xref: /netbsd-src/sys/kern/subr_physmap.c (revision 9ffa50b380df94a158696fe407bc5fecdd40119b)
1 /*	$NetBSD: subr_physmap.c,v 1.5 2021/09/06 20:55:08 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 2013 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas of 3am Software Foundry.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(1, "$NetBSD: subr_physmap.c,v 1.5 2021/09/06 20:55:08 andvar Exp $");
34 
35 #include <sys/param.h>
36 #include <sys/physmap.h>
37 #include <sys/kmem.h>
38 
39 #include <uvm/uvm_extern.h>
40 #include <uvm/uvm_page.h>
41 
42 #include <dev/mm.h>
43 
44 /*
45  * This file contain support routines used to create and destroy lists of
46  * physical pages from lists of pages or ranges of virtual address.  By using
47  * these physical maps, the kernel can avoid mapping physical I/O in the
48  * kernel's address space in most cases.
49  */
50 
51 typedef struct {
52 	physmap_t *pc_physmap;
53 	physmap_segment_t *pc_segs;
54 	vsize_t pc_offset;
55 	vsize_t pc_klen;
56 	vaddr_t pc_kva;
57 	u_int pc_nsegs;
58 	vm_prot_t pc_prot;
59 	bool pc_direct_mapped;
60 } physmap_cookie_t;
61 
62 /*
63  * Allocate a physmap structure that requires "maxsegs" segments.
64  */
65 static physmap_t *
physmap_alloc(size_t maxsegs)66 physmap_alloc(size_t maxsegs)
67 {
68 	const size_t mapsize = offsetof(physmap_t, pm_segs[maxsegs]);
69 
70 	KASSERT(maxsegs > 0);
71 
72 	physmap_t * const map = kmem_zalloc(mapsize, KM_SLEEP);
73 	map->pm_maxsegs = maxsegs;
74 
75 	return map;
76 }
77 
78 static int
physmap_fill(physmap_t * map,pmap_t pmap,vaddr_t va,vsize_t len)79 physmap_fill(physmap_t *map, pmap_t pmap, vaddr_t va, vsize_t len)
80 {
81 	size_t nsegs = map->pm_nsegs;
82 	physmap_segment_t *ps = &map->pm_segs[nsegs];
83 	vsize_t offset = va - trunc_page(va);
84 
85 	if (nsegs == 0) {
86 		if (!pmap_extract(pmap, va, &ps->ps_addr)) {
87 			return EFAULT;
88 		}
89 		ps->ps_len = MIN(len, PAGE_SIZE - offset);
90 		if (ps->ps_len == len) {
91 			map->pm_nsegs = 1;
92 			return 0;
93 		}
94 		offset = 0;
95 	} else {
96 		/*
97 		 * Backup to the last segment since we have to see if we can
98 		 * merge virtual addresses that are physically contiguous into
99 		 * as few segments as possible.
100 		 */
101 		ps--;
102 		nsegs--;
103 	}
104 
105 	paddr_t lastaddr = ps->ps_addr + ps->ps_len;
106 	for (;;) {
107 		paddr_t curaddr;
108 		if (!pmap_extract(pmap, va, &curaddr)) {
109 			return EFAULT;
110 		}
111 		if (curaddr != lastaddr) {
112 			ps++;
113 			nsegs++;
114 			KASSERT(nsegs < map->pm_maxsegs);
115 			ps->ps_addr = curaddr;
116 			lastaddr = curaddr;
117 		}
118 		if (offset + len > PAGE_SIZE) {
119 			ps->ps_len += PAGE_SIZE - offset;
120 			lastaddr = ps->ps_addr + ps->ps_len;
121 			len -= PAGE_SIZE - offset;
122 			lastaddr += PAGE_SIZE - offset;
123 			offset = 0;
124 		} else {
125 			ps->ps_len += len;
126 			map->pm_nsegs = nsegs + 1;
127 			return 0;
128 		}
129 	}
130 }
131 
132 /*
133  * Create a physmap and populate it with the pages that are used to mapped
134  * linear range of virtual addresses.  It is assumed that uvm_vslock has been
135  * called to lock these pages into memory.
136  */
137 int
physmap_create_linear(physmap_t ** map_p,const struct vmspace * vs,vaddr_t va,vsize_t len)138 physmap_create_linear(physmap_t **map_p, const struct vmspace *vs, vaddr_t va,
139 	vsize_t len)
140 {
141 	const size_t maxsegs = atop(round_page(va + len) - trunc_page(va));
142 	physmap_t * const map = physmap_alloc(maxsegs);
143 	int error = physmap_fill(map, vs->vm_map.pmap, va, len);
144 	if (error) {
145 		physmap_destroy(map);
146 		*map_p = NULL;
147 		return error;
148 	}
149 	*map_p = map;
150 	return 0;
151 }
152 
153 /*
154  * Create a physmap and populate it with the pages that are contained in an
155  * iovec array.  It is assumed that uvm_vslock has been called to lock these
156  * pages into memory.
