1 /* $NetBSD: tls_client.c,v 1.13 2023/12/23 20:30:45 christos Exp $ */
2
3 /*++
4 /* NAME
5 /* tls_client
6 /* SUMMARY
7 /* client-side TLS engine
8 /* SYNOPSIS
9 /* #include <tls.h>
10 /*
11 /* TLS_APPL_STATE *tls_client_init(init_props)
12 /* const TLS_CLIENT_INIT_PROPS *init_props;
13 /*
14 /* TLS_SESS_STATE *tls_client_start(start_props)
15 /* const TLS_CLIENT_START_PROPS *start_props;
16 /*
17 /* TLS_SESS_STATE *tls_client_post_connect(TLScontext, start_props)
18 /* TLS_SESS_STATE *TLScontext;
19 /* const TLS_CLIENT_START_PROPS *start_props;
20 /*
21 /* void tls_client_stop(app_ctx, stream, failure, TLScontext)
22 /* TLS_APPL_STATE *app_ctx;
23 /* VSTREAM *stream;
24 /* int failure;
25 /* TLS_SESS_STATE *TLScontext;
26 /* DESCRIPTION
27 /* This module is the interface between Postfix TLS clients,
28 /* the OpenSSL library and the TLS entropy and cache manager.
29 /*
30 /* The SMTP client will attempt to verify the server hostname
31 /* against the names listed in the server certificate. When
32 /* a hostname match is required, the verification fails
33 /* on certificate verification or hostname mis-match errors.
34 /* When no hostname match is required, hostname verification
35 /* failures are logged but they do not affect the TLS handshake
36 /* or the SMTP session.
37 /*
38 /* The rules for peer name wild-card matching differ between
39 /* RFC 2818 (HTTP over TLS) and RFC 2830 (LDAP over TLS), while
40 /* RFC RFC3207 (SMTP over TLS) does not specify a rule at all.
41 /* Postfix uses a restrictive match algorithm. One asterisk
42 /* ('*') is allowed as the left-most component of a wild-card
43 /* certificate name; it matches the left-most component of
44 /* the peer hostname.
45 /*
46 /* Another area where RFCs aren't always explicit is the
47 /* handling of dNSNames in peer certificates. RFC 3207 (SMTP
48 /* over TLS) does not mention dNSNames. Postfix follows the
49 /* strict rules in RFC 2818 (HTTP over TLS), section 3.1: The
50 /* Subject Alternative Name/dNSName has precedence over
51 /* CommonName. If at least one dNSName is provided, Postfix
52 /* verifies those against the peer hostname and ignores the
53 /* CommonName, otherwise Postfix verifies the CommonName
54 /* against the peer hostname.
55 /*
56 /* tls_client_init() is called once when the SMTP client
57 /* initializes.
58 /* Certificate details are also decided during this phase,
59 /* so peer-specific certificate selection is not possible.
60 /*
61 /* tls_client_start() activates the TLS session over an established
62 /* stream. We expect that network buffers are flushed and
63 /* the TLS handshake can begin immediately.
64 /*
65 /* tls_client_stop() sends the "close notify" alert via
66 /* SSL_shutdown() to the peer and resets all connection specific
67 /* TLS data. As RFC2487 does not specify a separate shutdown, it
68 /* is assumed that the underlying TCP connection is shut down
69 /* immediately afterwards. Any further writes to the channel will
70 /* be discarded, and any further reads will report end-of-file.
71 /* If the failure flag is set, no SSL_shutdown() handshake is performed.
72 /*
73 /* Once the TLS connection is initiated, information about the TLS
74 /* state is available via the TLScontext structure:
75 /* .IP TLScontext->protocol
76 /* the protocol name (SSLv2, SSLv3, TLSv1),
77 /* .IP TLScontext->cipher_name
78 /* the cipher name (e.g. RC4/MD5),
79 /* .IP TLScontext->cipher_usebits
80 /* the number of bits actually used (e.g. 40),
81 /* .IP TLScontext->cipher_algbits
82 /* the number of bits the algorithm is based on (e.g. 128).
83 /* .PP
84 /* The last two values may differ from each other when export-strength
85 /* encryption is used.
86 /*
87 /* If the peer offered a certificate, part of the certificate data are
88 /* available as:
89 /* .IP TLScontext->peer_status
90 /* A bitmask field that records the status of the peer certificate
91 /* verification. This consists of one or more of TLS_CERT_FLAG_PRESENT,
92 /* TLS_CERT_FLAG_TRUSTED, TLS_CERT_FLAG_MATCHED and TLS_CERT_FLAG_SECURED.
93 /* .IP TLScontext->peer_CN
94 /* Extracted CommonName of the peer, or zero-length string if the
95 /* information could not be extracted.
96 /* .IP TLScontext->issuer_CN
97 /* Extracted CommonName of the issuer, or zero-length string if the
98 /* information could not be extracted.
99 /* .IP TLScontext->peer_cert_fprint
100 /* At the fingerprint security level, if the peer presented a certificate
101 /* the fingerprint of the certificate.
102 /* .PP
103 /* If no peer certificate is presented the peer_status is set to 0.
104 /* EVENT_DRIVEN APPLICATIONS
105 /* .ad
106 /* .fi
107 /* Event-driven programs manage multiple I/O channels. Such
108 /* programs cannot use the synchronous VSTREAM-over-TLS
109 /* implementation that the TLS library historically provides,
110 /* including tls_client_stop() and the underlying tls_stream(3)
111 /* and tls_bio_ops(3) routines.
112 /*
113 /* With the current TLS library implementation, this means
114 /* that an event-driven application is responsible for calling
115 /* and retrying SSL_connect(), SSL_read(), SSL_write() and
116 /* SSL_shutdown().
117 /*
118 /* To maintain control over TLS I/O, an event-driven client
119 /* invokes tls_client_start() with a null VSTREAM argument and
120 /* with an fd argument that specifies the I/O file descriptor.
121 /* Then, tls_client_start() performs all the necessary
122 /* preparations before the TLS handshake and returns a partially
123 /* populated TLS context. The event-driven application is then
124 /* responsible for invoking SSL_connect(), and if successful,
125 /* for invoking tls_client_post_connect() to finish the work
126 /* that was started by tls_client_start(). In case of unrecoverable
127 /* failure, tls_client_post_connect() destroys the TLS context
128 /* and returns a null pointer value.
