xref: /dflybsd-src/libexec/rtld-elf/rtld.c (revision ccab79cf9e490edd7b16267464a4873ffda1ddd9)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 #include <sys/resident.h>
49 #include <sys/tls.h>
50 
51 #include <machine/tls.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_printf.h"
67 #include "notes.h"
68 
69 #define cpu_sfence()    __asm __volatile("" : : : "memory");
70 
71 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
72 #define LD_ARY_CACHE	16
73 
74 /* Types. */
75 typedef void (*func_ptr_type)();
76 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
77 
78 /*
79  * Function declarations.
80  */
81 static int __getstatictlsextra(void);
82 static const char *_getenv_ld(const char *id);
83 static void die(void) __dead2;
84 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
85     const Elf_Dyn **, const Elf_Dyn **);
86 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
87     const Elf_Dyn *);
88 static void digest_dynamic(Obj_Entry *, int);
89 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
90 static void distribute_static_tls(Objlist *, RtldLockState *);
91 static Obj_Entry *dlcheck(void *);
92 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
93     int lo_flags, int mode, RtldLockState *lockstate);
94 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
95 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
96 static bool donelist_check(DoneList *, const Obj_Entry *);
97 static void errmsg_restore(char *);
98 static char *errmsg_save(void);
99 static void *fill_search_info(const char *, size_t, void *);
100 static char *find_library(const char *, const Obj_Entry *, int *);
101 static const char *gethints(bool);
102 static void init_dag(Obj_Entry *);
103 static void init_rtld(caddr_t, Elf_Auxinfo **);
104 static void initlist_add_neededs(Needed_Entry *, Objlist *);
105 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
106 static void linkmap_add(Obj_Entry *);
107 static void linkmap_delete(Obj_Entry *);
108 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
109 static void unload_filtees(Obj_Entry *);
110 static int load_needed_objects(Obj_Entry *, int);
111 static int load_preload_objects(void);
112 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
113 static void map_stacks_exec(RtldLockState *);
114 static Obj_Entry *obj_from_addr(const void *);
115 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
116 static void objlist_call_init(Objlist *, RtldLockState *);
117 static void objlist_clear(Objlist *);
118 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
119 static void objlist_init(Objlist *);
120 static void objlist_push_head(Objlist *, Obj_Entry *);
121 static void objlist_push_tail(Objlist *, Obj_Entry *);
122 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
123 static void objlist_remove(Objlist *, Obj_Entry *);
124 static int parse_libdir(const char *);
125 static void *path_enumerate(const char *, path_enum_proc, void *);
126 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
127     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
128 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
129     int flags, RtldLockState *lockstate);
130 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
131     RtldLockState *);
132 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
133     int flags, RtldLockState *lockstate);
134 static int rtld_dirname(const char *, char *);
135 static int rtld_dirname_abs(const char *, char *);
136 static void *rtld_dlopen(const char *name, int fd, int mode);
137 static void rtld_exit(void);
138 static char *search_library_path(const char *, const char *);
139 static char *search_library_pathfds(const char *, const char *, int *);
140 static const void **get_program_var_addr(const char *, RtldLockState *);
141 static void set_program_var(const char *, const void *);
142 static int symlook_default(SymLook *, const Obj_Entry *refobj);
143 static int symlook_global(SymLook *, DoneList *);
144 static void symlook_init_from_req(SymLook *, const SymLook *);
145 static int symlook_list(SymLook *, const Objlist *, DoneList *);
146 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
147 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
148 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
149 static void trace_loaded_objects(Obj_Entry *);
150 static void unlink_object(Obj_Entry *);
151 static void unload_object(Obj_Entry *);
152 static void unref_dag(Obj_Entry *);
153 static void ref_dag(Obj_Entry *);
154 static char *origin_subst_one(char *, const char *, const char *, bool);
155 static char *origin_subst(char *, const char *);
156 static void preinit_main(void);
157 static int  rtld_verify_versions(const Objlist *);
158 static int  rtld_verify_object_versions(Obj_Entry *);
159 static void object_add_name(Obj_Entry *, const char *);
160 static int  object_match_name(const Obj_Entry *, const char *);
161 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
162 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
163     struct dl_phdr_info *phdr_info);
164 static uint_fast32_t gnu_hash (const char *);
165 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
166     const unsigned long);
167 
168 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
169 void _r_debug_postinit(struct link_map *) __noinline;
170 
171 /*
172  * Data declarations.
