xref: /netbsd-src/lib/libm/src/s_remquof.c (revision 4629208b15293c864116c99982508860e0b1cb09)
1 /* @(#)e_fmod.c 1.3 95/01/18 */
2 /*-
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 
15 #include "namespace.h"
16 
17 #include "math.h"
18 #include "math_private.h"
19 
20 #ifdef __weak_alias
21 __weak_alias(remquof, _remquof)
22 #endif
23 
24 static const float Zero[] = {0.0, -0.0,};
25 
26 /*
27  * Return the IEEE remainder and set *quo to the last n bits of the
28  * quotient, rounded to the nearest integer.  We choose n=31 because
29  * we wind up computing all the integer bits of the quotient anyway as
30  * a side-effect of computing the remainder by the shift and subtract
31  * method.  In practice, this is far more bits than are needed to use
32  * remquo in reduction algorithms.
33  */
34 float
remquof(float x,float y,int * quo)35 remquof(float x, float y, int *quo)
36 {
37 	int32_t n,hx,hy,hz,ix,iy,sx,i;
38 	u_int32_t q,sxy;
39 
40 	GET_FLOAT_WORD(hx,x);
41 	GET_FLOAT_WORD(hy,y);
42 	sxy = (hx ^ hy) & 0x80000000;
43 	sx = hx&0x80000000;		/* sign of x */
44 	hx ^=sx;		/* |x| */
45 	hy &= 0x7fffffff;	/* |y| */
46 
47     /* purge off exception values */
48 	if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */
49 	    return (x*y)/(x*y);
50 	if(hx<hy) {
51 	    q = 0;
52 	    goto fixup;	/* |x|<|y| return x or x-y */
53 	} else if(hx==hy) {
54 	    *quo = 1;
55 	    return Zero[(u_int32_t)sx>>31];	/* |x|=|y| return x*0*/
56 	}
57 
58     /* determine ix = ilogb(x) */
59 	if(hx<0x00800000) {	/* subnormal x */
60 	    for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
61 	} else ix = (hx>>23)-127;
62 
63     /* determine iy = ilogb(y) */
64 	if(hy<0x00800000) {	/* subnormal y */
65 	    for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1;
66 	} else iy = (hy>>23)-127;
67 
68     /* set up {hx,lx}, {hy,ly} and align y to x */
69 	if(ix >= -126)
70 	    hx = 0x00800000|(0x007fffff&hx);
71 	else {		/* subnormal x, shift x to normal */
72 	    n = -126-ix;
73 	    hx <<= n;
74 	}
75 	if(iy >= -126)
76 	    hy = 0x00800000|(0x007fffff&hy);
77 	else {		/* subnormal y, shift y to normal */
78 	    n = -126-iy;
79 	    hy <<= n;
80 	}
81 
82     /* fix point fmod */
83 	n = ix - iy;
84 	q = 0;
85 	while(n--) {
86 	    hz=hx-hy;
87 	    if(hz<0) hx = hx << 1;
88 	    else {hx = hz << 1; q++;}
89 	    q <<= 1;
90 	}
91 	hz=hx-hy;
92 	if(hz>=0) {hx=hz;q++;}
93 
94     /* convert back to floating value and restore the sign */
95 	if(hx==0) {				/* return sign(x)*0 */
96 	    *quo = (sxy ? -q : q);
97 	    return Zero[(u_int32_t)sx>>31];
98 	}
99 	while(hx<0x00800000) {		/* normalize x */
100 	    hx <<= 1;
101 	    iy -= 1;
102 	}
103 	if(iy>= -126) {		/* normalize output */
104 	    hx = ((hx-0x00800000)|((iy+127)<<23));
105 	} else {		/* subnormal output */
106 	    n = -126 - iy;
107 	    hx >>= n;
108 	}
109 fixup:
110 	SET_FLOAT_WORD(x,hx);
111 	y = fabsf(y);
112 	if (y < 0x1p-125f) {
113 	    if (x+x>y || (x+x==y && (q & 1))) {
114 		q++;
115 		x-=y;
116 	    }
117 	} else if (x>0.5f*y || (x==0.5f*y && (q & 1))) {
118 	    q++;
119 	    x-=y;
120 	}
121 	GET_FLOAT_WORD(hx,x);
122 	SET_FLOAT_WORD(x,hx^sx);
123 	q &= 0x7fffffff;
124 	*quo = (sxy ? -q : q);
125 	return x;
126 }
127