xref: /netbsd-src/lib/libm/src/s_remquo.c (revision 128a0dcc9f07c775edbf83fd86b3b63da2ca3ad7)
1 /* @(#)e_fmod.c 1.3 95/01/18 */
2 /*-
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 
15 #include "namespace.h"
16 
17 #include <float.h>
18 
19 #include "math.h"
20 #include "math_private.h"
21 
22 #ifdef __weak_alias
23 __weak_alias(remquo, _remquo)
24 #endif
25 
26 static const double Zero[] = {0.0, -0.0,};
27 
28 /*
29  * Return the IEEE remainder and set *quo to the last n bits of the
30  * quotient, rounded to the nearest integer.  We choose n=31 because
31  * we wind up computing all the integer bits of the quotient anyway as
32  * a side-effect of computing the remainder by the shift and subtract
33  * method.  In practice, this is far more bits than are needed to use
34  * remquo in reduction algorithms.
35  */
36 double
37 remquo(double x, double y, int *quo)
38 {
39 	int32_t n,hx,hy,hz,ix,iy,sx,i;
40 	u_int32_t lx,ly,lz,q,sxy;
41 
42 	EXTRACT_WORDS(hx,lx,x);
43 	EXTRACT_WORDS(hy,ly,y);
44 	sxy = (hx ^ hy) & 0x80000000;
45 	sx = hx&0x80000000;		/* sign of x */
46 	hx ^=sx;		/* |x| */
47 	hy &= 0x7fffffff;	/* |y| */
48 
49     /* purge off exception values */
50 	if((hy|ly)==0||(hx>=0x7ff00000)||	/* y=0,or x not finite */
51 	  ((hy|((ly|-ly)>>31))>0x7ff00000))	/* or y is NaN */
52 	    return (x*y)/(x*y);
53 	if(hx<=hy) {
54 	    if((hx<hy)||(lx<ly)) {
55 		q = 0;
56 		goto fixup;	/* |x|<|y| return x or x-y */
57 	    }
58 	    if(lx==ly) {
59 		*quo = (sxy ? -1 : 1);
60 		return Zero[(u_int32_t)sx>>31];	/* |x|=|y| return x*0*/
61 	    }
62 	}
63 
64     /* determine ix = ilogb(x) */
65 	if(hx<0x00100000) {	/* subnormal x */
66 	    if(hx==0) {
67 		for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
68 	    } else {
69 		for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
70 	    }
71 	} else ix = (hx>>20)-1023;
72 
73     /* determine iy = ilogb(y) */
74 	if(hy<0x00100000) {	/* subnormal y */
75 	    if(hy==0) {
76 		for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
77 	    } else {
78 		for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
79 	    }
80 	} else iy = (hy>>20)-1023;
81 
82     /* set up {hx,lx}, {hy,ly} and align y to x */
83 	if(ix >= -1022)
84 	    hx = 0x00100000|(0x000fffff&hx);
85 	else {		/* subnormal x, shift x to normal */
86 	    n = -1022-ix;
87 	    if(n<=31) {
88 	        hx = (hx<<n)|(lx>>(32-n));
89 	        lx <<= n;
90 	    } else {
91 		hx = lx<<(n-32);
92 		lx = 0;
93 	    }
94 	}
95 	if(iy >= -1022)
96 	    hy = 0x00100000|(0x000fffff&hy);
97 	else {		/* subnormal y, shift y to normal */
98 	    n = -1022-iy;
99 	    if(n<=31) {
100 	        hy = (hy<<n)|(ly>>(32-n));
101 	        ly <<= n;
102 	    } else {
103 		hy = ly<<(n-32);
104 		ly = 0;
105 	    }
106 	}
107 
108     /* fix point fmod */
109 	n = ix - iy;
110 	q = 0;
111 	while(n--) {
112 	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
113 	    if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
114 	    else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;}
115 	    q <<= 1;
116 	}
117 	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
118 	if(hz>=0) {hx=hz;lx=lz;q++;}
119 
120     /* convert back to floating value and restore the sign */
121 	if((hx|lx)==0) {			/* return sign(x)*0 */
122 	    q &= 0x7fffffff;
123 	    *quo = (sxy ? -q : q);
124 	    return Zero[(u_int32_t)sx>>31];
125 	}
126 	while(hx<0x00100000) {		/* normalize x */
127 	    hx = hx+hx+(lx>>31); lx = lx+lx;
128 	    iy -= 1;
129 	}
130 	if(iy>= -1022) {	/* normalize output */
131 	    hx = ((hx-0x00100000)|((iy+1023)<<20));
132 	} else {		/* subnormal output */
133 	    n = -1022 - iy;
134 	    if(n<=20) {
135 		lx = (lx>>n)|((u_int32_t)hx<<(32-n));
136 		hx >>= n;
137 	    } else if (n<=31) {
138 		lx = (hx<<(32-n))|(lx>>n); hx = 0;
139 	    } else {
140 		lx = hx>>(n-32); hx = 0;
141 	    }
142 	}
143 fixup:
144 	INSERT_WORDS(x,hx,lx);
145 	y = fabs(y);
146 	if (y < 0x1p-1021) {
147 	    if (x+x>y || (x+x==y && (q & 1))) {
148 		q++;
149 		x-=y;
150 	    }
151 	} else if (x>0.5*y || (x==0.5*y && (q & 1))) {
152 	    q++;
153 	    x-=y;
154 	}
155 	GET_HIGH_WORD(hx,x);
156 	SET_HIGH_WORD(x,hx^sx);
157 	q &= 0x7fffffff;
158 	*quo = (sxy ? -q : q);
159 	/*
160 	 * If q is 0 and we need to return negative, we have to choose
161 	 * the largest negative number (in 32 bits) because it is the
162 	 * only value that is negative and congruent to 0 mod 2^31.
163 	 */
164 	if (q == 0 && sxy)
165 	  *quo = 0x80000000;
166 	return x;
167 }
168