129 /* LICENSE
130 /* .ad
131 /* .fi
132 /* This software is free. You can do with it whatever you want.
133 /* The original author kindly requests that you acknowledge
134 /* the use of his software.
135 /* AUTHOR(S)
136 /* Originally written by:
137 /* Lutz Jaenicke
138 /* BTU Cottbus
139 /* Allgemeine Elektrotechnik
140 /* Universitaetsplatz 3-4
141 /* D-03044 Cottbus, Germany
142 /*
143 /* Updated by:
144 /* Wietse Venema
145 /* IBM T.J. Watson Research
146 /* P.O. Box 704
147 /* Yorktown Heights, NY 10598, USA
148 /*
149 /* Wietse Venema
150 /* Google, Inc.
151 /* 111 8th Avenue
152 /* New York, NY 10011, USA
153 /*
154 /* Victor Duchovni
155 /* Morgan Stanley
156 /*--*/
157
158 /* System library. */
159
160 #include <sys_defs.h>
161
162 #ifdef USE_TLS
163 #include <string.h>
164
165 #ifdef STRCASECMP_IN_STRINGS_H
166 #include <strings.h>
167 #endif
168
169 /* Utility library. */
170
171 #include <argv.h>
172 #include <mymalloc.h>
173 #include <vstring.h>
174 #include <vstream.h>
175 #include <stringops.h>
176 #include <msg.h>
177 #include <iostuff.h> /* non-blocking */
178 #include <midna_domain.h>
179
180 /* Global library. */
181
182 #include <mail_params.h>
183
184 /* TLS library. */
185
186 #include <tls_mgr.h>
187 #define TLS_INTERNAL
188 #include <tls.h>
189
190 /* Application-specific. */
191
192 #define STR vstring_str
193 #define LEN VSTRING_LEN
194
195 /* load_clnt_session - load session from client cache (non-callback) */
196
load_clnt_session(TLS_SESS_STATE * TLScontext)197 static SSL_SESSION *load_clnt_session(TLS_SESS_STATE *TLScontext)
198 {
199 const char *myname = "load_clnt_session";
200 SSL_SESSION *session = 0;
201 VSTRING *session_data = vstring_alloc(2048);
202
203 /*
204 * Prepare the query.
205 */
206 if (TLScontext->log_mask & TLS_LOG_CACHE)
207 /* serverid contains transport:addr:port information */
208 msg_info("looking for session %s in %s cache",
209 TLScontext->serverid, TLScontext->cache_type);
210
211 /*
212 * We only get here if the cache_type is not empty. This code is not
213 * called unless caching is enabled and the cache_type is stored in the
214 * server SSL context.
215 */
216 if (TLScontext->cache_type == 0)
217 msg_panic("%s: null client session cache type in session lookup",
218 myname);
219
220 /*
221 * Look up and activate the SSL_SESSION object. Errors are non-fatal,
222 * since caching is only an optimization.
223 */
224 if (tls_mgr_lookup(TLScontext->cache_type, TLScontext->serverid,
225 session_data) == TLS_MGR_STAT_OK) {
226 session = tls_session_activate(STR(session_data), LEN(session_data));
227 if (session) {
228 if (TLScontext->log_mask & TLS_LOG_CACHE)
229 /* serverid contains transport:addr:port information */
230 msg_info("reloaded session %s from %s cache",
231 TLScontext->serverid, TLScontext->cache_type);
232 }
233 }
234
235 /*
236 * Clean up.
237 */
238 vstring_free(session_data);
239
240 return (session);
241 }
242
243 /* new_client_session_cb - name new session and save it to client cache */
244
new_client_session_cb(SSL * ssl,SSL_SESSION * session)245 static int new_client_session_cb(SSL *ssl, SSL_SESSION *session)
246 {
247 const char *myname = "new_client_session_cb";
248 TLS_SESS_STATE *TLScontext;
249 VSTRING *session_data;
250
251 /*
252 * The cache name (if caching is enabled in tlsmgr(8)) and the cache ID
253 * string for this session are stored in the TLScontext. It cannot be
254 * null at this point.
255 */
256 if ((TLScontext = SSL_get_ex_data(ssl, TLScontext_index)) == 0)
257 msg_panic("%s: null TLScontext in new session callback", myname);
258
259 /*
260 * We only get here if the cache_type is not empty. This callback is not
261 * set unless caching is enabled and the cache_type is stored in the
262 * server SSL context.
263 */
264 if (TLScontext->cache_type == 0)
265 msg_panic("%s: null session cache type in new session callback",
266 myname);
267
268 if (TLScontext->log_mask & TLS_LOG_CACHE)
269 /* serverid contains transport:addr:port information */
270 msg_info("save session %s to %s cache",
271 TLScontext->serverid, TLScontext->cache_type);
272
273 /*
274 * Passivate and save the session object. Errors are non-fatal, since
275 * caching is only an optimization.
276 */
277 if ((session_data = tls_session_passivate(session)) != 0) {
278 tls_mgr_update(TLScontext->cache_type, TLScontext->serverid,
279 STR(session_data), LEN(session_data));
280 vstring_free(session_data);
281 }
282
283 /*
284 * Clean up.
285 */
286 SSL_SESSION_free(session); /* 200502 */
287
288 return (1);
289 }
290
291 /* uncache_session - remove session from the external cache */
292
uncache_session(SSL_CTX * ctx,TLS_SESS_STATE * TLScontext)293 static void uncache_session(SSL_CTX *ctx, TLS_SESS_STATE *TLScontext)
294 {
295 SSL_SESSION *session = SSL_get_session(TLScontext->con);
296
297 SSL_CTX_remove_session(ctx, session);
298 if (TLScontext->cache_type == 0 || TLScontext->serverid == 0)
299 return;
300
301 if (TLScontext->log_mask & TLS_LOG_CACHE)
302 /* serverid contains transport:addr:port information */
303 msg_info("remove session %s from client cache", TLScontext->serverid);
304
305 tls_mgr_delete(TLScontext->cache_type, TLScontext->serverid);
306 }
307
308 /* verify_extract_name - verify peer name and extract peer information */
309
verify_extract_name(TLS_SESS_STATE * TLScontext,X509 * peercert,const TLS_CLIENT_START_PROPS * props)310 static void verify_extract_name(TLS_SESS_STATE *TLScontext, X509 *peercert,
311 const TLS_CLIENT_START_PROPS *props)
312 {
313 int verbose;
314
315 verbose = TLScontext->log_mask &
316 (TLS_LOG_CERTMATCH | TLS_LOG_VERBOSE | TLS_LOG_PEERCERT);
317
318 /*
319 * On exit both peer_CN and issuer_CN should be set.
