand = false;
724 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
725 {
726 ccp_prop_value_t *val = get_value (use);
727
728 if (val && val->lattice_val == UNDEFINED)
729 has_undefined_operand = true;
730 else
731 all_undefined_operands = false;
732
733 if (val && val->lattice_val == CONSTANT)
734 has_constant_operand = true;
735
736 if (SSA_NAME_IS_DEFAULT_DEF (use)
737 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
738 has_nsa_operand = true;
739 }
740
741 /* There may be constants in regular rhs operands. For calls we
742 have to ignore lhs, fndecl and static chain, otherwise only
743 the lhs. */
744 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
745 i < gimple_num_ops (stmt); ++i)
746 {
747 tree op = gimple_op (stmt, i);
748 if (!op || TREE_CODE (op) == SSA_NAME)
749 continue;
750 if (is_gimple_min_invariant (op))
751 has_constant_operand = true;
752 }
753
754 if (has_constant_operand)
755 all_undefined_operands = false;
756
757 if (has_undefined_operand
758 && code == GIMPLE_CALL
759 && gimple_call_internal_p (stmt))
760 switch (gimple_call_internal_fn (stmt))
761 {
762 /* These 3 builtins use the first argument just as a magic
763 way how to find out a decl uid. */
764 case IFN_GOMP_SIMD_LANE:
765 case IFN_GOMP_SIMD_VF:
766 case IFN_GOMP_SIMD_LAST_LANE:
767 has_undefined_operand = false;
768 break;
769 default:
770 break;
771 }
772
773 /* If the operation combines operands like COMPLEX_EXPR make sure to
774 not mark the result UNDEFINED if only one part of the result is
775 undefined. */
776 if (has_undefined_operand && all_undefined_operands)
777 return UNDEFINED;
778 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
779 {
780 switch (gimple_assign_rhs_code (stmt))
781 {
782 /* Unary operators are handled with all_undefined_operands. */
783 case PLUS_EXPR:
784 case MINUS_EXPR:
785 case POINTER_PLUS_EXPR:
786 case BIT_XOR_EXPR:
787 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
788 Not bitwise operators, one VARYING operand may specify the
789 result completely.
790 Not logical operators for the same reason, apart from XOR.
791 Not COMPLEX_EXPR as one VARYING operand makes the result partly
792 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
793 the undefined operand may be promoted. */
794 return UNDEFINED;
795
796 case ADDR_EXPR:
797 /* If any part of an address is UNDEFINED, like the index
798 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
799 return UNDEFINED;
800
801 default:
802 ;
803 }
804 }
805 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
806 fall back to CONSTANT. During iteration UNDEFINED may still drop
807 to CONSTANT. */
808 if (has_undefined_operand)
809 return CONSTANT;
810
811 /* We do not consider virtual operands here -- load from read-only
812 memory may have only VARYING virtual operands, but still be
813 constant. Also we can combine the stmt with definitions from
814 operands whose definitions are not simulated again. */
815 if (has_constant_operand
816 || has_nsa_operand
817 || gimple_references_memory_p (stmt))
818 return CONSTANT;
819
820 return VARYING;
821 }
822
823 /* Returns true if STMT cannot be constant. */
824
825 static bool
surely_varying_stmt_p(gimple * stmt)826 surely_varying_stmt_p (gimple *stmt)
827 {
828 /* If the statement has operands that we cannot handle, it cannot be
829 constant. */
830 if (gimple_has_volatile_ops (stmt))
831 return true;
832
833 /* If it is a call and does not return a value or is not a
834 builtin and not an indirect call or a call to function with
835 assume_aligned/alloc_align attribute, it is varying. */
836 if (is_gimple_call (stmt))
837 {
838 tree fndecl, fntype = gimple_call_fntype (stmt);
839 if (!gimple_call_lhs (stmt)
840 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
841 && !fndecl_built_in_p (fndecl)
842 && !lookup_attribute ("assume_aligned",
843 TYPE_ATTRIBUTES (fntype))
844 && !lookup_attribute ("alloc_align",
845 TYPE_ATTRIBUTES (fntype))))
846 return true;
847 }
848
849 /* Any other store operation is not interesting. */
850 else if (gimple_vdef (stmt))
851 return true;
852
853 /* Anything other than assignments and conditional jumps are not
854 interesting for CCP. */
855 if (gimple_code (stmt) != GIMPLE_ASSIGN
856 && gimple_code (stmt) != GIMPLE_COND
857 && gimple_code (stmt) != GIMPLE_SWITCH
858 && gimple_code (stmt) != GIMPLE_CALL)
859 return true;
860
861 return false;
862 }
863
864 /* Initialize local data structures for CCP. */
865
866 static void
ccp_initialize(void)867 ccp_initialize (void)
868 {
869 basic_block bb;
870
871 n_const_val = num_ssa_names;
872 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
873
874 /* Initialize simulation flags for PHI nodes and statements. */
875 FOR_EACH_BB_FN (bb, cfun)
876 {
877 gimple_stmt_iterator i;
878
879 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
880 {
881 gimple *stmt = gsi_stmt (i);
882 bool is_varying;
883
884 /* If the statement is a control insn, then we do not
885 want to avoid simulating the statement once. Failure
886 to do so means that those edges will never get added. */
887 if (stmt_ends_bb_p (stmt))
888 is_varying = false;
889 else
890 is_varying = surely_varying_stmt_p (stmt);
891
892 if (is_varying)
893 {
894 tree def;
895 ssa_op_iter iter;
896
897 /* If the statement will not produce a constant, mark
898 all its outputs VARYING. */
899 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
900 set_value_varying (def);
901 }
902 prop_set_simulate_again (stmt, !is_varying);
903 }
904 }
905
906 /* Now process PHI nodes. We never clear the simulate_again flag on
907 phi nodes, since we do not know which edges are executable yet,
908 except for phi nodes for virtual operands when we do not do store ccp. */
909 FOR_EACH_BB_FN (bb, cfun)
910 {
911 gphi_iterator i;
912
913 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
914 {
915 gphi *phi = i.phi ();
916
917 if (virtual_operand_p (gimple_phi_result (phi)))
918 prop_set_simulate_again (phi, false);
919 else
920 prop_set_simulate_again (phi, true);
921 }
922 }
923 }
924
925 /* Debug count support. Reset the values of ssa names
926 VARYING when the total number ssa names analyzed is
927 beyond the debug count specified. */
928
929 static void
do_dbg_cnt(void)930 do_dbg_cnt (void)
931 {
932 unsigned i;
933 for (i = 0; i < num_ssa_names; i++)
934 {
935 if (!dbg_cnt (ccp))
936 {
937 const_val[i].lattice_val = VARYING;
938 const_val[i].mask = -1;
939 const_val[i].value = NULL_TREE;
940 }
941 }
942 }
943
944
945 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
946 class ccp_folder : public substitute_and_fold_engine
947 {
948 public:
949 tree get_value (tree) FINAL OVERRIDE;
950 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
951 };
952
953 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
954 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
955 of calling member functions. */
956
957 tree
get_value(tree op)958 ccp_folder::get_value (tree op)
959 {
960 return get_constant_value (op);
961 }
962
963 /* Do final substitution of propagated values, cleanup the flowgraph and
964 free allocated storage. If NONZERO_P, record nonzero bits.
965
966 Return TRUE when something was optimized. */
967
968 static bool
ccp_finalize(bool nonzero_p)969 ccp_finalize (bool nonzero_p)
970 {
971 bool something_changed;
972 unsigned i;
973 tree name;
974
975 do_dbg_cnt ();
976
977 /* Derive alignment and misalignment information from partially
978 constant pointers in the lattice or nonzero bits from partially
979 constant integers. */
980 FOR_EACH_SSA_NAME (i, name, cfun)
981 {
982 ccp_prop_value_t *val;
983 unsigned int tem, align;
984
985 if (!POINTER_TYPE_P (TREE_TYPE (name))
986 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
987 /* Don't record nonzero bits before IPA to avoid
988 using too much memory. */
989 || !nonzero_p))
990 continue;
991
992 val = get_value (name);
993 if (val->lattice_val != CONSTANT
994 || TREE_CODE (val->value) != INTEGER_CST
995 || val->mask == 0)
996 continue;
997
998 if (POINTER_TYPE_P (TREE_TYPE (name)))
999 {
1000 /* Trailing mask bits specify the alignment, trailing value
1001 bits the misalignment. */
1002 tem = val->mask.to_uhwi ();
1003 align = least_bit_hwi (tem);
1004 if (align > 1)
1005 set_ptr_info_alignment (get_ptr_info (name), align,
1006 (TREE_INT_CST_LOW (val->value)
1007 & (align - 1)));
1008 }
1009 else
1010 {
1011 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
1012 wide_int nonzero_bits
1013 = (wide_int::from (val->mask, precision, UNSIGNED)
1014 | wi::to_wide (val->value));
1015 nonzero_bits &= get_nonzero_bits (name);
1016 set_nonzero_bits (name, nonzero_bits);
1017 }
1018 }
1019
1020 /* Perform substitutions based on the known constant values. */
1021 class ccp_folder ccp_folder;
1022 something_changed = ccp_folder.substitute_and_fold ();
1023
1024 free (const_val);
1025 const_val = NULL;
1026 return something_changed;
1027 }
1028
1029
1030 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1031 in VAL1.