173  */
174 static char *error_message;	/* Message for dlerror(), or NULL */
175 struct r_debug r_debug;		/* for GDB; */
176 static bool libmap_disable;	/* Disable libmap */
177 static bool ld_loadfltr;	/* Immediate filters processing */
178 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
179 static bool trust;		/* False for setuid and setgid programs */
180 static bool dangerous_ld_env;	/* True if environment variables have been
181 				   used to affect the libraries loaded */
182 static const char *ld_bind_now;	/* Environment variable for immediate binding */
183 static const char *ld_debug;	/* Environment variable for debugging */
184 static const char *ld_library_path;	/* Environment variable for search path */
185 static const char *ld_library_dirs;	/* Env variable for library descriptors */
186 static char *ld_preload;	/* Environment variable for libraries to
187 				   load first */
188 static const char *ld_elf_hints_path;	/* Env var. for alternative hints path */
189 static const char *ld_tracing;	/* Called from ldd to print libs */
190 static const char *ld_utrace;	/* Use utrace() to log events. */
191 static int (*rtld_functrace)(   /* Optional function call tracing hook */
192 	const char *caller_obj,
193 	const char *callee_obj,
194 	const char *callee_func,
195 	void *stack);
196 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
197 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
198 static Obj_Entry **obj_tail;	/* Link field of last object in list */
199 static Obj_Entry **preload_tail;
200 static Obj_Entry *obj_main;	/* The main program shared object */
201 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
202 static unsigned int obj_count;	/* Number of objects in obj_list */
203 static unsigned int obj_loads;	/* Number of objects in obj_list */
204 
205 static int	ld_resident;	/* Non-zero if resident */
206 static const char *ld_ary[LD_ARY_CACHE];
207 static int	ld_index;
208 static Objlist initlist;
209 
210 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
211   STAILQ_HEAD_INITIALIZER(list_global);
212 static Objlist list_main =	/* Objects loaded at program startup */
213   STAILQ_HEAD_INITIALIZER(list_main);
214 static Objlist list_fini =	/* Objects needing fini() calls */
215   STAILQ_HEAD_INITIALIZER(list_fini);
216 
217 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
218 const char *__ld_sharedlib_base;
219 
220 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
221 
222 extern Elf_Dyn _DYNAMIC;
223 #pragma weak _DYNAMIC
224 #ifndef RTLD_IS_DYNAMIC
225 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
226 #endif
227 
228 #ifdef ENABLE_OSRELDATE
229 int osreldate;
230 #endif
231 
232 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
233 #if 0
234 static int max_stack_flags;
235 #endif
236 
237 /*
238  * Global declarations normally provided by crt1.  The dynamic linker is
239  * not built with crt1, so we have to provide them ourselves.
240  */
241 char *__progname;
242 char **environ;
243 
244 /*
245  * Used to pass argc, argv to init functions.
246  */
247 int main_argc;
248 char **main_argv;
249 
250 /*
251  * Globals to control TLS allocation.
252  */
253 size_t tls_last_offset;		/* Static TLS offset of last module */
254 size_t tls_last_size;		/* Static TLS size of last module */
255 size_t tls_static_space;	/* Static TLS space allocated */
256 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
257 int tls_max_index = 1;		/* Largest module index allocated */
258 
259 /*
260  * Fill in a DoneList with an allocation large enough to hold all of
261  * the currently-loaded objects.  Keep this as a macro since it calls
262  * alloca and we want that to occur within the scope of the caller.