320 */
321 TLScontext->issuer_CN = tls_issuer_CN(peercert, TLScontext);
322 TLScontext->peer_CN = tls_peer_CN(peercert, TLScontext);
323
324 /*
325 * Is the certificate trust chain trusted and matched? Any required name
326 * checks are now performed internally in OpenSSL.
327 */
328 if (SSL_get_verify_result(TLScontext->con) == X509_V_OK) {
329 TLScontext->peer_status |= TLS_CERT_FLAG_TRUSTED;
330 if (TLScontext->must_fail) {
331 msg_panic("%s: cert valid despite trust init failure",
332 TLScontext->namaddr);
333 } else if (TLS_MUST_MATCH(TLScontext->level)) {
334
335 /*
336 * Fully secured only if not insecure like half-dane. We use
337 * TLS_CERT_FLAG_MATCHED to satisfy policy, but
338 * TLS_CERT_FLAG_SECURED to log the effective security.
339 *
340 * Would ideally also exclude "verify" (as opposed to "secure")
341 * here, because that can be subject to insecure MX indirection,
342 * but that's rather incompatible (and not even the case with
343 * explicitly chosen non-default match patterns). Users have
344 * been warned.
345 */
346 if (!TLS_NEVER_SECURED(TLScontext->level))
347 TLScontext->peer_status |= TLS_CERT_FLAG_SECURED;
348 TLScontext->peer_status |= TLS_CERT_FLAG_MATCHED;
349
350 if (verbose) {
351 const char *peername = SSL_get0_peername(TLScontext->con);
352
353 if (peername)
354 msg_info("%s: matched peername: %s",
355 TLScontext->namaddr, peername);
356 tls_dane_log(TLScontext);
357 }
358 }
359 }
360
361 /*
362 * Give them a clue. Problems with trust chain verification are logged
363 * when the session is first negotiated, before the session is stored
364 * into the cache. We don't want mystery failures, so log the fact the
365 * real problem is to be found in the past.
366 */
367 if (!TLS_CERT_IS_MATCHED(TLScontext)
368 && (TLScontext->log_mask & TLS_LOG_UNTRUSTED)) {
369 if (TLScontext->session_reused == 0)
370 tls_log_verify_error(TLScontext);
371 else
372 msg_info("%s: re-using session with untrusted certificate, "
373 "look for details earlier in the log", props->namaddr);
374 }
375 }
376
377 /* add_namechecks - tell OpenSSL what names to check */
378
add_namechecks(TLS_SESS_STATE * TLScontext,const TLS_CLIENT_START_PROPS * props)379 static void add_namechecks(TLS_SESS_STATE *TLScontext,
380 const TLS_CLIENT_START_PROPS *props)
381 {
382 SSL *ssl = TLScontext->con;
383 int namechecks_count = 0;
384 int i;
385
386 /* RFC6125: No part-label 'foo*bar.example.com' wildcards for SMTP */
387 SSL_set_hostflags(ssl, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS);
388
389 for (i = 0; i < props->matchargv->argc; ++i) {
390 const char *name = props->matchargv->argv[i];
391 const char *aname;
392 int match_subdomain = 0;
393
394 if (strcasecmp(name, "nexthop") == 0) {
395 name = props->nexthop;
396 } else if (strcasecmp(name, "dot-nexthop") == 0) {
397 name = props->nexthop;
398 match_subdomain = 1;
399 } else if (strcasecmp(name, "hostname") == 0) {
400 name = props->host;
401 } else {
402 if (*name == '.') {
403 if (*++name == 0) {
404 msg_warn("%s: ignoring invalid match name: \".\"",
405 TLScontext->namaddr);
406 continue;
407 }
408 match_subdomain = 1;
409 }
410 #ifndef NO_EAI
411 else {
412
413 /*
414 * Besides U+002E (full stop) IDNA2003 allows labels to be
415 * separated by any of the Unicode variants U+3002
416 * (ideographic full stop), U+FF0E (fullwidth full stop), and
417 * U+FF61 (halfwidth ideographic full stop). Their respective
418 * UTF-8 encodings are: E38082, EFBC8E and EFBDA1.
419 *
420 * IDNA2008 does not permit (upper) case and other variant
421 * differences in U-labels. The midna_domain_to_ascii()
422 * function, based on UTS46, normalizes such differences
423 * away.
424 *
425 * The IDNA to_ASCII conversion does not allow empty leading
426 * labels, so we handle these explicitly here.
427 */
428 unsigned char *cp = (unsigned char *) name;
429
430 if ((cp[0] == 0xe3 && cp[1] == 0x80 && cp[2] == 0x82)
431 || (cp[0] == 0xef && cp[1] == 0xbc && cp[2] == 0x8e)
432 || (cp[0] == 0xef && cp[1] == 0xbd && cp[2] == 0xa1)) {
433 if (name[3]) {
434 name = name + 3;
435 match_subdomain = 1;
436 }
437 }
438 }
439 #endif
440 }
441
442 /*
443 * DNS subjectAltNames are required to be ASCII.
444 *
445 * Per RFC 6125 Section 6.4.4 Matching the CN-ID, follows the same rules
446 * (6.4.1, 6.4.2 and 6.4.3) that apply to subjectAltNames. In
447 * particular, 6.4.2 says that the reference identifier is coerced to
448 * ASCII, but no conversion is stated or implied for the CN-ID, so it
449 * seems it only matches if it is all ASCII. Otherwise, it is some
450 * other sort of name.
451 */
452 #ifndef NO_EAI
453 if (!allascii(name) && (aname = midna_domain_to_ascii(name)) != 0) {
454 if (msg_verbose)
455 msg_info("%s asciified to %s", name, aname);
456 name = aname;
457 }
458 #endif
459
460 if (!match_subdomain) {
461 if (SSL_add1_host(ssl, name))
462 ++namechecks_count;
463 else
464 msg_warn("%s: error loading match name: \"%s\"",
465 TLScontext->namaddr, name);
466 } else {
467 char *dot_name = concatenate(".", name, (char *) 0);
468
469 if (SSL_add1_host(ssl, dot_name))
470 ++namechecks_count;
471 else
472 msg_warn("%s: error loading match name: \"%s\"",
473 TLScontext->namaddr, dot_name);
474 myfree(dot_name);
475 }
476 }
477
478 /*
479 * If we failed to add any names, OpenSSL will perform no namechecks, so
480 * we set the "must_fail" bit to avoid verification false-positives.
