xref: /netbsd-src/sys/arch/arm/sunxi/sun4i_spi.c (revision 6e54367a22fbc89a1139d033e95bec0c0cf0975b)
1 /*	$NetBSD: sun4i_spi.c,v 1.7 2021/01/27 03:10:20 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2019 Tobias Nygren
5  * Copyright (c) 2018 Jonathan A. Kollasch
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.7 2021/01/27 03:10:20 thorpej Exp $");
32 
33 #include <sys/param.h>
34 #include <sys/device.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/intr.h>
38 #include <sys/kernel.h>
39 #include <sys/bitops.h>
40 #include <dev/spi/spivar.h>
41 #include <arm/sunxi/sun4i_spireg.h>
42 #include <dev/fdt/fdtvar.h>
43 
44 static const struct device_compatible_entry compat_data[] = {
45 	{ .compat = "allwinner,sun4i-a10-spi" },
46 	DEVICE_COMPAT_EOL
47 };
48 
49 struct sun4ispi_softc {
50 	device_t		sc_dev;
51 	bus_space_tag_t		sc_bst;
52 	bus_space_handle_t	sc_bsh;
53 	void			*sc_intrh;
54 	struct spi_controller	sc_spi;
55 	SIMPLEQ_HEAD(,spi_transfer) sc_q;
56 	struct spi_transfer	*sc_transfer;
57 	struct spi_chunk	*sc_rchunk, *sc_wchunk;
58 	uint32_t		sc_CTL;
59 	u_int			sc_modclkrate;
60 	volatile bool		sc_running;
61 };
62 
63 #define SPIREG_READ(sc, reg) \
64     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
65 #define SPIREG_WRITE(sc, reg, val) \
66     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
67 
68 static struct spi_controller * sun4i_spi_get_controller(device_t);
69 static int sun4ispi_match(device_t, cfdata_t, void *);
70 static void sun4ispi_attach(device_t, device_t, void *);
71 
72 static int sun4ispi_configure(void *, int, int, int);
73 static int sun4ispi_transfer(void *, struct spi_transfer *);
74 
75 static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t);
76 static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t);
77 static void sun4ispi_rxtx(struct sun4ispi_softc * const);
78 static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const);
79 static void sun4ispi_start(struct sun4ispi_softc * const);
80 static int sun4ispi_intr(void *);
81 
82 CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc),
83     sun4ispi_match, sun4ispi_attach, NULL, NULL);
84 
85 static const struct fdtbus_spi_controller_func sun4i_spi_funcs = {
86 	.get_controller = sun4i_spi_get_controller
87 };
88 
89 static struct spi_controller *
sun4i_spi_get_controller(device_t dev)90 sun4i_spi_get_controller(device_t dev)
91 {
92 	struct sun4ispi_softc * const sc = device_private(dev);
93 
94 	return &sc->sc_spi;
95 }
96 
97 static int
sun4ispi_match(device_t parent,cfdata_t cf,void * aux)98 sun4ispi_match(device_t parent, cfdata_t cf, void *aux)
99 {
100 	struct fdt_attach_args * const faa = aux;
101 
102 	return of_compatible_match(faa->faa_phandle, compat_data);
103 }
104 
105 static void
sun4ispi_attach(device_t parent,device_t self,void * aux)106 sun4ispi_attach(device_t parent, device_t self, void *aux)
107 {
108 	struct sun4ispi_softc * const sc = device_private(self);
109 	struct fdt_attach_args * const faa = aux;
110 	const int phandle = faa->faa_phandle;
111 	bus_addr_t addr;
112 	bus_size_t size;
113 	struct clk *clk, *modclk;
114 	char intrstr[128];
115 
116 	sc->sc_dev = self;
117 	sc->sc_bst = faa->faa_bst;
118 	SIMPLEQ_INIT(&sc->sc_q);
119 
120 	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
121 	    || clk_enable(clk) != 0) {
122 		aprint_error(": couldn't enable clock\n");
123 		return;
124 	}
125 
126 	if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
127 	    || clk_set_rate(modclk, clk_get_rate(clk)) != 0
128 	    || clk_enable(modclk) != 0) {
129 		aprint_error(": couldn't enable module clock\n");
130 		return;
131 	}
132 	sc->sc_modclkrate = clk_get_rate(modclk);
133 
134 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
135 	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
136 		aprint_error(": couldn't map registers\n");
137 		return;
138 	}
139 
140 	SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST
141 	    | SPI_CTL_TF_RST | SPI_CTL_MODE);