1032
1033 any M UNDEFINED = any
1034 any M VARYING = VARYING
1035 Ci M Cj = Ci if (i == j)
1036 Ci M Cj = VARYING if (i != j)
1037 */
1038
1039 static void
ccp_lattice_meet(ccp_prop_value_t * val1,ccp_prop_value_t * val2)1040 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1041 {
1042 if (val1->lattice_val == UNDEFINED
1043 /* For UNDEFINED M SSA we can't always SSA because its definition
1044 may not dominate the PHI node. Doing optimistic copy propagation
1045 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1046 && (val2->lattice_val != CONSTANT
1047 || TREE_CODE (val2->value) != SSA_NAME))
1048 {
1049 /* UNDEFINED M any = any */
1050 *val1 = *val2;
1051 }
1052 else if (val2->lattice_val == UNDEFINED
1053 /* See above. */
1054 && (val1->lattice_val != CONSTANT
1055 || TREE_CODE (val1->value) != SSA_NAME))
1056 {
1057 /* any M UNDEFINED = any
1058 Nothing to do. VAL1 already contains the value we want. */
1059 ;
1060 }
1061 else if (val1->lattice_val == VARYING
1062 || val2->lattice_val == VARYING)
1063 {
1064 /* any M VARYING = VARYING. */
1065 val1->lattice_val = VARYING;
1066 val1->mask = -1;
1067 val1->value = NULL_TREE;
1068 }
1069 else if (val1->lattice_val == CONSTANT
1070 && val2->lattice_val == CONSTANT
1071 && TREE_CODE (val1->value) == INTEGER_CST
1072 && TREE_CODE (val2->value) == INTEGER_CST)
1073 {
1074 /* Ci M Cj = Ci if (i == j)
1075 Ci M Cj = VARYING if (i != j)
1076
1077 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1078 drop to varying. */
1079 val1->mask = (val1->mask | val2->mask
1080 | (wi::to_widest (val1->value)
1081 ^ wi::to_widest (val2->value)));
1082 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1083 {
1084 val1->lattice_val = VARYING;
1085 val1->value = NULL_TREE;
1086 }
1087 }
1088 else if (val1->lattice_val == CONSTANT
1089 && val2->lattice_val == CONSTANT
1090 && operand_equal_p (val1->value, val2->value, 0))
1091 {
1092 /* Ci M Cj = Ci if (i == j)
1093 Ci M Cj = VARYING if (i != j)
1094
1095 VAL1 already contains the value we want for equivalent values. */
1096 }
1097 else if (val1->lattice_val == CONSTANT
1098 && val2->lattice_val == CONSTANT
1099 && (TREE_CODE (val1->value) == ADDR_EXPR
1100 || TREE_CODE (val2->value) == ADDR_EXPR))
1101 {
1102 /* When not equal addresses are involved try meeting for
1103 alignment. */
1104 ccp_prop_value_t tem = *val2;
1105 if (TREE_CODE (val1->value) == ADDR_EXPR)
1106 *val1 = get_value_for_expr (val1->value, true);
1107 if (TREE_CODE (val2->value) == ADDR_EXPR)
1108 tem = get_value_for_expr (val2->value, true);
1109 ccp_lattice_meet (val1, &tem);
1110 }
1111 else
1112 {
1113 /* Any other combination is VARYING. */
1114 val1->lattice_val = VARYING;
1115 val1->mask = -1;
1116 val1->value = NULL_TREE;
1117 }
1118 }
1119
1120
1121 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1122 lattice values to determine PHI_NODE's lattice value. The value of a
1123 PHI node is determined calling ccp_lattice_meet with all the arguments
1124 of the PHI node that are incoming via executable edges. */
1125
1126 enum ssa_prop_result
visit_phi(gphi * phi)1127 ccp_propagate::visit_phi (gphi *phi)
1128 {
1129 unsigned i;
1130 ccp_prop_value_t new_val;
1131
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1133 {
1134 fprintf (dump_file, "\nVisiting PHI node: ");
1135 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1136 }
1137
1138 new_val.lattice_val = UNDEFINED;
1139 new_val.value = NULL_TREE;
1140 new_val.mask = 0;
1141
1142 bool first = true;
1143 bool non_exec_edge = false;
1144 for (i = 0; i < gimple_phi_num_args (phi); i++)
1145 {
1146 /* Compute the meet operator over all the PHI arguments flowing
1147 through executable edges. */
1148 edge e = gimple_phi_arg_edge (phi, i);
1149
1150 if (dump_file && (dump_flags & TDF_DETAILS))
1151 {
1152 fprintf (dump_file,
1153 "\tArgument #%d (%d -> %d %sexecutable)\n",
1154 i, e->src->index, e->dest->index,
1155 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1156 }
1157
1158 /* If the incoming edge is executable, Compute the meet operator for
1159 the existing value of the PHI node and the current PHI argument. */
1160 if (e->flags & EDGE_EXECUTABLE)
1161 {
1162 tree arg = gimple_phi_arg (phi, i)->def;
1163 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1164
1165 if (first)
1166 {
1167 new_val = arg_val;
1168 first = false;
1169 }
1170 else
1171 ccp_lattice_meet (&new_val, &arg_val);
1172
1173 if (dump_file && (dump_flags & TDF_DETAILS))
1174 {
1175 fprintf (dump_file, "\t");
1176 print_generic_expr (dump_file, arg, dump_flags);
1177 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1178 fprintf (dump_file, "\n");
1179 }
1180
1181 if (new_val.lattice_val == VARYING)
1182 break;
1183 }
1184 else
1185 non_exec_edge = true;
1186 }
1187
1188 /* In case there were non-executable edges and the value is a copy
1189 make sure its definition dominates the PHI node. */
1190 if (non_exec_edge
1191 && new_val.lattice_val == CONSTANT
1192 && TREE_CODE (new_val.value) == SSA_NAME
1193 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1194 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1195 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1196 {
1197 new_val.lattice_val = VARYING;
1198 new_val.value = NULL_TREE;
1199 new_val.mask = -1;
1200 }
1201
1202 if (dump_file && (dump_flags & TDF_DETAILS))
1203 {
1204 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1205 fprintf (dump_file, "\n\n");
1206 }
1207
1208 /* Make the transition to the new value. */
1209 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1210 {
1211 if (new_val.lattice_val == VARYING)
1212 return SSA_PROP_VARYING;
1213 else
1214 return SSA_PROP_INTERESTING;
1215 }
1216 else
1217 return SSA_PROP_NOT_INTERESTING;
1218 }
1219
1220 /* Return the constant value for OP or OP otherwise. */
1221
1222 static tree
valueize_op(tree op)1223 valueize_op (tree op)
1224 {
1225 if (TREE_CODE (op) == SSA_NAME)
1226 {
1227 tree tem = get_constant_value (op);
1228 if (tem)
1229 return tem;
1230 }
1231 return op;
1232 }
1233
1234 /* Return the constant value for OP, but signal to not follow SSA
1235 edges if the definition may be simulated again. */
1236
1237 static tree
valueize_op_1(tree op)1238 valueize_op_1 (tree op)
1239 {
1240 if (TREE_CODE (op) == SSA_NAME)
1241 {
1242 /* If the definition may be simulated again we cannot follow
1243 this SSA edge as the SSA propagator does not necessarily
1244 re-visit the use. */
1245 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1246 if (!gimple_nop_p (def_stmt)
1247 && prop_simulate_again_p (def_stmt))
1248 return NULL_TREE;
1249 tree tem = get_constant_value (op);
1250 if (tem)
1251 return tem;
1252 }
1253 return op;
1254 }
1255
1256 /* CCP specific front-end to the non-destructive constant folding
1257 routines.
1258
1259 Attempt to simplify the RHS of STMT knowing that one or more
1260 operands are constants.
1261
1262 If simplification is possible, return the simplified RHS,
1263 otherwise return the original RHS or NULL_TREE. */
1264
1265 static tree
ccp_fold(gimple * stmt)1266 ccp_fold (gimple *stmt)
1267 {
1268 location_t loc = gimple_location (stmt);
1269 switch (gimple_code (stmt))
1270 {
1271 case GIMPLE_COND:
1272 {
1273 /* Handle comparison operators that can appear in GIMPLE form. */
1274 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1275 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1276 enum tree_code code = gimple_cond_code (stmt);
1277 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1278 }
1279
1280 case GIMPLE_SWITCH:
1281 {
1282 /* Return the constant switch index. */
1283 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1284 }
1285
1286 case GIMPLE_ASSIGN:
1287 case GIMPLE_CALL:
1288 return gimple_fold_stmt_to_constant_1 (stmt,
1289 valueize_op, valueize_op_1);
1290
1291 default:
1292 gcc_unreachable ();
1293 }
1294 }
1295
1296 /* Apply the operation CODE in type TYPE to the value, mask pair
1297 RVAL and RMASK representing a value of type RTYPE and set
1298 the value, mask pair *VAL and *MASK to the result. */
1299
1300 void
bit_value_unop(enum tree_code code,signop type_sgn,int type_precision,widest_int * val,widest_int * mask,signop rtype_sgn,int rtype_precision,const widest_int & rval,const widest_int & rmask)1301 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1302 widest_int *val, widest_int *mask,
1303 signop rtype_sgn, int rtype_precision,
1304 const widest_int &rval, const widest_int &rmask)
1305 {
1306 switch (code)
1307 {
1308 case BIT_NOT_EXPR:
1309 *mask = rmask;
1310 *val = ~rval;
1311 break;
1312
1313 case NEGATE_EXPR:
1314 {
1315 widest_int temv, temm;
1316 /* Return ~rval + 1. */
1317 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1318 type_sgn, type_precision, rval, rmask);
1319 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1320 type_sgn, type_precision, temv, temm,
1321 type_sgn, type_precision, 1, 0);
1322 break;
1323 }
1324
1325 CASE_CONVERT:
1326 {
1327 /* First extend mask and value according to the original type. */
1328 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1329 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1330
1331 /* Then extend mask and value according to the target type. */
1332 *mask = wi::ext (*mask, type_precision, type_sgn);
1333 *val = wi::ext (*val, type_precision, type_sgn);
1334 break;
1335 }
1336
1337 default:
1338 *mask = -1;
1339 break;
1340 }
1341 }
1342
1343 /* Apply the operation CODE in type TYPE to the value, mask pairs
1344 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1345 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1346
1347 void
bit_value_binop(enum tree_code code,signop sgn,int width,widest_int * val,widest_int * mask,signop r1type_sgn,int r1type_precision,const widest_int & r1val,const widest_int & r1mask,signop r2type_sgn,int r2type_precision,const widest_int & r2val,const widest_int & r2mask)1348 bit_value_binop (enum tree_code code, signop sgn, int width,
1349 widest_int *val, widest_int *mask,
1350 signop r1type_sgn, int r1type_precision,
1351 const widest_int &r1val, const widest_int &r1mask,
1352 signop r2type_sgn, int r2type_precision,
1353 const widest_int &r2val, const widest_int &r2mask)
1354 {
1355 bool swap_p = false;
1356
1357 /* Assume we'll get a constant result. Use an initial non varying
1358 value, we fall back to varying in the end if necessary. */
1359 *mask = -1;
1360
1361 switch (code)
1362 {
1363 case BIT_AND_EXPR:
1364 /* The mask is constant where there is a known not
1365 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1366 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1367 *val = r1val & r2val;
1368 break;
1369
1370 case BIT_IOR_EXPR:
1371 /* The mask is constant where there is a known
1372 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1373 *mask = wi::bit_and_not (r1mask | r2mask,
1374 wi::bit_and_not (r1val, r1mask)
1375 | wi::bit_and_not (r2val, r2mask));
1376 *val = r1val | r2val;
1377 break;
1378
1379 case BIT_XOR_EXPR:
1380 /* m1 | m2 */
1381 *mask = r1mask | r2mask;
1382 *val = r1val ^ r2val;
1383 break;
1384
1385 case LROTATE_EXPR:
1386 case RROTATE_EXPR:
1387 if (r2mask == 0)
1388 {
1389 widest_int shift = r2val;
1390 if (shift == 0)
1391 {
1392 *mask = r1mask;
1393 *val = r1val;
1394 }
1395 else
1396 {
1397 if (wi::neg_p (shift))
1398 {
1399 shift = -shift;
1400 if (code == RROTATE_EXPR)
1401 code = LROTATE_EXPR;
1402 else
