1 // Copyright 2018 Ulf Adams
2 //
3 // The contents of this file may be used under the terms of the Apache License,
4 // Version 2.0.
5 //
6 // (See accompanying file LICENSE-Apache or copy at
7 // http://www.apache.org/licenses/LICENSE-2.0)
8 //
9 // Alternatively, the contents of this file may be used under the terms of
10 // the Boost Software License, Version 1.0.
11 // (See accompanying file LICENSE-Boost or copy at
12 // https://www.boost.org/LICENSE_1_0.txt)
13 //
14 // Unless required by applicable law or agreed to in writing, this software
15 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 // KIND, either express or implied.
17
18 // Runtime compiler options:
19 // -DRYU_DEBUG Generate verbose debugging output to stdout.
20
21
22
23 #ifdef RYU_DEBUG
24 #endif
25
26
27 #define FLOAT_MANTISSA_BITS 23
28 #define FLOAT_EXPONENT_BITS 8
29 #define FLOAT_BIAS 127
30
31 // A floating decimal representing m * 10^e.
32 typedef struct floating_decimal_32 {
33 uint32_t mantissa;
34 // Decimal exponent's range is -45 to 38
35 // inclusive, and can fit in a short if needed.
36 int32_t exponent;
37 bool sign;
38 } floating_decimal_32;
39
f2d(const uint32_t ieeeMantissa,const uint32_t ieeeExponent,const bool ieeeSign)40 static inline floating_decimal_32 f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, const bool ieeeSign) {
41 int32_t e2;
42 uint32_t m2;
43 if (ieeeExponent == 0) {
44 // We subtract 2 so that the bounds computation has 2 additional bits.
45 e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
46 m2 = ieeeMantissa;
47 } else {
48 e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
49 m2 = (1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
50 }
51 const bool even = (m2 & 1) == 0;
52 const bool acceptBounds = even;
53
54 #ifdef RYU_DEBUG
55 printf("-> %u * 2^%d\n", m2, e2 + 2);
56 #endif
57
58 // Step 2: Determine the interval of valid decimal representations.
59 const uint32_t mv = 4 * m2;
60 const uint32_t mp = 4 * m2 + 2;
61 // Implicit bool -> int conversion. True is 1, false is 0.
62 const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
63 const uint32_t mm = 4 * m2 - 1 - mmShift;
64
65 // Step 3: Convert to a decimal power base using 64-bit arithmetic.
66 uint32_t vr, vp, vm;
67 int32_t e10;
68 bool vmIsTrailingZeros = false;
69 bool vrIsTrailingZeros = false;
70 uint8_t lastRemovedDigit = 0;
71 if (e2 >= 0) {
72 const uint32_t q = log10Pow2(e2);
73 e10 = (int32_t) q;
74 const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
75 const int32_t i = -e2 + (int32_t) q + k;
76 vr = mulPow5InvDivPow2(mv, q, i);
77 vp = mulPow5InvDivPow2(mp, q, i);
78 vm = mulPow5InvDivPow2(mm, q, i);
79 #ifdef RYU_DEBUG
80 printf("%u * 2^%d / 10^%u\n", mv, e2, q);
81 printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
82 #endif
83 if (q != 0 && (vp - 1) / 10 <= vm / 10) {
84 // We need to know one removed digit even if we are not going to loop below. We could use
85 // q = X - 1 above, except that would require 33 bits for the result, and we've found that
86 // 32-bit arithmetic is faster even on 64-bit machines.
87 const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1;
88 lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10);
89 }
90 if (q <= 9) {
91 // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
92 // Only one of mp, mv, and mm can be a multiple of 5, if any.
93 if (mv % 5 == 0) {
94 vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q);
95 } else if (acceptBounds) {
96 vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q);
97 } else {
98 vp -= multipleOfPowerOf5_32(mp, q);
99 }
100 }
101 } else {
102 const uint32_t q = log10Pow5(-e2);
103 e10 = (int32_t) q + e2;
104 const int32_t i = -e2 - (int32_t) q;
105 const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
106 int32_t j = (int32_t) q - k;
107 vr = mulPow5divPow2(mv, (uint32_t) i, j);
108 vp = mulPow5divPow2(mp, (uint32_t) i, j);
109 vm = mulPow5divPow2(mm, (uint32_t) i, j);
110 #ifdef RYU_DEBUG
111 printf("%u * 5^%d / 10^%u\n", mv, -e2, q);
112 printf("%u %d %d %d\n", q, i, k, j);
113 printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
114 #endif
115 if (q != 0 && (vp - 1) / 10 <= vm / 10) {
116 j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
117 lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10);
118 }
119 if (q <= 1) {
120 // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
121 // mv = 4 * m2, so it always has at least two trailing 0 bits.
122 vrIsTrailingZeros = true;
123 if (acceptBounds) {
124 // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
125 vmIsTrailingZeros = mmShift == 1;
126 } else {
127 // mp = mv + 2, so it always has at least one trailing 0 bit.
128 --vp;
129 }
130 } else if (q < 31) { // TODO(ulfjack): Use a tighter bound here.
131 vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1);
132 #ifdef RYU_DEBUG
133 printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
134 #endif
135 }
136 }
137 #ifdef RYU_DEBUG
138 printf("e10=%d\n", e10);
139 printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
140 printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
141 printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
142 #endif
143
144 // Step 4: Find the shortest decimal representation in the interval of valid representations.
145 int32_t removed = 0;
146 uint32_t output;
147 if (vmIsTrailingZeros || vrIsTrailingZeros) {
148 // General case, which happens rarely (~4.0%).
