xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/fortran/trans-types.c (revision 4ac76180e904e771b9d522c7e57296d371f06499)
1 /* Backend support for Fortran 95 basic types and derived types.
2    Copyright (C) 2002-2020 Free Software Foundation, Inc.
3    Contributed by Paul Brook <paul@nowt.org>
4    and Steven Bosscher <s.bosscher@student.tudelft.nl>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* trans-types.c -- gfortran backend types */
23 
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "target.h"
28 #include "tree.h"
29 #include "gfortran.h"
30 #include "trans.h"
31 #include "stringpool.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
34 #include "langhooks.h"	/* For iso-c-bindings.def.  */
35 #include "toplev.h"	/* For rest_of_decl_compilation.  */
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "trans-array.h"
39 #include "dwarf2out.h"	/* For struct array_descr_info.  */
40 #include "attribs.h"
41 
42 
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
52 
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55 
56 tree gfc_array_index_type;
57 tree gfc_array_range_type;
58 tree gfc_character1_type_node;
59 tree pvoid_type_node;
60 tree prvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63 tree pfunc_type_node;
64 
65 tree logical_type_node;
66 tree logical_true_node;
67 tree logical_false_node;
68 tree gfc_charlen_type_node;
69 
70 tree gfc_float128_type_node = NULL_TREE;
71 tree gfc_complex_float128_type_node = NULL_TREE;
72 
73 bool gfc_real16_is_float128 = false;
74 
75 static GTY(()) tree gfc_desc_dim_type;
76 static GTY(()) tree gfc_max_array_element_size;
77 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
78 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
79 
80 /* Arrays for all integral and real kinds.  We'll fill this in at runtime
81    after the target has a chance to process command-line options.  */
82 
83 #define MAX_INT_KINDS 5
84 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
85 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
86 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
87 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
88 
89 #define MAX_REAL_KINDS 5
90 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
91 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
92 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
93 
94 #define MAX_CHARACTER_KINDS 2
95 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
96 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
97 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
98 
99 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
100 
101 /* The integer kind to use for array indices.  This will be set to the
102    proper value based on target information from the backend.  */
103 
104 int gfc_index_integer_kind;
105 
106 /* The default kinds of the various types.  */
107 
108 int gfc_default_integer_kind;
109 int gfc_max_integer_kind;
110 int gfc_default_real_kind;
111 int gfc_default_double_kind;
112 int gfc_default_character_kind;
113 int gfc_default_logical_kind;
114 int gfc_default_complex_kind;
115 int gfc_c_int_kind;
116 int gfc_atomic_int_kind;
117 int gfc_atomic_logical_kind;
118 
119 /* The kind size used for record offsets. If the target system supports
120    kind=8, this will be set to 8, otherwise it is set to 4.  */
121 int gfc_intio_kind;
122 
123 /* The integer kind used to store character lengths.  */
124 int gfc_charlen_int_kind;
125 
126 /* Kind of internal integer for storing object sizes.  */
127 int gfc_size_kind;
128 
129 /* The size of the numeric storage unit and character storage unit.  */
130 int gfc_numeric_storage_size;
131 int gfc_character_storage_size;
132 
133 tree dtype_type_node = NULL_TREE;
134 
135 
136 /* Build the dtype_type_node if necessary.  */
get_dtype_type_node(void)137 tree get_dtype_type_node (void)
138 {
139   tree field;
140   tree dtype_node;
141   tree *dtype_chain = NULL;
142 
143   if (dtype_type_node == NULL_TREE)
144     {
145       dtype_node = make_node (RECORD_TYPE);
146       TYPE_NAME (dtype_node) = get_identifier ("dtype_type");
147       TYPE_NAMELESS (dtype_node) = 1;
148       field = gfc_add_field_to_struct_1 (dtype_node,
149 					 get_identifier ("elem_len"),
150 					 size_type_node, &dtype_chain);
151       TREE_NO_WARNING (field) = 1;
152       field = gfc_add_field_to_struct_1 (dtype_node,
153 					 get_identifier ("version"),
154 					 integer_type_node, &dtype_chain);
155       TREE_NO_WARNING (field) = 1;
156       field = gfc_add_field_to_struct_1 (dtype_node,
157 					 get_identifier ("rank"),
158 					 signed_char_type_node, &dtype_chain);
159       TREE_NO_WARNING (field) = 1;
160       field = gfc_add_field_to_struct_1 (dtype_node,
161 					 get_identifier ("type"),
162 					 signed_char_type_node, &dtype_chain);
163       TREE_NO_WARNING (field) = 1;
164       field = gfc_add_field_to_struct_1 (dtype_node,
165 					 get_identifier ("attribute"),
166 					 short_integer_type_node, &dtype_chain);
167       TREE_NO_WARNING (field) = 1;
168       gfc_finish_type (dtype_node);
169       TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (dtype_node)) = 1;
170       dtype_type_node = dtype_node;
171     }
172   return dtype_type_node;
173 }
174 
175 bool
gfc_check_any_c_kind(gfc_typespec * ts)176 gfc_check_any_c_kind (gfc_typespec *ts)
177 {
178   int i;
179 
180   for (i = 0; i < ISOCBINDING_NUMBER; i++)
181     {
182       /* Check for any C interoperable kind for the given type/kind in ts.
183          This can be used after verify_c_interop to make sure that the
184          Fortran kind being used exists in at least some form for C.  */
185       if (c_interop_kinds_table[i].f90_type == ts->type &&
186           c_interop_kinds_table[i].value == ts->kind)
187         return true;
188     }
189 
190   return false;
191 }
192 
193 
194 static int
get_real_kind_from_node(tree type)195 get_real_kind_from_node (tree type)
196 {
197   int i;
198 
199   for (i = 0; gfc_real_kinds[i].kind != 0; i++)
200     if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
201       return gfc_real_kinds[i].kind;
202 
203   return -4;
204 }
205 
206 static int
get_int_kind_from_node(tree type)207 get_int_kind_from_node (tree type)
208 {
209   int i;
210 
211   if (!type)
212     return -2;
213 
214   for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
215     if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
216       return gfc_integer_kinds[i].kind;
217 
218   return -1;
219 }
220 
221 static int
get_int_kind_from_name(const char * name)222 get_int_kind_from_name (const char *name)
223 {
224   return get_int_kind_from_node (get_typenode_from_name (name));
225 }
226 
227 
228 /* Get the kind number corresponding to an integer of given size,
229    following the required return values for ISO_FORTRAN_ENV INT* constants:
230    -2 is returned if we support a kind of larger size, -1 otherwise.  */
231 int
gfc_get_int_kind_from_width_isofortranenv(int size)232 gfc_get_int_kind_from_width_isofortranenv (int size)
233 {
234   int i;
235 
236   /* Look for a kind with matching storage size.  */
237   for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
238     if (gfc_integer_kinds[i].bit_size == size)
239       return gfc_integer_kinds[i].kind;
240 
241   /* Look for a kind with larger storage size.  */
242   for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
243     if (gfc_integer_kinds[i].bit_size > size)
244       return -2;
245 
246   return -1;
247 }
248 
249 
250 /* Get the kind number corresponding to a real of a given storage size.
251    If two real's have the same storage size, then choose the real with
252    the largest precision.  If a kind type is unavailable and a real
253    exists with wider storage, then return -2; otherwise, return -1.  */
254 
255 int
gfc_get_real_kind_from_width_isofortranenv(int size)256 gfc_get_real_kind_from_width_isofortranenv (int size)
257 {
258   int digits, i, kind;
259 
260   size /= 8;
261 
262   kind = -1;
263   digits = 0;
264 
265   /* Look for a kind with matching storage size.  */
266   for (i = 0; gfc_real_kinds[i].kind != 0; i++)
267     if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
268       {
269 	if (gfc_real_kinds[i].digits > digits)
270 	  {
271 	    digits = gfc_real_kinds[i].digits;
272 	    kind = gfc_real_kinds[i].kind;
273 	  }
274       }
275 
276   if (kind != -1)
277     return kind;
278 
279   /* Look for a kind with larger storage size.  */
280   for (i = 0; gfc_real_kinds[i].kind != 0; i++)
281     if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
282       kind = -2;
283 
284   return kind;
285 }
286 
287 
288 
289 static int
get_int_kind_from_width(int size)290 get_int_kind_from_width (int size)
291 {
292   int i;
293 
294   for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
295     if (gfc_integer_kinds[i].bit_size == size)
296       return gfc_integer_kinds[i].kind;
297 
298   return -2;
299 }
300 
301 static int
get_int_kind_from_minimal_width(int size)302 get_int_kind_from_minimal_width (int size)
303 {
304   int i;
305 
306   for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
307     if (gfc_integer_kinds[i].bit_size >= size)
308       return gfc_integer_kinds[i].kind;
309 
310   return -2;
311 }
312 
313 
314 /* Generate the CInteropKind_t objects for the C interoperable
315    kinds.  */
316 
317 void
gfc_init_c_interop_kinds(void)318 gfc_init_c_interop_kinds (void)
319 {
320   int i;
321 
322   /* init all pointers in the list to NULL */
323   for (i = 0; i < ISOCBINDING_NUMBER; i++)
324     {
325       /* Initialize the name and value fields.  */
326       c_interop_kinds_table[i].name[0] = '\0';
327       c_interop_kinds_table[i].value = -100;
328       c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
329     }
330 
331 #define NAMED_INTCST(a,b,c,d) \
332   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333   c_interop_kinds_table[a].f90_type = BT_INTEGER; \
334   c_interop_kinds_table[a].value = c;
335 #define NAMED_REALCST(a,b,c,d) \
336   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337   c_interop_kinds_table[a].f90_type = BT_REAL; \
338   c_interop_kinds_table[a].value = c;
339 #define NAMED_CMPXCST(a,b,c,d) \
340   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341   c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
342   c_interop_kinds_table[a].value = c;
343 #define NAMED_LOGCST(a,b,c) \
344   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345   c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
346   c_interop_kinds_table[a].value = c;
347 #define NAMED_CHARKNDCST(a,b,c) \
348   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349   c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
350   c_interop_kinds_table[a].value = c;
351 #define NAMED_CHARCST(a,b,c) \
352   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
353   c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
354   c_interop_kinds_table[a].value = c;
355 #define DERIVED_TYPE(a,b,c) \
356   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
357   c_interop_kinds_table[a].f90_type = BT_DERIVED; \
358   c_interop_kinds_table[a].value = c;
359 #define NAMED_FUNCTION(a,b,c,d) \
360   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
361   c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
362   c_interop_kinds_table[a].value = c;
363 #define NAMED_SUBROUTINE(a,b,c,d) \
364   strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
365   c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
366   c_interop_kinds_table[a].value = c;
367 #include "iso-c-binding.def"
368 }
369 
370 
371 /* Query the target to determine which machine modes are available for
372    computation.  Choose KIND numbers for them.  */
373 
374 void
gfc_init_kinds(void)375 gfc_init_kinds (void)
376 {
377   opt_scalar_int_mode int_mode_iter;
378   opt_scalar_float_mode float_mode_iter;
379   int i_index, r_index, kind;
380   bool saw_i4 = false, saw_i8 = false;
381   bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
382 
383   i_index = 0;
384   FOR_EACH_MODE_IN_CLASS (int_mode_iter, MODE_INT)
385     {
386       scalar_int_mode mode = int_mode_iter.require ();
387       int kind, bitsize;
388 
389       if (!targetm.scalar_mode_supported_p (mode))
390 	continue;
391 
392       /* The middle end doesn't support constants larger than 2*HWI.
393 	 Perhaps the target hook shouldn't have accepted these either,
394 	 but just to be safe...  */
395       bitsize = GET_MODE_BITSIZE (mode);
396       if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
397 	continue;
398 
399       gcc_assert (i_index != MAX_INT_KINDS);
400 
401       /* Let the kind equal the bit size divided by 8.  This insulates the
402 	 programmer from the underlying byte size.  */
403       kind = bitsize / 8;
404 
405       if (kind == 4)
406 	saw_i4 = true;
407       if (kind == 8)
408 	saw_i8 = true;
409 
410       gfc_integer_kinds[i_index].kind = kind;
411       gfc_integer_kinds[i_index].radix = 2;
412       gfc_integer_kinds[i_index].digits = bitsize - 1;
413       gfc_integer_kinds[i_index].bit_size = bitsize;
414 
415       gfc_logical_kinds[i_index].kind = kind;
416       gfc_logical_kinds[i_index].bit_size = bitsize;
417 
418       i_index += 1;
419     }
420 
421   /* Set the kind used to match GFC_INT_IO in libgfortran.  This is
422      used for large file access.  */
423 
424   if (saw_i8)
425     gfc_intio_kind = 8;
426   else
427     gfc_intio_kind = 4;
428 
429   /* If we do not at least have kind = 4, everything is pointless.  */
430   gcc_assert(saw_i4);
431 
432   /* Set the maximum integer kind.  Used with at least BOZ constants.  */
433   gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
434 
435   r_index = 0;
436   FOR_EACH_MODE_IN_CLASS (float_mode_iter, MODE_FLOAT)
437     {
438       scalar_float_mode mode = float_mode_iter.require ();
439       const struct real_format *fmt = REAL_MODE_FORMAT (mode);
440       int kind;
441 
442       if (fmt == NULL)
443 	continue;
444       if (!targetm.scalar_mode_supported_p (mode))
445 	continue;
446 
447       /* Only let float, double, long double and __float128 go through.
448 	 Runtime support for others is not provided, so they would be
449 	 useless.  */
450       if (!targetm.libgcc_floating_mode_supported_p (mode))
451 	continue;
452       if (mode != TYPE_MODE (float_type_node)
453 	    && (mode != TYPE_MODE (double_type_node))
454 	    && (mode != TYPE_MODE (long_double_type_node))
455 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
456 	    && (mode != TFmode)
457 #endif
458 	   )
459 	continue;
460 
461       /* Let the kind equal the precision divided by 8, rounding up.  Again,
462 	 this insulates the programmer from the underlying byte size.
463 
464 	 Also, it effectively deals with IEEE extended formats.  There, the
465 	 total size of the type may equal 16, but it's got 6 bytes of padding
466 	 and the increased size can get in the way of a real IEEE quad format
467 	 which may also be supported by the target.