1403 code = RROTATE_EXPR;
1404 }
1405 if (code == RROTATE_EXPR)
1406 {
1407 *mask = wi::rrotate (r1mask, shift, width);
1408 *val = wi::rrotate (r1val, shift, width);
1409 }
1410 else
1411 {
1412 *mask = wi::lrotate (r1mask, shift, width);
1413 *val = wi::lrotate (r1val, shift, width);
1414 }
1415 *mask = wi::ext (*mask, width, sgn);
1416 *val = wi::ext (*val, width, sgn);
1417 }
1418 }
1419 break;
1420
1421 case LSHIFT_EXPR:
1422 case RSHIFT_EXPR:
1423 /* ??? We can handle partially known shift counts if we know
1424 its sign. That way we can tell that (x << (y | 8)) & 255
1425 is zero. */
1426 if (r2mask == 0)
1427 {
1428 widest_int shift = r2val;
1429 if (shift == 0)
1430 {
1431 *mask = r1mask;
1432 *val = r1val;
1433 }
1434 else
1435 {
1436 if (wi::neg_p (shift))
1437 {
1438 shift = -shift;
1439 if (code == RSHIFT_EXPR)
1440 code = LSHIFT_EXPR;
1441 else
1442 code = RSHIFT_EXPR;
1443 }
1444 if (code == RSHIFT_EXPR)
1445 {
1446 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1447 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1448 }
1449 else
1450 {
1451 *mask = wi::ext (r1mask << shift, width, sgn);
1452 *val = wi::ext (r1val << shift, width, sgn);
1453 }
1454 }
1455 }
1456 break;
1457
1458 case PLUS_EXPR:
1459 case POINTER_PLUS_EXPR:
1460 {
1461 /* Do the addition with unknown bits set to zero, to give carry-ins of
1462 zero wherever possible. */
1463 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1464 + wi::bit_and_not (r2val, r2mask));
1465 lo = wi::ext (lo, width, sgn);
1466 /* Do the addition with unknown bits set to one, to give carry-ins of
1467 one wherever possible. */
1468 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1469 hi = wi::ext (hi, width, sgn);
1470 /* Each bit in the result is known if (a) the corresponding bits in
1471 both inputs are known, and (b) the carry-in to that bit position
1472 is known. We can check condition (b) by seeing if we got the same
1473 result with minimised carries as with maximised carries. */
1474 *mask = r1mask | r2mask | (lo ^ hi);
1475 *mask = wi::ext (*mask, width, sgn);
1476 /* It shouldn't matter whether we choose lo or hi here. */
1477 *val = lo;
1478 break;
1479 }
1480
1481 case MINUS_EXPR:
1482 {
1483 widest_int temv, temm;
1484 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1485 r2type_sgn, r2type_precision, r2val, r2mask);
1486 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1487 r1type_sgn, r1type_precision, r1val, r1mask,
1488 r2type_sgn, r2type_precision, temv, temm);
1489 break;
1490 }
1491
1492 case MULT_EXPR:
1493 {
1494 /* Just track trailing zeros in both operands and transfer
1495 them to the other. */
1496 int r1tz = wi::ctz (r1val | r1mask);
1497 int r2tz = wi::ctz (r2val | r2mask);
1498 if (r1tz + r2tz >= width)
1499 {
1500 *mask = 0;
1501 *val = 0;
1502 }
1503 else if (r1tz + r2tz > 0)
1504 {
1505 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1506 width, sgn);
1507 *val = 0;
1508 }
1509 break;
1510 }
1511
1512 case EQ_EXPR:
1513 case NE_EXPR:
1514 {
1515 widest_int m = r1mask | r2mask;
1516 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1517 {
1518 *mask = 0;
1519 *val = ((code == EQ_EXPR) ? 0 : 1);
1520 }
1521 else
1522 {
1523 /* We know the result of a comparison is always one or zero. */
1524 *mask = 1;
1525 *val = 0;
1526 }
1527 break;
1528 }
1529
1530 case GE_EXPR:
1531 case GT_EXPR:
1532 swap_p = true;
1533 code = swap_tree_comparison (code);
1534 /* Fall through. */
1535 case LT_EXPR:
1536 case LE_EXPR:
1537 {
1538 int minmax, maxmin;
1539
1540 const widest_int &o1val = swap_p ? r2val : r1val;
1541 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1542 const widest_int &o2val = swap_p ? r1val : r2val;
1543 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1544
1545 /* If the most significant bits are not known we know nothing. */
1546 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1547 break;
1548
1549 /* For comparisons the signedness is in the comparison operands. */
1550 sgn = r1type_sgn;
1551
1552 /* If we know the most significant bits we know the values
1553 value ranges by means of treating varying bits as zero
1554 or one. Do a cross comparison of the max/min pairs. */
1555 maxmin = wi::cmp (o1val | o1mask,
1556 wi::bit_and_not (o2val, o2mask), sgn);
1557 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1558 o2val | o2mask, sgn);
1559 if (maxmin < 0) /* o1 is less than o2. */
1560 {
1561 *mask = 0;
1562 *val = 1;
1563 }
1564 else if (minmax > 0) /* o1 is not less or equal to o2. */
1565 {
1566 *mask = 0;
1567 *val = 0;
1568 }
1569 else if (maxmin == minmax) /* o1 and o2 are equal. */
1570 {
1571 /* This probably should never happen as we'd have
1572 folded the thing during fully constant value folding. */
1573 *mask = 0;
1574 *val = (code == LE_EXPR ? 1 : 0);
1575 }
1576 else
1577 {
1578 /* We know the result of a comparison is always one or zero. */
1579 *mask = 1;
1580 *val = 0;
1581 }
1582 break;
1583 }
1584
1585 default:;
1586 }
1587 }
1588
1589 /* Return the propagation value when applying the operation CODE to
1590 the value RHS yielding type TYPE. */
1591
1592 static ccp_prop_value_t
bit_value_unop(enum tree_code code,tree type,tree rhs)1593 bit_value_unop (enum tree_code code, tree type, tree rhs)
1594 {
1595 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1596 widest_int value, mask;
1597 ccp_prop_value_t val;
1598
1599 if (rval.lattice_val == UNDEFINED)
1600 return rval;
1601
1602 gcc_assert ((rval.lattice_val == CONSTANT
1603 && TREE_CODE (rval.value) == INTEGER_CST)
1604 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1605 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1606 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1607 value_to_wide_int (rval), rval.mask);
1608 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1609 {
1610 val.lattice_val = CONSTANT;
1611 val.mask = mask;
1612 /* ??? Delay building trees here. */
1613 val.value = wide_int_to_tree (type, value);
1614 }
1615 else
1616 {
1617 val.lattice_val = VARYING;
1618 val.value = NULL_TREE;
1619 val.mask = -1;
1620 }
1621 return val;
1622 }
1623
1624 /* Return the propagation value when applying the operation CODE to
1625 the values RHS1 and RHS2 yielding type TYPE. */
1626
1627 static ccp_prop_value_t
bit_value_binop(enum tree_code code,tree type,tree rhs1,tree rhs2)1628 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1629 {
1630 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1631 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1632 widest_int value, mask;
1633 ccp_prop_value_t val;
1634
1635 if (r1val.lattice_val == UNDEFINED
1636 || r2val.lattice_val == UNDEFINED)
1637 {
1638 val.lattice_val = VARYING;
1639 val.value = NULL_TREE;
1640 val.mask = -1;
1641 return val;
1642 }
1643
1644 gcc_assert ((r1val.lattice_val == CONSTANT
1645 && TREE_CODE (r1val.value) == INTEGER_CST)
1646 || wi::sext (r1val.mask,
1647 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1648 gcc_assert ((r2val.lattice_val == CONSTANT
1649 && TREE_CODE (r2val.value) == INTEGER_CST)
1650 || wi::sext (r2val.mask,
1651 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1652 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1653 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1654 value_to_wide_int (r1val), r1val.mask,
1655 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1656 value_to_wide_int (r2val), r2val.mask);
1657
1658 /* (x * x) & 2 == 0. */
1659 if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
1660 {
1661 widest_int m = 2;
1662 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1663 value = wi::bit_and_not (value, m);
1664 else
1665 value = 0;
1666 mask = wi::bit_and_not (mask, m);
1667 }
1668
1669 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1670 {
1671 val.lattice_val = CONSTANT;
1672 val.mask = mask;
1673 /* ??? Delay building trees here. */
1674 val.value = wide_int_to_tree (type, value);
1675 }
1676 else
1677 {
1678 val.lattice_val = VARYING;
1679 val.value = NULL_TREE;
1680 val.mask = -1;
1681 }
1682 return val;
1683 }
1684
1685 /* Return the propagation value for __builtin_assume_aligned
1686 and functions with assume_aligned or alloc_aligned attribute.
1687 For __builtin_assume_aligned, ATTR is NULL_TREE,
1688 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1689 is false, for alloc_aligned attribute ATTR is non-NULL and
1690 ALLOC_ALIGNED is true. */
1691
1692 static ccp_prop_value_t
bit_value_assume_aligned(gimple * stmt,tree attr,ccp_prop_value_t ptrval,bool alloc_aligned)1693 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1694 bool alloc_aligned)
1695 {
1696 tree align, misalign = NULL_TREE, type;
1697 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1698 ccp_prop_value_t alignval;
1699 widest_int value, mask;
1700 ccp_prop_value_t val;
1701
1702 if (attr == NULL_TREE)
1703 {
1704 tree ptr = gimple_call_arg (stmt, 0);
1705 type = TREE_TYPE (ptr);
1706 ptrval = get_value_for_expr (ptr, true);
1707 }
1708 else
1709 {
1710 tree lhs = gimple_call_lhs (stmt);
1711 type = TREE_TYPE (lhs);
1712 }
1713
1714 if (ptrval.lattice_val == UNDEFINED)
1715 return ptrval;
1716 gcc_assert ((ptrval.lattice_val == CONSTANT
1717 && TREE_CODE (ptrval.value) == INTEGER_CST)
1718 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1719 if (attr == NULL_TREE)
1720 {
1721 /* Get aligni and misaligni from __builtin_assume_aligned. */
1722 align = gimple_call_arg (stmt, 1);
1723 if (!tree_fits_uhwi_p (align))
1724 return ptrval;
1725 aligni = tree_to_uhwi (align);
1726 if (gimple_call_num_args (stmt) > 2)
1727 {
1728 misalign = gimple_call_arg (stmt, 2);
1729 if (!tree_fits_uhwi_p (misalign))
1730 return ptrval;
1731 misaligni = tree_to_uhwi (misalign);
1732 }
1733 }
1734 else
1735 {
1736 /* Get aligni and misaligni from assume_aligned or
1737 alloc_align attributes. */
1738 if (TREE_VALUE (attr) == NULL_TREE)
1739 return ptrval;
1740 attr = TREE_VALUE (attr);
1741 align = TREE_VALUE (attr);
1742 if (!tree_fits_uhwi_p (align))
1743 return ptrval;
1744 aligni = tree_to_uhwi (align);
1745 if (alloc_aligned)
1746 {
1747 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1748 return ptrval;
1749 align = gimple_call_arg (stmt, aligni - 1);
1750 if (!tree_fits_uhwi_p (align))
1751 return ptrval;
1752 aligni = tree_to_uhwi (align);
1753 }
1754 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1755 {
1756 misalign = TREE_VALUE (TREE_CHAIN (attr));
1757 if (!tree_fits_uhwi_p (misalign))
1758 return ptrval;
1759 misaligni = tree_to_uhwi (misalign);
1760 }
1761 }
1762 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1763 return ptrval;
1764
1765 align = build_int_cst_type (type, -aligni);
1766 alignval = get_value_for_expr (align, true);
1767 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1768 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1769 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1770
1771 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1772 {
1773 val.lattice_val = CONSTANT;
1774 val.mask = mask;
1775 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1776 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1777 value |= misaligni;
1778 /* ??? Delay building trees here. */
1779 val.value = wide_int_to_tree (type, value);
1780 }
1781 else
1782 {
1783 val.lattice_val = VARYING;
1784 val.value = NULL_TREE;
1785 val.mask = -1;
1786 }
1787 return val;
1788 }
1789
1790 /* Evaluate statement STMT.