263  */
264 #define donelist_init(dlp)					\
265     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
266     assert((dlp)->objs != NULL),				\
267     (dlp)->num_alloc = obj_count,				\
268     (dlp)->num_used = 0)
269 
270 #define	UTRACE_DLOPEN_START		1
271 #define	UTRACE_DLOPEN_STOP		2
272 #define	UTRACE_DLCLOSE_START		3
273 #define	UTRACE_DLCLOSE_STOP		4
274 #define	UTRACE_LOAD_OBJECT		5
275 #define	UTRACE_UNLOAD_OBJECT		6
276 #define	UTRACE_ADD_RUNDEP		7
277 #define	UTRACE_PRELOAD_FINISHED		8
278 #define	UTRACE_INIT_CALL		9
279 #define	UTRACE_FINI_CALL		10
280 
281 struct utrace_rtld {
282 	char sig[4];			/* 'RTLD' */
283 	int event;
284 	void *handle;
285 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
286 	size_t mapsize;
287 	int refcnt;			/* Used for 'mode' */
288 	char name[MAXPATHLEN];
289 };
290 
291 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
292 	if (ld_utrace != NULL)					\
293 		ld_utrace_log(e, h, mb, ms, r, n);		\
294 } while (0)
295 
296 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)297 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
298     int refcnt, const char *name)
299 {
300 	struct utrace_rtld ut;
301 
302 	ut.sig[0] = 'R';
303 	ut.sig[1] = 'T';
304 	ut.sig[2] = 'L';
305 	ut.sig[3] = 'D';
306 	ut.event = event;
307 	ut.handle = handle;
308 	ut.mapbase = mapbase;
309 	ut.mapsize = mapsize;
310 	ut.refcnt = refcnt;
311 	bzero(ut.name, sizeof(ut.name));
312 	if (name)
313 		strlcpy(ut.name, name, sizeof(ut.name));
314 	utrace(&ut, sizeof(ut));
315 }
316 
317 /*
318  * Main entry point for dynamic linking.  The first argument is the
319  * stack pointer.  The stack is expected to be laid out as described
320  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
321  * Specifically, the stack pointer points to a word containing
322  * ARGC.  Following that in the stack is a null-terminated sequence
323  * of pointers to argument strings.  Then comes a null-terminated
324  * sequence of pointers to environment strings.  Finally, there is a
325  * sequence of "auxiliary vector" entries.
326  *
327  * The second argument points to a place to store the dynamic linker's
328  * exit procedure pointer and the third to a place to store the main
329  * program's object.
330  *
331  * The return value is the main program's entry point.
332  */
333 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)334 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
335 {
336     Elf_Auxinfo *aux_info[AT_COUNT];
337     int i;
338     int argc;
339     char **argv;
340     char **env;
341     Elf_Auxinfo *aux;
342     Elf_Auxinfo *auxp;
343     const char *argv0;
344     Objlist_Entry *entry;
345     Obj_Entry *obj;
346     Obj_Entry *last_interposer;
347 
348     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
349              Obj_Entry **preload_tail;
350              Objlist initlist;
351        from global to here.  It will break the DWARF2 unwind scheme.
352     */
353 
354     /*
355      * On entry, the dynamic linker itself has not been relocated yet.
356      * Be very careful not to reference any global data until after
357      * init_rtld has returned.  It is OK to reference file-scope statics
358      * and string constants, and to call static and global functions.
359      */
360 
361     /* Find the auxiliary vector on the stack. */
362     argc = *sp++;
363     argv = (char **) sp;
364     sp += argc + 1;	/* Skip over arguments and NULL terminator */
365     env = (char **) sp;
366 
367     /*
368      * If we aren't already resident we have to dig out some more info.
369      * Note that auxinfo does not exist when we are resident.
370      *
371      * I'm not sure about the ld_resident check.  It seems to read zero
372      * prior to relocation, which is what we want.  When running from a
373      * resident copy everything will be relocated so we are definitely
374      * good there.
375      */
376     if (ld_resident == 0)  {
377 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
378 	    ;
379 	aux = (Elf_Auxinfo *) sp;
380 
381 	/* Digest the auxiliary vector. */
382 	for (i = 0;  i < AT_COUNT;  i++)
383 	    aux_info[i] = NULL;
384 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
385 	    if (auxp->a_type < AT_COUNT)
386 		aux_info[auxp->a_type] = auxp;
387 	}
388 
389 	/* Initialize and relocate ourselves. */
390 	assert(aux_info[AT_BASE] != NULL);
391 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
392     }
393 
394     ld_index = 0;	/* don't use old env cache in case we are resident */
395     __progname = obj_rtld.path;
396     argv0 = argv[0] != NULL ? argv[0] : "(null)";
397     environ = env;
398     main_argc = argc;
399     main_argv = argv;
400 
401     trust = !issetugid();
402 
403     ld_bind_now = _getenv_ld("LD_BIND_NOW");
404     /*
405      * If the process is tainted, then we un-set the dangerous environment
406      * variables.  The process will be marked as tainted until setuid(2)
407      * is called.  If any child process calls setuid(2) we do not want any
408      * future processes to honor the potentially un-safe variables.