481 */
482 if (namechecks_count == 0) {
483 msg_warn("%s: could not configure peer name checks",
484 TLScontext->namaddr);
485 TLScontext->must_fail = 1;
486 }
487 }
488
489 /* tls_auth_enable - set up TLS authentication */
490
tls_auth_enable(TLS_SESS_STATE * TLScontext,const TLS_CLIENT_START_PROPS * props)491 static int tls_auth_enable(TLS_SESS_STATE *TLScontext,
492 const TLS_CLIENT_START_PROPS *props)
493 {
494 const char *sni = 0;
495
496 if (props->sni && *props->sni) {
497 #ifndef NO_EAI
498 const char *aname;
499
500 #endif
501
502 /*
503 * MTA-STS policy plugin compatibility: with servername=hostname,
504 * Postfix must send the MX hostname (not CNAME expanded).
505 */
506 if (strcmp(props->sni, "hostname") == 0)
507 sni = props->host;
508 else if (strcmp(props->sni, "nexthop") == 0)
509 sni = props->nexthop;
510 else
511 sni = props->sni;
512
513 /*
514 * The SSL_set_tlsext_host_name() documentation does not promise that
515 * every implementation will convert U-label form to A-label form.
516 */
517 #ifndef NO_EAI
518 if (!allascii(sni) && (aname = midna_domain_to_ascii(sni)) != 0) {
519 if (msg_verbose)
520 msg_info("%s asciified to %s", sni, aname);
521 sni = aname;
522 }
523 #endif
524 }
525 switch (TLScontext->level) {
526 case TLS_LEV_HALF_DANE:
527 case TLS_LEV_DANE:
528 case TLS_LEV_DANE_ONLY:
529
530 /*
531 * With DANE sessions, send an SNI hint. We don't care whether the
532 * server reports finding a matching certificate or not, so no
533 * callback is required to process the server response. Our use of
534 * SNI is limited to giving servers that make use of SNI the best
535 * opportunity to find the certificate they promised via the
536 * associated TLSA RRs.
537 *
538 * Since the hostname is DNSSEC-validated, it must be a DNS FQDN and
539 * therefore valid for use with SNI.
540 */
541 if (SSL_dane_enable(TLScontext->con, 0) <= 0) {
542 msg_warn("%s: error enabling DANE-based certificate validation",
543 TLScontext->namaddr);
544 tls_print_errors();
545 return (0);
546 }
547 /* RFC7672 Section 3.1.1 specifies no name checks for DANE-EE(3) */
548 SSL_dane_set_flags(TLScontext->con, DANE_FLAG_NO_DANE_EE_NAMECHECKS);
549
550 /* Per RFC7672 the SNI name is the TLSA base domain */
551 sni = props->dane->base_domain;
552 add_namechecks(TLScontext, props);
553 break;
554
555 case TLS_LEV_FPRINT:
556 /* Synthetic DANE for fingerprint security */
557 if (SSL_dane_enable(TLScontext->con, 0) <= 0) {
558 msg_warn("%s: error enabling fingerprint certificate validation",
559 props->namaddr);
560 tls_print_errors();
561 return (0);
562 }
563 SSL_dane_set_flags(TLScontext->con, DANE_FLAG_NO_DANE_EE_NAMECHECKS);
564 break;
565
566 case TLS_LEV_SECURE:
567 case TLS_LEV_VERIFY:
568 if (TLScontext->dane != 0 && TLScontext->dane->tlsa != 0) {
569 /* Synthetic DANE for per-destination trust-anchors */
570 if (SSL_dane_enable(TLScontext->con, NULL) <= 0) {
571 msg_warn("%s: error configuring local trust anchors",
572 props->namaddr);
573 tls_print_errors();
574 return (0);
575 }
576 }
577 add_namechecks(TLScontext, props);
578 break;
579 default:
580 break;
581 }
582
583 if (sni) {
584 if (strlen(sni) > TLSEXT_MAXLEN_host_name) {
585 msg_warn("%s: ignoring too long SNI hostname: %.100s",
586 props->namaddr, sni);
587 return (0);
588 }
589
590 /*
591 * Failure to set a valid SNI hostname is a memory allocation error,
592 * and thus transient. Since we must not cache the session if we
593 * failed to send the SNI name, we have little choice but to abort.
594 */
595 if (!SSL_set_tlsext_host_name(TLScontext->con, sni)) {
596 msg_warn("%s: error setting SNI hostname to: %s", props->namaddr,
597 sni);
598 return (0);
599 }
600
601 /*
602 * The saved value is not presently used client-side, but could later
603 * be logged if acked by the server (requires new client-side
604 * callback to detect the ack). For now this just maintains symmetry
605 * with the server code, where do record the received SNI for
606 * logging.
607 */
608 TLScontext->peer_sni = mystrdup(sni);
609 if (TLScontext->log_mask & TLS_LOG_DEBUG)
610 msg_info("%s: SNI hostname: %s", props->namaddr, sni);
611 }
612 return (1);
613 }
614
615 /* tls_client_init - initialize client-side TLS engine */
616
tls_client_init(const TLS_CLIENT_INIT_PROPS * props)617 TLS_APPL_STATE *tls_client_init(const TLS_CLIENT_INIT_PROPS *props)
618 {
619 SSL_CTX *client_ctx;
620 TLS_APPL_STATE *app_ctx;
621 const EVP_MD *fpt_alg;
622 long off = 0;
623 int cachable;
624 int scache_timeout;
625 int log_mask;
626
627 /*
628 * Convert user loglevel to internal logmask.
629 */
630 log_mask = tls_log_mask(props->log_param, props->log_level);
631
632 if (log_mask & TLS_LOG_VERBOSE)
633 msg_info("initializing the client-side TLS engine");
634
635 /*
636 * Load (mostly cipher related) TLS-library internal main.cf parameters.
637 */
638 tls_param_init();
639
640 /*
641 * Detect mismatch between compile-time headers and run-time library.
642 */
643 tls_check_version();
644
645 /*
646 * Initialize the OpenSSL library, possibly loading its configuration
647 * file.