1791 Valid only for assignments, calls, conditionals, and switches. */
1792
1793 static ccp_prop_value_t
evaluate_stmt(gimple * stmt)1794 evaluate_stmt (gimple *stmt)
1795 {
1796 ccp_prop_value_t val;
1797 tree simplified = NULL_TREE;
1798 ccp_lattice_t likelyvalue = likely_value (stmt);
1799 bool is_constant = false;
1800 unsigned int align;
1801
1802 if (dump_file && (dump_flags & TDF_DETAILS))
1803 {
1804 fprintf (dump_file, "which is likely ");
1805 switch (likelyvalue)
1806 {
1807 case CONSTANT:
1808 fprintf (dump_file, "CONSTANT");
1809 break;
1810 case UNDEFINED:
1811 fprintf (dump_file, "UNDEFINED");
1812 break;
1813 case VARYING:
1814 fprintf (dump_file, "VARYING");
1815 break;
1816 default:;
1817 }
1818 fprintf (dump_file, "\n");
1819 }
1820
1821 /* If the statement is likely to have a CONSTANT result, then try
1822 to fold the statement to determine the constant value. */
1823 /* FIXME. This is the only place that we call ccp_fold.
1824 Since likely_value never returns CONSTANT for calls, we will
1825 not attempt to fold them, including builtins that may profit. */
1826 if (likelyvalue == CONSTANT)
1827 {
1828 fold_defer_overflow_warnings ();
1829 simplified = ccp_fold (stmt);
1830 if (simplified
1831 && TREE_CODE (simplified) == SSA_NAME)
1832 {
1833 /* We may not use values of something that may be simulated again,
1834 see valueize_op_1. */
1835 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1836 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1837 {
1838 ccp_prop_value_t *val = get_value (simplified);
1839 if (val && val->lattice_val != VARYING)
1840 {
1841 fold_undefer_overflow_warnings (true, stmt, 0);
1842 return *val;
1843 }
1844 }
1845 else
1846 /* We may also not place a non-valueized copy in the lattice
1847 as that might become stale if we never re-visit this stmt. */
1848 simplified = NULL_TREE;
1849 }
1850 is_constant = simplified && is_gimple_min_invariant (simplified);
1851 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1852 if (is_constant)
1853 {
1854 /* The statement produced a constant value. */
1855 val.lattice_val = CONSTANT;
1856 val.value = simplified;
1857 val.mask = 0;
1858 return val;
1859 }
1860 }
1861 /* If the statement is likely to have a VARYING result, then do not
1862 bother folding the statement. */
1863 else if (likelyvalue == VARYING)
1864 {
1865 enum gimple_code code = gimple_code (stmt);
1866 if (code == GIMPLE_ASSIGN)
1867 {
1868 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1869
1870 /* Other cases cannot satisfy is_gimple_min_invariant
1871 without folding. */
1872 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1873 simplified = gimple_assign_rhs1 (stmt);
1874 }
1875 else if (code == GIMPLE_SWITCH)
1876 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1877 else
1878 /* These cannot satisfy is_gimple_min_invariant without folding. */
1879 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1880 is_constant = simplified && is_gimple_min_invariant (simplified);
1881 if (is_constant)
1882 {
1883 /* The statement produced a constant value. */
1884 val.lattice_val = CONSTANT;
1885 val.value = simplified;
1886 val.mask = 0;
1887 }
1888 }
1889 /* If the statement result is likely UNDEFINED, make it so. */
1890 else if (likelyvalue == UNDEFINED)
1891 {
1892 val.lattice_val = UNDEFINED;
1893 val.value = NULL_TREE;
1894 val.mask = 0;
1895 return val;
1896 }
1897
1898 /* Resort to simplification for bitwise tracking. */
1899 if (flag_tree_bit_ccp
1900 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1901 || (gimple_assign_single_p (stmt)
1902 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1903 && !is_constant)
1904 {
1905 enum gimple_code code = gimple_code (stmt);
1906 val.lattice_val = VARYING;
1907 val.value = NULL_TREE;
1908 val.mask = -1;
1909 if (code == GIMPLE_ASSIGN)
1910 {
1911 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1912 tree rhs1 = gimple_assign_rhs1 (stmt);
1913 tree lhs = gimple_assign_lhs (stmt);
1914 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1915 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1916 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1917 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1918 switch (get_gimple_rhs_class (subcode))
1919 {
1920 case GIMPLE_SINGLE_RHS:
1921 val = get_value_for_expr (rhs1, true);
1922 break;
1923
1924 case GIMPLE_UNARY_RHS:
1925 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1926 break;
1927
1928 case GIMPLE_BINARY_RHS:
1929 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1930 gimple_assign_rhs2 (stmt));
1931 break;
1932
1933 default:;
1934 }
1935 }
1936 else if (code == GIMPLE_COND)
1937 {
1938 enum tree_code code = gimple_cond_code (stmt);
1939 tree rhs1 = gimple_cond_lhs (stmt);
1940 tree rhs2 = gimple_cond_rhs (stmt);
1941 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1942 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1943 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1944 }
1945 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1946 {
1947 tree fndecl = gimple_call_fndecl (stmt);
1948 switch (DECL_FUNCTION_CODE (fndecl))
1949 {
1950 case BUILT_IN_MALLOC:
1951 case BUILT_IN_REALLOC:
1952 case BUILT_IN_CALLOC:
1953 case BUILT_IN_STRDUP:
1954 case BUILT_IN_STRNDUP:
1955 val.lattice_val = CONSTANT;
1956 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1957 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1958 / BITS_PER_UNIT - 1);
1959 break;
1960
1961 CASE_BUILT_IN_ALLOCA:
1962 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1963 ? BIGGEST_ALIGNMENT
1964 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1965 val.lattice_val = CONSTANT;
1966 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1967 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1968 break;
1969
1970 /* These builtins return their first argument, unmodified. */
1971 case BUILT_IN_MEMCPY:
1972 case BUILT_IN_MEMMOVE:
1973 case BUILT_IN_MEMSET:
1974 case BUILT_IN_STRCPY:
1975 case BUILT_IN_STRNCPY:
1976 case BUILT_IN_MEMCPY_CHK:
1977 case BUILT_IN_MEMMOVE_CHK:
1978 case BUILT_IN_MEMSET_CHK:
1979 case BUILT_IN_STRCPY_CHK:
1980 case BUILT_IN_STRNCPY_CHK:
1981 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1982 break;
1983
1984 case BUILT_IN_ASSUME_ALIGNED:
1985 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1986 break;
1987
1988 case BUILT_IN_ALIGNED_ALLOC:
1989 {
1990 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1991 if (align
1992 && tree_fits_uhwi_p (align))
1993 {
1994 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1995 if (aligni > 1
1996 /* align must be power-of-two */
1997 && (aligni & (aligni - 1)) == 0)
1998 {
1999 val.lattice_val = CONSTANT;
2000 val.value = build_int_cst (ptr_type_node, 0);
2001 val.mask = -aligni;
2002 }
2003 }
2004 break;
2005 }
2006
2007 case BUILT_IN_BSWAP16:
2008 case BUILT_IN_BSWAP32:
2009 case BUILT_IN_BSWAP64:
2010 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
2011 if (val.lattice_val == UNDEFINED)
2012 break;
2013 else if (val.lattice_val == CONSTANT
2014 && val.value
2015 && TREE_CODE (val.value) == INTEGER_CST)
2016 {
2017 tree type = TREE_TYPE (gimple_call_lhs (stmt));
2018 int prec = TYPE_PRECISION (type);
2019 wide_int wval = wi::to_wide (val.value);
2020 val.value
2021 = wide_int_to_tree (type,
2022 wide_int::from (wval, prec,
2023 UNSIGNED).bswap ());
2024 val.mask
2025 = widest_int::from (wide_int::from (val.mask, prec,
2026 UNSIGNED).bswap (),
2027 UNSIGNED);
2028 if (wi::sext (val.mask, prec) != -1)
2029 break;
2030 }
2031 val.lattice_val = VARYING;
2032 val.value = NULL_TREE;
2033 val.mask = -1;
2034 break;
2035
2036 default:;
2037 }
2038 }
2039 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2040 {
2041 tree fntype = gimple_call_fntype (stmt);
2042 if (fntype)
2043 {
2044 tree attrs = lookup_attribute ("assume_aligned",
2045 TYPE_ATTRIBUTES (fntype));
2046 if (attrs)
2047 val = bit_value_assume_aligned (stmt, attrs, val, false);
2048 attrs = lookup_attribute ("alloc_align",
2049 TYPE_ATTRIBUTES (fntype));
2050 if (attrs)
2051 val = bit_value_assume_aligned (stmt, attrs, val, true);
2052 }
2053 }
2054 is_constant = (val.lattice_val == CONSTANT);
2055 }
2056
2057 if (flag_tree_bit_ccp
2058 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2059 || !is_constant)
2060 && gimple_get_lhs (stmt)
2061 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2062 {
2063 tree lhs = gimple_get_lhs (stmt);
2064 wide_int nonzero_bits = get_nonzero_bits (lhs);
2065 if (nonzero_bits != -1)
2066 {
2067 if (!is_constant)
2068 {
2069 val.lattice_val = CONSTANT;
2070 val.value = build_zero_cst (TREE_TYPE (lhs));
2071 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2072 is_constant = true;
2073 }
2074 else
2075 {
2076 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2077 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2078 nonzero_bits
2079 & wi::to_wide (val.value));
2080 if (nonzero_bits == 0)
2081 val.mask = 0;
2082 else
2083 val.mask = val.mask & extend_mask (nonzero_bits,
2084 TYPE_SIGN (TREE_TYPE (lhs)));
2085 }
2086 }
2087 }
2088
2089 /* The statement produced a nonconstant value. */
2090 if (!is_constant)
2091 {
2092 /* The statement produced a copy. */
2093 if (simplified && TREE_CODE (simplified) == SSA_NAME
2094 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2095 {
2096 val.lattice_val = CONSTANT;
2097 val.value = simplified;
2098 val.mask = -1;
2099 }
2100 /* The statement is VARYING. */
2101 else
2102 {
2103 val.lattice_val = VARYING;
2104 val.value = NULL_TREE;
2105 val.mask = -1;
2106 }
2107 }
2108
2109 return val;
2110 }
2111
2112 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2113
2114 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2115 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2116
2117 static void
insert_clobber_before_stack_restore(tree saved_val,tree var,gimple_htab ** visited)2118 insert_clobber_before_stack_restore (tree saved_val, tree var,
2119 gimple_htab **visited)
2120 {
2121 gimple *stmt;
2122 gassign *clobber_stmt;
2123 tree clobber;
2124 imm_use_iterator iter;
2125 gimple_stmt_iterator i;
2126 gimple **slot;
2127
2128 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2129 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2130 {
2131 clobber = build_clobber (TREE_TYPE (var));
2132 clobber_stmt = gimple_build_assign (var, clobber);
2133
2134 i = gsi_for_stmt (stmt);
2135 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2136 }
2137 else if (gimple_code (stmt) == GIMPLE_PHI)
2138 {
2139 if (!*visited)
2140 *visited = new gimple_htab (10);
2141
2142 slot = (*visited)->find_slot (stmt, INSERT);
2143 if (*slot != NULL)
2144 continue;
2145
2146 *slot = stmt;
2147 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2148 visited);
2149 }
2150 else if (gimple_assign_ssa_name_copy_p (stmt))
2151 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2152 visited);
2153 }
2154
2155 /* Advance the iterator to the previous non-debug gimple statement in the same
2156 or dominating basic block. */
2157
2158 static inline void
gsi_prev_dom_bb_nondebug(gimple_stmt_iterator * i)2159 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2160 {
2161 basic_block dom;
2162
2163 gsi_prev_nondebug (i);
2164 while (gsi_end_p (*i))
2165 {
2166 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2167 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2168 return;