409      */
410     if (!trust) {
411 	if (   unsetenv("LD_DEBUG")
412 	    || unsetenv("LD_PRELOAD")
413 	    || unsetenv("LD_LIBRARY_PATH")
414 	    || unsetenv("LD_LIBRARY_PATH_FDS")
415 	    || unsetenv("LD_ELF_HINTS_PATH")
416 	    || unsetenv("LD_LIBMAP")
417 	    || unsetenv("LD_LIBMAP_DISABLE")
418 	    || unsetenv("LD_LOADFLTR")
419 	    || unsetenv("LD_SHAREDLIB_BASE")
420 	) {
421 		_rtld_error("environment corrupt; aborting");
422 		die();
423 	}
424     }
425     __ld_sharedlib_base = _getenv_ld("LD_SHAREDLIB_BASE");
426     ld_debug = _getenv_ld("LD_DEBUG");
427     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
428     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
429     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
430     ld_library_dirs = _getenv_ld("LD_LIBRARY_PATH_FDS");
431     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
432     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
433     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
434     dangerous_ld_env = (ld_library_path != NULL)
435 			|| (ld_preload != NULL)
436 			|| (ld_elf_hints_path != NULL)
437 			|| ld_loadfltr
438 			|| (libmap_override != NULL)
439 			|| libmap_disable
440 			;
441     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
442     ld_utrace = _getenv_ld("LD_UTRACE");
443 
444     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
445 	ld_elf_hints_path = _PATH_ELF_HINTS;
446 
447     if (ld_debug != NULL && *ld_debug != '\0')
448 	debug = 1;
449     dbg("%s is initialized, base address = %p", __progname,
450 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
451     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
452     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
453 
454     dbg("initializing thread locks");
455     lockdflt_init();
456 
457     /*
458      * If we are resident we can skip work that we have already done.
459      * Note that the stack is reset and there is no Elf_Auxinfo
460      * when running from a resident image, and the static globals setup
461      * between here and resident_skip will have already been setup.
462      */
463     if (ld_resident)
464 	goto resident_skip1;
465 
466     /*
467      * Load the main program, or process its program header if it is
468      * already loaded.
469      */
470     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
471 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
472 	dbg("loading main program");
473 	obj_main = map_object(fd, argv0, NULL);
474 	close(fd);
475 	if (obj_main == NULL)
476 	    die();
477 #if 0
478 	max_stack_flags = obj_main->stack_flags;
479 #endif
480     } else {				/* Main program already loaded. */
481 	const Elf_Phdr *phdr;
482 	int phnum;
483 	caddr_t entry;
484 
485 	dbg("processing main program's program header");
486 	assert(aux_info[AT_PHDR] != NULL);
487 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
488 	assert(aux_info[AT_PHNUM] != NULL);
489 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
490 	assert(aux_info[AT_PHENT] != NULL);
491 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
492 	assert(aux_info[AT_ENTRY] != NULL);
493 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
494 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
495 	    die();
496     }
497 
498     char buf[MAXPATHLEN];
499     if (aux_info[AT_EXECPATH] != NULL) {
500 	char *kexecpath;
501 
502 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
503 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
504 	if (kexecpath[0] == '/')
505 		obj_main->path = kexecpath;
506 	else if (getcwd(buf, sizeof(buf)) == NULL ||
507 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
508 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
509 		obj_main->path = xstrdup(argv0);
510 	else
511 		obj_main->path = xstrdup(buf);
512     } else {
513 	char resolved[MAXPATHLEN];
514 	dbg("No AT_EXECPATH");
515 	if (argv0[0] == '/') {
516 		if (realpath(argv0, resolved) != NULL)
517 			obj_main->path = xstrdup(resolved);
518 		else
519 			obj_main->path = xstrdup(argv0);
520 	} else {
521 		if (getcwd(buf, sizeof(buf)) != NULL
522 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
523 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
524 		    && access(buf, R_OK) == 0
525 		    && realpath(buf, resolved) != NULL)
526 			obj_main->path = xstrdup(resolved);
527 		else
528 			obj_main->path = xstrdup(argv0);
529 	}
530     }
531     dbg("obj_main path %s", obj_main->path);
532     obj_main->mainprog = true;
533 
534     if (aux_info[AT_STACKPROT] != NULL &&
535       aux_info[AT_STACKPROT]->a_un.a_val != 0)
536 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
537 
538     /*
539      * Get the actual dynamic linker pathname from the executable if
540      * possible.  (It should always be possible.)  That ensures that
541      * gdb will find the right dynamic linker even if a non-standard
542      * one is being used.