468 
469 	 We round up so as to handle IA-64 __floatreg (RFmode), which is an
470 	 82 bit type.  Not to be confused with __float80 (XFmode), which is
471 	 an 80 bit type also supported by IA-64.  So XFmode should come out
472 	 to be kind=10, and RFmode should come out to be kind=11.  Egads.  */
473 
474       kind = (GET_MODE_PRECISION (mode) + 7) / 8;
475 
476       if (kind == 4)
477 	saw_r4 = true;
478       if (kind == 8)
479 	saw_r8 = true;
480       if (kind == 10)
481 	saw_r10 = true;
482       if (kind == 16)
483 	saw_r16 = true;
484 
485       /* Careful we don't stumble a weird internal mode.  */
486       gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
487       /* Or have too many modes for the allocated space.  */
488       gcc_assert (r_index != MAX_REAL_KINDS);
489 
490       gfc_real_kinds[r_index].kind = kind;
491       gfc_real_kinds[r_index].radix = fmt->b;
492       gfc_real_kinds[r_index].digits = fmt->p;
493       gfc_real_kinds[r_index].min_exponent = fmt->emin;
494       gfc_real_kinds[r_index].max_exponent = fmt->emax;
495       if (fmt->pnan < fmt->p)
496 	/* This is an IBM extended double format (or the MIPS variant)
497 	   made up of two IEEE doubles.  The value of the long double is
498 	   the sum of the values of the two parts.  The most significant
499 	   part is required to be the value of the long double rounded
500 	   to the nearest double.  If we use emax of 1024 then we can't
501 	   represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
502 	   rounding will make the most significant part overflow.  */
503 	gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
504       gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
505       r_index += 1;
506     }
507 
508   /* Choose the default integer kind.  We choose 4 unless the user directs us
509      otherwise.  Even if the user specified that the default integer kind is 8,
510      the numeric storage size is not 64 bits.  In this case, a warning will be
511      issued when NUMERIC_STORAGE_SIZE is used.  Set NUMERIC_STORAGE_SIZE to 32.  */
512 
513   gfc_numeric_storage_size = 4 * 8;
514 
515   if (flag_default_integer)
516     {
517       if (!saw_i8)
518 	gfc_fatal_error ("INTEGER(KIND=8) is not available for "
519 			 "%<-fdefault-integer-8%> option");
520 
521       gfc_default_integer_kind = 8;
522 
523     }
524   else if (flag_integer4_kind == 8)
525     {
526       if (!saw_i8)
527 	gfc_fatal_error ("INTEGER(KIND=8) is not available for "
528 			 "%<-finteger-4-integer-8%> option");
529 
530       gfc_default_integer_kind = 8;
531     }
532   else if (saw_i4)
533     {
534       gfc_default_integer_kind = 4;
535     }
536   else
537     {
538       gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
539       gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
540     }
541 
542   /* Choose the default real kind.  Again, we choose 4 when possible.  */
543   if (flag_default_real_8)
544     {
545       if (!saw_r8)
546 	gfc_fatal_error ("REAL(KIND=8) is not available for "
547 			 "%<-fdefault-real-8%> option");
548 
549       gfc_default_real_kind = 8;
550     }
551   else if (flag_default_real_10)
552   {
553     if (!saw_r10)
554       gfc_fatal_error ("REAL(KIND=10) is not available for "
555 			"%<-fdefault-real-10%> option");
556 
557     gfc_default_real_kind = 10;
558   }
559   else if (flag_default_real_16)
560   {
561     if (!saw_r16)
562       gfc_fatal_error ("REAL(KIND=16) is not available for "
563 			"%<-fdefault-real-16%> option");
564 
565     gfc_default_real_kind = 16;
566   }
567   else if (flag_real4_kind == 8)
568   {
569     if (!saw_r8)
570       gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
571 		       "option");
572 
573     gfc_default_real_kind = 8;
574   }
575   else if (flag_real4_kind == 10)
576   {
577     if (!saw_r10)
578       gfc_fatal_error ("REAL(KIND=10) is not available for "
579 		       "%<-freal-4-real-10%> option");
580 
581     gfc_default_real_kind = 10;
582   }
583   else if (flag_real4_kind == 16)
584   {
585     if (!saw_r16)
586       gfc_fatal_error ("REAL(KIND=16) is not available for "
587 		       "%<-freal-4-real-16%> option");
588 
589     gfc_default_real_kind = 16;
590   }
591   else if (saw_r4)
592     gfc_default_real_kind = 4;
593   else
594     gfc_default_real_kind = gfc_real_kinds[0].kind;
595 
596   /* Choose the default double kind.  If -fdefault-real and -fdefault-double
597      are specified, we use kind=8, if it's available.  If -fdefault-real is
598      specified without -fdefault-double, we use kind=16, if it's available.
599      Otherwise we do not change anything.  */
600   if (flag_default_double && saw_r8)
601     gfc_default_double_kind = 8;
602   else if (flag_default_real_8 || flag_default_real_10 || flag_default_real_16)
603     {
604       /* Use largest available kind.  */
605       if (saw_r16)
606 	gfc_default_double_kind = 16;
607       else if (saw_r10)
608 	gfc_default_double_kind = 10;
609       else if (saw_r8)
610 	gfc_default_double_kind = 8;
611       else
612 	gfc_default_double_kind = gfc_default_real_kind;
613     }
614   else if (flag_real8_kind == 4)
615     {
616       if (!saw_r4)
617 	gfc_fatal_error ("REAL(KIND=4) is not available for "
618 			 "%<-freal-8-real-4%> option");
619 
620       gfc_default_double_kind = 4;
621     }
622   else if (flag_real8_kind == 10 )
623     {
624       if (!saw_r10)
625 	gfc_fatal_error ("REAL(KIND=10) is not available for "
626 			 "%<-freal-8-real-10%> option");
627 
628       gfc_default_double_kind = 10;
629     }
630   else if (flag_real8_kind == 16 )
631     {
632       if (!saw_r16)
633 	gfc_fatal_error ("REAL(KIND=10) is not available for "
634 			 "%<-freal-8-real-16%> option");
635 
636       gfc_default_double_kind = 16;
637     }
638   else if (saw_r4 && saw_r8)
639     gfc_default_double_kind = 8;
640   else
641     {
642       /* F95 14.6.3.1: A nonpointer scalar object of type double precision
643 	 real ... occupies two contiguous numeric storage units.
644 
645 	 Therefore we must be supplied a kind twice as large as we chose
646 	 for single precision.  There are loopholes, in that double
647 	 precision must *occupy* two storage units, though it doesn't have
648 	 to *use* two storage units.  Which means that you can make this
649 	 kind artificially wide by padding it.  But at present there are
650 	 no GCC targets for which a two-word type does not exist, so we
651 	 just let gfc_validate_kind abort and tell us if something breaks.  */
652 
653       gfc_default_double_kind
654 	= gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
655     }
656 
657   /* The default logical kind is constrained to be the same as the
658      default integer kind.  Similarly with complex and real.  */
659   gfc_default_logical_kind = gfc_default_integer_kind;
660   gfc_default_complex_kind = gfc_default_real_kind;
661 
662   /* We only have two character kinds: ASCII and UCS-4.
663      ASCII corresponds to a 8-bit integer type, if one is available.
664      UCS-4 corresponds to a 32-bit integer type, if one is available.  */
665   i_index = 0;
666   if ((kind = get_int_kind_from_width (8)) > 0)
667     {
668       gfc_character_kinds[i_index].kind = kind;
669       gfc_character_kinds[i_index].bit_size = 8;
670       gfc_character_kinds[i_index].name = "ascii";
671       i_index++;
672     }
673   if ((kind = get_int_kind_from_width (32)) > 0)
674     {
675       gfc_character_kinds[i_index].kind = kind;
676       gfc_character_kinds[i_index].bit_size = 32;
677       gfc_character_kinds[i_index].name = "iso_10646";
678       i_index++;
679     }
680 
681   /* Choose the smallest integer kind for our default character.  */
682   gfc_default_character_kind = gfc_character_kinds[0].kind;
683   gfc_character_storage_size = gfc_default_character_kind * 8;
684 
685   gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
686 
687   /* Pick a kind the same size as the C "int" type.  */
688   gfc_c_int_kind = INT_TYPE_SIZE / 8;
689 
690   /* Choose atomic kinds to match C's int.  */
691   gfc_atomic_int_kind = gfc_c_int_kind;
692   gfc_atomic_logical_kind = gfc_c_int_kind;
693 }
694 
695 
696 /* Make sure that a valid kind is present.  Returns an index into the
697    associated kinds array, -1 if the kind is not present.  */
698 
699 static int
validate_integer(int kind)700 validate_integer (int kind)
701 {
702   int i;
703 
704   for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
705     if (gfc_integer_kinds[i].kind == kind)
706       return i;
707 
708   return -1;
709 }
710 
711 static int
validate_real(int kind)712 validate_real (int kind)
713 {
714   int i;
715 
716   for (i = 0; gfc_real_kinds[i].kind != 0; i++)
717     if (gfc_real_kinds[i].kind == kind)
718       return i;
719 
720   return -1;
721 }
722 
723 static int
validate_logical(int kind)724 validate_logical (int kind)
725 {
726   int i;
727 
728   for (i = 0; gfc_logical_kinds[i].kind; i++)
729     if (gfc_logical_kinds[i].kind == kind)
730       return i;
731 
732   return -1;
733 }
734 
735 static int
validate_character(int kind)736 validate_character (int kind)
737 {
738   int i;
739 
740   for (i = 0; gfc_character_kinds[i].kind; i++)
741     if (gfc_character_kinds[i].kind == kind)
742       return i;
743 
744   return -1;
745 }
746 
747 /* Validate a kind given a basic type.  The return value is the same
748    for the child functions, with -1 indicating nonexistence of the
749    type.  If MAY_FAIL is false, then -1 is never returned, and we ICE.  */
750 
751 int
gfc_validate_kind(bt type,int kind,bool may_fail)752 gfc_validate_kind (bt type, int kind, bool may_fail)
753 {
754   int rc;
755 
756   switch (type)
757     {
758     case BT_REAL:		/* Fall through */
759     case BT_COMPLEX:
760       rc = validate_real (kind);
761       break;
762     case BT_INTEGER:
763       rc = validate_integer (kind);
764       break;
765     case BT_LOGICAL:
766       rc = validate_logical (kind);
767       break;
768     case BT_CHARACTER:
769       rc = validate_character (kind);
770       break;
771 
772     default:
773       gfc_internal_error ("gfc_validate_kind(): Got bad type");
774     }
775 
776   if (rc < 0 && !may_fail)
777     gfc_internal_error ("gfc_validate_kind(): Got bad kind");
778 
779   return rc;
780 }
781 
782 
783 /* Four subroutines of gfc_init_types.  Create type nodes for the given kind.
784    Reuse common type nodes where possible.  Recognize if the kind matches up
785    with a C type.  This will be used later in determining which routines may
786    be scarfed from libm.  */
787 
788 static tree
gfc_build_int_type(gfc_integer_info * info)789 gfc_build_int_type (gfc_integer_info *info)
790 {
791   int mode_precision = info->bit_size;
792 
793   if (mode_precision == CHAR_TYPE_SIZE)
794     info->c_char = 1;
795   if (mode_precision == SHORT_TYPE_SIZE)
796     info->c_short = 1;
797   if (mode_precision == INT_TYPE_SIZE)
798     info->c_int = 1;
799   if (mode_precision == LONG_TYPE_SIZE)
800     info->c_long = 1;
801   if (mode_precision == LONG_LONG_TYPE_SIZE)
802     info->c_long_long = 1;
803 
804   if (TYPE_PRECISION (intQI_type_node) == mode_precision)
805     return intQI_type_node;
806   if (TYPE_PRECISION (intHI_type_node) == mode_precision)
807     return intHI_type_node;
808   if (TYPE_PRECISION (intSI_type_node) == mode_precision)
809     return intSI_type_node;
810   if (TYPE_PRECISION (intDI_type_node) == mode_precision)
811     return intDI_type_node;
812   if (TYPE_PRECISION (intTI_type_node) == mode_precision)
813     return intTI_type_node;
814 
815   return make_signed_type (mode_precision);
816 }
817 
818 tree
gfc_build_uint_type(int size)819 gfc_build_uint_type (int size)
820 {
821   if (size == CHAR_TYPE_SIZE)
822     return unsigned_char_type_node;
823   if (size == SHORT_TYPE_SIZE)
824     return short_unsigned_type_node;
825   if (size == INT_TYPE_SIZE)
826     return unsigned_type_node;
827   if (size == LONG_TYPE_SIZE)
828     return long_unsigned_type_node;
829   if (size == LONG_LONG_TYPE_SIZE)
830     return long_long_unsigned_type_node;
831 
832   return make_unsigned_type (size);
833 }
834 
835 
836 static tree
gfc_build_real_type(gfc_real_info * info)837 gfc_build_real_type (gfc_real_info *info)
838 {
839   int mode_precision = info->mode_precision;
840   tree new_type;
841 
842   if (mode_precision == FLOAT_TYPE_SIZE)
843     info->c_float = 1;
844   if (mode_precision == DOUBLE_TYPE_SIZE)
845     info->c_double = 1;
846   if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
847     info->c_long_double = 1;
848   if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
849     {
850       info->c_float128 = 1;
851       gfc_real16_is_float128 = true;
852     }
853 
854   if (TYPE_PRECISION (float_type_node) == mode_precision)
855     return float_type_node;
856   if (TYPE_PRECISION (double_type_node) == mode_precision)
857     return double_type_node;
858   if (TYPE_PRECISION (long_double_type_node) == mode_precision)
859     return long_double_type_node;
860 
861   new_type = make_node (REAL_TYPE);
862   TYPE_PRECISION (new_type) = mode_precision;
863   layout_type (new_type);
864   return new_type;
865 }
866 
867 static tree
gfc_build_complex_type(tree scalar_type)868 gfc_build_complex_type (tree scalar_type)
869 {
870   tree new_type;
871 
872   if (scalar_type == NULL)
873     return NULL;
874   if (scalar_type == float_type_node)
875     return complex_float_type_node;
876   if (scalar_type == double_type_node)
877     return complex_double_type_node;
878   if (scalar_type == long_double_type_node)
879     return complex_long_double_type_node;
880 
881   new_type = make_node (COMPLEX_TYPE);
882   TREE_TYPE (new_type) = scalar_type;
883   layout_type (new_type);
884   return new_type;
885 }
886 
887 static tree
gfc_build_logical_type(gfc_logical_info * info)888 gfc_build_logical_type (gfc_logical_info *info)
889 {
890   int bit_size = info->bit_size;
891   tree new_type;
892 
893   if (bit_size == BOOL_TYPE_SIZE)
894     {
895       info->c_bool = 1;
896       return boolean_type_node;
897     }
898 
899   new_type = make_unsigned_type (bit_size);
900   TREE_SET_CODE (new_type, BOOLEAN_TYPE);
901   TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
902   TYPE_PRECISION (new_type) = 1;
903 
904   return new_type;
905 }
906 
907 
908 /* Create the backend type nodes. We map them to their
909    equivalent C type, at least for now.  We also give
910    names to the types here, and we push them in the
911    global binding level context.*/
912 
913 void
gfc_init_types(void)914 gfc_init_types (void)
915 {
916   char name_buf[26];
917   int index;
918   tree type;