2169
2170 *i = gsi_last_bb (dom);
2171 }
2172 }
2173
2174 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2175 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2176
2177 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2178 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2179 In that case the function gives up without inserting the clobbers. */
2180
2181 static void
insert_clobbers_for_var(gimple_stmt_iterator i,tree var)2182 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2183 {
2184 gimple *stmt;
2185 tree saved_val;
2186 gimple_htab *visited = NULL;
2187
2188 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2189 {
2190 stmt = gsi_stmt (i);
2191
2192 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2193 continue;
2194
2195 saved_val = gimple_call_lhs (stmt);
2196 if (saved_val == NULL_TREE)
2197 continue;
2198
2199 insert_clobber_before_stack_restore (saved_val, var, &visited);
2200 break;
2201 }
2202
2203 delete visited;
2204 }
2205
2206 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2207 fixed-size array and returns the address, if found, otherwise returns
2208 NULL_TREE. */
2209
2210 static tree
fold_builtin_alloca_with_align(gimple * stmt)2211 fold_builtin_alloca_with_align (gimple *stmt)
2212 {
2213 unsigned HOST_WIDE_INT size, threshold, n_elem;
2214 tree lhs, arg, block, var, elem_type, array_type;
2215
2216 /* Get lhs. */
2217 lhs = gimple_call_lhs (stmt);
2218 if (lhs == NULL_TREE)
2219 return NULL_TREE;
2220
2221 /* Detect constant argument. */
2222 arg = get_constant_value (gimple_call_arg (stmt, 0));
2223 if (arg == NULL_TREE
2224 || TREE_CODE (arg) != INTEGER_CST
2225 || !tree_fits_uhwi_p (arg))
2226 return NULL_TREE;
2227
2228 size = tree_to_uhwi (arg);
2229
2230 /* Heuristic: don't fold large allocas. */
2231 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2232 /* In case the alloca is located at function entry, it has the same lifetime
2233 as a declared array, so we allow a larger size. */
2234 block = gimple_block (stmt);
2235 if (!(cfun->after_inlining
2236 && block
2237 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2238 threshold /= 10;
2239 if (size > threshold)
2240 return NULL_TREE;
2241
2242 /* We have to be able to move points-to info. We used to assert
2243 that we can but IPA PTA might end up with two UIDs here
2244 as it might need to handle more than one instance being
2245 live at the same time. Instead of trying to detect this case
2246 (using the first UID would be OK) just give up for now. */
2247 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2248 unsigned uid = 0;
2249 if (pi != NULL
2250 && !pi->pt.anything
2251 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2252 return NULL_TREE;
2253
2254 /* Declare array. */
2255 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2256 n_elem = size * 8 / BITS_PER_UNIT;
2257 array_type = build_array_type_nelts (elem_type, n_elem);
2258
2259 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2260 {
2261 /* Give the temporary a name derived from the name of the VLA
2262 declaration so it can be referenced in diagnostics. */
2263 const char *name = IDENTIFIER_POINTER (ssa_name);
2264 var = create_tmp_var (array_type, name);
2265 }
2266 else
2267 var = create_tmp_var (array_type);
2268
2269 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2270 {
2271 /* Set the temporary's location to that of the VLA declaration
2272 so it can be pointed to in diagnostics. */
2273 location_t loc = gimple_location (lhsdef);
2274 DECL_SOURCE_LOCATION (var) = loc;
2275 }
2276
2277 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2278 if (uid != 0)
2279 SET_DECL_PT_UID (var, uid);
2280
2281 /* Fold alloca to the address of the array. */
2282 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2283 }
2284
2285 /* Fold the stmt at *GSI with CCP specific information that propagating
2286 and regular folding does not catch. */
2287
2288 bool
fold_stmt(gimple_stmt_iterator * gsi)2289 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2290 {
2291 gimple *stmt = gsi_stmt (*gsi);
2292
2293 switch (gimple_code (stmt))
2294 {
2295 case GIMPLE_COND:
2296 {
2297 gcond *cond_stmt = as_a <gcond *> (stmt);
2298 ccp_prop_value_t val;
2299 /* Statement evaluation will handle type mismatches in constants
2300 more gracefully than the final propagation. This allows us to
2301 fold more conditionals here. */
2302 val = evaluate_stmt (stmt);
2303 if (val.lattice_val != CONSTANT
2304 || val.mask != 0)
2305 return false;
2306
2307 if (dump_file)
2308 {
2309 fprintf (dump_file, "Folding predicate ");
2310 print_gimple_expr (dump_file, stmt, 0);
2311 fprintf (dump_file, " to ");
2312 print_generic_expr (dump_file, val.value);
2313 fprintf (dump_file, "\n");
2314 }
2315
2316 if (integer_zerop (val.value))
2317 gimple_cond_make_false (cond_stmt);
2318 else
2319 gimple_cond_make_true (cond_stmt);
2320
2321 return true;
2322 }
2323
2324 case GIMPLE_CALL:
2325 {
2326 tree lhs = gimple_call_lhs (stmt);
2327 int flags = gimple_call_flags (stmt);
2328 tree val;
2329 tree argt;
2330 bool changed = false;
2331 unsigned i;
2332
2333 /* If the call was folded into a constant make sure it goes
2334 away even if we cannot propagate into all uses because of
2335 type issues. */
2336 if (lhs
2337 && TREE_CODE (lhs) == SSA_NAME
2338 && (val = get_constant_value (lhs))
2339 /* Don't optimize away calls that have side-effects. */
2340 && (flags & (ECF_CONST|ECF_PURE)) != 0
2341 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2342 {
2343 tree new_rhs = unshare_expr (val);
2344 bool res;
2345 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2346 TREE_TYPE (new_rhs)))
2347 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2348 res = update_call_from_tree (gsi, new_rhs);
2349 gcc_assert (res);
2350 return true;
2351 }
2352
2353 /* Internal calls provide no argument types, so the extra laxity
2354 for normal calls does not apply. */
2355 if (gimple_call_internal_p (stmt))
2356 return false;
2357
2358 /* The heuristic of fold_builtin_alloca_with_align differs before and
2359 after inlining, so we don't require the arg to be changed into a
2360 constant for folding, but just to be constant. */
2361 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2362 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2363 {
2364 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2365 if (new_rhs)
2366 {
2367 bool res = update_call_from_tree (gsi, new_rhs);
2368 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2369 gcc_assert (res);
2370 insert_clobbers_for_var (*gsi, var);
2371 return true;
2372 }
2373 }
2374
2375 /* If there's no extra info from an assume_aligned call,
2376 drop it so it doesn't act as otherwise useless dataflow
2377 barrier. */
2378 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2379 {
2380 tree ptr = gimple_call_arg (stmt, 0);
2381 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2382 if (ptrval.lattice_val == CONSTANT
2383 && TREE_CODE (ptrval.value) == INTEGER_CST
2384 && ptrval.mask != 0)
2385 {
2386 ccp_prop_value_t val
2387 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2388 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2389 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2390 if (ptralign == align
2391 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2392 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2393 {
2394 bool res = update_call_from_tree (gsi, ptr);
2395 gcc_assert (res);
2396 return true;
2397 }
2398 }
2399 }
2400
2401 /* Propagate into the call arguments. Compared to replace_uses_in
2402 this can use the argument slot types for type verification
2403 instead of the current argument type. We also can safely
2404 drop qualifiers here as we are dealing with constants anyway. */
2405 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2406 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2407 ++i, argt = TREE_CHAIN (argt))
2408 {
2409 tree arg = gimple_call_arg (stmt, i);
2410 if (TREE_CODE (arg) == SSA_NAME
2411 && (val = get_constant_value (arg))
2412 && useless_type_conversion_p
2413 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2414 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2415 {
2416 gimple_call_set_arg (stmt, i, unshare_expr (val));
2417 changed = true;
2418 }
2419 }
2420
2421 return changed;
2422 }
2423
2424 case GIMPLE_ASSIGN:
2425 {
2426 tree lhs = gimple_assign_lhs (stmt);
2427 tree val;
2428
2429 /* If we have a load that turned out to be constant replace it
2430 as we cannot propagate into all uses in all cases. */
2431 if (gimple_assign_single_p (stmt)
2432 && TREE_CODE (lhs) == SSA_NAME
2433 && (val = get_constant_value (lhs)))
2434 {
2435 tree rhs = unshare_expr (val);
2436 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2437 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2438 gimple_assign_set_rhs_from_tree (gsi, rhs);
2439 return true;
2440 }
2441
2442 return false;
2443 }
2444
2445 default:
2446 return false;
2447 }
2448 }
2449
2450 /* Visit the assignment statement STMT. Set the value of its LHS to the
2451 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2452 creates virtual definitions, set the value of each new name to that
2453 of the RHS (if we can derive a constant out of the RHS).
2454 Value-returning call statements also perform an assignment, and
2455 are handled here. */
2456
2457 static enum ssa_prop_result
visit_assignment(gimple * stmt,tree * output_p)2458 visit_assignment (gimple *stmt, tree *output_p)
2459 {
2460 ccp_prop_value_t val;
2461 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2462
2463 tree lhs = gimple_get_lhs (stmt);
2464 if (TREE_CODE (lhs) == SSA_NAME)
2465 {
2466 /* Evaluate the statement, which could be
2467 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2468 val = evaluate_stmt (stmt);
2469
2470 /* If STMT is an assignment to an SSA_NAME, we only have one
2471 value to set. */
2472 if (set_lattice_value (lhs, &val))
2473 {
2474 *output_p = lhs;
2475 if (val.lattice_val == VARYING)
2476 retval = SSA_PROP_VARYING;
2477 else
2478 retval = SSA_PROP_INTERESTING;
2479 }
2480 }
2481
2482 return retval;
2483 }
2484
2485
2486 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2487 if it can determine which edge will be taken. Otherwise, return
2488 SSA_PROP_VARYING. */
2489
2490 static enum ssa_prop_result
visit_cond_stmt(gimple * stmt,edge * taken_edge_p)2491 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2492 {
2493 ccp_prop_value_t val;
2494 basic_block block;
2495
2496 block = gimple_bb (stmt);
2497 val = evaluate_stmt (stmt);
2498 if (val.lattice_val != CONSTANT
2499 || val.mask != 0)
2500 return SSA_PROP_VARYING;
2501
2502 /* Find which edge out of the conditional block will be taken and add it
2503 to the worklist. If no single edge can be determined statically,
2504 return SSA_PROP_VARYING to feed all the outgoing edges to the
2505 propagation engine. */
2506 *taken_edge_p = find_taken_edge (block, val.value);
2507 if (*taken_edge_p)
2508 return SSA_PROP_INTERESTING;
2509 else
2510 return SSA_PROP_VARYING;
2511 }
2512
2513
2514 /* Evaluate statement STMT. If the statement produces an output value and
2515 its evaluation changes the lattice value of its output, return
2516 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2517 output value.