157  */
158 int
physmap_create_iov(physmap_t ** map_p,const struct vmspace * vs,struct iovec * iov,size_t iovlen)159 physmap_create_iov(physmap_t **map_p, const struct vmspace *vs,
160 	struct iovec *iov, size_t iovlen)
161 {
162 	size_t maxsegs = 0;
163 	for (size_t i = 0; i < iovlen; i++) {
164 		const vaddr_t start = (vaddr_t) iov[i].iov_base;
165 		const vaddr_t end = start + iov[i].iov_len;
166 		maxsegs += atop(round_page(end) - trunc_page(start));
167 	}
168 	physmap_t * const map = physmap_alloc(maxsegs);
169 
170 	for (size_t i = 0; i < iovlen; i++) {
171 		int error = physmap_fill(map, vs->vm_map.pmap,
172 		    (vaddr_t) iov[i].iov_base, iov[i].iov_len);
173 		if (error) {
174 			physmap_destroy(map);
175 			*map_p = NULL;
176 			return error;
177 		}
178 	}
179 	*map_p = map;
180 	return 0;
181 }
182 
183 /*
184  * This uses a list of vm_page structure to create a physmap.
185  */
186 physmap_t *
physmap_create_pagelist(struct vm_page ** pgs,size_t npgs)187 physmap_create_pagelist(struct vm_page **pgs, size_t npgs)
188 {
189 	physmap_t * const map = physmap_alloc(npgs);
190 
191 	physmap_segment_t *ps = map->pm_segs;
192 
193 	/*
194 	 * Initialize the first segment.
195 	 */
196 	paddr_t lastaddr = VM_PAGE_TO_PHYS(pgs[0]);
197 	ps->ps_addr = lastaddr;
198 	ps->ps_len = PAGE_SIZE;
199 
200 	for (pgs++; npgs-- > 1; pgs++) {
201 		/*
202 		 * lastaddr needs to be increased by a page.
203 		 */
204 		lastaddr += PAGE_SIZE;
205 		paddr_t curaddr = VM_PAGE_TO_PHYS(*pgs);
206 		if (curaddr != lastaddr) {
207 			/*
208 			 * If the addresses are not the same, we need to use
209 			 * a new segment.  Set its address and update lastaddr.
210 			 */
211 			ps++;
212 			ps->ps_addr = curaddr;
213 			lastaddr = curaddr;
214 		}
215 		/*
216 		 * Increase this segment's length by a page
217 		 */
218 		ps->ps_len += PAGE_SIZE;
219 	}
220 
221 	map->pm_nsegs = ps + 1 - map->pm_segs;
222 	return map;
223 }
224 
225 void
physmap_destroy(physmap_t * map)226 physmap_destroy(physmap_t *map)
227 {
228 	const size_t mapsize = offsetof(physmap_t, pm_segs[map->pm_maxsegs]);
229 
230 	kmem_free(map, mapsize);
231 }
232 
233 void *
physmap_map_init(physmap_t * map,size_t offset,vm_prot_t prot)234 physmap_map_init(physmap_t *map, size_t offset, vm_prot_t prot)
235 {
236 	physmap_cookie_t * const pc = kmem_zalloc(sizeof(*pc), KM_SLEEP);
237 
238 	KASSERT(prot == VM_PROT_READ || prot == (VM_PROT_READ|VM_PROT_WRITE));
239 
240 	pc->pc_physmap = map;
241 	pc->pc_segs = map->pm_segs;
242 	pc->pc_nsegs = map->pm_nsegs;
243 	pc->pc_prot = prot;
244 	pc->pc_klen = 0;
245 	pc->pc_kva = 0;
246 	pc->pc_direct_mapped = false;
247 
248 	/*
249 	 * Skip to the first segment we are interested in.
250 	 */
251 	while (offset >= pc->pc_segs->ps_len) {
252 		offset -= pc->pc_segs->ps_len;
253 		pc->pc_segs++;
254 		pc->pc_nsegs--;
255 	}
256 
257 	pc->pc_offset = offset;
258 
259 	return pc;
260 }
261 
262 size_t
physmap_map(void * cookie,vaddr_t * kvap)263 physmap_map(void *cookie, vaddr_t *kvap)
264 {
265 	physmap_cookie_t * const pc = cookie;
266 
267 	/*
268 	 * If there is currently a non-direct mapped KVA region allocated,
269 	 * free it now.