543      */
544     if (obj_main->interp != NULL &&
545       strcmp(obj_main->interp, obj_rtld.path) != 0) {
546 	free(obj_rtld.path);
547 	obj_rtld.path = xstrdup(obj_main->interp);
548         __progname = obj_rtld.path;
549     }
550 
551     digest_dynamic(obj_main, 0);
552     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
553 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
554 	obj_main->dynsymcount);
555 
556     linkmap_add(obj_main);
557     linkmap_add(&obj_rtld);
558 
559     /* Link the main program into the list of objects. */
560     *obj_tail = obj_main;
561     obj_tail = &obj_main->next;
562     obj_count++;
563     obj_loads++;
564 
565     /* Initialize a fake symbol for resolving undefined weak references. */
566     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
567     sym_zero.st_shndx = SHN_UNDEF;
568     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
569 
570     if (!libmap_disable)
571         libmap_disable = (bool)lm_init(libmap_override);
572 
573     dbg("loading LD_PRELOAD libraries");
574     if (load_preload_objects() == -1)
575 	die();
576     preload_tail = obj_tail;
577 
578     dbg("loading needed objects");
579     if (load_needed_objects(obj_main, 0) == -1)
580 	die();
581 
582     /* Make a list of all objects loaded at startup. */
583     last_interposer = obj_main;
584     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
585 	if (obj->z_interpose && obj != obj_main) {
586 	    objlist_put_after(&list_main, last_interposer, obj);
587 	    last_interposer = obj;
588 	} else {
589 	    objlist_push_tail(&list_main, obj);
590 	}
591 	obj->refcount++;
592     }
593 
594     dbg("checking for required versions");
595     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
596 	die();
597 
598 resident_skip1:
599 
600     if (ld_tracing) {		/* We're done */
601 	trace_loaded_objects(obj_main);
602 	exit(0);
603     }
604 
605     if (ld_resident)		/* XXX clean this up! */
606 	goto resident_skip2;
607 
608     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
609        dump_relocations(obj_main);
610        exit (0);
611     }
612 
613     /* setup TLS for main thread */
614     dbg("initializing initial thread local storage");
615     STAILQ_FOREACH(entry, &list_main, link) {
616 	/*
617 	 * Allocate all the initial objects out of the static TLS
618 	 * block even if they didn't ask for it.
619 	 */
620 	allocate_tls_offset(entry->obj);
621     }
622 
623     /*
624      * Calculate the size of the TLS static segment.  This is allocated
625      * for every thread.  Generally make it page-aligned for efficiency,
626      * but take into account the fact that the actual allocation also
627      * includes room for the struct tls_tcb header.
628      */
629     {
630 	ssize_t space;
631 	ssize_t extra;
632 
633 	extra = __getstatictlsextra();
634 	space = tls_last_offset + extra + sizeof(struct tls_tcb);
635 	space = (space + PAGE_SIZE - 1) & ~((ssize_t)PAGE_SIZE - 1);
636 
637 	tls_static_space = (size_t)space - sizeof(struct tls_tcb);
638     }
639 
640     /*
641      * Do not try to allocate the TLS here, let libc do it itself.