2518
2519 If STMT is a conditional branch and we can determine its truth
2520 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2521 value, return SSA_PROP_VARYING. */
2522
2523 enum ssa_prop_result
visit_stmt(gimple * stmt,edge * taken_edge_p,tree * output_p)2524 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2525 {
2526 tree def;
2527 ssa_op_iter iter;
2528
2529 if (dump_file && (dump_flags & TDF_DETAILS))
2530 {
2531 fprintf (dump_file, "\nVisiting statement:\n");
2532 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2533 }
2534
2535 switch (gimple_code (stmt))
2536 {
2537 case GIMPLE_ASSIGN:
2538 /* If the statement is an assignment that produces a single
2539 output value, evaluate its RHS to see if the lattice value of
2540 its output has changed. */
2541 return visit_assignment (stmt, output_p);
2542
2543 case GIMPLE_CALL:
2544 /* A value-returning call also performs an assignment. */
2545 if (gimple_call_lhs (stmt) != NULL_TREE)
2546 return visit_assignment (stmt, output_p);
2547 break;
2548
2549 case GIMPLE_COND:
2550 case GIMPLE_SWITCH:
2551 /* If STMT is a conditional branch, see if we can determine
2552 which branch will be taken. */
2553 /* FIXME. It appears that we should be able to optimize
2554 computed GOTOs here as well. */
2555 return visit_cond_stmt (stmt, taken_edge_p);
2556
2557 default:
2558 break;
2559 }
2560
2561 /* Any other kind of statement is not interesting for constant
2562 propagation and, therefore, not worth simulating. */
2563 if (dump_file && (dump_flags & TDF_DETAILS))
2564 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2565
2566 /* Definitions made by statements other than assignments to
2567 SSA_NAMEs represent unknown modifications to their outputs.
2568 Mark them VARYING. */
2569 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2570 set_value_varying (def);
2571
2572 return SSA_PROP_VARYING;
2573 }
2574
2575
2576 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2577 record nonzero bits. */
2578
2579 static unsigned int
do_ssa_ccp(bool nonzero_p)2580 do_ssa_ccp (bool nonzero_p)
2581 {
2582 unsigned int todo = 0;
2583 calculate_dominance_info (CDI_DOMINATORS);
2584
2585 ccp_initialize ();
2586 class ccp_propagate ccp_propagate;
2587 ccp_propagate.ssa_propagate ();
2588 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2589 {
2590 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2591
2592 /* ccp_finalize does not preserve loop-closed ssa. */
2593 loops_state_clear (LOOP_CLOSED_SSA);
2594 }
2595
2596 free_dominance_info (CDI_DOMINATORS);
2597 return todo;
2598 }
2599
2600
2601 namespace {
2602
2603 const pass_data pass_data_ccp =
2604 {
2605 GIMPLE_PASS, /* type */
2606 "ccp", /* name */
2607 OPTGROUP_NONE, /* optinfo_flags */
2608 TV_TREE_CCP, /* tv_id */
2609 ( PROP_cfg | PROP_ssa ), /* properties_required */
2610 0, /* properties_provided */
2611 0, /* properties_destroyed */
2612 0, /* todo_flags_start */
2613 TODO_update_address_taken, /* todo_flags_finish */
2614 };
2615
2616 class pass_ccp : public gimple_opt_pass
2617 {
2618 public:
pass_ccp(gcc::context * ctxt)2619 pass_ccp (gcc::context *ctxt)
2620 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2621 {}
2622
2623 /* opt_pass methods: */
clone()2624 opt_pass * clone () { return new pass_ccp (m_ctxt); }
set_pass_param(unsigned int n,bool param)2625 void set_pass_param (unsigned int n, bool param)
2626 {
2627 gcc_assert (n == 0);
2628 nonzero_p = param;
2629 }
gate(function *)2630 virtual bool gate (function *) { return flag_tree_ccp != 0; }
execute(function *)2631 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2632
2633 private:
2634 /* Determines whether the pass instance records nonzero bits. */
2635 bool nonzero_p;
2636 }; // class pass_ccp
2637
2638 } // anon namespace
2639
2640 gimple_opt_pass *
make_pass_ccp(gcc::context * ctxt)2641 make_pass_ccp (gcc::context *ctxt)
2642 {
2643 return new pass_ccp (ctxt);
2644 }
2645
2646
2647
2648 /* Try to optimize out __builtin_stack_restore. Optimize it out
2649 if there is another __builtin_stack_restore in the same basic
2650 block and no calls or ASM_EXPRs are in between, or if this block's
2651 only outgoing edge is to EXIT_BLOCK and there are no calls or
2652 ASM_EXPRs after this __builtin_stack_restore. */
2653
2654 static tree
optimize_stack_restore(gimple_stmt_iterator i)2655 optimize_stack_restore (gimple_stmt_iterator i)
2656 {
2657 tree callee;
2658 gimple *stmt;
2659
2660 basic_block bb = gsi_bb (i);
2661 gimple *call = gsi_stmt (i);
2662
2663 if (gimple_code (call) != GIMPLE_CALL
2664 || gimple_call_num_args (call) != 1
2665 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2666 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2667 return NULL_TREE;
2668
2669 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2670 {
2671 stmt = gsi_stmt (i);
2672 if (gimple_code (stmt) == GIMPLE_ASM)
2673 return NULL_TREE;
2674 if (gimple_code (stmt) != GIMPLE_CALL)
2675 continue;
2676
2677 callee = gimple_call_fndecl (stmt);
2678 if (!callee
2679 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2680 /* All regular builtins are ok, just obviously not alloca. */
2681 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2682 return NULL_TREE;
2683
2684 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2685 goto second_stack_restore;
2686 }
2687
2688 if (!gsi_end_p (i))
2689 return NULL_TREE;
2690
2691 /* Allow one successor of the exit block, or zero successors. */
2692 switch (EDGE_COUNT (bb->succs))
2693 {
2694 case 0:
2695 break;
2696 case 1:
2697 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2698 return NULL_TREE;
2699 break;
2700 default:
2701 return NULL_TREE;
2702 }
2703 second_stack_restore:
2704
2705 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2706 If there are multiple uses, then the last one should remove the call.
2707 In any case, whether the call to __builtin_stack_save can be removed
2708 or not is irrelevant to removing the call to __builtin_stack_restore. */
2709 if (has_single_use (gimple_call_arg (call, 0)))
2710 {
2711 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2712 if (is_gimple_call (stack_save))
2713 {
2714 callee = gimple_call_fndecl (stack_save);
2715 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2716 {
2717 gimple_stmt_iterator stack_save_gsi;
2718 tree rhs;
2719
2720 stack_save_gsi = gsi_for_stmt (stack_save);
2721 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2722 update_call_from_tree (&stack_save_gsi, rhs);
2723 }
2724 }
2725 }
2726
2727 /* No effect, so the statement will be deleted. */
2728 return integer_zero_node;
2729 }
2730
2731 /* If va_list type is a simple pointer and nothing special is needed,
2732 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2733 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2734 pointer assignment. */
2735
2736 static tree
optimize_stdarg_builtin(gimple * call)2737 optimize_stdarg_builtin (gimple *call)
2738 {
2739 tree callee, lhs, rhs, cfun_va_list;
2740 bool va_list_simple_ptr;
2741 location_t loc = gimple_location (call);
2742
2743 callee = gimple_call_fndecl (call);
2744
2745 cfun_va_list = targetm.fn_abi_va_list (callee);
2746 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2747 && (TREE_TYPE (cfun_va_list) == void_type_node
2748 || TREE_TYPE (cfun_va_list) == char_type_node);
2749
2750 switch (DECL_FUNCTION_CODE (callee))
2751 {
2752 case BUILT_IN_VA_START:
2753 if (!va_list_simple_ptr
2754 || targetm.expand_builtin_va_start != NULL
2755 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2756 return NULL_TREE;
2757
2758 if (gimple_call_num_args (call) != 2)
2759 return NULL_TREE;
2760
2761 lhs = gimple_call_arg (call, 0);
2762 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2763 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2764 != TYPE_MAIN_VARIANT (cfun_va_list))
2765 return NULL_TREE;
2766
2767 lhs = build_fold_indirect_ref_loc (loc, lhs);
2768 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2769 1, integer_zero_node);
2770 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2771 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2772
2773 case BUILT_IN_VA_COPY:
2774 if (!va_list_simple_ptr)
2775 return NULL_TREE;
2776
2777 if (gimple_call_num_args (call) != 2)
2778 return NULL_TREE;
2779
2780 lhs = gimple_call_arg (call, 0);
2781 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2782 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2783 != TYPE_MAIN_VARIANT (cfun_va_list))
2784 return NULL_TREE;
2785
2786 lhs = build_fold_indirect_ref_loc (loc, lhs);
2787 rhs = gimple_call_arg (call, 1);
2788 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2789 != TYPE_MAIN_VARIANT (cfun_va_list))
2790 return NULL_TREE;
2791
2792 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2793 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2794
2795 case BUILT_IN_VA_END:
2796 /* No effect, so the statement will be deleted. */
2797 return integer_zero_node;
2798
2799 default:
2800 gcc_unreachable ();
2801 }
2802 }
2803
2804 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2805 the incoming jumps. Return true if at least one jump was changed. */
2806
2807 static bool
optimize_unreachable(gimple_stmt_iterator i)2808 optimize_unreachable (gimple_stmt_iterator i)
2809 {
2810 basic_block bb = gsi_bb (i);
2811 gimple_stmt_iterator gsi;
2812 gimple *stmt;
2813 edge_iterator ei;
2814 edge e;
2815 bool ret;
2816
2817 if (flag_sanitize & SANITIZE_UNREACHABLE)
2818 return false;
2819
2820 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2821 {
2822 stmt = gsi_stmt (gsi);
2823
2824 if (is_gimple_debug (stmt))
2825 continue;
2826
2827 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2828 {
2829 /* Verify we do not need to preserve the label. */
2830 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2831 return false;
2832
2833 continue;
2834 }
2835
2836 /* Only handle the case that __builtin_unreachable is the first statement
2837 in the block. We rely on DCE to remove stmts without side-effects
2838 before __builtin_unreachable. */
2839 if (gsi_stmt (gsi) != gsi_stmt (i))
2840 return false;
2841 }
2842
2843 ret = false;
2844 FOR_EACH_EDGE (e, ei, bb->preds)
2845 {
2846 gsi = gsi_last_bb (e->src);
2847 if (gsi_end_p (gsi))
2848 continue;
2849
2850 stmt = gsi_stmt (gsi);
2851 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2852 {
2853 if (e->flags & EDGE_TRUE_VALUE)
2854 gimple_cond_make_false (cond_stmt);
2855 else if (e->flags & EDGE_FALSE_VALUE)
2856 gimple_cond_make_true (cond_stmt);
2857 else
2858 gcc_unreachable ();
2859 update_stmt (cond_stmt);
2860 }
2861 else
2862 {
2863 /* Todo: handle other cases. Note that unreachable switch case
2864 statements have already been removed. */
2865 continue;
2866 }
2867
2868 ret = true;
2869 }
2870
2871 return ret;
2872 }
2873
2874 /* Optimize
2875 mask_2 = 1 << cnt_1;
2876 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2877 _5 = _4 & mask_2;
2878 to
2879 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2880 _5 = _4;
2881 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2882 is passed instead of 0, and the builtin just returns a zero
2883 or 1 value instead of the actual bit.
2884 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2885 in there), and/or if mask_2 is a power of 2 constant.