142 	SPIREG_WRITE(sc, SPI_DMACTL, 0);
143 	SPIREG_WRITE(sc, SPI_WAIT, 0);
144 	SPIREG_WRITE(sc, SPI_INTCTL, 0);
145 	SPIREG_WRITE(sc, SPI_INT_STA, ~0);
146 
147 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
148 		aprint_error(": failed to decode interrupt\n");
149 		return;
150 	}
151 
152 	sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
153 	    sun4ispi_intr, sc, device_xname(self));
154 	if (sc->sc_intrh == NULL) {
155 		aprint_error(": unable to establish interrupt\n");
156 		return;
157 	}
158 
159 	aprint_naive("\n");
160 	aprint_normal(": SPI\n");
161 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
162 
163 	sc->sc_spi.sct_cookie = sc;
164 	sc->sc_spi.sct_configure = sun4ispi_configure;
165 	sc->sc_spi.sct_transfer = sun4ispi_transfer;
166 	(void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves);
167 	fdtbus_register_spi_controller(self, phandle, &sun4i_spi_funcs);
168 	(void) fdtbus_attach_spibus(self, phandle, spibus_print);
169 }
170 
171 static int
sun4ispi_configure(void * cookie,int slave,int mode,int speed)172 sun4ispi_configure(void *cookie, int slave, int mode, int speed)
173 {
174 	struct sun4ispi_softc * const sc = cookie;
175 	uint32_t ctl, cctl;
176 	uint32_t minfreq, maxfreq;
177 
178 	minfreq = sc->sc_modclkrate >> 16;
179 	maxfreq = sc->sc_modclkrate >> 1;
180 
181 	if (speed <= 0 || speed < minfreq || speed > maxfreq)
182 		return EINVAL;
183 
184 	if (slave >= sc->sc_spi.sct_nslaves)
185 		return EINVAL;
186 
187 	ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN;
188 
189 	switch (mode) {
190 	case SPI_MODE_0:
191 		ctl |= 0;
192 		break;
193 	case SPI_MODE_1:
194 		ctl |= SPI_CTL_PHA;
195 		break;
196 	case SPI_MODE_2:
197 		ctl |= SPI_CTL_POL;
198 		break;
199 	case SPI_MODE_3:
200 		ctl |= SPI_CTL_PHA | SPI_CTL_POL;
201 		break;
202 	default:
203 		return EINVAL;
204 	}
205 
206 	if (speed < sc->sc_modclkrate / 512) {
207 		for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
208 			if ((sc->sc_modclkrate / (1 << cctl)) <= speed)
209 				goto cdr1_found;
210 		}
211 		return EINVAL;
212 cdr1_found:
213 		cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
214 	} else {
215 		cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
216 		cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
217 	}
218 
219 	device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
220 	    ctl, cctl, sc->sc_modclkrate,
221 	    (cctl & SPI_CCTL_DRS)
222 	    ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
223 	    : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
224 	);
225 
226 	sc->sc_CTL = ctl;
227 	SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN);
228 	SPIREG_WRITE(sc, SPI_CCTL, cctl);
229 	SPIREG_WRITE(sc, SPI_CTL, ctl);
230 
231 	return 0;
232 }
233 
234 static int
sun4ispi_transfer(void * cookie,struct spi_transfer * st)235 sun4ispi_transfer(void *cookie, struct spi_transfer *st)
236 {
237 	struct sun4ispi_softc * const sc = cookie;
238 	int s;
239 
240 	s = splbio();
241 	spi_transq_enqueue(&sc->sc_q, st);
242 	if (sc->sc_running == false) {
243 		sun4ispi_start(sc);
244 	}
245 	splx(s);
246 
247 	return 0;
248 }
249 
250 static void
sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc,size_t maxlen)251 sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen)
252 {
253 	struct spi_chunk *chunk = sc->sc_wchunk;
254 	size_t len;
255 	uint8_t b;
256 
257 	if (chunk == NULL)
258 		return;
259 
260 	len = MIN(maxlen, chunk->chunk_wresid);
261 	chunk->chunk_wresid -= len;
262 	while (len--) {
263 		if (chunk->chunk_wptr) {
264 			b = *chunk->chunk_wptr++;
265 		} else {
266 			b = 0;
267 		}
268 		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b);
269 	}
270 	if (sc->sc_wchunk->chunk_wresid == 0) {
271 		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
272 	}
273 }
274 
275 static void
sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc,size_t maxlen)276 sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen)
277 {
278 	struct spi_chunk *chunk = sc->sc_rchunk;