642      * (crt1 for the program will call _init_tls())
643      */
644 
645     if (relocate_objects(obj_main,
646       ld_bind_now != NULL && *ld_bind_now != '\0',
647       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
648 	die();
649 
650     dbg("doing copy relocations");
651     if (do_copy_relocations(obj_main) == -1)
652 	die();
653 
654 resident_skip2:
655 
656     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
657 	if (exec_sys_unregister(-1) < 0) {
658 	    dbg("exec_sys_unregister failed %d\n", errno);
659 	    exit(errno);
660 	}
661 	dbg("exec_sys_unregister success\n");
662 	exit(0);
663     }
664 
665     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
666        dump_relocations(obj_main);
667        exit (0);
668     }
669 
670     dbg("initializing key program variables");
671     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
672     set_program_var("environ", env);
673     set_program_var("__elf_aux_vector", aux);
674 
675     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
676 	extern void resident_start(void);
677 	ld_resident = 1;
678 	if (exec_sys_register(resident_start) < 0) {
679 	    dbg("exec_sys_register failed %d\n", errno);
680 	    exit(errno);
681 	}
682 	dbg("exec_sys_register success\n");
683 	exit(0);
684     }
685 
686     /* Make a list of init functions to call. */
687     objlist_init(&initlist);
688     initlist_add_objects(obj_list, preload_tail, &initlist);
689 
690     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
691 
692     map_stacks_exec(NULL);
693 
694     dbg("resolving ifuncs");
695     {
696 	    RtldLockState lockstate;
697 
698 	    wlock_acquire(rtld_bind_lock, &lockstate);
699 	    if (resolve_objects_ifunc(
700 		    obj_main,
701 		    (ld_bind_now != NULL && *ld_bind_now != '\0'),
702 		    SYMLOOK_EARLY,
703 		    &lockstate) == -1) {
704 		    die();
705 	    }
706 	    lock_release(rtld_bind_lock, &lockstate);
707     }
708 
709     /*
710      * Do NOT call the initlist here, give libc a chance to set up
711      * the initial TLS segment.  crt1 will then call _rtld_call_init().
712      */
713 
714     dbg("transferring control to program entry point = %p", obj_main->entry);
715 
716     /* Return the exit procedure and the program entry point. */
717     *exit_proc = rtld_exit;
718     *objp = obj_main;
719     return (func_ptr_type) obj_main->entry;
720 }
721 
722 /*
723  * Call the initialization list for dynamically loaded libraries.
724  * (called from crt1.c).
725  */
726 void
_rtld_call_init(void)727 _rtld_call_init(void)
728 {
729     RtldLockState lockstate;
730     Obj_Entry *obj;
731 
732     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
733 	/*
734 	 * The use of a linker script with a PHDRS directive that does not include
735 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
736 	 * recently added GNU hash dynamic tag which gets built by default.  It is
737 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
738 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
739 	 */
740 	obj_main->crt_no_init = true;
741 	dbg("Setting crt_no_init without presence of PT_NOTE header");
742     }
743 
744     wlock_acquire(rtld_bind_lock, &lockstate);
745     if (obj_main->crt_no_init)
746 	preinit_main();
747     else {
748 	/*
749 	 * Make sure we don't call the main program's init and fini functions
750 	 * for binaries linked with old crt1 which calls _init itself.
751 	 */
752 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
753 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
754     }
755     objlist_call_init(&initlist, &lockstate);
756     _r_debug_postinit(&obj_main->linkmap);
757     objlist_clear(&initlist);
758     dbg("loading filtees");
759     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
760 	if (ld_loadfltr || obj->z_loadfltr)
761 	    load_filtees(obj, 0, &lockstate);
762     }
763     lock_release(rtld_bind_lock, &lockstate);
764 }
765 
766 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)767 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
768 {
769 	void *ptr;
770 	Elf_Addr target;
771 
772 	ptr = (void *)make_function_pointer(def, obj);
773 	target = ((Elf_Addr (*)(void))ptr)();
774 	return ((void *)target);
775 }
776 
777 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff,void * stack)778 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
779 {
780     const Elf_Rel *rel;
781     const Elf_Sym *def;
782     const Obj_Entry *defobj;
783     Elf_Addr *where;
784     Elf_Addr target;
785     RtldLockState lockstate;
786 
787     rlock_acquire(rtld_bind_lock, &lockstate);
788     if (sigsetjmp(lockstate.env, 0) != 0)
789 	    lock_upgrade(rtld_bind_lock, &lockstate);
790     if (obj->pltrel)
791 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
792     else
793 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
794 
795     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
796     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
797 	&lockstate);
798     if (def == NULL)
799 	die();
800     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
801 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
802     else
803 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
804 
805     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
806       defobj->strtab + def->st_name, basename(obj->path),
807       (void *)target, basename(defobj->path));
808 
809     /*
810      * If we have a function call tracing hook, and the
811      * hook would like to keep tracing this one function,
812      * prevent the relocation so we will wind up here
813      * the next time again.