2886 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2887 in that case. And similarly for and instead of or, except that
2888 the second argument to the builtin needs to be one's complement
2889 of the mask instead of mask. */
2890
2891 static void
optimize_atomic_bit_test_and(gimple_stmt_iterator * gsip,enum internal_fn fn,bool has_model_arg,bool after)2892 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2893 enum internal_fn fn, bool has_model_arg,
2894 bool after)
2895 {
2896 gimple *call = gsi_stmt (*gsip);
2897 tree lhs = gimple_call_lhs (call);
2898 use_operand_p use_p;
2899 gimple *use_stmt;
2900 tree mask, bit;
2901 optab optab;
2902
2903 if (!flag_inline_atomics
2904 || optimize_debug
2905 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2906 || !lhs
2907 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2908 || !single_imm_use (lhs, &use_p, &use_stmt)
2909 || !is_gimple_assign (use_stmt)
2910 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2911 || !gimple_vdef (call))
2912 return;
2913
2914 switch (fn)
2915 {
2916 case IFN_ATOMIC_BIT_TEST_AND_SET:
2917 optab = atomic_bit_test_and_set_optab;
2918 break;
2919 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2920 optab = atomic_bit_test_and_complement_optab;
2921 break;
2922 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2923 optab = atomic_bit_test_and_reset_optab;
2924 break;
2925 default:
2926 return;
2927 }
2928
2929 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2930 return;
2931
2932 mask = gimple_call_arg (call, 1);
2933 tree use_lhs = gimple_assign_lhs (use_stmt);
2934 if (!use_lhs)
2935 return;
2936
2937 if (TREE_CODE (mask) == INTEGER_CST)
2938 {
2939 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2940 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2941 mask = fold_convert (TREE_TYPE (lhs), mask);
2942 int ibit = tree_log2 (mask);
2943 if (ibit < 0)
2944 return;
2945 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2946 }
2947 else if (TREE_CODE (mask) == SSA_NAME)
2948 {
2949 gimple *g = SSA_NAME_DEF_STMT (mask);
2950 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2951 {
2952 if (!is_gimple_assign (g)
2953 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2954 return;
2955 mask = gimple_assign_rhs1 (g);
2956 if (TREE_CODE (mask) != SSA_NAME)
2957 return;
2958 g = SSA_NAME_DEF_STMT (mask);
2959 }
2960 if (!is_gimple_assign (g)
2961 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2962 || !integer_onep (gimple_assign_rhs1 (g)))
2963 return;
2964 bit = gimple_assign_rhs2 (g);
2965 }
2966 else
2967 return;
2968
2969 if (gimple_assign_rhs1 (use_stmt) == lhs)
2970 {
2971 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2972 return;
2973 }
2974 else if (gimple_assign_rhs2 (use_stmt) != lhs
2975 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2976 return;
2977
2978 bool use_bool = true;
2979 bool has_debug_uses = false;
2980 imm_use_iterator iter;
2981 gimple *g;
2982
2983 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2984 use_bool = false;
2985 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2986 {
2987 enum tree_code code = ERROR_MARK;
2988 tree op0 = NULL_TREE, op1 = NULL_TREE;
2989 if (is_gimple_debug (g))
2990 {
2991 has_debug_uses = true;
2992 continue;
2993 }
2994 else if (is_gimple_assign (g))
2995 switch (gimple_assign_rhs_code (g))
2996 {
2997 case COND_EXPR:
2998 op1 = gimple_assign_rhs1 (g);
2999 code = TREE_CODE (op1);
3000 op0 = TREE_OPERAND (op1, 0);
3001 op1 = TREE_OPERAND (op1, 1);
3002 break;
3003 case EQ_EXPR:
3004 case NE_EXPR:
3005 code = gimple_assign_rhs_code (g);
3006 op0 = gimple_assign_rhs1 (g);
3007 op1 = gimple_assign_rhs2 (g);
3008 break;
3009 default:
3010 break;
3011 }
3012 else if (gimple_code (g) == GIMPLE_COND)
3013 {
3014 code = gimple_cond_code (g);
3015 op0 = gimple_cond_lhs (g);
3016 op1 = gimple_cond_rhs (g);
3017 }
3018
3019 if ((code == EQ_EXPR || code == NE_EXPR)
3020 && op0 == use_lhs
3021 && integer_zerop (op1))
3022 {
3023 use_operand_p use_p;
3024 int n = 0;
3025 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3026 n++;
3027 if (n == 1)
3028 continue;
3029 }
3030
3031 use_bool = false;
3032 BREAK_FROM_IMM_USE_STMT (iter);
3033 }
3034
3035 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3036 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3037 if (has_model_arg)
3038 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3039 bit, flag, gimple_call_arg (call, 2));
3040 else
3041 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
3042 bit, flag);
3043 gimple_call_set_lhs (g, new_lhs);
3044 gimple_set_location (g, gimple_location (call));
3045 gimple_move_vops (g, call);
3046 bool throws = stmt_can_throw_internal (cfun, call);
3047 gimple_call_set_nothrow (as_a <gcall *> (g),
3048 gimple_call_nothrow_p (as_a <gcall *> (call)));
3049 gimple_stmt_iterator gsi = *gsip;
3050 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3051 edge e = NULL;
3052 if (throws)
3053 {
3054 maybe_clean_or_replace_eh_stmt (call, g);
3055 if (after || (use_bool && has_debug_uses))
3056 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3057 }
3058 if (after)
3059 {
3060 /* The internal function returns the value of the specified bit
3061 before the atomic operation. If we are interested in the value
3062 of the specified bit after the atomic operation (makes only sense
3063 for xor, otherwise the bit content is compile time known),
3064 we need to invert the bit. */
3065 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3066 BIT_XOR_EXPR, new_lhs,
3067 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3068 : mask);
3069 new_lhs = gimple_assign_lhs (g);
3070 if (throws)
3071 {
3072 gsi_insert_on_edge_immediate (e, g);
3073 gsi = gsi_for_stmt (g);
3074 }
3075 else
3076 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3077 }
3078 if (use_bool && has_debug_uses)
3079 {
3080 tree temp = NULL_TREE;
3081 if (!throws || after || single_pred_p (e->dest))
3082 {
3083 temp = make_node (DEBUG_EXPR_DECL);
3084 DECL_ARTIFICIAL (temp) = 1;
3085 TREE_TYPE (temp) = TREE_TYPE (lhs);
3086 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3087 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3088 g = gimple_build_debug_bind (temp, t, g);
3089 if (throws && !after)
3090 {
3091 gsi = gsi_after_labels (e->dest);
3092 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3093 }
3094 else
3095 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3096 }
3097 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3098 if (is_gimple_debug (g))
3099 {
3100 use_operand_p use_p;
3101 if (temp == NULL_TREE)
3102 gimple_debug_bind_reset_value (g);
3103 else
3104 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3105 SET_USE (use_p, temp);
3106 update_stmt (g);
3107 }
3108 }
3109 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3110 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3111 replace_uses_by (use_lhs, new_lhs);
3112 gsi = gsi_for_stmt (use_stmt);
3113 gsi_remove (&gsi, true);
3114 release_defs (use_stmt);
3115 gsi_remove (gsip, true);
3116 release_ssa_name (lhs);
3117 }
3118
3119 /* Optimize
3120 a = {};
3121 b = a;
3122 into
3123 a = {};
3124 b = {};
3125 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3126 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3127
3128 static void
optimize_memcpy(gimple_stmt_iterator * gsip,tree dest,tree src,tree len)3129 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3130 {
3131 gimple *stmt = gsi_stmt (*gsip);
3132 if (gimple_has_volatile_ops (stmt))
3133 return;
3134
3135 tree vuse = gimple_vuse (stmt);
3136 if (vuse == NULL)
3137 return;
3138
3139 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3140 tree src2 = NULL_TREE, len2 = NULL_TREE;
3141 poly_int64 offset, offset2;
3142 tree val = integer_zero_node;
3143 if (gimple_store_p (defstmt)
3144 && gimple_assign_single_p (defstmt)
3145 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3146 && !gimple_clobber_p (defstmt))
3147 src2 = gimple_assign_lhs (defstmt);
3148 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3149 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3150 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3151 {
3152 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3153 len2 = gimple_call_arg (defstmt, 2);
3154 val = gimple_call_arg (defstmt, 1);
3155 /* For non-0 val, we'd have to transform stmt from assignment
3156 into memset (only if dest is addressable). */
3157 if (!integer_zerop (val) && is_gimple_assign (stmt))
3158 src2 = NULL_TREE;
3159 }
3160
3161 if (src2 == NULL_TREE)
3162 return;
3163
3164 if (len == NULL_TREE)
3165 len = (TREE_CODE (src) == COMPONENT_REF
3166 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3167 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3168 if (len2 == NULL_TREE)
3169 len2 = (TREE_CODE (src2) == COMPONENT_REF
3170 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3171 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3172 if (len == NULL_TREE
3173 || !poly_int_tree_p (len)
3174 || len2 == NULL_TREE
3175 || !poly_int_tree_p (len2))
3176 return;
3177
3178 src = get_addr_base_and_unit_offset (src, &offset);
3179 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3180 if (src == NULL_TREE
3181 || src2 == NULL_TREE
3182 || maybe_lt (offset, offset2))
3183 return;
3184
3185 if (!operand_equal_p (src, src2, 0))
3186 return;
3187
3188 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3189 Make sure that
3190 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3191 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3192 wi::to_poly_offset (len2)))
3193 return;
3194
3195 if (dump_file && (dump_flags & TDF_DETAILS))
3196 {
3197 fprintf (dump_file, "Simplified\n ");
3198 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3199 fprintf (dump_file, "after previous\n ");
3200 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3201 }
3202
3203 /* For simplicity, don't change the kind of the stmt,
3204 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3205 into memset (&dest, val, len);
3206 In theory we could change dest = src into memset if dest
3207 is addressable (maybe beneficial if val is not 0), or
3208 memcpy (&dest, &src, len) into dest = {} if len is the size
3209 of dest, dest isn't volatile. */
3210 if (is_gimple_assign (stmt))
3211 {
3212 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3213 gimple_assign_set_rhs_from_tree (gsip, ctor);
3214 update_stmt (stmt);
3215 }
3216 else /* If stmt is memcpy, transform it into memset. */
3217 {
3218 gcall *call = as_a <gcall *> (stmt);
3219 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3220 gimple_call_set_fndecl (call, fndecl);
3221 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3222 gimple_call_set_arg (call, 1, val);
3223 update_stmt (stmt);
3224 }
3225
3226 if (dump_file && (dump_flags & TDF_DETAILS))
3227 {
3228 fprintf (dump_file, "into\n ");
3229 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3230 }
3231 }
3232
3233 /* A simple pass that attempts to fold all builtin functions. This pass
3234 is run after we've propagated as many constants as we can. */
3235
3236 namespace {
3237
3238 const pass_data pass_data_fold_builtins =
3239 {
3240 GIMPLE_PASS, /* type */
3241 "fab", /* name */
3242 OPTGROUP_NONE, /* optinfo_flags */
3243 TV_NONE, /* tv_id */
3244 ( PROP_cfg | PROP_ssa ), /* properties_required */
3245 0, /* properties_provided */
3246 0, /* properties_destroyed */
3247 0, /* todo_flags_start */
3248 TODO_update_ssa, /* todo_flags_finish */
3249 };
3250
3251 class pass_fold_builtins : public gimple_opt_pass
3252 {
3253 public:
pass_fold_builtins(gcc::context * ctxt)3254 pass_fold_builtins (gcc::context *ctxt)