919   unsigned n;
920 
921   /* Create and name the types.  */
922 #define PUSH_TYPE(name, node) \
923   pushdecl (build_decl (input_location, \
924 			TYPE_DECL, get_identifier (name), node))
925 
926   for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
927     {
928       type = gfc_build_int_type (&gfc_integer_kinds[index]);
929       /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set.  */
930       if (TYPE_STRING_FLAG (type))
931 	type = make_signed_type (gfc_integer_kinds[index].bit_size);
932       gfc_integer_types[index] = type;
933       snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
934 		gfc_integer_kinds[index].kind);
935       PUSH_TYPE (name_buf, type);
936     }
937 
938   for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
939     {
940       type = gfc_build_logical_type (&gfc_logical_kinds[index]);
941       gfc_logical_types[index] = type;
942       snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
943 		gfc_logical_kinds[index].kind);
944       PUSH_TYPE (name_buf, type);
945     }
946 
947   for (index = 0; gfc_real_kinds[index].kind != 0; index++)
948     {
949       type = gfc_build_real_type (&gfc_real_kinds[index]);
950       gfc_real_types[index] = type;
951       snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
952 		gfc_real_kinds[index].kind);
953       PUSH_TYPE (name_buf, type);
954 
955       if (gfc_real_kinds[index].c_float128)
956 	gfc_float128_type_node = type;
957 
958       type = gfc_build_complex_type (type);
959       gfc_complex_types[index] = type;
960       snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
961 		gfc_real_kinds[index].kind);
962       PUSH_TYPE (name_buf, type);
963 
964       if (gfc_real_kinds[index].c_float128)
965 	gfc_complex_float128_type_node = type;
966     }
967 
968   for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
969     {
970       type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
971       type = build_qualified_type (type, TYPE_UNQUALIFIED);
972       snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
973 		gfc_character_kinds[index].kind);
974       PUSH_TYPE (name_buf, type);
975       gfc_character_types[index] = type;
976       gfc_pcharacter_types[index] = build_pointer_type (type);
977     }
978   gfc_character1_type_node = gfc_character_types[0];
979 
980   PUSH_TYPE ("byte", unsigned_char_type_node);
981   PUSH_TYPE ("void", void_type_node);
982 
983   /* DBX debugging output gets upset if these aren't set.  */
984   if (!TYPE_NAME (integer_type_node))
985     PUSH_TYPE ("c_integer", integer_type_node);
986   if (!TYPE_NAME (char_type_node))
987     PUSH_TYPE ("c_char", char_type_node);
988 
989 #undef PUSH_TYPE
990 
991   pvoid_type_node = build_pointer_type (void_type_node);
992   prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
993   ppvoid_type_node = build_pointer_type (pvoid_type_node);
994   pchar_type_node = build_pointer_type (gfc_character1_type_node);
995   pfunc_type_node
996     = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
997 
998   gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
999   /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
1000      since this function is called before gfc_init_constants.  */
1001   gfc_array_range_type
1002 	  = build_range_type (gfc_array_index_type,
1003 			      build_int_cst (gfc_array_index_type, 0),
1004 			      NULL_TREE);
1005 
1006   /* The maximum array element size that can be handled is determined
1007      by the number of bits available to store this field in the array
1008      descriptor.  */
1009 
1010   n = TYPE_PRECISION (size_type_node);
1011   gfc_max_array_element_size
1012     = wide_int_to_tree (size_type_node,
1013 			wi::mask (n, UNSIGNED,
1014 				  TYPE_PRECISION (size_type_node)));
1015 
1016   logical_type_node = gfc_get_logical_type (gfc_default_logical_kind);
1017   logical_true_node = build_int_cst (logical_type_node, 1);
1018   logical_false_node = build_int_cst (logical_type_node, 0);
1019 
1020   /* Character lengths are of type size_t, except signed.  */
1021   gfc_charlen_int_kind = get_int_kind_from_node (size_type_node);
1022   gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
1023 
1024   /* Fortran kind number of size_type_node (size_t). This is used for
1025      the _size member in vtables.  */
1026   gfc_size_kind = get_int_kind_from_node (size_type_node);
1027 }
1028 
1029 /* Get the type node for the given type and kind.  */
1030 
1031 tree
gfc_get_int_type(int kind)1032 gfc_get_int_type (int kind)
1033 {
1034   int index = gfc_validate_kind (BT_INTEGER, kind, true);
1035   return index < 0 ? 0 : gfc_integer_types[index];
1036 }
1037 
1038 tree
gfc_get_real_type(int kind)1039 gfc_get_real_type (int kind)
1040 {
1041   int index = gfc_validate_kind (BT_REAL, kind, true);
1042   return index < 0 ? 0 : gfc_real_types[index];
1043 }
1044 
1045 tree
gfc_get_complex_type(int kind)1046 gfc_get_complex_type (int kind)
1047 {
1048   int index = gfc_validate_kind (BT_COMPLEX, kind, true);
1049   return index < 0 ? 0 : gfc_complex_types[index];
1050 }
1051 
1052 tree
gfc_get_logical_type(int kind)1053 gfc_get_logical_type (int kind)
1054 {
1055   int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1056   return index < 0 ? 0 : gfc_logical_types[index];
1057 }
1058 
1059 tree
gfc_get_char_type(int kind)1060 gfc_get_char_type (int kind)
1061 {
1062   int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1063   return index < 0 ? 0 : gfc_character_types[index];
1064 }
1065 
1066 tree
gfc_get_pchar_type(int kind)1067 gfc_get_pchar_type (int kind)
1068 {
1069   int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1070   return index < 0 ? 0 : gfc_pcharacter_types[index];
1071 }
1072 
1073 
1074 /* Create a character type with the given kind and length.  */
1075 
1076 tree
gfc_get_character_type_len_for_eltype(tree eltype,tree len)1077 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1078 {
1079   tree bounds, type;
1080 
1081   bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1082   type = build_array_type (eltype, bounds);
1083   TYPE_STRING_FLAG (type) = 1;
1084 
1085   return type;
1086 }
1087 
1088 tree
gfc_get_character_type_len(int kind,tree len)1089 gfc_get_character_type_len (int kind, tree len)
1090 {
1091   gfc_validate_kind (BT_CHARACTER, kind, false);
1092   return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1093 }
1094 
1095 
1096 /* Get a type node for a character kind.  */
1097 
1098 tree
gfc_get_character_type(int kind,gfc_charlen * cl)1099 gfc_get_character_type (int kind, gfc_charlen * cl)
1100 {
1101   tree len;
1102 
1103   len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1104   if (len && POINTER_TYPE_P (TREE_TYPE (len)))
1105     len = build_fold_indirect_ref (len);
1106 
1107   return gfc_get_character_type_len (kind, len);
1108 }
1109 
1110 /* Convert a basic type.  This will be an array for character types.  */
1111 
1112 tree
gfc_typenode_for_spec(gfc_typespec * spec,int codim)1113 gfc_typenode_for_spec (gfc_typespec * spec, int codim)
1114 {
1115   tree basetype;
1116 
1117   switch (spec->type)
1118     {
1119     case BT_UNKNOWN:
1120       gcc_unreachable ();
1121 
1122     case BT_INTEGER:
1123       /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1124          has been resolved.  This is done so we can convert C_PTR and
1125          C_FUNPTR to simple variables that get translated to (void *).  */
1126       if (spec->f90_type == BT_VOID)
1127 	{
1128 	  if (spec->u.derived
1129 	      && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1130 	    basetype = ptr_type_node;
1131 	  else
1132 	    basetype = pfunc_type_node;
1133 	}
1134       else
1135         basetype = gfc_get_int_type (spec->kind);
1136       break;
1137 
1138     case BT_REAL:
1139       basetype = gfc_get_real_type (spec->kind);
1140       break;
1141 
1142     case BT_COMPLEX:
1143       basetype = gfc_get_complex_type (spec->kind);
1144       break;
1145 
1146     case BT_LOGICAL:
1147       basetype = gfc_get_logical_type (spec->kind);
1148       break;
1149 
1150     case BT_CHARACTER:
1151       basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1152       break;
1153 
1154     case BT_HOLLERITH:
1155       /* Since this cannot be used, return a length one character.  */
1156       basetype = gfc_get_character_type_len (gfc_default_character_kind,
1157 					     gfc_index_one_node);
1158       break;
1159 
1160     case BT_UNION:
1161       basetype = gfc_get_union_type (spec->u.derived);
1162       break;
1163 
1164     case BT_DERIVED:
1165     case BT_CLASS:
1166       basetype = gfc_get_derived_type (spec->u.derived, codim);
1167 
1168       if (spec->type == BT_CLASS)
1169 	GFC_CLASS_TYPE_P (basetype) = 1;
1170 
1171       /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1172          type and kind to fit a (void *) and the basetype returned was a
1173          ptr_type_node.  We need to pass up this new information to the
1174          symbol that was declared of type C_PTR or C_FUNPTR.  */
1175       if (spec->u.derived->ts.f90_type == BT_VOID)
1176         {
1177           spec->type = BT_INTEGER;
1178           spec->kind = gfc_index_integer_kind;
1179 	  spec->f90_type = BT_VOID;
1180 	  spec->is_c_interop = 1;  /* Mark as escaping later.  */
1181         }
1182       break;
1183     case BT_VOID:
1184     case BT_ASSUMED:
1185       /* This is for the second arg to c_f_pointer and c_f_procpointer
1186          of the iso_c_binding module, to accept any ptr type.  */
1187       basetype = ptr_type_node;
1188       if (spec->f90_type == BT_VOID)
1189 	{
1190 	  if (spec->u.derived
1191 	      && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1192 	    basetype = ptr_type_node;
1193 	  else
1194 	    basetype = pfunc_type_node;
1195 	}
1196        break;
1197     case BT_PROCEDURE:
1198       basetype = pfunc_type_node;
1199       break;
1200     default:
1201       gcc_unreachable ();
1202     }
1203   return basetype;
1204 }
1205 
1206 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE.  */
1207 
1208 static tree
gfc_conv_array_bound(gfc_expr * expr)1209 gfc_conv_array_bound (gfc_expr * expr)
1210 {
1211   /* If expr is an integer constant, return that.  */
1212   if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1213     return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1214 
1215   /* Otherwise return NULL.  */
1216   return NULL_TREE;
1217 }
1218 
1219 /* Return the type of an element of the array.  Note that scalar coarrays
1220    are special.  In particular, for GFC_ARRAY_TYPE_P, the original argument
1221    (with POINTER_TYPE stripped) is returned.  */
1222 
1223 tree
gfc_get_element_type(tree type)1224 gfc_get_element_type (tree type)
1225 {
1226   tree element;
1227 
1228   if (GFC_ARRAY_TYPE_P (type))
1229     {
1230       if (TREE_CODE (type) == POINTER_TYPE)
1231         type = TREE_TYPE (type);
1232       if (GFC_TYPE_ARRAY_RANK (type) == 0)
1233 	{
1234 	  gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1235 	  element = type;
1236 	}
1237       else
1238 	{
1239 	  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1240 	  element = TREE_TYPE (type);
1241 	}
1242     }
1243   else
1244     {
1245       gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1246       element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1247 
1248       gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1249       element = TREE_TYPE (element);
1250 
1251       /* For arrays, which are not scalar coarrays.  */
1252       if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1253 	element = TREE_TYPE (element);
1254     }
1255 
1256   return element;
1257 }
1258 
1259 /* Build an array.  This function is called from gfc_sym_type().
1260    Actually returns array descriptor type.
1261 
1262    Format of array descriptors is as follows:
1263 
1264     struct gfc_array_descriptor
1265     {
1266       array *data;
1267       index offset;
1268       struct dtype_type dtype;
1269       struct descriptor_dimension dimension[N_DIM];
1270     }
1271 
1272     struct dtype_type
1273     {
1274       size_t elem_len;
1275       int version;
1276       signed char rank;
1277       signed char type;
1278       signed short attribute;
1279     }
1280 
1281     struct descriptor_dimension
1282     {
1283       index stride;
1284       index lbound;
1285       index ubound;
1286     }
1287 
1288    Translation code should use gfc_conv_descriptor_* rather than
1289    accessing the descriptor directly.  Any changes to the array
1290    descriptor type will require changes in gfc_conv_descriptor_* and
1291    gfc_build_array_initializer.
1292 
1293    This is represented internally as a RECORD_TYPE. The index nodes
1294    are gfc_array_index_type and the data node is a pointer to the
1295    data.  See below for the handling of character types.
1296 
1297    I originally used nested ARRAY_TYPE nodes to represent arrays, but
1298    this generated poor code for assumed/deferred size arrays.  These
1299    require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1300    of the GENERIC grammar.  Also, there is no way to explicitly set
1301    the array stride, so all data must be packed(1).  I've tried to
1302    mark all the functions which would require modification with a GCC
1303    ARRAYS comment.
1304 
1305    The data component points to the first element in the array.  The
1306    offset field is the position of the origin of the array (i.e. element
1307    (0, 0 ...)).  This may be outside the bounds of the array.
1308 
1309    An element is accessed by
1310     data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1311    This gives good performance as the computation does not involve the
1312    bounds of the array.  For packed arrays, this is optimized further
1313    by substituting the known strides.
1314 
1315    This system has one problem: all array bounds must be within 2^31
1316    elements of the origin (2^63 on 64-bit machines).  For example
1317     integer, dimension (80000:90000, 80000:90000, 2) :: array
1318    may not work properly on 32-bit machines because 80000*80000 >
1319    2^31, so the calculation for stride2 would overflow.  This may
1320    still work, but I haven't checked, and it relies on the overflow
1321    doing the right thing.
1322 
1323    The way to fix this problem is to access elements as follows:
1324     data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1325    Obviously this is much slower.  I will make this a compile time
1326    option, something like -fsmall-array-offsets.  Mixing code compiled
1327    with and without this switch will work.