270 	 */
271 	if (pc->pc_kva != 0 && !pc->pc_direct_mapped) {
272 		pmap_kremove(pc->pc_kva, pc->pc_klen);
273 		pmap_update(pmap_kernel());
274 		uvm_km_free(kernel_map, pc->pc_kva, pc->pc_klen,
275 		    UVM_KMF_VAONLY);
276 	}
277 
278 	/*
279 	 * If there are no more segments to process, return 0 indicating
280 	 * we are done.
281 	 */
282 	if (pc->pc_nsegs == 0) {
283 		return 0;
284 	}
285 
286 	/*
287 	 * Get starting physical address of this segment and its length.
288 	 */
289 	paddr_t pa = pc->pc_segs->ps_addr + pc->pc_offset;
290 	const size_t koff = pa & PAGE_MASK;
291 	const size_t len = pc->pc_segs->ps_len - pc->pc_offset;
292 
293 	/*
294 	 * Now that we have the starting offset in the page, reset to the
295 	 * beginning of the page.
296 	 */
297 	pa = trunc_page(pa);
298 
299 	/*
300 	 * We are now done with this segment; advance to the next one.
301 	 */
302 	pc->pc_segs++;
303 	pc->pc_nsegs--;
304 	pc->pc_offset = 0;
305 
306 	/*
307 	 * Find out how many pages we are mapping.
308 	 */
309 	pc->pc_klen = round_page(len);
310 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
311 	/*
312 	 * Always try to direct map it since that's nearly zero cost.
313 	 */
314 	pc->pc_direct_mapped = mm_md_direct_mapped_phys(pa, &pc->pc_kva);
315 #endif
316 	if (!pc->pc_direct_mapped) {
317 		/*
318 		 * If we can't direct map it, we have to allocate some KVA
319 		 * so we map it via the kernel_map.
320 		 */
321 		pc->pc_kva = uvm_km_alloc(kernel_map, pc->pc_klen,
322 		    atop(pa) & uvmexp.colormask,
323 		    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
324 		KASSERT(pc->pc_kva != 0);
325 
326 		/*
327 		 * Setup mappings for this segment.
328 		 */
329 		for (size_t poff = 0; poff < pc->pc_klen; poff += PAGE_SIZE) {
330 			pmap_kenter_pa(pc->pc_kva + poff, pa + poff,
331 			    pc->pc_prot, 0);
332 		}
333 		/*
334 		 * Make them real.
335 		 */
336 		pmap_update(pmap_kernel());
337 	}
338 	/*
339 	 * Return the starting KVA (including offset into the page) and
340 	 * the length of this segment.
341 	 */
342 	*kvap = pc->pc_kva + koff;
343 	return len;
344 }
345 
346 void
physmap_map_fini(void * cookie)347 physmap_map_fini(void *cookie)
348 {
349 	physmap_cookie_t * const pc = cookie;
350 
351 	/*
352 	 * If there is currently a non-direct mapped KVA region allocated,
353 	 * free it now.
354 	 */
355 	if (pc->pc_kva != 0 && !pc->pc_direct_mapped) {
356 		pmap_kremove(pc->pc_kva, pc->pc_klen);
357 		pmap_update(pmap_kernel());
358 		uvm_km_free(kernel_map, pc->pc_kva, pc->pc_klen,
359 		    UVM_KMF_VAONLY);
360 	}
361 
362 	/*
363 	 * Free the cookie.
364 	 */
365 	kmem_free(pc, sizeof(*pc));
366 }
367 
368 /*
369  * genio needs to zero pages past the EOF or without backing storage (think
370  * sparse files).  But since we are using physmaps, there is no kva to use with
371  * memset so we need a helper to obtain a kva and memset the desired memory.
372  */
373 void
physmap_zero(physmap_t * map,size_t offset,size_t len)374 physmap_zero(physmap_t *map, size_t offset, size_t len)
375 {
376 	void * const cookie = physmap_map_init(map, offset,
377 	    VM_PROT_READ|VM_PROT_WRITE);
378 
379 	for (;;) {
380 		vaddr_t kva;
381 		size_t seglen = physmap_map(cookie, &kva);
382 		KASSERT(seglen != 0);
383 		if (seglen > len)
384 			seglen = len;
385 		memset((void *)kva, 0, seglen);
386 		if (seglen == len)
387 			break;
388 	}
389 
390 	physmap_map_fini(cookie);
391 }
392