3255 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3256 {}
3257
3258 /* opt_pass methods: */
clone()3259 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3260 virtual unsigned int execute (function *);
3261
3262 }; // class pass_fold_builtins
3263
3264 unsigned int
execute(function * fun)3265 pass_fold_builtins::execute (function *fun)
3266 {
3267 bool cfg_changed = false;
3268 basic_block bb;
3269 unsigned int todoflags = 0;
3270
3271 FOR_EACH_BB_FN (bb, fun)
3272 {
3273 gimple_stmt_iterator i;
3274 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3275 {
3276 gimple *stmt, *old_stmt;
3277 tree callee;
3278 enum built_in_function fcode;
3279
3280 stmt = gsi_stmt (i);
3281
3282 if (gimple_code (stmt) != GIMPLE_CALL)
3283 {
3284 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3285 after the last GIMPLE DSE they aren't needed and might
3286 unnecessarily keep the SSA_NAMEs live. */
3287 if (gimple_clobber_p (stmt))
3288 {
3289 tree lhs = gimple_assign_lhs (stmt);
3290 if (TREE_CODE (lhs) == MEM_REF
3291 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3292 {
3293 unlink_stmt_vdef (stmt);
3294 gsi_remove (&i, true);
3295 release_defs (stmt);
3296 continue;
3297 }
3298 }
3299 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3300 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3301 gimple_assign_rhs1 (stmt), NULL_TREE);
3302 gsi_next (&i);
3303 continue;
3304 }
3305
3306 callee = gimple_call_fndecl (stmt);
3307 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3308 {
3309 gsi_next (&i);
3310 continue;
3311 }
3312
3313 fcode = DECL_FUNCTION_CODE (callee);
3314 if (fold_stmt (&i))
3315 ;
3316 else
3317 {
3318 tree result = NULL_TREE;
3319 switch (DECL_FUNCTION_CODE (callee))
3320 {
3321 case BUILT_IN_CONSTANT_P:
3322 /* Resolve __builtin_constant_p. If it hasn't been
3323 folded to integer_one_node by now, it's fairly
3324 certain that the value simply isn't constant. */
3325 result = integer_zero_node;
3326 break;
3327
3328 case BUILT_IN_ASSUME_ALIGNED:
3329 /* Remove __builtin_assume_aligned. */
3330 result = gimple_call_arg (stmt, 0);
3331 break;
3332
3333 case BUILT_IN_STACK_RESTORE:
3334 result = optimize_stack_restore (i);
3335 if (result)
3336 break;
3337 gsi_next (&i);
3338 continue;
3339
3340 case BUILT_IN_UNREACHABLE:
3341 if (optimize_unreachable (i))
3342 cfg_changed = true;
3343 break;
3344
3345 case BUILT_IN_ATOMIC_FETCH_OR_1:
3346 case BUILT_IN_ATOMIC_FETCH_OR_2:
3347 case BUILT_IN_ATOMIC_FETCH_OR_4:
3348 case BUILT_IN_ATOMIC_FETCH_OR_8:
3349 case BUILT_IN_ATOMIC_FETCH_OR_16:
3350 optimize_atomic_bit_test_and (&i,
3351 IFN_ATOMIC_BIT_TEST_AND_SET,
3352 true, false);
3353 break;
3354 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3355 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3356 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3357 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3358 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3359 optimize_atomic_bit_test_and (&i,
3360 IFN_ATOMIC_BIT_TEST_AND_SET,
3361 false, false);
3362 break;
3363
3364 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3365 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3366 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3367 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3368 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3369 optimize_atomic_bit_test_and
3370 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3371 break;
3372 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3373 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3374 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3375 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3376 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3377 optimize_atomic_bit_test_and
3378 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3379 break;
3380
3381 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3382 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3383 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3384 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3385 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3386 optimize_atomic_bit_test_and
3387 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3388 break;
3389 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3390 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3391 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3392 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3393 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3394 optimize_atomic_bit_test_and
3395 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3396 break;
3397
3398 case BUILT_IN_ATOMIC_FETCH_AND_1:
3399 case BUILT_IN_ATOMIC_FETCH_AND_2:
3400 case BUILT_IN_ATOMIC_FETCH_AND_4:
3401 case BUILT_IN_ATOMIC_FETCH_AND_8:
3402 case BUILT_IN_ATOMIC_FETCH_AND_16:
3403 optimize_atomic_bit_test_and (&i,
3404 IFN_ATOMIC_BIT_TEST_AND_RESET,
3405 true, false);
3406 break;
3407 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3408 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3409 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3410 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3411 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3412 optimize_atomic_bit_test_and (&i,
3413 IFN_ATOMIC_BIT_TEST_AND_RESET,
3414 false, false);
3415 break;
3416
3417 case BUILT_IN_MEMCPY:
3418 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3419 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3420 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3421 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3422 {
3423 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3424 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3425 tree len = gimple_call_arg (stmt, 2);
3426 optimize_memcpy (&i, dest, src, len);
3427 }
3428 break;
3429
3430 case BUILT_IN_VA_START:
3431 case BUILT_IN_VA_END:
3432 case BUILT_IN_VA_COPY:
3433 /* These shouldn't be folded before pass_stdarg. */
3434 result = optimize_stdarg_builtin (stmt);
3435 break;
3436
3437 default:;
3438 }
3439
3440 if (!result)
3441 {
3442 gsi_next (&i);
3443 continue;
3444 }
3445
3446 if (!update_call_from_tree (&i, result))
3447 gimplify_and_update_call_from_tree (&i, result);
3448 }
3449
3450 todoflags |= TODO_update_address_taken;
3451
3452 if (dump_file && (dump_flags & TDF_DETAILS))
3453 {
3454 fprintf (dump_file, "Simplified\n ");
3455 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3456 }
3457
3458 old_stmt = stmt;
3459 stmt = gsi_stmt (i);
3460 update_stmt (stmt);
3461
3462 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3463 && gimple_purge_dead_eh_edges (bb))
3464 cfg_changed = true;
3465
3466 if (dump_file && (dump_flags & TDF_DETAILS))
3467 {
3468 fprintf (dump_file, "to\n ");
3469 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3470 fprintf (dump_file, "\n");
3471 }
3472
3473 /* Retry the same statement if it changed into another
3474 builtin, there might be new opportunities now. */
3475 if (gimple_code (stmt) != GIMPLE_CALL)
3476 {
3477 gsi_next (&i);
3478 continue;
3479 }
3480 callee = gimple_call_fndecl (stmt);
3481 if (!callee
3482 || !fndecl_built_in_p (callee, fcode))
3483 gsi_next (&i);
3484 }
3485 }
3486
3487 /* Delete unreachable blocks. */
3488 if (cfg_changed)
3489 todoflags |= TODO_cleanup_cfg;
3490
3491 return todoflags;
3492 }
3493
3494 } // anon namespace
3495
3496 gimple_opt_pass *
make_pass_fold_builtins(gcc::context * ctxt)3497 make_pass_fold_builtins (gcc::context *ctxt)
3498 {
3499 return new pass_fold_builtins (ctxt);
3500 }
3501
3502 /* A simple pass that emits some warnings post IPA. */
3503
3504 namespace {
3505
3506 const pass_data pass_data_post_ipa_warn =
3507 {
3508 GIMPLE_PASS, /* type */
3509 "post_ipa_warn", /* name */
3510 OPTGROUP_NONE, /* optinfo_flags */
3511 TV_NONE, /* tv_id */
3512 ( PROP_cfg | PROP_ssa ), /* properties_required */
3513 0, /* properties_provided */
3514 0, /* properties_destroyed */
3515 0, /* todo_flags_start */
3516 0, /* todo_flags_finish */
3517 };
3518
3519 class pass_post_ipa_warn : public gimple_opt_pass
3520 {
3521 public:
pass_post_ipa_warn(gcc::context * ctxt)3522 pass_post_ipa_warn (gcc::context *ctxt)
3523 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3524 {}
3525
3526 /* opt_pass methods: */
clone()3527 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
gate(function *)3528 virtual bool gate (function *) { return warn_nonnull != 0; }
3529 virtual unsigned int execute (function *);
3530
3531 }; // class pass_fold_builtins
3532
3533 unsigned int
execute(function * fun)3534 pass_post_ipa_warn::execute (function *fun)
3535 {
3536 basic_block bb;
3537
3538 FOR_EACH_BB_FN (bb, fun)
3539 {
3540 gimple_stmt_iterator gsi;
3541 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3542 {
3543 gimple *stmt = gsi_stmt (gsi);
3544 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3545 continue;
3546
3547 if (warn_nonnull)
3548 {
3549 bitmap nonnullargs
3550 = get_nonnull_args (gimple_call_fntype (stmt));
3551 if (nonnullargs)
3552 {
3553 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3554 {
3555 tree arg = gimple_call_arg (stmt, i);
3556 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3557 continue;
3558 if (!integer_zerop (arg))
3559 continue;
3560 if (!bitmap_empty_p (nonnullargs)
3561 && !bitmap_bit_p (nonnullargs, i))
3562 continue;
3563
3564 location_t loc = gimple_location (stmt);
3565 auto_diagnostic_group d;
3566 if (warning_at (loc, OPT_Wnonnull,
3567 "%Gargument %u null where non-null "
3568 "expected", stmt, i + 1))
3569 {
3570 tree fndecl = gimple_call_fndecl (stmt);
3571 if (fndecl && DECL_IS_BUILTIN (fndecl))
3572 inform (loc, "in a call to built-in function %qD",
3573 fndecl);
3574 else if (fndecl)
3575 inform (DECL_SOURCE_LOCATION (fndecl),
3576 "in a call to function %qD declared here",
3577 fndecl);
3578
3579 }
3580 }
3581 BITMAP_FREE (nonnullargs);
3582 }
3583 }
3584 }
3585 }
3586 return 0;
3587 }
3588
3589 } // anon namespace
3590
3591 gimple_opt_pass *
make_pass_post_ipa_warn(gcc::context * ctxt)3592 make_pass_post_ipa_warn (gcc::context *ctxt)
3593 {
3594 return new pass_post_ipa_warn (ctxt);
3595 }
3596
3597 #if defined(__NetBSD__) && defined(NETBSD_NATIVE)
3598 /*
3599 * This is a big, ugly, temporary hack:
3600 * http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59958
3601 * To make sure we have configured all our targets correctly, mimic the
3602 * #ifdef cascade from src/lib/libc/stdlib/jemalloc.c here and compile
3603 * time assert that the value matches gcc's MALLOC_ABI_ALIGNMENT here.
3604 */
3605
3606 #if defined(__hppa__)
3607 #define JEMALLOC_TINY_MIN_2POW 4
3608 #elif defined(__alpha__) || defined(__amd64__) || defined(__sparc64__) \
3609 || (defined(__arm__) && defined(__ARM_EABI__)) \
3610 || defined(__ia64__) || defined(__powerpc__) \
3611 || defined(__aarch64__) \
3612 || ((defined(__mips__) || defined(__riscv__)) && defined(_LP64))
3613 #define JEMALLOC_TINY_MIN_2POW 3
3614 #endif
3615
3616 #ifndef JEMALLOC_TINY_MIN_2POW
3617 #define JEMALLOC_TINY_MIN_2POW 2
3618 #endif
3619
3620 /* make sure we test the (native) 64bit variant for targets supporting -m32 */
3621 #undef TARGET_64BIT
3622 #ifdef _LP64
3623 #define TARGET_64BIT 1
3624 #else
3625 #ifdef __sh__
3626 #undef UNITS_PER_WORD
3627 #define UNITS_PER_WORD 4 /* original definition varies depending on cpu */
3628 #endif
3629 #define TARGET_64BIT 0
3630 #endif
3631
3632 /* ARM has a non-constant MALLOC_ABI_ALIGNMENT since GCC 5. */
3633 #if !defined(__arm__)
3634 #ifdef __CTASSERT
3635 __CTASSERT((8<<JEMALLOC_TINY_MIN_2POW) == MALLOC_ABI_ALIGNMENT);
3636 #else
3637 #error compiling on an older NetBSD version?
3638 #endif
3639 #endif
3640
3641 #endif
3642