1328 
1329    (1) This can be worked around by modifying the upper bound of the
1330    previous dimension.  This requires extra fields in the descriptor
1331    (both real_ubound and fake_ubound).  */
1332 
1333 
1334 /* Returns true if the array sym does not require a descriptor.  */
1335 
1336 int
gfc_is_nodesc_array(gfc_symbol * sym)1337 gfc_is_nodesc_array (gfc_symbol * sym)
1338 {
1339   symbol_attribute *array_attr;
1340   gfc_array_spec *as;
1341   bool is_classarray = IS_CLASS_ARRAY (sym);
1342 
1343   array_attr = is_classarray ? &CLASS_DATA (sym)->attr : &sym->attr;
1344   as = is_classarray ? CLASS_DATA (sym)->as : sym->as;
1345 
1346   gcc_assert (array_attr->dimension || array_attr->codimension);
1347 
1348   /* We only want local arrays.  */
1349   if ((sym->ts.type != BT_CLASS && sym->attr.pointer)
1350       || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer)
1351       || array_attr->allocatable)
1352     return 0;
1353 
1354   /* We want a descriptor for associate-name arrays that do not have an
1355 	 explicitly known shape already.  */
1356   if (sym->assoc && as->type != AS_EXPLICIT)
1357     return 0;
1358 
1359   /* The dummy is stored in sym and not in the component.  */
1360   if (sym->attr.dummy)
1361     return as->type != AS_ASSUMED_SHAPE
1362 	&& as->type != AS_ASSUMED_RANK;
1363 
1364   if (sym->attr.result || sym->attr.function)
1365     return 0;
1366 
1367   gcc_assert (as->type == AS_EXPLICIT || as->cp_was_assumed);
1368 
1369   return 1;
1370 }
1371 
1372 
1373 /* Create an array descriptor type.  */
1374 
1375 static tree
gfc_build_array_type(tree type,gfc_array_spec * as,enum gfc_array_kind akind,bool restricted,bool contiguous,int codim)1376 gfc_build_array_type (tree type, gfc_array_spec * as,
1377 		      enum gfc_array_kind akind, bool restricted,
1378 		      bool contiguous, int codim)
1379 {
1380   tree lbound[GFC_MAX_DIMENSIONS];
1381   tree ubound[GFC_MAX_DIMENSIONS];
1382   int n, corank;
1383 
1384   /* Assumed-shape arrays do not have codimension information stored in the
1385      descriptor.  */
1386   corank = MAX (as->corank, codim);
1387   if (as->type == AS_ASSUMED_SHAPE ||
1388       (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1389     corank = codim;
1390 
1391   if (as->type == AS_ASSUMED_RANK)
1392     for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1393       {
1394 	lbound[n] = NULL_TREE;
1395 	ubound[n] = NULL_TREE;
1396       }
1397 
1398   for (n = 0; n < as->rank; n++)
1399     {
1400       /* Create expressions for the known bounds of the array.  */
1401       if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1402         lbound[n] = gfc_index_one_node;
1403       else
1404         lbound[n] = gfc_conv_array_bound (as->lower[n]);
1405       ubound[n] = gfc_conv_array_bound (as->upper[n]);
1406     }
1407 
1408   for (n = as->rank; n < as->rank + corank; n++)
1409     {
1410       if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1411         lbound[n] = gfc_index_one_node;
1412       else
1413         lbound[n] = gfc_conv_array_bound (as->lower[n]);
1414 
1415       if (n < as->rank + corank - 1)
1416 	ubound[n] = gfc_conv_array_bound (as->upper[n]);
1417     }
1418 
1419   if (as->type == AS_ASSUMED_SHAPE)
1420     akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1421 		       : GFC_ARRAY_ASSUMED_SHAPE;
1422   else if (as->type == AS_ASSUMED_RANK)
1423     akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1424 		       : GFC_ARRAY_ASSUMED_RANK;
1425   return gfc_get_array_type_bounds (type, as->rank == -1
1426 					  ? GFC_MAX_DIMENSIONS : as->rank,
1427 				    corank, lbound, ubound, 0, akind,
1428 				    restricted);
1429 }
1430 
1431 /* Returns the struct descriptor_dimension type.  */
1432 
1433 static tree
gfc_get_desc_dim_type(void)1434 gfc_get_desc_dim_type (void)
1435 {
1436   tree type;
1437   tree decl, *chain = NULL;
1438 
1439   if (gfc_desc_dim_type)
1440     return gfc_desc_dim_type;
1441 
1442   /* Build the type node.  */
1443   type = make_node (RECORD_TYPE);
1444 
1445   TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1446   TYPE_PACKED (type) = 1;
1447 
1448   /* Consists of the stride, lbound and ubound members.  */
1449   decl = gfc_add_field_to_struct_1 (type,
1450 				    get_identifier ("stride"),
1451 				    gfc_array_index_type, &chain);
1452   TREE_NO_WARNING (decl) = 1;
1453 
1454   decl = gfc_add_field_to_struct_1 (type,
1455 				    get_identifier ("lbound"),
1456 				    gfc_array_index_type, &chain);
1457   TREE_NO_WARNING (decl) = 1;
1458 
1459   decl = gfc_add_field_to_struct_1 (type,
1460 				    get_identifier ("ubound"),
1461 				    gfc_array_index_type, &chain);
1462   TREE_NO_WARNING (decl) = 1;
1463 
1464   /* Finish off the type.  */
1465   gfc_finish_type (type);
1466   TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1467 
1468   gfc_desc_dim_type = type;
1469   return type;
1470 }
1471 
1472 
1473 /* Return the DTYPE for an array.  This describes the type and type parameters
1474    of the array.  */
1475 /* TODO: Only call this when the value is actually used, and make all the
1476    unknown cases abort.  */
1477 
1478 tree
gfc_get_dtype_rank_type(int rank,tree etype)1479 gfc_get_dtype_rank_type (int rank, tree etype)
1480 {
1481   tree size;
1482   int n;
1483   tree tmp;
1484   tree dtype;
1485   tree field;
1486   vec<constructor_elt, va_gc> *v = NULL;
1487 
1488   size = TYPE_SIZE_UNIT (etype);
1489 
1490   switch (TREE_CODE (etype))
1491     {
1492     case INTEGER_TYPE:
1493       n = BT_INTEGER;
1494       break;
1495 
1496     case BOOLEAN_TYPE:
1497       n = BT_LOGICAL;
1498       break;
1499 
1500     case REAL_TYPE:
1501       n = BT_REAL;
1502       break;
1503 
1504     case COMPLEX_TYPE:
1505       n = BT_COMPLEX;
1506       break;
1507 
1508     case RECORD_TYPE:
1509       if (GFC_CLASS_TYPE_P (etype))
1510 	n = BT_CLASS;
1511       else
1512 	n = BT_DERIVED;
1513       break;
1514 
1515     /* We will never have arrays of arrays.  */
1516     case ARRAY_TYPE:
1517       n = BT_CHARACTER;
1518       if (size == NULL_TREE)
1519 	size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
1520       break;
1521 
1522     case POINTER_TYPE:
1523       n = BT_ASSUMED;
1524       if (TREE_CODE (TREE_TYPE (etype)) != VOID_TYPE)
1525 	size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
1526       else
1527 	size = build_int_cst (size_type_node, 0);
1528     break;
1529 
1530     default:
1531       /* TODO: Don't do dtype for temporary descriptorless arrays.  */
1532       /* We can encounter strange array types for temporary arrays.  */
1533       return gfc_index_zero_node;
1534     }
1535 
1536   tmp = get_dtype_type_node ();
1537   field = gfc_advance_chain (TYPE_FIELDS (tmp),
1538 			     GFC_DTYPE_ELEM_LEN);
1539   CONSTRUCTOR_APPEND_ELT (v, field,
1540 			  fold_convert (TREE_TYPE (field), size));
1541 
1542   field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
1543 			     GFC_DTYPE_RANK);
1544   CONSTRUCTOR_APPEND_ELT (v, field,
1545 			  build_int_cst (TREE_TYPE (field), rank));
1546 
1547   field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
1548 			     GFC_DTYPE_TYPE);
1549   CONSTRUCTOR_APPEND_ELT (v, field,
1550 			  build_int_cst (TREE_TYPE (field), n));
1551 
1552   dtype = build_constructor (tmp, v);
1553 
1554   return dtype;
1555 }
1556 
1557 
1558 tree
gfc_get_dtype(tree type)1559 gfc_get_dtype (tree type)
1560 {
1561   tree dtype;
1562   tree etype;
1563   int rank;
1564 
1565   gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1566 
1567   rank = GFC_TYPE_ARRAY_RANK (type);
1568   etype = gfc_get_element_type (type);
1569   dtype = gfc_get_dtype_rank_type (rank, etype);
1570 
1571   GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1572   return dtype;
1573 }
1574 
1575 
1576 /* Build an array type for use without a descriptor, packed according
1577    to the value of PACKED.  */
1578 
1579 tree
gfc_get_nodesc_array_type(tree etype,gfc_array_spec * as,gfc_packed packed,bool restricted)1580 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1581 			   bool restricted)
1582 {
1583   tree range;
1584   tree type;
1585   tree tmp;
1586   int n;
1587   int known_stride;
1588   int known_offset;
1589   mpz_t offset;
1590   mpz_t stride;
1591   mpz_t delta;
1592   gfc_expr *expr;
1593 
1594   mpz_init_set_ui (offset, 0);
1595   mpz_init_set_ui (stride, 1);
1596   mpz_init (delta);
1597 
1598   /* We don't use build_array_type because this does not include
1599      lang-specific information (i.e. the bounds of the array) when checking
1600      for duplicates.  */
1601   if (as->rank)
1602     type = make_node (ARRAY_TYPE);
1603   else
1604     type = build_variant_type_copy (etype);
1605 
1606   GFC_ARRAY_TYPE_P (type) = 1;
1607   TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1608 
1609   known_stride = (packed != PACKED_NO);
1610   known_offset = 1;
1611   for (n = 0; n < as->rank; n++)
1612     {
1613       /* Fill in the stride and bound components of the type.  */
1614       if (known_stride)
1615 	tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1616       else
1617         tmp = NULL_TREE;
1618       GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1619 
1620       expr = as->lower[n];
1621       if (expr && expr->expr_type == EXPR_CONSTANT)
1622         {
1623           tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1624 				      gfc_index_integer_kind);
1625         }
1626       else
1627         {
1628           known_stride = 0;
1629           tmp = NULL_TREE;
1630         }
1631       GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1632 
1633       if (known_stride)
1634 	{
1635           /* Calculate the offset.  */
1636           mpz_mul (delta, stride, as->lower[n]->value.integer);
1637           mpz_sub (offset, offset, delta);
1638 	}
1639       else
1640 	known_offset = 0;
1641 
1642       expr = as->upper[n];
1643       if (expr && expr->expr_type == EXPR_CONSTANT)
1644         {
1645 	  tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1646 			          gfc_index_integer_kind);
1647         }
1648       else
1649         {
1650           tmp = NULL_TREE;
1651           known_stride = 0;
1652         }
1653       GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1654 
1655       if (known_stride)
1656         {
1657           /* Calculate the stride.  */
1658           mpz_sub (delta, as->upper[n]->value.integer,
1659 	           as->lower[n]->value.integer);
1660           mpz_add_ui (delta, delta, 1);
1661           mpz_mul (stride, stride, delta);
1662         }
1663 
1664       /* Only the first stride is known for partial packed arrays.  */
1665       if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1666         known_stride = 0;
1667     }
1668   for (n = as->rank; n < as->rank + as->corank; n++)
1669     {
1670       expr = as->lower[n];
1671       if (expr && expr->expr_type == EXPR_CONSTANT)
1672 	tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1673 				    gfc_index_integer_kind);
1674       else
1675       	tmp = NULL_TREE;
1676       GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1677 
1678       expr = as->upper[n];
1679       if (expr && expr->expr_type == EXPR_CONSTANT)
1680 	tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1681 				    gfc_index_integer_kind);
1682       else
1683  	tmp = NULL_TREE;
1684       if (n < as->rank + as->corank - 1)
1685       GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1686     }
1687 
1688   if (known_offset)
1689     {
1690       GFC_TYPE_ARRAY_OFFSET (type) =
1691         gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1692     }
1693   else
1694     GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1695 
1696   if (known_stride)
1697     {
1698       GFC_TYPE_ARRAY_SIZE (type) =
1699         gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1700     }
1701   else
1702     GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1703 
1704   GFC_TYPE_ARRAY_RANK (type) = as->rank;
1705   GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1706   GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1707   range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1708 			    NULL_TREE);
1709   /* TODO: use main type if it is unbounded.  */
1710   GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1711     build_pointer_type (build_array_type (etype, range));
1712   if (restricted)
1713     GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1714       build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1715 			    TYPE_QUAL_RESTRICT);
1716 
1717   if (as->rank == 0)
1718     {
1719       if (packed != PACKED_STATIC  || flag_coarray == GFC_FCOARRAY_LIB)
1720 	{
1721 	  type = build_pointer_type (type);
1722 
1723 	  if (restricted)
1724 	    type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1725 
1726 	  GFC_ARRAY_TYPE_P (type) = 1;
1727 	  TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1728 	}
1729 
1730       return type;
1731     }
1732 
1733   if (known_stride)
1734     {
1735       mpz_sub_ui (stride, stride, 1);
1736       range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1737     }
1738   else
1739     range = NULL_TREE;
1740 
1741   range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1742   TYPE_DOMAIN (type) = range;
1743 
1744   build_pointer_type (etype);
1745   TREE_TYPE (type) = etype;
1746 
1747   layout_type (type);
1748 
1749   mpz_clear (offset);
1750   mpz_clear (stride);
1751   mpz_clear (delta);
1752 
1753   /* Represent packed arrays as multi-dimensional if they have rank >
1754      1 and with proper bounds, instead of flat arrays.  This makes for
1755      better debug info.  */
1756   if (known_offset)
1757     {
1758       tree gtype = etype, rtype, type_decl;
1759 
1760       for (n = as->rank - 1; n >= 0; n--)
1761 	{
1762 	  rtype = build_range_type (gfc_array_index_type,
1763 				    GFC_TYPE_ARRAY_LBOUND (type, n),
1764 				    GFC_TYPE_ARRAY_UBOUND (type, n));
1765 	  gtype = build_array_type (gtype, rtype);
1766 	}
1767       TYPE_NAME (type) = type_decl = build_decl (input_location,
1768 						 TYPE_DECL, NULL, gtype);
1769       DECL_ORIGINAL_TYPE (type_decl) = gtype;
1770     }
1771 
1772   if (packed != PACKED_STATIC || !known_stride
1773       || (as->corank && flag_coarray == GFC_FCOARRAY_LIB))
1774     {
1775       /* For dummy arrays and automatic (heap allocated) arrays we
1776 	 want a pointer to the array.  */
1777       type = build_pointer_type (type);
1778       if (restricted)
1779 	type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1780       GFC_ARRAY_TYPE_P (type) = 1;
1781       TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1782     }
1783   return type;
1784 }
1785 
1786 
1787 /* Return or create the base type for an array descriptor.  */
1788 
1789 static tree
gfc_get_array_descriptor_base(int dimen,int codimen,bool restricted)1790 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1791 {
1792   tree fat_type, decl, arraytype, *chain = NULL;
1793   char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1794   int idx;
1795 
1796   /* Assumed-rank array.  */
1797   if (dimen == -1)
1798     dimen = GFC_MAX_DIMENSIONS;
1799 
1800   idx = 2 * (codimen + dimen) + restricted;
1801 
1802   gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1803 
1804   if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1805     {
1806       if (gfc_array_descriptor_base_caf[idx])
1807 	return gfc_array_descriptor_base_caf[idx];
1808     }
1809   else if (gfc_array_descriptor_base[idx])
1810     return gfc_array_descriptor_base[idx];
1811 
1812   /* Build the type node.  */
1813   fat_type = make_node (RECORD_TYPE);
1814 
1815   sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1816   TYPE_NAME (fat_type) = get_identifier (name);
1817   TYPE_NAMELESS (fat_type) = 1;
1818 
1819   /* Add the data member as the first element of the descriptor.  */
1820   gfc_add_field_to_struct_1 (fat_type,
1821 			     get_identifier ("data"),
1822 			     (restricted
1823 			      ? prvoid_type_node
1824 			      : ptr_type_node), &chain);
1825 
1826   /* Add the base component.  */
1827   decl = gfc_add_field_to_struct_1 (fat_type,
1828 				    get_identifier ("offset"),
1829 				    gfc_array_index_type, &chain);
1830   TREE_NO_WARNING (decl) = 1;
1831 
1832   /* Add the dtype component.  */
1833   decl = gfc_add_field_to_struct_1 (fat_type,
1834 				    get_identifier ("dtype"),
1835 				    get_dtype_type_node (), &chain);
1836   TREE_NO_WARNING (decl) = 1;
1837 
1838   /* Add the span component.  */
1839   decl = gfc_add_field_to_struct_1 (fat_type,
1840 				    get_identifier ("span"),
1841 				    gfc_array_index_type, &chain);
1842   TREE_NO_WARNING (decl) = 1;
1843 
1844   /* Build the array type for the stride and bound components.  */
1845   if (dimen + codimen > 0)
1846     {
1847       arraytype =
1848 	build_array_type (gfc_get_desc_dim_type (),
1849 			  build_range_type (gfc_array_index_type,
1850 					    gfc_index_zero_node,
1851 					    gfc_rank_cst[codimen + dimen - 1]));
1852 
1853       decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1854 					arraytype, &chain);
1855       TREE_NO_WARNING (decl) = 1;
1856     }
1857 
1858   if (flag_coarray == GFC_FCOARRAY_LIB)
1859     {
1860       decl = gfc_add_field_to_struct_1 (fat_type,
1861 					get_identifier ("token"),
1862 					prvoid_type_node, &chain);
1863       TREE_NO_WARNING (decl) = 1;
1864     }
1865 
1866   /* Finish off the type.  */
1867   gfc_finish_type (fat_type);
1868   TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1869 
1870   if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1871     gfc_array_descriptor_base_caf[idx] = fat_type;
1872   else
1873     gfc_array_descriptor_base[idx] = fat_type;
1874 
1875   return fat_type;
1876 }
1877 
1878 
1879 /* Build an array (descriptor) type with given bounds.  */
1880 
1881 tree
gfc_get_array_type_bounds(tree etype,int dimen,int codimen,tree * lbound,tree * ubound,int packed,enum gfc_array_kind akind,bool restricted)1882 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1883 			   tree * ubound, int packed,
1884 			   enum gfc_array_kind akind, bool restricted)
1885 {
1886   char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1887   tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1888   const char *type_name;
1889   int n;
1890 
1891   base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1892   fat_type = build_distinct_type_copy (base_type);
1893   /* Unshare TYPE_FIELDs.  */
1894   for (tree *tp = &TYPE_FIELDS (fat_type); *tp; tp = &DECL_CHAIN (*tp))
1895     {
1896       tree next = DECL_CHAIN (*tp);
1897       *tp = copy_node (*tp);
1898       DECL_CONTEXT (*tp) = fat_type;
1899       DECL_CHAIN (*tp) = next;
1900     }
1901   /* Make sure that nontarget and target array type have the same canonical
1902      type (and same stub decl for debug info).  */
1903   base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1904   TYPE_CANONICAL (fat_type) = base_type;
1905   TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1906 
1907   tmp = TYPE_NAME (etype);
1908   if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1909     tmp = DECL_NAME (tmp);
1910   if (tmp)
1911     type_name = IDENTIFIER_POINTER (tmp);
1912   else
1913     type_name = "unknown";
1914   sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1915 	   GFC_MAX_SYMBOL_LEN, type_name);
1916   TYPE_NAME (fat_type) = get_identifier (name);
1917   TYPE_NAMELESS (fat_type) = 1;
1918 
1919   GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1920   TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1921 
1922   GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1923   GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1924   GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1925   GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1926 
1927   /* Build an array descriptor record type.  */
1928   if (packed != 0)
1929     stride = gfc_index_one_node;
1930   else
1931     stride = NULL_TREE;
1932   for (n = 0; n < dimen + codimen; n++)
1933     {
1934       if (n < dimen)
1935 	GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1936 
1937       if (lbound)
1938 	lower = lbound[n];
1939       else
1940 	lower = NULL_TREE;
1941 
1942       if (lower != NULL_TREE)
1943 	{
1944 	  if (INTEGER_CST_P (lower))
1945 	    GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1946 	  else
1947 	    lower = NULL_TREE;
1948 	}
1949 
1950       if (codimen && n == dimen + codimen - 1)
1951 	break;
1952 
1953       upper = ubound[n];
1954       if (upper != NULL_TREE)
1955 	{
1956 	  if (INTEGER_CST_P (upper))
1957 	    GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1958 	  else
1959 	    upper = NULL_TREE;
1960 	}
1961 
1962       if (n >= dimen)
1963 	continue;
1964 
1965       if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1966 	{
1967 	  tmp = fold_build2_loc (input_location, MINUS_EXPR,
1968 				 gfc_array_index_type, upper, lower);
1969 	  tmp = fold_build2_loc (input_location, PLUS_EXPR,
1970 				 gfc_array_index_type, tmp,
1971 				 gfc_index_one_node);
1972 	  stride = fold_build2_loc (input_location, MULT_EXPR,
1973 				    gfc_array_index_type, tmp, stride);
1974 	  /* Check the folding worked.  */
1975 	  gcc_assert (INTEGER_CST_P (stride));
1976 	}
1977       else
1978 	stride = NULL_TREE;
1979     }
1980   GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1981 
1982   /* TODO: known offsets for descriptors.  */
1983   GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1984 
1985   if (dimen == 0)
1986     {
1987       arraytype =  build_pointer_type (etype);
1988       if (restricted)
1989 	arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1990 
1991       GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1992       return fat_type;
1993     }
1994 
1995   /* We define data as an array with the correct size if possible.