648 */
649 if (tls_library_init() == 0)
650 return (0);
651
652 /*
653 * Create an application data index for SSL objects, so that we can
654 * attach TLScontext information; this information is needed inside
655 * tls_verify_certificate_callback().
656 */
657 if (TLScontext_index < 0) {
658 if ((TLScontext_index = SSL_get_ex_new_index(0, 0, 0, 0, 0)) < 0) {
659 msg_warn("Cannot allocate SSL application data index: "
660 "disabling TLS support");
661 return (0);
662 }
663 }
664
665 /*
666 * If the administrator specifies an unsupported digest algorithm, fail
667 * now, rather than in the middle of a TLS handshake.
668 */
669 if ((fpt_alg = tls_validate_digest(props->mdalg)) == 0) {
670 msg_warn("disabling TLS support");
671 return (0);
672 }
673
674 /*
675 * Initialize the PRNG (Pseudo Random Number Generator) with some seed
676 * from external and internal sources. Don't enable TLS without some real
677 * entropy.
678 */
679 if (tls_ext_seed(var_tls_daemon_rand_bytes) < 0) {
680 msg_warn("no entropy for TLS key generation: disabling TLS support");
681 return (0);
682 }
683 tls_int_seed();
684
685 /*
686 * The SSL/TLS specifications require the client to send a message in the
687 * oldest specification it understands with the highest level it
688 * understands in the message. RFC2487 is only specified for TLSv1, but
689 * we want to be as compatible as possible, so we will start off with a
690 * SSLv2 greeting allowing the best we can offer: TLSv1. We can restrict
691 * this with the options setting later, anyhow.
692 */
693 ERR_clear_error();
694 client_ctx = SSL_CTX_new(TLS_client_method());
695 if (client_ctx == 0) {
696 msg_warn("cannot allocate client SSL_CTX: disabling TLS support");
697 tls_print_errors();
698 return (0);
699 }
700 #ifdef SSL_SECOP_PEER
701 /* Backwards compatible security as a base for opportunistic TLS. */
702 SSL_CTX_set_security_level(client_ctx, 0);
703 #endif
704
705 /*
706 * See the verify callback in tls_verify.c
707 */
708 SSL_CTX_set_verify_depth(client_ctx, props->verifydepth + 1);
709
710 /*
711 * This is a prerequisite for enabling DANE support in OpenSSL, but not a
712 * commitment to use DANE, thus suitable for both DANE and non-DANE TLS
713 * connections. Indeed we need this not just for DANE, but aslo for
714 * fingerprint and "tafile" support. Since it just allocates memory, it
715 * should never fail except when we're likely to fail anyway. Rather
716 * than try to run with crippled TLS support, just give up using TLS.
717 */
718 if (SSL_CTX_dane_enable(client_ctx) <= 0) {
719 msg_warn("OpenSSL DANE initialization failed: disabling TLS support");
720 tls_print_errors();
721 return (0);
722 }
723 tls_dane_digest_init(client_ctx, fpt_alg);
724
725 /*
726 * Presently we use TLS only with SMTP where truncation attacks are not
727 * possible as a result of application framing. If we ever use TLS in
728 * some other application protocol where truncation could be relevant,
729 * we'd need to disable truncation detection conditionally, or explicitly
730 * clear the option in that code path.
731 */
732 off |= SSL_OP_IGNORE_UNEXPECTED_EOF;
733
734 /*
735 * Protocol selection is destination dependent, so we delay the protocol
736 * selection options to the per-session SSL object.
737 */
738 off |= tls_bug_bits();
739 SSL_CTX_set_options(client_ctx, off);
740
741 /*
742 * Set the call-back routine for verbose logging.
743 */
744 if (log_mask & TLS_LOG_DEBUG)
745 SSL_CTX_set_info_callback(client_ctx, tls_info_callback);
746
747 /*
748 * Load the CA public key certificates for both the client cert and for
749 * the verification of server certificates. As provided by OpenSSL we
750 * support two types of CA certificate handling: One possibility is to
751 * add all CA certificates to one large CAfile, the other possibility is
752 * a directory pointed to by CApath, containing separate files for each
753 * CA with softlinks named after the hash values of the certificate. The
754 * first alternative has the advantage that the file is opened and read
755 * at startup time, so that you don't have the hassle to maintain another
756 * copy of the CApath directory for chroot-jail.
757 */
758 if (tls_set_ca_certificate_info(client_ctx,
759 props->CAfile, props->CApath) < 0) {
760 /* tls_set_ca_certificate_info() already logs a warning. */
761 SSL_CTX_free(client_ctx); /* 200411 */
762 return (0);
763 }
764
765 /*
766 * We do not need a client certificate, so the certificates are only
767 * loaded (and checked) if supplied. A clever client would handle
768 * multiple client certificates and decide based on the list of
769 * acceptable CAs, sent by the server, which certificate to submit.
770 * OpenSSL does however not do this and also has no call-back hooks to
771 * easily implement it.
772 *
773 * Load the client public key certificate and private key from file and
774 * check whether the cert matches the key. We can use RSA certificates
775 * ("cert") DSA certificates ("dcert") or ECDSA certificates ("eccert").
776 * All three can be made available at the same time. The CA certificates
777 * for all three are handled in the same setup already finished. Which
778 * one is used depends on the cipher negotiated (that is: the first
779 * cipher listed by the client which does match the server). The client
780 * certificate is presented after the server chooses the session cipher,
781 * so we will just present the right cert for the chosen cipher (if it
782 * uses certificates).
783 */
784 if (tls_set_my_certificate_key_info(client_ctx,
785 props->chain_files,
786 props->cert_file,
787 props->key_file,
788 props->dcert_file,
789 props->dkey_file,
790 props->eccert_file,
791 props->eckey_file) < 0) {
792 /* tls_set_my_certificate_key_info() already logs a warning. */
793 SSL_CTX_free(client_ctx); /* 200411 */
794 return (0);
795 }
796
797 /*
798 * With OpenSSL 1.0.2 and later the client EECDH curve list becomes
799 * configurable with the preferred curve negotiated via the supported
800 * curves extension. With OpenSSL 3.0 and TLS 1.3, the same applies
801 * to the FFDHE groups which become part of a unified "groups" list.
802 */
803 tls_auto_groups(client_ctx, var_tls_eecdh_auto, var_tls_ffdhe_auto);
804
805 /*
806 * Finally, the setup for the server certificate checking, done "by the
807 * book".