149 while (vp / 10 > vm / 10) {
150 #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106
151 // The compiler does not realize that vm % 10 can be computed from vm / 10
152 // as vm - (vm / 10) * 10.
153 vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
154 #else
155 vmIsTrailingZeros &= vm % 10 == 0;
156 #endif
157 vrIsTrailingZeros &= lastRemovedDigit == 0;
158 lastRemovedDigit = (uint8_t) (vr % 10);
159 vr /= 10;
160 vp /= 10;
161 vm /= 10;
162 ++removed;
163 }
164 #ifdef RYU_DEBUG
165 printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
166 printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
167 #endif
168 if (vmIsTrailingZeros) {
169 while (vm % 10 == 0) {
170 vrIsTrailingZeros &= lastRemovedDigit == 0;
171 lastRemovedDigit = (uint8_t) (vr % 10);
172 vr /= 10;
173 vp /= 10;
174 vm /= 10;
175 ++removed;
176 }
177 }
178 #ifdef RYU_DEBUG
179 printf("%u %d\n", vr, lastRemovedDigit);
180 printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
181 #endif
182 if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
183 // Round even if the exact number is .....50..0.
184 lastRemovedDigit = 4;
185 }
186 // We need to take vr + 1 if vr is outside bounds or we need to round up.
187 output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
188 } else {
189 // Specialized for the common case (~96.0%). Percentages below are relative to this.
190 // Loop iterations below (approximately):
191 // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
192 while (vp / 10 > vm / 10) {
193 lastRemovedDigit = (uint8_t) (vr % 10);
194 vr /= 10;
195 vp /= 10;
196 vm /= 10;
197 ++removed;
198 }
199 #ifdef RYU_DEBUG
200 printf("%u %d\n", vr, lastRemovedDigit);
201 printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
202 #endif
203 // We need to take vr + 1 if vr is outside bounds or we need to round up.
204 output = vr + (vr == vm || lastRemovedDigit >= 5);
205 }
206 const int32_t exp = e10 + removed;
207
208 #ifdef RYU_DEBUG
209 printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
210 printf("O=%u\n", output);
211 printf("EXP=%d\n", exp);
212 #endif
213
214 floating_decimal_32 fd;
215 fd.exponent = exp;
216 fd.mantissa = output;
217 fd.sign = ieeeSign;
218 return fd;
219 }
220
to_chars(const floating_decimal_32 v,char * const result)221 static inline int to_chars(const floating_decimal_32 v, char* const result) {
222 // Step 5: Print the decimal representation.
223 int index = 0;
224 if (v.sign) {
225 result[index++] = '-';
226 }
227
228 uint32_t output = v.mantissa;
229 const uint32_t olength = decimalLength9(output);
230
231 #ifdef RYU_DEBUG
232 printf("DIGITS=%u\n", v.mantissa);
233 printf("OLEN=%u\n", olength);
234 printf("EXP=%u\n", v.exponent + olength);
235 #endif
236
237 // Print the decimal digits.
238 // The following code is equivalent to:
239 // for (uint32_t i = 0; i < olength - 1; ++i) {
240 // const uint32_t c = output % 10; output /= 10;
241 // result[index + olength - i] = (char) ('0' + c);
242 // }
243 // result[index] = '0' + output % 10;
244 uint32_t i = 0;
245 while (output >= 10000) {
246 #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
247 const uint32_t c = output - 10000 * (output / 10000);
248 #else
249 const uint32_t c = output % 10000;
250 #endif
251 output /= 10000;
252 const uint32_t c0 = (c % 100) << 1;
253 const uint32_t c1 = (c / 100) << 1;
254 memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
255 memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
256 i += 4;
257 }
258 if (output >= 100) {
259 const uint32_t c = (output % 100) << 1;
260 output /= 100;
261 memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
262 i += 2;
263 }
264 if (output >= 10) {
265 const uint32_t c = output << 1;
266 // We can't use memcpy here: the decimal dot goes between these two digits.
267 result[index + olength - i] = DIGIT_TABLE[c + 1];
268 result[index] = DIGIT_TABLE[c];
269 } else {
270 result[index] = (char) ('0' + output);
271 }
272
273 // Print decimal point if needed.
274 if (olength > 1) {
275 result[index + 1] = '.';
276 index += olength + 1;
277 } else {
278 ++index;
279 }
280
281 // Print the exponent.
282 result[index++] = 'e';
283 int32_t exp = v.exponent + (int32_t) olength - 1;
284 if (exp < 0) {
285 result[index++] = '-';
286 exp = -exp;
287 } else {
288 result[index++] = '+';
289 }
290
291 memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
292 index += 2;
293
294 return index;
295 }
296
floating_to_fd32(float f)297 floating_decimal_32 floating_to_fd32(float f) {
298 // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
299 const uint32_t bits = float_to_bits(f);
300
301 #ifdef RYU_DEBUG
302 printf("IN=");
303 for (int32_t bit = 31; bit >= 0; --bit) {
304 printf("%u", (bits >> bit) & 1);
305 }
306 printf("\n");
307 #endif
308
309 // Decode bits into sign, mantissa, and exponent.
310 const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
311 const uint32_t ieeeMantissa = bits & ((1u << FLOAT_MANTISSA_BITS) - 1);
312 const uint32_t ieeeExponent = (bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1);
313
314 // Case distinction; exit early for the easy cases.
315 if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
316 __builtin_abort();
317 }
318
319 const floating_decimal_32 v = f2d(ieeeMantissa, ieeeExponent, ieeeSign);
320 return v;
321 }
322