1996      Much better than doing pointer arithmetic.  */
1997   if (stride)
1998     rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1999 			      int_const_binop (MINUS_EXPR, stride,
2000 					       build_int_cst (TREE_TYPE (stride), 1)));
2001   else
2002     rtype = gfc_array_range_type;
2003   arraytype = build_array_type (etype, rtype);
2004   arraytype = build_pointer_type (arraytype);
2005   if (restricted)
2006     arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
2007   GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
2008 
2009   /* This will generate the base declarations we need to emit debug
2010      information for this type.  FIXME: there must be a better way to
2011      avoid divergence between compilations with and without debug
2012      information.  */
2013   {
2014     struct array_descr_info info;
2015     gfc_get_array_descr_info (fat_type, &info);
2016     gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
2017   }
2018 
2019   return fat_type;
2020 }
2021 
2022 /* Build a pointer type. This function is called from gfc_sym_type().  */
2023 
2024 static tree
gfc_build_pointer_type(gfc_symbol * sym,tree type)2025 gfc_build_pointer_type (gfc_symbol * sym, tree type)
2026 {
2027   /* Array pointer types aren't actually pointers.  */
2028   if (sym->attr.dimension)
2029     return type;
2030   else
2031     return build_pointer_type (type);
2032 }
2033 
2034 static tree gfc_nonrestricted_type (tree t);
2035 /* Given two record or union type nodes TO and FROM, ensure
2036    that all fields in FROM have a corresponding field in TO,
2037    their type being nonrestrict variants.  This accepts a TO
2038    node that already has a prefix of the fields in FROM.  */
2039 static void
mirror_fields(tree to,tree from)2040 mirror_fields (tree to, tree from)
2041 {
2042   tree fto, ffrom;
2043   tree *chain;
2044 
2045   /* Forward to the end of TOs fields.  */
2046   fto = TYPE_FIELDS (to);
2047   ffrom = TYPE_FIELDS (from);
2048   chain = &TYPE_FIELDS (to);
2049   while (fto)
2050     {
2051       gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
2052       chain = &DECL_CHAIN (fto);
2053       fto = DECL_CHAIN (fto);
2054       ffrom = DECL_CHAIN (ffrom);
2055     }
2056 
2057   /* Now add all fields remaining in FROM (starting with ffrom).  */
2058   for (; ffrom; ffrom = DECL_CHAIN (ffrom))
2059     {
2060       tree newfield = copy_node (ffrom);
2061       DECL_CONTEXT (newfield) = to;
2062       /* The store to DECL_CHAIN might seem redundant with the
2063 	 stores to *chain, but not clearing it here would mean
2064 	 leaving a chain into the old fields.  If ever
2065 	 our called functions would look at them confusion
2066 	 will arise.  */
2067       DECL_CHAIN (newfield) = NULL_TREE;
2068       *chain = newfield;
2069       chain = &DECL_CHAIN (newfield);
2070 
2071       if (TREE_CODE (ffrom) == FIELD_DECL)
2072 	{
2073 	  tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
2074 	  TREE_TYPE (newfield) = elemtype;
2075 	}
2076     }
2077   *chain = NULL_TREE;
2078 }
2079 
2080 /* Given a type T, returns a different type of the same structure,
2081    except that all types it refers to (recursively) are always
2082    non-restrict qualified types.  */
2083 static tree
gfc_nonrestricted_type(tree t)2084 gfc_nonrestricted_type (tree t)
2085 {
2086   tree ret = t;
2087 
2088   /* If the type isn't laid out yet, don't copy it.  If something
2089      needs it for real it should wait until the type got finished.  */
2090   if (!TYPE_SIZE (t))
2091     return t;
2092 
2093   if (!TYPE_LANG_SPECIFIC (t))
2094     TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
2095   /* If we're dealing with this very node already further up
2096      the call chain (recursion via pointers and struct members)
2097      we haven't yet determined if we really need a new type node.
2098      Assume we don't, return T itself.  */
2099   if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2100     return t;
2101 
2102   /* If we have calculated this all already, just return it.  */
2103   if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2104     return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2105 
2106   /* Mark this type.  */
2107   TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2108 
2109   switch (TREE_CODE (t))
2110     {
2111       default:
2112 	break;
2113 
2114       case POINTER_TYPE:
2115       case REFERENCE_TYPE:
2116 	{
2117 	  tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2118 	  if (totype == TREE_TYPE (t))
2119 	    ret = t;
2120 	  else if (TREE_CODE (t) == POINTER_TYPE)
2121 	    ret = build_pointer_type (totype);
2122 	  else
2123 	    ret = build_reference_type (totype);
2124 	  ret = build_qualified_type (ret,
2125 				      TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2126 	}
2127 	break;
2128 
2129       case ARRAY_TYPE:
2130 	{
2131 	  tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2132 	  if (elemtype == TREE_TYPE (t))
2133 	    ret = t;
2134 	  else
2135 	    {
2136 	      ret = build_variant_type_copy (t);
2137 	      TREE_TYPE (ret) = elemtype;
2138 	      if (TYPE_LANG_SPECIFIC (t)
2139 		  && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2140 		{
2141 		  tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2142 		  dataptr_type = gfc_nonrestricted_type (dataptr_type);
2143 		  if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2144 		    {
2145 		      TYPE_LANG_SPECIFIC (ret)
2146 			= ggc_cleared_alloc<struct lang_type> ();
2147 		      *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2148 		      GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2149 		    }
2150 		}
2151 	    }
2152 	}
2153 	break;
2154 
2155       case RECORD_TYPE:
2156       case UNION_TYPE:
2157       case QUAL_UNION_TYPE:
2158 	{
2159 	  tree field;
2160 	  /* First determine if we need a new type at all.
2161 	     Careful, the two calls to gfc_nonrestricted_type per field
2162 	     might return different values.  That happens exactly when
2163 	     one of the fields reaches back to this very record type
2164 	     (via pointers).  The first calls will assume that we don't
2165 	     need to copy T (see the error_mark_node marking).  If there
2166 	     are any reasons for copying T apart from having to copy T,
2167 	     we'll indeed copy it, and the second calls to
2168 	     gfc_nonrestricted_type will use that new node if they
2169 	     reach back to T.  */
2170 	  for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2171 	    if (TREE_CODE (field) == FIELD_DECL)
2172 	      {
2173 		tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2174 		if (elemtype != TREE_TYPE (field))
2175 		  break;
2176 	      }
2177 	  if (!field)
2178 	    break;
2179 	  ret = build_variant_type_copy (t);
2180 	  TYPE_FIELDS (ret) = NULL_TREE;
2181 
2182 	  /* Here we make sure that as soon as we know we have to copy
2183 	     T, that also fields reaching back to us will use the new
2184 	     copy.  It's okay if that copy still contains the old fields,
2185 	     we won't look at them.  */
2186 	  TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2187 	  mirror_fields (ret, t);
2188 	}
2189         break;
2190     }
2191 
2192   TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2193   return ret;
2194 }
2195 
2196 
2197 /* Return the type for a symbol.  Special handling is required for character
2198    types to get the correct level of indirection.
2199    For functions return the return type.
2200    For subroutines return void_type_node.
2201    Calling this multiple times for the same symbol should be avoided,
2202    especially for character and array types.  */
2203 
2204 tree
gfc_sym_type(gfc_symbol * sym)2205 gfc_sym_type (gfc_symbol * sym)
2206 {
2207   tree type;
2208   int byref;
2209   bool restricted;
2210 
2211   /* Procedure Pointers inside COMMON blocks.  */
2212   if (sym->attr.proc_pointer && sym->attr.in_common)
2213     {
2214       /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type.  */
2215       sym->attr.proc_pointer = 0;
2216       type = build_pointer_type (gfc_get_function_type (sym));
2217       sym->attr.proc_pointer = 1;
2218       return type;
2219     }
2220 
2221   if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2222     return void_type_node;
2223 
2224   /* In the case of a function the fake result variable may have a
2225      type different from the function type, so don't return early in
2226      that case.  */
2227   if (sym->backend_decl && !sym->attr.function)
2228     return TREE_TYPE (sym->backend_decl);
2229 
2230   if (sym->attr.result
2231       && sym->ts.type == BT_CHARACTER
2232       && sym->ts.u.cl->backend_decl == NULL_TREE
2233       && sym->ns->proc_name
2234       && sym->ns->proc_name->ts.u.cl
2235       && sym->ns->proc_name->ts.u.cl->backend_decl != NULL_TREE)
2236     sym->ts.u.cl->backend_decl = sym->ns->proc_name->ts.u.cl->backend_decl;
2237 
2238   if (sym->ts.type == BT_CHARACTER
2239       && ((sym->attr.function && sym->attr.is_bind_c)
2240 	  || (sym->attr.result
2241 	      && sym->ns->proc_name
2242 	      && sym->ns->proc_name->attr.is_bind_c)
2243 	  || (sym->ts.deferred && (!sym->ts.u.cl
2244 				   || !sym->ts.u.cl->backend_decl))))
2245     type = gfc_character1_type_node;
2246   else
2247     type = gfc_typenode_for_spec (&sym->ts, sym->attr.codimension);
2248 
2249   if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2250     byref = 1;
2251   else
2252     byref = 0;
2253 
2254   restricted = !sym->attr.target && !sym->attr.pointer
2255                && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2256   if (!restricted)
2257     type = gfc_nonrestricted_type (type);
2258 
2259   if (sym->attr.dimension || sym->attr.codimension)
2260     {
2261       if (gfc_is_nodesc_array (sym))
2262         {
2263 	  /* If this is a character argument of unknown length, just use the
2264 	     base type.  */
2265 	  if (sym->ts.type != BT_CHARACTER
2266 	      || !(sym->attr.dummy || sym->attr.function)
2267 	      || sym->ts.u.cl->backend_decl)
2268 	    {
2269 	      type = gfc_get_nodesc_array_type (type, sym->as,
2270 						byref ? PACKED_FULL
2271 						      : PACKED_STATIC,
2272 						restricted);
2273 	      byref = 0;
2274 	    }
2275         }
2276       else
2277 	{
2278 	  enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2279 	  if (sym->attr.pointer)
2280 	    akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2281 					 : GFC_ARRAY_POINTER;
2282 	  else if (sym->attr.allocatable)
2283 	    akind = GFC_ARRAY_ALLOCATABLE;
2284 	  type = gfc_build_array_type (type, sym->as, akind, restricted,
2285 				       sym->attr.contiguous, false);
2286 	}
2287     }
2288   else
2289     {
2290       if (sym->attr.allocatable || sym->attr.pointer
2291 	  || gfc_is_associate_pointer (sym))
2292 	type = gfc_build_pointer_type (sym, type);
2293     }
2294 
2295   /* We currently pass all parameters by reference.
2296      See f95_get_function_decl.  For dummy function parameters return the
2297      function type.  */
2298   if (byref)
2299     {
2300       /* We must use pointer types for potentially absent variables.  The
2301 	 optimizers assume a reference type argument is never NULL.  */
2302       if (sym->attr.optional
2303 	  || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2304 	type = build_pointer_type (type);
2305       else
2306 	{
2307 	  type = build_reference_type (type);
2308 	  if (restricted)
2309 	    type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2310 	}
2311     }
2312 
2313   return (type);
2314 }
2315 
2316 /* Layout and output debug info for a record type.  */
2317 
2318 void
gfc_finish_type(tree type)2319 gfc_finish_type (tree type)
2320 {
2321   tree decl;
2322 
2323   decl = build_decl (input_location,
2324 		     TYPE_DECL, NULL_TREE, type);
2325   TYPE_STUB_DECL (type) = decl;
2326   layout_type (type);
2327   rest_of_type_compilation (type, 1);
2328   rest_of_decl_compilation (decl, 1, 0);
2329 }
2330 
2331 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2332    or RECORD_TYPE pointed to by CONTEXT.  The new field is chained
2333    to the end of the field list pointed to by *CHAIN.
2334 
2335    Returns a pointer to the new field.  */
2336 
2337 static tree
gfc_add_field_to_struct_1(tree context,tree name,tree type,tree ** chain)2338 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2339 {
2340   tree decl = build_decl (input_location, FIELD_DECL, name, type);
2341 
2342   DECL_CONTEXT (decl) = context;
2343   DECL_CHAIN (decl) = NULL_TREE;
2344   if (TYPE_FIELDS (context) == NULL_TREE)
2345     TYPE_FIELDS (context) = decl;
2346   if (chain != NULL)
2347     {
2348       if (*chain != NULL)
2349 	**chain = decl;
2350       *chain = &DECL_CHAIN (decl);
2351     }
2352 
2353   return decl;
2354 }
2355 
2356 /* Like `gfc_add_field_to_struct_1', but adds alignment
2357    information.  */
2358 
2359 tree
gfc_add_field_to_struct(tree context,tree name,tree type,tree ** chain)2360 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2361 {
2362   tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2363 
2364   DECL_INITIAL (decl) = 0;
2365   SET_DECL_ALIGN (decl, 0);
2366   DECL_USER_ALIGN (decl) = 0;
2367 
2368   return decl;
2369 }
2370 
2371 
2372 /* Copy the backend_decl and component backend_decls if
2373    the two derived type symbols are "equal", as described
2374    in 4.4.2 and resolved by gfc_compare_derived_types.  */
2375 
2376 int
gfc_copy_dt_decls_ifequal(gfc_symbol * from,gfc_symbol * to,bool from_gsym)2377 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2378 			   bool from_gsym)
2379 {
2380   gfc_component *to_cm;
2381   gfc_component *from_cm;
2382 
2383   if (from == to)
2384     return 1;
2385 
2386   if (from->backend_decl == NULL
2387 	|| !gfc_compare_derived_types (from, to))
2388     return 0;
2389 
2390   to->backend_decl = from->backend_decl;
2391 
2392   to_cm = to->components;
2393   from_cm = from->components;
2394 
2395   /* Copy the component declarations.  If a component is itself
2396      a derived type, we need a copy of its component declarations.