808 */
809 SSL_CTX_set_verify(client_ctx, SSL_VERIFY_NONE,
810 tls_verify_certificate_callback);
811
812 /*
813 * Initialize the session cache.
814 *
815 * Since the client does not search an internal cache, we simply disable it.
816 * It is only useful for expiring old sessions, but we do that in the
817 * tlsmgr(8).
818 *
819 * This makes SSL_CTX_remove_session() not useful for flushing broken
820 * sessions from the external cache, so we must delete them directly (not
821 * via a callback).
822 */
823 if (tls_mgr_policy(props->cache_type, &cachable,
824 &scache_timeout) != TLS_MGR_STAT_OK)
825 scache_timeout = 0;
826 if (scache_timeout <= 0)
827 cachable = 0;
828
829 /*
830 * Allocate an application context, and populate with mandatory protocol
831 * and cipher data.
832 */
833 app_ctx = tls_alloc_app_context(client_ctx, 0, log_mask);
834
835 /*
836 * The external session cache is implemented by the tlsmgr(8) process.
837 */
838 if (cachable) {
839
840 app_ctx->cache_type = mystrdup(props->cache_type);
841
842 /*
843 * OpenSSL does not use callbacks to load sessions from a client
844 * cache, so we must invoke that function directly. Apparently,
845 * OpenSSL does not provide a way to pass session names from here to
846 * call-back routines that do session lookup.
847 *
848 * OpenSSL can, however, automatically save newly created sessions for
849 * us by callback (we create the session name in the call-back
850 * function).
851 *
852 * XXX gcc 2.95 can't compile #ifdef .. #endif in the expansion of
853 * SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE |
854 * SSL_SESS_CACHE_NO_AUTO_CLEAR.
855 */
856 #ifndef SSL_SESS_CACHE_NO_INTERNAL_STORE
857 #define SSL_SESS_CACHE_NO_INTERNAL_STORE 0
858 #endif
859
860 SSL_CTX_set_session_cache_mode(client_ctx,
861 SSL_SESS_CACHE_CLIENT |
862 SSL_SESS_CACHE_NO_INTERNAL_STORE |
863 SSL_SESS_CACHE_NO_AUTO_CLEAR);
864 SSL_CTX_sess_set_new_cb(client_ctx, new_client_session_cb);
865
866 /*
867 * OpenSSL ignores timed-out sessions. We need to set the internal
868 * cache timeout at least as high as the external cache timeout. This
869 * applies even if no internal cache is used. We set the session to
870 * twice the cache lifetime. This way a session always lasts longer
871 * than its lifetime in the cache.
872 */
873 SSL_CTX_set_timeout(client_ctx, 2 * scache_timeout);
874 }
875 return (app_ctx);
876 }
877
878 /*
879 * This is the actual startup routine for the connection. We expect that the
880 * buffers are flushed and the "220 Ready to start TLS" was received by us,
881 * so that we can immediately start the TLS handshake process.
882 */
tls_client_start(const TLS_CLIENT_START_PROPS * props)883 TLS_SESS_STATE *tls_client_start(const TLS_CLIENT_START_PROPS *props)
884 {
885 int sts;
886 int protomask;
887 int min_proto;
888 int max_proto;
889 const char *cipher_list;
890 SSL_SESSION *session = 0;
891 TLS_SESS_STATE *TLScontext;
892 TLS_APPL_STATE *app_ctx = props->ctx;
893 int log_mask = app_ctx->log_mask;
894
895 /*
896 * When certificate verification is required, log trust chain validation
897 * errors even when disabled by default for opportunistic sessions. For
898 * DANE this only applies when using trust-anchor associations.
899 */
900 if (TLS_MUST_MATCH(props->tls_level))
901 log_mask |= TLS_LOG_UNTRUSTED;
902
903 if (log_mask & TLS_LOG_VERBOSE)
904 msg_info("setting up TLS connection to %s", props->namaddr);
905
906 /*
907 * First make sure we have valid protocol and cipher parameters
908 *
909 * Per-session protocol restrictions must be applied to the SSL connection,
910 * as restrictions in the global context cannot be cleared.
911 */
912 protomask = tls_proto_mask_lims(props->protocols, &min_proto, &max_proto);
913 if (protomask == TLS_PROTOCOL_INVALID) {
914 /* tls_protocol_mask() logs no warning. */
915 msg_warn("%s: Invalid TLS protocol list \"%s\": aborting TLS session",
916 props->namaddr, props->protocols);
917 return (0);
918 }
919
920 /*
921 * Though RFC7672 set the floor at SSLv3, we really can and should
922 * require TLS 1.0, since e.g. we send SNI, which is a TLS 1.0 extension.
923 * No DANE domains have been observed to support only SSLv3.
924 *
925 * XXX: Would be nice to make that TLS 1.2 at some point. Users can choose
926 * to exclude TLS 1.0 and TLS 1.1 if they find they don't run into any
927 * problems doing that.
928 */
929 if (TLS_DANE_BASED(props->tls_level))
930 protomask |= TLS_PROTOCOL_SSLv2 | TLS_PROTOCOL_SSLv3;
931
932 /*
933 * Allocate a new TLScontext for the new connection and get an SSL
934 * structure. Add the location of TLScontext to the SSL to later retrieve
935 * the information inside the tls_verify_certificate_callback().
936 *
937 * If session caching was enabled when TLS was initialized, the cache type
938 * is stored in the client SSL context.
939 */
940 TLScontext = tls_alloc_sess_context(log_mask, props->namaddr);
941 TLScontext->cache_type = app_ctx->cache_type;
942 TLScontext->level = props->tls_level;
943
944 if ((TLScontext->con = SSL_new(app_ctx->ssl_ctx)) == NULL) {
945 msg_warn("Could not allocate 'TLScontext->con' with SSL_new()");
946 tls_print_errors();
947 tls_free_context(TLScontext);
948 return (0);
949 }
950
951 /*
952 * Per session cipher selection for sessions with mandatory encryption
953 *
954 * The cipherlist is applied to the global SSL context, since it is likely
955 * to stay the same between connections, so we make use of a 1-element
956 * cache to return the same result for identical inputs.