814      *
815      * We don't want to functrace calls from the functracer
816      * to avoid recursive loops.
817      */
818     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
819 	if (rtld_functrace(obj->path,
820 			   defobj->path,
821 			   defobj->strtab + def->st_name,
822 			   stack)) {
823 	    lock_release(rtld_bind_lock, &lockstate);
824 	    return target;
825 	}
826     }
827 
828     /*
829      * Write the new contents for the jmpslot. Note that depending on
830      * architecture, the value which we need to return back to the
831      * lazy binding trampoline may or may not be the target
832      * address. The value returned from reloc_jmpslot() is the value
833      * that the trampoline needs.
834      */
835     target = reloc_jmpslot(where, target, defobj, obj, rel);
836     lock_release(rtld_bind_lock, &lockstate);
837     return target;
838 }
839 
840 /*
841  * Error reporting function.  Use it like printf.  If formats the message
842  * into a buffer, and sets things up so that the next call to dlerror()
843  * will return the message.
844  */
845 void
_rtld_error(const char * fmt,...)846 _rtld_error(const char *fmt, ...)
847 {
848     static char buf[512];
849     va_list ap;
850 
851     va_start(ap, fmt);
852     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
853     error_message = buf;
854     va_end(ap);
855 }
856 
857 /*
858  * Return a dynamically-allocated copy of the current error message, if any.
859  */
860 static char *
errmsg_save(void)861 errmsg_save(void)
862 {
863     return error_message == NULL ? NULL : xstrdup(error_message);
864 }
865 
866 /*
867  * Restore the current error message from a copy which was previously saved
868  * by errmsg_save().  The copy is freed.
869  */
870 static void
errmsg_restore(char * saved_msg)871 errmsg_restore(char *saved_msg)
872 {
873     if (saved_msg == NULL)
874 	error_message = NULL;
875     else {
876 	_rtld_error("%s", saved_msg);
877 	free(saved_msg);
878     }
879 }
880 
881 const char *
basename(const char * name)882 basename(const char *name)
883 {
884     const char *p = strrchr(name, '/');
885     return p != NULL ? p + 1 : name;
886 }
887 
888 static struct utsname uts;
889 
890 static char *
origin_subst_one(char * real,const char * kw,const char * subst,bool may_free)891 origin_subst_one(char *real, const char *kw, const char *subst,
892     bool may_free)
893 {
894 	char *p, *p1, *res, *resp;
895 	int subst_len, kw_len, subst_count, old_len, new_len;
896 
897 	kw_len = strlen(kw);
898 
899 	/*
900 	 * First, count the number of the keyword occurrences, to
901 	 * preallocate the final string.
902 	 */
903 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
904 		p1 = strstr(p, kw);
905 		if (p1 == NULL)
906 			break;
907 	}
908 
909 	/*
910 	 * If the keyword is not found, just return.
911 	 */
912 	if (subst_count == 0)
913 		return (may_free ? real : xstrdup(real));
914 
915 	/*
916 	 * There is indeed something to substitute.  Calculate the
917 	 * length of the resulting string, and allocate it.
918 	 */
919 	subst_len = strlen(subst);
920 	old_len = strlen(real);
921 	new_len = old_len + (subst_len - kw_len) * subst_count;
922 	res = xmalloc(new_len + 1);
923 
924 	/*
925 	 * Now, execute the substitution loop.