2397      This is done by recursing into gfc_get_derived_type and
2398      ensures that the component's component declarations have
2399      been built.  If it is a character, we need the character
2400      length, as well.  */
2401   for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2402     {
2403       to_cm->backend_decl = from_cm->backend_decl;
2404       to_cm->caf_token = from_cm->caf_token;
2405       if (from_cm->ts.type == BT_UNION)
2406         gfc_get_union_type (to_cm->ts.u.derived);
2407       else if (from_cm->ts.type == BT_DERIVED
2408 	  && (!from_cm->attr.pointer || from_gsym))
2409 	gfc_get_derived_type (to_cm->ts.u.derived);
2410       else if (from_cm->ts.type == BT_CLASS
2411 	       && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2412 	gfc_get_derived_type (to_cm->ts.u.derived);
2413       else if (from_cm->ts.type == BT_CHARACTER)
2414 	to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2415     }
2416 
2417   return 1;
2418 }
2419 
2420 
2421 /* Build a tree node for a procedure pointer component.  */
2422 
2423 tree
gfc_get_ppc_type(gfc_component * c)2424 gfc_get_ppc_type (gfc_component* c)
2425 {
2426   tree t;
2427 
2428   /* Explicit interface.  */
2429   if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2430     return build_pointer_type (gfc_get_function_type (c->ts.interface));
2431 
2432   /* Implicit interface (only return value may be known).  */
2433   if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2434     t = gfc_typenode_for_spec (&c->ts);
2435   else
2436     t = void_type_node;
2437 
2438   return build_pointer_type (build_function_type_list (t, NULL_TREE));
2439 }
2440 
2441 
2442 /* Build a tree node for a union type. Requires building each map
2443    structure which is an element of the union. */
2444 
2445 tree
gfc_get_union_type(gfc_symbol * un)2446 gfc_get_union_type (gfc_symbol *un)
2447 {
2448     gfc_component *map = NULL;
2449     tree typenode = NULL, map_type = NULL, map_field = NULL;
2450     tree *chain = NULL;
2451 
2452     if (un->backend_decl)
2453       {
2454         if (TYPE_FIELDS (un->backend_decl) || un->attr.proc_pointer_comp)
2455           return un->backend_decl;
2456         else
2457           typenode = un->backend_decl;
2458       }
2459     else
2460       {
2461         typenode = make_node (UNION_TYPE);
2462         TYPE_NAME (typenode) = get_identifier (un->name);
2463       }
2464 
2465     /* Add each contained MAP as a field. */
2466     for (map = un->components; map; map = map->next)
2467       {
2468         gcc_assert (map->ts.type == BT_DERIVED);
2469 
2470         /* The map's type node, which is defined within this union's context. */
2471         map_type = gfc_get_derived_type (map->ts.u.derived);
2472         TYPE_CONTEXT (map_type) = typenode;
2473 
2474         /* The map field's declaration. */
2475         map_field = gfc_add_field_to_struct(typenode, get_identifier(map->name),
2476                                             map_type, &chain);
2477         if (map->loc.lb)
2478           gfc_set_decl_location (map_field, &map->loc);
2479         else if (un->declared_at.lb)
2480           gfc_set_decl_location (map_field, &un->declared_at);
2481 
2482         DECL_PACKED (map_field) |= TYPE_PACKED (typenode);
2483         DECL_NAMELESS(map_field) = true;
2484 
2485         /* We should never clobber another backend declaration for this map,
2486            because each map component is unique. */
2487         if (!map->backend_decl)
2488           map->backend_decl = map_field;
2489       }
2490 
2491     un->backend_decl = typenode;
2492     gfc_finish_type (typenode);
2493 
2494     return typenode;
2495 }
2496 
2497 
2498 /* Build a tree node for a derived type.  If there are equal
2499    derived types, with different local names, these are built
2500    at the same time.  If an equal derived type has been built
2501    in a parent namespace, this is used.  */
2502 
2503 tree
gfc_get_derived_type(gfc_symbol * derived,int codimen)2504 gfc_get_derived_type (gfc_symbol * derived, int codimen)
2505 {
2506   tree typenode = NULL, field = NULL, field_type = NULL;
2507   tree canonical = NULL_TREE;
2508   tree *chain = NULL;
2509   bool got_canonical = false;
2510   bool unlimited_entity = false;
2511   gfc_component *c;
2512   gfc_namespace *ns;
2513   tree tmp;
2514   bool coarray_flag;
2515 
2516   coarray_flag = flag_coarray == GFC_FCOARRAY_LIB
2517 		 && derived->module && !derived->attr.vtype;
2518 
2519   gcc_assert (!derived->attr.pdt_template);
2520 
2521   if (derived->attr.unlimited_polymorphic
2522       || (flag_coarray == GFC_FCOARRAY_LIB
2523 	  && derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2524 	  && (derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE
2525 	      || derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
2526 	      || derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE)))
2527     return ptr_type_node;
2528 
2529   if (flag_coarray != GFC_FCOARRAY_LIB
2530       && derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2531       && (derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
2532 	  || derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE))
2533     return gfc_get_int_type (gfc_default_integer_kind);
2534 
2535   if (derived && derived->attr.flavor == FL_PROCEDURE
2536       && derived->attr.generic)
2537     derived = gfc_find_dt_in_generic (derived);
2538 
2539   /* See if it's one of the iso_c_binding derived types.  */
2540   if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2541     {
2542       if (derived->backend_decl)
2543 	return derived->backend_decl;
2544 
2545       if (derived->intmod_sym_id == ISOCBINDING_PTR)
2546 	derived->backend_decl = ptr_type_node;
2547       else
2548 	derived->backend_decl = pfunc_type_node;
2549 
2550       derived->ts.kind = gfc_index_integer_kind;
2551       derived->ts.type = BT_INTEGER;
2552       /* Set the f90_type to BT_VOID as a way to recognize something of type
2553          BT_INTEGER that needs to fit a void * for the purpose of the
2554          iso_c_binding derived types.  */
2555       derived->ts.f90_type = BT_VOID;
2556 
2557       return derived->backend_decl;
2558     }
2559 
2560   /* If use associated, use the module type for this one.  */
2561   if (derived->backend_decl == NULL
2562       && derived->attr.use_assoc
2563       && derived->module
2564       && gfc_get_module_backend_decl (derived))
2565     goto copy_derived_types;
2566 
2567   /* The derived types from an earlier namespace can be used as the
2568      canonical type.  */
2569   if (derived->backend_decl == NULL && !derived->attr.use_assoc
2570       && gfc_global_ns_list)
2571     {
2572       for (ns = gfc_global_ns_list;
2573 	   ns->translated && !got_canonical;
2574 	   ns = ns->sibling)
2575 	{
2576 	  if (ns->derived_types)
2577 	    {
2578 	      for (gfc_symbol *dt = ns->derived_types; dt && !got_canonical;
2579 		   dt = dt->dt_next)
2580 		{
2581 		  gfc_copy_dt_decls_ifequal (dt, derived, true);
2582 		  if (derived->backend_decl)
2583 		    got_canonical = true;
2584 		  if (dt->dt_next == ns->derived_types)
2585 		    break;
2586 		}
2587  	    }
2588  	}
2589     }
2590 
2591   /* Store up the canonical type to be added to this one.  */
2592   if (got_canonical)
2593     {
2594       if (TYPE_CANONICAL (derived->backend_decl))
2595 	canonical = TYPE_CANONICAL (derived->backend_decl);
2596       else
2597 	canonical = derived->backend_decl;
2598 
2599       derived->backend_decl = NULL_TREE;
2600     }
2601 
2602   /* derived->backend_decl != 0 means we saw it before, but its
2603      components' backend_decl may have not been built.  */
2604   if (derived->backend_decl)
2605     {
2606       /* Its components' backend_decl have been built or we are
2607 	 seeing recursion through the formal arglist of a procedure
2608 	 pointer component.  */
2609       if (TYPE_FIELDS (derived->backend_decl))
2610         return derived->backend_decl;
2611       else if (derived->attr.abstract
2612 	       && derived->attr.proc_pointer_comp)
2613 	{
2614 	  /* If an abstract derived type with procedure pointer
2615 	     components has no other type of component, return the
2616 	     backend_decl. Otherwise build the components if any of the
2617 	     non-procedure pointer components have no backend_decl.  */
2618 	  for (c = derived->components; c; c = c->next)
2619 	    {
2620 	      bool same_alloc_type = c->attr.allocatable
2621 				     && derived == c->ts.u.derived;
2622 	      if (!c->attr.proc_pointer
2623 		  && !same_alloc_type
2624 		  && c->backend_decl == NULL)
2625 		break;
2626 	      else if (c->next == NULL)
2627 		return derived->backend_decl;
2628 	    }
2629 	  typenode = derived->backend_decl;
2630 	}
2631       else
2632         typenode = derived->backend_decl;
2633     }
2634   else
2635     {
2636       /* We see this derived type first time, so build the type node.  */
2637       typenode = make_node (RECORD_TYPE);
2638       TYPE_NAME (typenode) = get_identifier (derived->name);
2639       TYPE_PACKED (typenode) = flag_pack_derived;
2640       derived->backend_decl = typenode;
2641     }
2642 
2643   if (derived->components
2644 	&& derived->components->ts.type == BT_DERIVED
2645 	&& strcmp (derived->components->name, "_data") == 0
2646 	&& derived->components->ts.u.derived->attr.unlimited_polymorphic)
2647     unlimited_entity = true;
2648 
2649   /* Go through the derived type components, building them as
2650      necessary. The reason for doing this now is that it is
2651      possible to recurse back to this derived type through a
2652      pointer component (PR24092). If this happens, the fields
2653      will be built and so we can return the type.  */
2654   for (c = derived->components; c; c = c->next)
2655     {
2656       bool same_alloc_type = c->attr.allocatable
2657 			     && derived == c->ts.u.derived;
2658 
2659       if (c->ts.type == BT_UNION && c->ts.u.derived->backend_decl == NULL)
2660         c->ts.u.derived->backend_decl = gfc_get_union_type (c->ts.u.derived);
2661 
2662       if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2663 	continue;
2664 
2665       if ((!c->attr.pointer && !c->attr.proc_pointer
2666 	  && !same_alloc_type)
2667 	  || c->ts.u.derived->backend_decl == NULL)
2668 	{
2669 	  int local_codim = c->attr.codimension ? c->as->corank: codimen;
2670 	  c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived,
2671 								local_codim);
2672 	}
2673 
2674       if (c->ts.u.derived->attr.is_iso_c)
2675         {
2676           /* Need to copy the modified ts from the derived type.  The
2677              typespec was modified because C_PTR/C_FUNPTR are translated
2678              into (void *) from derived types.  */
2679           c->ts.type = c->ts.u.derived->ts.type;
2680           c->ts.kind = c->ts.u.derived->ts.kind;
2681           c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2682 	  if (c->initializer)
2683 	    {
2684 	      c->initializer->ts.type = c->ts.type;
2685 	      c->initializer->ts.kind = c->ts.kind;
2686 	      c->initializer->ts.f90_type = c->ts.f90_type;
2687 	      c->initializer->expr_type = EXPR_NULL;
2688 	    }
2689         }
2690     }
2691 
2692   if (TYPE_FIELDS (derived->backend_decl))
2693     return derived->backend_decl;
2694 
2695   /* Build the type member list. Install the newly created RECORD_TYPE
2696      node as DECL_CONTEXT of each FIELD_DECL. In this case we must go
2697      through only the top-level linked list of components so we correctly
2698      build UNION_TYPE nodes for BT_UNION components. MAPs and other nested
2699      types are built as part of gfc_get_union_type.  */
2700   for (c = derived->components; c; c = c->next)
2701     {
2702       bool same_alloc_type = c->attr.allocatable
2703 			     && derived == c->ts.u.derived;
2704       /* Prevent infinite recursion, when the procedure pointer type is
2705 	 the same as derived, by forcing the procedure pointer component to
2706 	 be built as if the explicit interface does not exist.  */
2707       if (c->attr.proc_pointer
2708 	  && (c->ts.type != BT_DERIVED || (c->ts.u.derived
2709 		    && !gfc_compare_derived_types (derived, c->ts.u.derived)))
2710 	  && (c->ts.type != BT_CLASS || (CLASS_DATA (c)->ts.u.derived
2711 		    && !gfc_compare_derived_types (derived, CLASS_DATA (c)->ts.u.derived))))
2712 	field_type = gfc_get_ppc_type (c);
2713       else if (c->attr.proc_pointer && derived->backend_decl)
2714 	{
2715 	  tmp = build_function_type_list (derived->backend_decl, NULL_TREE);
2716 	  field_type = build_pointer_type (tmp);
2717 	}
2718       else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2719 	field_type = c->ts.u.derived->backend_decl;
2720       else if (c->attr.caf_token)
2721 	field_type = pvoid_type_node;
2722       else
2723 	{
2724 	  if (c->ts.type == BT_CHARACTER
2725 	      && !c->ts.deferred && !c->attr.pdt_string)
2726 	    {
2727 	      /* Evaluate the string length.  */
2728 	      gfc_conv_const_charlen (c->ts.u.cl);
2729 	      gcc_assert (c->ts.u.cl->backend_decl);
2730 	    }
2731 	  else if (c->ts.type == BT_CHARACTER)
2732 	    c->ts.u.cl->backend_decl
2733 			= build_int_cst (gfc_charlen_type_node, 0);
2734 
2735 	  field_type = gfc_typenode_for_spec (&c->ts, codimen);
2736 	}
2737 
2738       /* This returns an array descriptor type.  Initialization may be
2739          required.  */
2740       if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2741 	{
2742 	  if (c->attr.pointer || c->attr.allocatable || c->attr.pdt_array)
2743 	    {
2744 	      enum gfc_array_kind akind;
2745 	      if (c->attr.pointer)
2746 		akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2747 					   : GFC_ARRAY_POINTER;
2748 	      else
2749 		akind = GFC_ARRAY_ALLOCATABLE;
2750 	      /* Pointers to arrays aren't actually pointer types.  The
2751 	         descriptors are separate, but the data is common.  */
2752 	      field_type = gfc_build_array_type (field_type, c->as, akind,
2753 						 !c->attr.target
2754 						 && !c->attr.pointer,
2755 						 c->attr.contiguous,
2756 						 codimen);
2757 	    }
2758 	  else
2759 	    field_type = gfc_get_nodesc_array_type (field_type, c->as,
2760 						    PACKED_STATIC,
2761 						    !c->attr.target);
2762 	}
2763       else if ((c->attr.pointer || c->attr.allocatable || c->attr.pdt_string)
2764 	       && !c->attr.proc_pointer
2765 	       && !(unlimited_entity && c == derived->components))
2766 	field_type = build_pointer_type (field_type);
2767 
2768       if (c->attr.pointer || same_alloc_type)
2769 	field_type = gfc_nonrestricted_type (field_type);
2770 
2771       /* vtype fields can point to different types to the base type.  */
2772       if (c->ts.type == BT_DERIVED
2773 	    && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2774 	  field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2775 						    ptr_mode, true);
2776 
2777       /* Ensure that the CLASS language specific flag is set.  */
2778       if (c->ts.type == BT_CLASS)
2779 	{
2780 	  if (POINTER_TYPE_P (field_type))
2781 	    GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2782 	  else
2783 	    GFC_CLASS_TYPE_P (field_type) = 1;
2784 	}
2785 
2786       field = gfc_add_field_to_struct (typenode,
2787 				       get_identifier (c->name),
2788 				       field_type, &chain);
2789       if (c->loc.lb)
2790 	gfc_set_decl_location (field, &c->loc);
2791       else if (derived->declared_at.lb)
2792 	gfc_set_decl_location (field, &derived->declared_at);
2793 
2794       gfc_finish_decl_attrs (field, &c->attr);
2795 
2796       DECL_PACKED (field) |= TYPE_PACKED (typenode);
2797 
2798       gcc_assert (field);
2799       if (!c->backend_decl)
2800 	c->backend_decl = field;
2801 
2802       if (c->attr.pointer && c->attr.dimension
2803 	  && !(c->ts.type == BT_DERIVED
2804 	       && strcmp (c->name, "_data") == 0))
2805 	GFC_DECL_PTR_ARRAY_P (c->backend_decl) = 1;
2806     }
2807 
2808   /* Now lay out the derived type, including the fields.  */
2809   if (canonical)
2810     TYPE_CANONICAL (typenode) = canonical;
2811 
2812   gfc_finish_type (typenode);
2813   gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2814   if (derived->module && derived->ns->proc_name
2815       && derived->ns->proc_name->attr.flavor == FL_MODULE)
2816     {
2817       if (derived->ns->proc_name->backend_decl
2818 	  && TREE_CODE (derived->ns->proc_name->backend_decl)
2819 	     == NAMESPACE_DECL)
2820 	{
2821 	  TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2822 	  DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2823 	    = derived->ns->proc_name->backend_decl;
2824 	}
2825     }
2826 
2827   derived->backend_decl = typenode;
2828 
2829 copy_derived_types:
2830 
2831   for (c = derived->components; c; c = c->next)
2832     {
2833       /* Do not add a caf_token field for class container components.  */
2834       if ((codimen || coarray_flag)
2835 	  && !c->attr.dimension && !c->attr.codimension
2836 	  && (c->attr.allocatable || c->attr.pointer)
2837 	  && !derived->attr.is_class)
2838 	{
2839 	  char caf_name[GFC_MAX_SYMBOL_LEN];
2840 	  gfc_component *token;
2841 	  snprintf (caf_name, GFC_MAX_SYMBOL_LEN, "_caf_%s", c->name);
2842 	  token = gfc_find_component (derived, caf_name, true, true, NULL);
2843 	  gcc_assert (token);
2844 	  c->caf_token = token->backend_decl;
2845 	  TREE_NO_WARNING (c->caf_token) = 1;
2846 	}
2847     }
2848 
2849   for (gfc_symbol *dt = gfc_derived_types; dt; dt = dt->dt_next)
2850     {
2851       gfc_copy_dt_decls_ifequal (derived, dt, false);
2852       if (dt->dt_next == gfc_derived_types)
2853 	break;
2854     }
2855 
2856   return derived->backend_decl;
2857 }
2858 
2859 
2860 int
gfc_return_by_reference(gfc_symbol * sym)2861 gfc_return_by_reference (gfc_symbol * sym)
2862 {
2863   if (!sym->attr.function)
2864     return 0;
2865 
2866   if (sym->attr.dimension)
2867     return 1;
2868 
2869   if (sym->ts.type == BT_CHARACTER
2870       && !sym->attr.is_bind_c
2871       && (!sym->attr.result
2872 	  || !sym->ns->proc_name
2873 	  || !sym->ns->proc_name->attr.is_bind_c))
2874     return 1;
2875 
2876   /* Possibly return complex numbers by reference for g77 compatibility.