957 */
958 cipher_list = tls_set_ciphers(TLScontext, props->cipher_grade,
959 props->cipher_exclusions);
960 if (cipher_list == 0) {
961 /* already warned */
962 tls_free_context(TLScontext);
963 return (0);
964 }
965 if (log_mask & TLS_LOG_VERBOSE)
966 msg_info("%s: TLS cipher list \"%s\"", props->namaddr, cipher_list);
967
968 TLScontext->stream = props->stream;
969 TLScontext->mdalg = props->mdalg;
970
971 /* Alias DANE digest info from props */
972 TLScontext->dane = props->dane;
973
974 if (!SSL_set_ex_data(TLScontext->con, TLScontext_index, TLScontext)) {
975 msg_warn("Could not set application data for 'TLScontext->con'");
976 tls_print_errors();
977 tls_free_context(TLScontext);
978 return (0);
979 }
980 #define CARP_VERSION(which) do { \
981 if (which##_proto != 0) \
982 msg_warn("%s: error setting %simum TLS version to: 0x%04x", \
983 TLScontext->namaddr, #which, which##_proto); \
984 else \
985 msg_warn("%s: error clearing %simum TLS version", \
986 TLScontext->namaddr, #which); \
987 } while (0)
988
989 /*
990 * Apply session protocol restrictions.
991 */
992 if (protomask != 0)
993 SSL_set_options(TLScontext->con, TLS_SSL_OP_PROTOMASK(protomask));
994 if (!SSL_set_min_proto_version(TLScontext->con, min_proto))
995 CARP_VERSION(min);
996 if (!SSL_set_max_proto_version(TLScontext->con, max_proto))
997 CARP_VERSION(max);
998
999 /*
1000 * When applicable, configure DNS-based or synthetic (fingerprint or
1001 * local trust anchor) DANE authentication, enable an appropriate SNI
1002 * name and peer name matching.
1003 *
1004 * NOTE, this can change the effective security level, and needs to happen
1005 * early.
1006 */
1007 if (!tls_auth_enable(TLScontext, props)) {
1008 tls_free_context(TLScontext);
1009 return (0);
1010 }
1011
1012 /*
1013 * Try to convey the configured TLSA records for this connection to the
1014 * OpenSSL library. If none are "usable", we'll fall back to "encrypt"
1015 * when authentication is not mandatory, otherwise we must arrange to
1016 * ensure authentication failure.
1017 */
1018 if (TLScontext->dane && TLScontext->dane->tlsa) {
1019 int usable = tls_dane_enable(TLScontext);
1020 int must_fail = usable <= 0;
1021
1022 if (usable == 0) {
1023 switch (TLScontext->level) {
1024 case TLS_LEV_HALF_DANE:
1025 case TLS_LEV_DANE:
1026 msg_warn("%s: all TLSA records unusable, fallback to "
1027 "unauthenticated TLS", TLScontext->namaddr);
1028 must_fail = 0;
1029 TLScontext->level = TLS_LEV_ENCRYPT;
1030 break;
1031
1032 case TLS_LEV_FPRINT:
1033 msg_warn("%s: all fingerprints unusable", TLScontext->namaddr);
1034 break;
1035 case TLS_LEV_DANE_ONLY:
1036 msg_warn("%s: all TLSA records unusable", TLScontext->namaddr);
1037 break;
1038 case TLS_LEV_SECURE:
1039 case TLS_LEV_VERIFY:
1040 msg_warn("%s: all trust anchors unusable", TLScontext->namaddr);
1041 break;
1042 }
1043 }
1044 TLScontext->must_fail |= must_fail;
1045 }
1046
1047 /*
1048 * We compute the policy digest after we compute the SNI name in
1049 * tls_auth_enable() and possibly update the TLScontext security level.
1050 *
1051 * OpenSSL will ignore cached sessions that use the wrong protocol. So we do
1052 * not need to filter out cached sessions with the "wrong" protocol,
1053 * rather OpenSSL will simply negotiate a new session.
1054 *
1055 * We salt the session lookup key with the protocol list, so that sessions
1056 * found in the cache are plausibly acceptable.
1057 *
1058 * By the time a TLS client is negotiating ciphers it has already offered to
1059 * re-use a session, it is too late to renege on the offer. So we must
1060 * not attempt to re-use sessions whose ciphers are too weak. We salt the
1061 * session lookup key with the cipher list, so that sessions found in the
1062 * cache are always acceptable.
1063 *
1064 * With DANE, (more generally any TLScontext where we specified explicit
1065 * trust-anchor or end-entity certificates) the verification status of
1066 * the SSL session depends on the specified list. Since we verify the
1067 * certificate only during the initial handshake, we must segregate
1068 * sessions with different TA lists. Note, that TA re-verification is
1069 * not possible with cached sessions, since these don't hold the complete
1070 * peer trust chain. Therefore, we compute a digest of the sorted TA
1071 * parameters and append it to the serverid.
1072 */
1073 TLScontext->serverid =
1074 tls_serverid_digest(TLScontext, props, cipher_list);
1075
1076 /*
1077 * When authenticating the peer, use 80-bit plus OpenSSL security level
1078 *
1079 * XXX: We should perhaps use security level 1 also for mandatory
1080 * encryption, with only "may" tolerating weaker algorithms. But that
1081 * could mean no TLS 1.0 with OpenSSL >= 3.0 and encrypt, unless I get my
1082 * patch in on time to conditionally re-enable SHA1 at security level 1,
1083 * and we add code to make it so.
1084 *
1085 * That said, with "encrypt", we could reasonably require TLS 1.2?
1086 */
1087 if (TLS_MUST_MATCH(TLScontext->level))
1088 SSL_set_security_level(TLScontext->con, 1);
1089
1090 /*
1091 * XXX To avoid memory leaks we must always call SSL_SESSION_free() after
1092 * calling SSL_set_session(), regardless of whether or not the session
1093 * will be reused.
1094 */
1095 if (TLScontext->cache_type) {
1096 session = load_clnt_session(TLScontext);
1097 if (session) {
1098 SSL_set_session(TLScontext->con, session);
1099 SSL_SESSION_free(session); /* 200411 */
1100 }
1101 }
1102
1103 /*
1104 * Before really starting anything, try to seed the PRNG a little bit
1105 * more.
1106 */
1107 tls_int_seed();
1108 (void) tls_ext_seed(var_tls_daemon_rand_bytes);
1109
1110 /*
1111 * Connect the SSL connection with the network socket.