279 	size_t len;
280 	uint8_t b;
281 
282 	if (chunk == NULL)
283 		return;
284 
285 	len = MIN(maxlen, chunk->chunk_rresid);
286 	chunk->chunk_rresid -= len;
287 
288 	while (len--) {
289 		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA);
290 		if (chunk->chunk_rptr) {
291 			*chunk->chunk_rptr++ = b;
292 		}
293 	}
294 	if (sc->sc_rchunk->chunk_rresid == 0) {
295 		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
296 	}
297 }
298 
299 static void
sun4ispi_rxtx(struct sun4ispi_softc * const sc)300 sun4ispi_rxtx(struct sun4ispi_softc * const sc)
301 {
302 	bool again;
303 	size_t rxavail, txavail;
304 	uint32_t fsr;
305 
306 	/* service both FIFOs until no more progress can be made */
307 	again = true;
308 	while (again) {
309 		again = false;
310 		fsr = SPIREG_READ(sc, SPI_FIFO_STA);
311 		rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT);
312 		txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT);
313 		if (rxavail > 0) {
314 			KASSERT(sc->sc_rchunk != NULL);
315 			sun4ispi_rxfifo_drain(sc, rxavail);
316 			again = true;
317 		}
318 		if (txavail > 0 && sc->sc_wchunk != NULL) {
319 			sun4ispi_txfifo_fill(sc, txavail);
320 			again = true;
321 		}
322 	}
323 }
324 
325 static void
sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc)326 sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc)
327 {
328 	uint32_t intctl;
329 
330 	intctl = SPI_INTCTL_TX_INT_EN;
331 	intctl |= SPI_INTCTL_RF_OF_INT_EN;
332 	intctl |= SPI_INTCTL_TF_UR_INT_EN;
333 
334 	if (sc->sc_rchunk) {
335 		if (sc->sc_rchunk->chunk_rresid >= 32) {
336 			intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN;
337 		} else {
338 			intctl |= SPI_INTCTL_RF_RDY_INT_EN;
339 		}
340 	}
341 	if (sc->sc_wchunk) {
342 		intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN;
343 	}
344 	SPIREG_WRITE(sc, SPI_INTCTL, intctl);
345 }
346 
347 static void
sun4ispi_start(struct sun4ispi_softc * const sc)348 sun4ispi_start(struct sun4ispi_softc * const sc)
349 {
350 	struct spi_transfer *st;
351 	uint32_t ctl;
352 	struct spi_chunk *chunk;
353 	size_t burstcount;
354 
355 	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
356 
357 		spi_transq_dequeue(&sc->sc_q);
358 
359 		KASSERT(sc->sc_transfer == NULL);
360 		sc->sc_transfer = st;
361 		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
362 		sc->sc_running = true;
363 
364 		burstcount = 0;
365 		for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
366 			burstcount += chunk->chunk_count;
367 		}
368 		KASSERT(burstcount <= SPI_BC_BC);
369 		SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC));
370 		SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC));
371 
372 		sun4ispi_rxtx(sc);
373 		sun4ispi_set_interrupt_mask(sc);
374 
375 		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
376 		ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH;
377 		SPIREG_WRITE(sc, SPI_CTL, ctl);
378 
379 		if (!cold)
380 			return;
381 
382 		for (;;) {
383 			(void) sun4ispi_intr(sc);
384 			if (ISSET(st->st_flags, SPI_F_DONE))
385 				break;
386 		}
387 	}
388 	sc->sc_running = false;
389 }
390 
391 static int
sun4ispi_intr(void * cookie)392 sun4ispi_intr(void *cookie)
393 {
394 	struct sun4ispi_softc * const sc = cookie;
395 	struct spi_transfer *st;
396 	uint32_t isr;
397 
398 	isr = SPIREG_READ(sc, SPI_INT_STA);
399 	if (!isr)
400 		return 0;
401 
402 	if (ISSET(isr, SPI_INT_STA_RO)) {
403 		device_printf(sc->sc_dev, "RXFIFO overflow\n");
404 	}
405 	if (ISSET(isr, SPI_INT_STA_TU)) {
406 		device_printf(sc->sc_dev, "TXFIFO underrun\n");
407 	}
408 
409 	sun4ispi_rxtx(sc);
410 
411 	if (ISSET(isr, SPI_INT_STA_TC)) {
412 		SPIREG_WRITE(sc, SPI_INTCTL, 0);
413 		KASSERT(sc->sc_rchunk == NULL);
414 		KASSERT(sc->sc_wchunk == NULL);
415 		st = sc->sc_transfer;
416 		sc->sc_transfer = NULL;
417 		KASSERT(st != NULL);
418 		spi_done(st, 0);
419 		sc->sc_running = false;
420 	} else {
421 		sun4ispi_set_interrupt_mask(sc);
422 	}
423 	SPIREG_WRITE(sc, SPI_INT_STA, isr);
424 
425 	return 1;
426 }
427