2877      We don't do this for calls to intrinsics (as the library uses the
2878      -fno-f2c calling convention), nor for calls to functions which always
2879      require an explicit interface, as no compatibility problems can
2880      arise there.  */
2881   if (flag_f2c && sym->ts.type == BT_COMPLEX
2882       && !sym->attr.intrinsic && !sym->attr.always_explicit)
2883     return 1;
2884 
2885   return 0;
2886 }
2887 
2888 static tree
gfc_get_mixed_entry_union(gfc_namespace * ns)2889 gfc_get_mixed_entry_union (gfc_namespace *ns)
2890 {
2891   tree type;
2892   tree *chain = NULL;
2893   char name[GFC_MAX_SYMBOL_LEN + 1];
2894   gfc_entry_list *el, *el2;
2895 
2896   gcc_assert (ns->proc_name->attr.mixed_entry_master);
2897   gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2898 
2899   snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2900 
2901   /* Build the type node.  */
2902   type = make_node (UNION_TYPE);
2903 
2904   TYPE_NAME (type) = get_identifier (name);
2905 
2906   for (el = ns->entries; el; el = el->next)
2907     {
2908       /* Search for duplicates.  */
2909       for (el2 = ns->entries; el2 != el; el2 = el2->next)
2910 	if (el2->sym->result == el->sym->result)
2911 	  break;
2912 
2913       if (el == el2)
2914 	gfc_add_field_to_struct_1 (type,
2915 				   get_identifier (el->sym->result->name),
2916 				   gfc_sym_type (el->sym->result), &chain);
2917     }
2918 
2919   /* Finish off the type.  */
2920   gfc_finish_type (type);
2921   TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2922   return type;
2923 }
2924 
2925 /* Create a "fn spec" based on the formal arguments;
2926    cf. create_function_arglist.  */
2927 
2928 static tree
create_fn_spec(gfc_symbol * sym,tree fntype)2929 create_fn_spec (gfc_symbol *sym, tree fntype)
2930 {
2931   char spec[150];
2932   size_t spec_len;
2933   gfc_formal_arglist *f;
2934   tree tmp;
2935 
2936   memset (&spec, 0, sizeof (spec));
2937   spec[0] = '.';
2938   spec_len = 1;
2939 
2940   if (sym->attr.entry_master)
2941     spec[spec_len++] = 'R';
2942   if (gfc_return_by_reference (sym))
2943     {
2944       gfc_symbol *result = sym->result ? sym->result : sym;
2945 
2946       if (result->attr.pointer || sym->attr.proc_pointer)
2947 	spec[spec_len++] = '.';
2948       else
2949 	spec[spec_len++] = 'w';
2950       if (sym->ts.type == BT_CHARACTER)
2951 	spec[spec_len++] = 'R';
2952     }
2953 
2954   for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2955     if (spec_len < sizeof (spec))
2956       {
2957 	bool is_class = false;
2958 	bool is_pointer = false;
2959 
2960 	if (f->sym)
2961 	  {
2962 	    is_class = f->sym->ts.type == BT_CLASS && CLASS_DATA (f->sym)
2963 	      && f->sym->attr.class_ok;
2964 	    is_pointer = is_class ? CLASS_DATA (f->sym)->attr.class_pointer
2965 				  : f->sym->attr.pointer;
2966 	  }
2967 
2968 	if (f->sym == NULL || is_pointer || f->sym->attr.target
2969 	    || f->sym->attr.external || f->sym->attr.cray_pointer
2970 	    || (f->sym->ts.type == BT_DERIVED
2971 		&& (f->sym->ts.u.derived->attr.proc_pointer_comp
2972 		    || f->sym->ts.u.derived->attr.pointer_comp))
2973 	    || (is_class
2974 		&& (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2975 		    || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp))
2976 	    || (f->sym->ts.type == BT_INTEGER && f->sym->ts.is_c_interop))
2977 	  spec[spec_len++] = '.';
2978 	else if (f->sym->attr.intent == INTENT_IN)
2979 	  spec[spec_len++] = 'r';
2980 	else if (f->sym)
2981 	  spec[spec_len++] = 'w';
2982       }
2983 
2984   tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2985   tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2986   return build_type_attribute_variant (fntype, tmp);
2987 }
2988 
2989 
2990 /* NOTE: The returned function type must match the argument list created by
2991    create_function_arglist.  */
2992 
2993 tree
gfc_get_function_type(gfc_symbol * sym,gfc_actual_arglist * actual_args)2994 gfc_get_function_type (gfc_symbol * sym, gfc_actual_arglist *actual_args)
2995 {
2996   tree type;
2997   vec<tree, va_gc> *typelist = NULL;
2998   gfc_formal_arglist *f;
2999   gfc_symbol *arg;
3000   int alternate_return = 0;
3001   bool is_varargs = true;
3002 
3003   /* Make sure this symbol is a function, a subroutine or the main
3004      program.  */
3005   gcc_assert (sym->attr.flavor == FL_PROCEDURE
3006 	      || sym->attr.flavor == FL_PROGRAM);
3007 
3008   /* To avoid recursing infinitely on recursive types, we use error_mark_node
3009      so that they can be detected here and handled further down.  */
3010   if (sym->backend_decl == NULL)
3011     sym->backend_decl = error_mark_node;
3012   else if (sym->backend_decl == error_mark_node)
3013     goto arg_type_list_done;
3014   else if (sym->attr.proc_pointer)
3015     return TREE_TYPE (TREE_TYPE (sym->backend_decl));
3016   else
3017     return TREE_TYPE (sym->backend_decl);
3018 
3019   if (sym->attr.entry_master)
3020     /* Additional parameter for selecting an entry point.  */
3021     vec_safe_push (typelist, gfc_array_index_type);
3022 
3023   if (sym->result)
3024     arg = sym->result;
3025   else
3026     arg = sym;
3027 
3028   if (arg->ts.type == BT_CHARACTER)
3029     gfc_conv_const_charlen (arg->ts.u.cl);
3030 
3031   /* Some functions we use an extra parameter for the return value.  */
3032   if (gfc_return_by_reference (sym))
3033     {
3034       type = gfc_sym_type (arg);
3035       if (arg->ts.type == BT_COMPLEX
3036 	  || arg->attr.dimension
3037 	  || arg->ts.type == BT_CHARACTER)
3038 	type = build_reference_type (type);
3039 
3040       vec_safe_push (typelist, type);
3041       if (arg->ts.type == BT_CHARACTER)
3042 	{
3043 	  if (!arg->ts.deferred)
3044 	    /* Transfer by value.  */
3045 	    vec_safe_push (typelist, gfc_charlen_type_node);
3046 	  else
3047 	    /* Deferred character lengths are transferred by reference
3048 	       so that the value can be returned.  */
3049 	    vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
3050 	}
3051     }
3052   if (sym->backend_decl == error_mark_node && actual_args != NULL
3053       && sym->formal == NULL && (sym->attr.proc == PROC_EXTERNAL
3054 				 || sym->attr.proc == PROC_UNKNOWN))
3055     gfc_get_formal_from_actual_arglist (sym, actual_args);
3056 
3057   /* Build the argument types for the function.  */
3058   for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
3059     {
3060       arg = f->sym;
3061       if (arg)
3062 	{
3063 	  /* Evaluate constant character lengths here so that they can be
3064 	     included in the type.  */
3065 	  if (arg->ts.type == BT_CHARACTER)
3066 	    gfc_conv_const_charlen (arg->ts.u.cl);
3067 
3068 	  if (arg->attr.flavor == FL_PROCEDURE)
3069 	    {
3070 	      type = gfc_get_function_type (arg);
3071 	      type = build_pointer_type (type);
3072 	    }
3073 	  else
3074 	    type = gfc_sym_type (arg);
3075 
3076 	  /* Parameter Passing Convention
3077 
3078 	     We currently pass all parameters by reference.
3079 	     Parameters with INTENT(IN) could be passed by value.
3080 	     The problem arises if a function is called via an implicit
3081 	     prototype. In this situation the INTENT is not known.
3082 	     For this reason all parameters to global functions must be
3083 	     passed by reference.  Passing by value would potentially
3084 	     generate bad code.  Worse there would be no way of telling that
3085 	     this code was bad, except that it would give incorrect results.
3086 
3087 	     Contained procedures could pass by value as these are never
3088 	     used without an explicit interface, and cannot be passed as
3089 	     actual parameters for a dummy procedure.  */
3090 
3091 	  vec_safe_push (typelist, type);
3092 	}
3093       else
3094         {
3095           if (sym->attr.subroutine)
3096             alternate_return = 1;
3097         }
3098     }
3099 
3100   /* Add hidden arguments.  */
3101   for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
3102     {
3103       arg = f->sym;
3104       /* Add hidden string length parameters.  */
3105       if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
3106 	{
3107 	  if (!arg->ts.deferred)
3108 	    /* Transfer by value.  */
3109 	    type = gfc_charlen_type_node;
3110 	  else
3111 	    /* Deferred character lengths are transferred by reference
3112 	       so that the value can be returned.  */
3113 	    type = build_pointer_type (gfc_charlen_type_node);
3114 
3115 	  vec_safe_push (typelist, type);
3116 	}
3117       /* For noncharacter scalar intrinsic types, VALUE passes the value,
3118 	 hence, the optional status cannot be transferred via a NULL pointer.
3119 	 Thus, we will use a hidden argument in that case.  */
3120       else if (arg
3121 	       && arg->attr.optional
3122 	       && arg->attr.value
3123 	       && !arg->attr.dimension
3124 	       && arg->ts.type != BT_CLASS
3125 	       && !gfc_bt_struct (arg->ts.type))
3126 	vec_safe_push (typelist, boolean_type_node);
3127       /* Coarrays which are descriptorless or assumed-shape pass with
3128 	 -fcoarray=lib the token and the offset as hidden arguments.  */
3129       if (arg
3130 	  && flag_coarray == GFC_FCOARRAY_LIB
3131 	  && ((arg->ts.type != BT_CLASS
3132 	       && arg->attr.codimension
3133 	       && !arg->attr.allocatable)
3134 	      || (arg->ts.type == BT_CLASS
3135 		  && CLASS_DATA (arg)->attr.codimension
3136 		  && !CLASS_DATA (arg)->attr.allocatable)))
3137 	{
3138 	  vec_safe_push (typelist, pvoid_type_node);  /* caf_token.  */
3139 	  vec_safe_push (typelist, gfc_array_index_type);  /* caf_offset.  */
3140 	}
3141     }
3142 
3143   if (!vec_safe_is_empty (typelist)
3144       || sym->attr.is_main_program
3145       || sym->attr.if_source != IFSRC_UNKNOWN)
3146     is_varargs = false;
3147 
3148   if (sym->backend_decl == error_mark_node)
3149     sym->backend_decl = NULL_TREE;
3150 
3151 arg_type_list_done:
3152 
3153   if (alternate_return)
3154     type = integer_type_node;
3155   else if (!sym->attr.function || gfc_return_by_reference (sym))
3156     type = void_type_node;
3157   else if (sym->attr.mixed_entry_master)
3158     type = gfc_get_mixed_entry_union (sym->ns);
3159   else if (flag_f2c && sym->ts.type == BT_REAL
3160 	   && sym->ts.kind == gfc_default_real_kind
3161 	   && !sym->attr.always_explicit)
3162     {
3163       /* Special case: f2c calling conventions require that (scalar)
3164 	 default REAL functions return the C type double instead.  f2c
3165 	 compatibility is only an issue with functions that don't
3166 	 require an explicit interface, as only these could be
3167 	 implemented in Fortran 77.  */
3168       sym->ts.kind = gfc_default_double_kind;
3169       type = gfc_typenode_for_spec (&sym->ts);
3170       sym->ts.kind = gfc_default_real_kind;
3171     }
3172   else if (sym->result && sym->result->attr.proc_pointer)
3173     /* Procedure pointer return values.  */
3174     {
3175       if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
3176 	{
3177 	  /* Unset proc_pointer as gfc_get_function_type
3178 	     is called recursively.  */
3179 	  sym->result->attr.proc_pointer = 0;
3180 	  type = build_pointer_type (gfc_get_function_type (sym->result));
3181 	  sym->result->attr.proc_pointer = 1;
3182 	}
3183       else
3184        type = gfc_sym_type (sym->result);
3185     }
3186   else
3187     type = gfc_sym_type (sym);
3188 
3189   if (is_varargs)
3190     type = build_varargs_function_type_vec (type, typelist);
3191   else
3192     type = build_function_type_vec (type, typelist);
3193   type = create_fn_spec (sym, type);
3194 
3195   return type;
3196 }
3197 
3198 /* Language hooks for middle-end access to type nodes.  */
3199 
3200 /* Return an integer type with BITS bits of precision,
3201    that is unsigned if UNSIGNEDP is nonzero, otherwise signed.  */
3202 
3203 tree
gfc_type_for_size(unsigned bits,int unsignedp)3204 gfc_type_for_size (unsigned bits, int unsignedp)
3205 {
3206   if (!unsignedp)
3207     {
3208       int i;
3209       for (i = 0; i <= MAX_INT_KINDS; ++i)
3210 	{
3211 	  tree type = gfc_integer_types[i];
3212 	  if (type && bits == TYPE_PRECISION (type))
3213 	    return type;
3214 	}
3215 
3216       /* Handle TImode as a special case because it is used by some backends
3217          (e.g. ARM) even though it is not available for normal use.  */
3218 #if HOST_BITS_PER_WIDE_INT >= 64
3219       if (bits == TYPE_PRECISION (intTI_type_node))
3220 	return intTI_type_node;
3221 #endif
3222 
3223       if (bits <= TYPE_PRECISION (intQI_type_node))
3224 	return intQI_type_node;
3225       if (bits <= TYPE_PRECISION (intHI_type_node))
3226 	return intHI_type_node;
3227       if (bits <= TYPE_PRECISION (intSI_type_node))
3228 	return intSI_type_node;
3229       if (bits <= TYPE_PRECISION (intDI_type_node))
3230 	return intDI_type_node;
3231       if (bits <= TYPE_PRECISION (intTI_type_node))
3232 	return intTI_type_node;
3233     }
3234   else
3235     {
3236       if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
3237         return unsigned_intQI_type_node;
3238       if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
3239 	return unsigned_intHI_type_node;
3240       if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
3241 	return unsigned_intSI_type_node;
3242       if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
3243 	return unsigned_intDI_type_node;
3244       if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
3245 	return unsigned_intTI_type_node;
3246     }
3247 
3248   return NULL_TREE;
3249 }
3250 
3251 /* Return a data type that has machine mode MODE.  If the mode is an
3252    integer, then UNSIGNEDP selects between signed and unsigned types.  */
3253 
3254 tree
gfc_type_for_mode(machine_mode mode,int unsignedp)3255 gfc_type_for_mode (machine_mode mode, int unsignedp)
3256 {
3257   int i;
3258   tree *base;
3259   scalar_int_mode int_mode;
3260 
3261   if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3262     base = gfc_real_types;
3263   else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
3264     base = gfc_complex_types;
3265   else if (is_a <scalar_int_mode> (mode, &int_mode))
3266     {
3267       tree type = gfc_type_for_size (GET_MODE_PRECISION (int_mode), unsignedp);
3268       return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
3269     }
3270   else if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
3271 	   && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
3272     {
3273       unsigned int elem_bits = vector_element_size (GET_MODE_BITSIZE (mode),
3274 						    GET_MODE_NUNITS (mode));
3275       tree bool_type = build_nonstandard_boolean_type (elem_bits);
3276       return build_vector_type_for_mode (bool_type, mode);