1112 */
1113 if (SSL_set_fd(TLScontext->con, props->stream == 0 ? props->fd :
1114 vstream_fileno(props->stream)) != 1) {
1115 msg_info("SSL_set_fd error to %s", props->namaddr);
1116 tls_print_errors();
1117 uncache_session(app_ctx->ssl_ctx, TLScontext);
1118 tls_free_context(TLScontext);
1119 return (0);
1120 }
1121
1122 /*
1123 * If the debug level selected is high enough, all of the data is dumped:
1124 * TLS_LOG_TLSPKTS will dump the SSL negotiation, TLS_LOG_ALLPKTS will
1125 * dump everything.
1126 *
1127 * We do have an SSL_set_fd() and now suddenly a BIO_ routine is called?
1128 * Well there is a BIO below the SSL routines that is automatically
1129 * created for us, so we can use it for debugging purposes.
1130 */
1131 if (log_mask & TLS_LOG_TLSPKTS)
1132 tls_set_bio_callback(SSL_get_rbio(TLScontext->con), tls_bio_dump_cb);
1133
1134 /*
1135 * If we don't trigger the handshake in the library, leave control over
1136 * SSL_connect/read/write/etc with the application.
1137 */
1138 if (props->stream == 0)
1139 return (TLScontext);
1140
1141 /*
1142 * Turn on non-blocking I/O so that we can enforce timeouts on network
1143 * I/O.
1144 */
1145 non_blocking(vstream_fileno(props->stream), NON_BLOCKING);
1146
1147 /*
1148 * Start TLS negotiations. This process is a black box that invokes our
1149 * call-backs for certificate verification.
1150 *
1151 * Error handling: If the SSL handshake fails, we print out an error message
1152 * and remove all TLS state concerning this session.
1153 */
1154 sts = tls_bio_connect(vstream_fileno(props->stream), props->timeout,
1155 TLScontext);
1156 if (sts <= 0) {
1157 if (ERR_peek_error() != 0) {
1158 msg_info("SSL_connect error to %s: %d", props->namaddr, sts);
1159 tls_print_errors();
1160 } else if (errno != 0) {
1161 msg_info("SSL_connect error to %s: %m", props->namaddr);
1162 } else {
1163 msg_info("SSL_connect error to %s: lost connection",
1164 props->namaddr);
1165 }
1166 uncache_session(app_ctx->ssl_ctx, TLScontext);
1167 tls_free_context(TLScontext);
1168 return (0);
1169 }
1170 return (tls_client_post_connect(TLScontext, props));
1171 }
1172
1173 /* tls_client_post_connect - post-handshake processing */
1174
tls_client_post_connect(TLS_SESS_STATE * TLScontext,const TLS_CLIENT_START_PROPS * props)1175 TLS_SESS_STATE *tls_client_post_connect(TLS_SESS_STATE *TLScontext,
1176 const TLS_CLIENT_START_PROPS *props)
1177 {
1178 const SSL_CIPHER *cipher;
1179 X509 *peercert;
1180
1181 /* Turn off packet dump if only dumping the handshake */
1182 if ((TLScontext->log_mask & TLS_LOG_ALLPKTS) == 0)
1183 tls_set_bio_callback(SSL_get_rbio(TLScontext->con), 0);
1184
1185 /*
1186 * The caller may want to know if this session was reused or if a new
1187 * session was negotiated.
1188 */
1189 TLScontext->session_reused = SSL_session_reused(TLScontext->con);
1190 if ((TLScontext->log_mask & TLS_LOG_CACHE) && TLScontext->session_reused)
1191 msg_info("%s: Reusing old session", TLScontext->namaddr);
1192
1193 /*
1194 * Do peername verification if requested and extract useful information
1195 * from the certificate for later use.
1196 */
1197 if ((peercert = TLS_PEEK_PEER_CERT(TLScontext->con)) != 0) {
1198 TLScontext->peer_status |= TLS_CERT_FLAG_PRESENT;
1199
1200 /*
1201 * Peer name or fingerprint verification as requested.
1202 * Unconditionally set peer_CN, issuer_CN and peer_cert_fprint. Check
1203 * fingerprint first, and avoid logging verified as untrusted in the
1204 * call to verify_extract_name().
1205 */
1206 TLScontext->peer_cert_fprint = tls_cert_fprint(peercert, props->mdalg);
1207 TLScontext->peer_pkey_fprint = tls_pkey_fprint(peercert, props->mdalg);
1208 verify_extract_name(TLScontext, peercert, props);
1209
1210 if (TLScontext->log_mask &
1211 (TLS_LOG_CERTMATCH | TLS_LOG_VERBOSE | TLS_LOG_PEERCERT))
1212 msg_info("%s: subject_CN=%s, issuer_CN=%s, "
1213 "fingerprint=%s, pkey_fingerprint=%s", props->namaddr,
1214 TLScontext->peer_CN, TLScontext->issuer_CN,
1215 TLScontext->peer_cert_fprint,
1216 TLScontext->peer_pkey_fprint);
1217 } else {
1218 TLScontext->issuer_CN = mystrdup("");
1219 TLScontext->peer_CN = mystrdup("");
1220 TLScontext->peer_cert_fprint = mystrdup("");
1221 TLScontext->peer_pkey_fprint = mystrdup("");
1222 }
1223
1224 /*
1225 * Finally, collect information about protocol and cipher for logging
1226 */
1227 TLScontext->protocol = SSL_get_version(TLScontext->con);
1228 cipher = SSL_get_current_cipher(TLScontext->con);
1229 TLScontext->cipher_name = SSL_CIPHER_get_name(cipher);
1230 TLScontext->cipher_usebits = SSL_CIPHER_get_bits(cipher,
1231 &(TLScontext->cipher_algbits));
1232
1233 /*
1234 * The TLS engine is active. Switch to the tls_timed_read/write()
1235 * functions and make the TLScontext available to those functions.
1236 */
1237 if (TLScontext->stream != 0)
1238 tls_stream_start(props->stream, TLScontext);
1239
1240 /*
1241 * With the handshake done, extract TLS 1.3 signature metadata.
1242 */
1243 tls_get_signature_params(TLScontext);
1244
1245 if (TLScontext->log_mask & TLS_LOG_SUMMARY)
1246 tls_log_summary(TLS_ROLE_CLIENT, TLS_USAGE_NEW, TLScontext);
1247
1248 tls_int_seed();
1249
1250 return (TLScontext);
1251 }
1252
1253 #endif /* USE_TLS */
1254