3277     }
3278   else if (VECTOR_MODE_P (mode)
3279 	   && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
3280     {
3281       machine_mode inner_mode = GET_MODE_INNER (mode);
3282       tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
3283       if (inner_type != NULL_TREE)
3284         return build_vector_type_for_mode (inner_type, mode);
3285       return NULL_TREE;
3286     }
3287   else
3288     return NULL_TREE;
3289 
3290   for (i = 0; i <= MAX_REAL_KINDS; ++i)
3291     {
3292       tree type = base[i];
3293       if (type && mode == TYPE_MODE (type))
3294 	return type;
3295     }
3296 
3297   return NULL_TREE;
3298 }
3299 
3300 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
3301    in that case.  */
3302 
3303 bool
gfc_get_array_descr_info(const_tree type,struct array_descr_info * info)3304 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
3305 {
3306   int rank, dim;
3307   bool indirect = false;
3308   tree etype, ptype, t, base_decl;
3309   tree data_off, span_off, dim_off, dtype_off, dim_size, elem_size;
3310   tree lower_suboff, upper_suboff, stride_suboff;
3311   tree dtype, field, rank_off;
3312 
3313   if (! GFC_DESCRIPTOR_TYPE_P (type))
3314     {
3315       if (! POINTER_TYPE_P (type))
3316 	return false;
3317       type = TREE_TYPE (type);
3318       if (! GFC_DESCRIPTOR_TYPE_P (type))
3319 	return false;
3320       indirect = true;
3321     }
3322 
3323   rank = GFC_TYPE_ARRAY_RANK (type);
3324   if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3325     return false;
3326 
3327   etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3328   gcc_assert (POINTER_TYPE_P (etype));
3329   etype = TREE_TYPE (etype);
3330 
3331   /* If the type is not a scalar coarray.  */
3332   if (TREE_CODE (etype) == ARRAY_TYPE)
3333     etype = TREE_TYPE (etype);
3334 
3335   /* Can't handle variable sized elements yet.  */
3336   if (int_size_in_bytes (etype) <= 0)
3337     return false;
3338   /* Nor non-constant lower bounds in assumed shape arrays.  */
3339   if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3340       || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3341     {
3342       for (dim = 0; dim < rank; dim++)
3343 	if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3344 	    || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3345 	  return false;
3346     }
3347 
3348   memset (info, '\0', sizeof (*info));
3349   info->ndimensions = rank;
3350   info->ordering = array_descr_ordering_column_major;
3351   info->element_type = etype;
3352   ptype = build_pointer_type (gfc_array_index_type);
3353   base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3354   if (!base_decl)
3355     {
3356       base_decl = make_node (DEBUG_EXPR_DECL);
3357       DECL_ARTIFICIAL (base_decl) = 1;
3358       TREE_TYPE (base_decl) = indirect ? build_pointer_type (ptype) : ptype;
3359       SET_DECL_MODE (base_decl, TYPE_MODE (TREE_TYPE (base_decl)));
3360       GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3361     }
3362   info->base_decl = base_decl;
3363   if (indirect)
3364     base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3365 
3366   gfc_get_descriptor_offsets_for_info (type, &data_off, &dtype_off, &span_off,
3367 				       &dim_off, &dim_size, &stride_suboff,
3368 				       &lower_suboff, &upper_suboff);
3369 
3370   t = fold_build_pointer_plus (base_decl, span_off);
3371   elem_size = build1 (INDIRECT_REF, gfc_array_index_type, t);
3372 
3373   t = base_decl;
3374   if (!integer_zerop (data_off))
3375     t = fold_build_pointer_plus (t, data_off);
3376   t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3377   info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3378   if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3379     info->allocated = build2 (NE_EXPR, logical_type_node,
3380 			      info->data_location, null_pointer_node);
3381   else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3382 	   || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3383     info->associated = build2 (NE_EXPR, logical_type_node,
3384 			       info->data_location, null_pointer_node);
3385   if ((GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK
3386        || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT)
3387       && dwarf_version >= 5)
3388     {
3389       rank = 1;
3390       info->ndimensions = 1;
3391       t = base_decl;
3392       if (!integer_zerop (dtype_off))
3393 	t = fold_build_pointer_plus (t, dtype_off);
3394       dtype = TYPE_MAIN_VARIANT (get_dtype_type_node ());
3395       field = gfc_advance_chain (TYPE_FIELDS (dtype), GFC_DTYPE_RANK);
3396       rank_off = byte_position (field);
3397       if (!integer_zerop (dtype_off))
3398 	t = fold_build_pointer_plus (t, rank_off);
3399 
3400       t = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (field)), t);
3401       t = build1 (INDIRECT_REF, TREE_TYPE (field), t);
3402       info->rank = t;
3403       t = build0 (PLACEHOLDER_EXPR, TREE_TYPE (dim_off));
3404       t = size_binop (MULT_EXPR, t, dim_size);
3405       dim_off = build2 (PLUS_EXPR, TREE_TYPE (dim_off), t, dim_off);
3406     }
3407 
3408   for (dim = 0; dim < rank; dim++)
3409     {
3410       t = fold_build_pointer_plus (base_decl,
3411 				   size_binop (PLUS_EXPR,
3412 					       dim_off, lower_suboff));
3413       t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3414       info->dimen[dim].lower_bound = t;
3415       t = fold_build_pointer_plus (base_decl,
3416 				   size_binop (PLUS_EXPR,
3417 					       dim_off, upper_suboff));
3418       t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3419       info->dimen[dim].upper_bound = t;
3420       if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3421 	  || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3422 	{
3423 	  /* Assumed shape arrays have known lower bounds.  */
3424 	  info->dimen[dim].upper_bound
3425 	    = build2 (MINUS_EXPR, gfc_array_index_type,
3426 		      info->dimen[dim].upper_bound,
3427 		      info->dimen[dim].lower_bound);
3428 	  info->dimen[dim].lower_bound
3429 	    = fold_convert (gfc_array_index_type,
3430 			    GFC_TYPE_ARRAY_LBOUND (type, dim));
3431 	  info->dimen[dim].upper_bound
3432 	    = build2 (PLUS_EXPR, gfc_array_index_type,
3433 		      info->dimen[dim].lower_bound,
3434 		      info->dimen[dim].upper_bound);
3435 	}
3436       t = fold_build_pointer_plus (base_decl,
3437 				   size_binop (PLUS_EXPR,
3438 					       dim_off, stride_suboff));
3439       t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3440       t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3441       info->dimen[dim].stride = t;
3442       if (dim + 1 < rank)
3443 	dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3444     }
3445 
3446   return true;
3447 }
3448 
3449 
3450 /* Create a type to handle vector subscripts for coarray library calls. It
3451    has the form:
3452      struct caf_vector_t {
3453        size_t nvec;  // size of the vector
3454        union {
3455          struct {
3456            void *vector;
3457            int kind;
3458          } v;
3459          struct {
3460            ptrdiff_t lower_bound;
3461            ptrdiff_t upper_bound;
3462            ptrdiff_t stride;
3463          } triplet;
3464        } u;
3465      }
3466    where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3467    size in case of DIMEN_VECTOR, where kind is the integer type of the vector.  */
3468 
3469 tree
gfc_get_caf_vector_type(int dim)3470 gfc_get_caf_vector_type (int dim)
3471 {
3472   static tree vector_types[GFC_MAX_DIMENSIONS];
3473   static tree vec_type = NULL_TREE;
3474   tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3475 
3476   if (vector_types[dim-1] != NULL_TREE)
3477     return vector_types[dim-1];
3478 
3479   if (vec_type == NULL_TREE)
3480     {
3481       chain = 0;
3482       vect_struct_type = make_node (RECORD_TYPE);
3483       tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3484 				       get_identifier ("vector"),
3485 				       pvoid_type_node, &chain);
3486       TREE_NO_WARNING (tmp) = 1;
3487       tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3488 				       get_identifier ("kind"),
3489 				       integer_type_node, &chain);
3490       TREE_NO_WARNING (tmp) = 1;
3491       gfc_finish_type (vect_struct_type);
3492 
3493       chain = 0;
3494       triplet_struct_type = make_node (RECORD_TYPE);
3495       tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3496 				       get_identifier ("lower_bound"),
3497 				       gfc_array_index_type, &chain);
3498       TREE_NO_WARNING (tmp) = 1;
3499       tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3500 				       get_identifier ("upper_bound"),
3501 				       gfc_array_index_type, &chain);
3502       TREE_NO_WARNING (tmp) = 1;
3503       tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3504 				       gfc_array_index_type, &chain);
3505       TREE_NO_WARNING (tmp) = 1;
3506       gfc_finish_type (triplet_struct_type);
3507 
3508       chain = 0;
3509       union_type = make_node (UNION_TYPE);
3510       tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3511                                        vect_struct_type, &chain);
3512       TREE_NO_WARNING (tmp) = 1;
3513       tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3514 				       triplet_struct_type, &chain);
3515       TREE_NO_WARNING (tmp) = 1;
3516       gfc_finish_type (union_type);
3517 
3518       chain = 0;
3519       vec_type = make_node (RECORD_TYPE);
3520       tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3521 				       size_type_node, &chain);
3522       TREE_NO_WARNING (tmp) = 1;
3523       tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3524 				       union_type, &chain);
3525       TREE_NO_WARNING (tmp) = 1;
3526       gfc_finish_type (vec_type);
3527       TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3528     }
3529 
3530   tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3531 			  gfc_rank_cst[dim-1]);
3532   vector_types[dim-1] = build_array_type (vec_type, tmp);
3533   return vector_types[dim-1];
3534 }
3535 
3536 
3537 tree
gfc_get_caf_reference_type()3538 gfc_get_caf_reference_type ()
3539 {
3540   static tree reference_type = NULL_TREE;
3541   tree c_struct_type, s_struct_type, v_struct_type, union_type, dim_union_type,
3542       a_struct_type, u_union_type, tmp, *chain;
3543 
3544   if (reference_type != NULL_TREE)
3545     return reference_type;
3546 
3547   chain = 0;
3548   c_struct_type = make_node (RECORD_TYPE);
3549   tmp = gfc_add_field_to_struct_1 (c_struct_type,
3550 				   get_identifier ("offset"),
3551 				   gfc_array_index_type, &chain);
3552   TREE_NO_WARNING (tmp) = 1;
3553   tmp = gfc_add_field_to_struct_1 (c_struct_type,
3554 				   get_identifier ("caf_token_offset"),
3555 				   gfc_array_index_type, &chain);
3556   TREE_NO_WARNING (tmp) = 1;
3557   gfc_finish_type (c_struct_type);
3558 
3559   chain = 0;
3560   s_struct_type = make_node (RECORD_TYPE);
3561   tmp = gfc_add_field_to_struct_1 (s_struct_type,
3562 				   get_identifier ("start"),
3563 				   gfc_array_index_type, &chain);
3564   TREE_NO_WARNING (tmp) = 1;
3565   tmp = gfc_add_field_to_struct_1 (s_struct_type,
3566 				   get_identifier ("end"),
3567 				   gfc_array_index_type, &chain);
3568   TREE_NO_WARNING (tmp) = 1;
3569   tmp = gfc_add_field_to_struct_1 (s_struct_type,
3570 				   get_identifier ("stride"),
3571 				   gfc_array_index_type, &chain);
3572   TREE_NO_WARNING (tmp) = 1;
3573   gfc_finish_type (s_struct_type);
3574 
3575   chain = 0;
3576   v_struct_type = make_node (RECORD_TYPE);
3577   tmp = gfc_add_field_to_struct_1 (v_struct_type,
3578 				   get_identifier ("vector"),
3579 				   pvoid_type_node, &chain);
3580   TREE_NO_WARNING (tmp) = 1;
3581   tmp = gfc_add_field_to_struct_1 (v_struct_type,
3582 				   get_identifier ("nvec"),
3583 				   size_type_node, &chain);
3584   TREE_NO_WARNING (tmp) = 1;
3585   tmp = gfc_add_field_to_struct_1 (v_struct_type,
3586 				   get_identifier ("kind"),
3587 				   integer_type_node, &chain);
3588   TREE_NO_WARNING (tmp) = 1;
3589   gfc_finish_type (v_struct_type);
3590 
3591   chain = 0;
3592   union_type = make_node (UNION_TYPE);
3593   tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("s"),
3594 				   s_struct_type, &chain);
3595   TREE_NO_WARNING (tmp) = 1;
3596   tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3597 				   v_struct_type, &chain);
3598   TREE_NO_WARNING (tmp) = 1;
3599   gfc_finish_type (union_type);
3600 
3601   tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3602 			  gfc_rank_cst[GFC_MAX_DIMENSIONS - 1]);
3603   dim_union_type = build_array_type (union_type, tmp);
3604 
3605   chain = 0;
3606   a_struct_type = make_node (RECORD_TYPE);
3607   tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("mode"),
3608 		build_array_type (unsigned_char_type_node,
3609 				  build_range_type (gfc_array_index_type,
3610 						    gfc_index_zero_node,
3611 					 gfc_rank_cst[GFC_MAX_DIMENSIONS - 1])),
3612 		&chain);
3613   TREE_NO_WARNING (tmp) = 1;
3614   tmp = gfc_add_field_to_struct_1 (a_struct_type,
3615 				   get_identifier ("static_array_type"),
3616 				   integer_type_node, &chain);
3617   TREE_NO_WARNING (tmp) = 1;
3618   tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("dim"),
3619 				   dim_union_type, &chain);
3620   TREE_NO_WARNING (tmp) = 1;
3621   gfc_finish_type (a_struct_type);
3622 
3623   chain = 0;
3624   u_union_type = make_node (UNION_TYPE);
3625   tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("c"),
3626 				   c_struct_type, &chain);
3627   TREE_NO_WARNING (tmp) = 1;
3628   tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("a"),
3629 				   a_struct_type, &chain);
3630   TREE_NO_WARNING (tmp) = 1;
3631   gfc_finish_type (u_union_type);
3632 
3633   chain = 0;
3634   reference_type = make_node (RECORD_TYPE);
3635   tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("next"),
3636 				   build_pointer_type (reference_type), &chain);
3637   TREE_NO_WARNING (tmp) = 1;
3638   tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("type"),
3639 				   integer_type_node, &chain);
3640   TREE_NO_WARNING (tmp) = 1;
3641   tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("item_size"),
3642 				   size_type_node, &chain);
3643   TREE_NO_WARNING (tmp) = 1;
3644   tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("u"),
3645 				   u_union_type, &chain);
3646   TREE_NO_WARNING (tmp) = 1;
3647   gfc_finish_type (reference_type);
3648   TYPE_NAME (reference_type) = get_identifier ("caf_reference_t");
3649 
3650   return reference_type;
3651 }
3652 
3653 #include "gt-fortran-trans-types.h"
3654