926 	 */
927 	for (p = real, resp = res, *resp = '\0';;) {
928 		p1 = strstr(p, kw);
929 		if (p1 != NULL) {
930 			/* Copy the prefix before keyword. */
931 			memcpy(resp, p, p1 - p);
932 			resp += p1 - p;
933 			/* Keyword replacement. */
934 			memcpy(resp, subst, subst_len);
935 			resp += subst_len;
936 			*resp = '\0';
937 			p = p1 + kw_len;
938 		} else
939 			break;
940 	}
941 
942 	/* Copy to the end of string and finish. */
943 	strcat(resp, p);
944 	if (may_free)
945 		free(real);
946 	return (res);
947 }
948 
949 static char *
origin_subst(char * real,const char * origin_path)950 origin_subst(char *real, const char *origin_path)
951 {
952 	char *res1, *res2, *res3, *res4;
953 
954 	if (uts.sysname[0] == '\0') {
955 		if (uname(&uts) != 0) {
956 			_rtld_error("utsname failed: %d", errno);
957 			return (NULL);
958 		}
959 	}
960 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
961 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
962 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
963 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
964 	return (res4);
965 }
966 
967 static void
die(void)968 die(void)
969 {
970     const char *msg = dlerror();
971 
972     if (msg == NULL)
973 	msg = "Fatal error";
974     rtld_fdputstr(STDERR_FILENO, msg);
975     rtld_fdputchar(STDERR_FILENO, '\n');
976     _exit(1);
977 }
978 
979 /*
980  * Process a shared object's DYNAMIC section, and save the important
981  * information in its Obj_Entry structure.
982  */
983 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)984 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
985     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
986 {
987     const Elf_Dyn *dynp;
988     Needed_Entry **needed_tail = &obj->needed;
989     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
990     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
991     const Elf_Hashelt *hashtab;
992     const Elf32_Word *hashval;
993     Elf32_Word bkt, nmaskwords;
994     int bloom_size32;
995     bool nmw_power2;
996     int plttype = DT_REL;
997 
998     *dyn_rpath = NULL;
999     *dyn_soname = NULL;
1000     *dyn_runpath = NULL;
1001 
1002     obj->bind_now = false;
1003     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1004 	switch (dynp->d_tag) {
1005 
1006 	case DT_REL:
1007 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
1008 	    break;
1009 
1010 	case DT_RELSZ:
1011 	    obj->relsize = dynp->d_un.d_val;
1012 	    break;
1013 
1014 	case DT_RELENT:
1015 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1016 	    break;
1017 
1018 	case DT_JMPREL:
1019 	    obj->pltrel = (const Elf_Rel *)
1020 	      (obj->relocbase + dynp->d_un.d_ptr);
1021 	    break;
1022 
1023 	case DT_PLTRELSZ:
1024 	    obj->pltrelsize = dynp->d_un.d_val;
1025 	    break;
1026 
1027 	case DT_RELA:
1028 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1029 	    break;
1030 
1031 	case DT_RELASZ:
1032 	    obj->relasize = dynp->d_un.d_val;
1033 	    break;
1034 
1035 	case DT_RELAENT:
1036 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1037 	    break;
1038 
1039 	case DT_PLTREL:
1040 	    plttype = dynp->d_un.d_val;
1041 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1042 	    break;
1043 
1044 	case DT_SYMTAB:
1045 	    obj->symtab = (const Elf_Sym *)
1046 	      (obj->relocbase + dynp->d_un.d_ptr);
1047 	    break;
1048 
1049 	case DT_SYMENT:
1050 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1051 	    break;
1052 
1053 	case DT_STRTAB:
1054 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1055 	    break;
1056 
1057 	case DT_STRSZ:
1058 	    obj->strsize = dynp->d_un.d_val;
1059 	    break;
1060 
1061 	case DT_VERNEED:
1062 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1063 		dynp->d_un.d_val);
1064 	    break;
1065 
1066 	case DT_VERNEEDNUM:
1067 	    obj->verneednum = dynp->d_un.d_val;
1068 	    break;
1069 
1070 	case DT_VERDEF:
1071 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1072 		dynp->d_un.d_val);
1073 	    break;
1074 
1075 	case DT_VERDEFNUM:
1076 	    obj->verdefnum = dynp->d_un.d_val;
1077 	    break;
1078 
1079 	case DT_VERSYM:
1080 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1081 		dynp->d_un.d_val);
1082 	    break;
1083 
1084 	case DT_HASH:
1085 	    {
1086 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1087 		    dynp->d_un.d_ptr);
1088 		obj->nbuckets = hashtab[0];
1089 		obj->nchains = hashtab[1];
1090 		obj->buckets = hashtab + 2;
1091 		obj->chains = obj->buckets + obj->nbuckets;
1092 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1093 		  obj->buckets != NULL;
1094 	    }
1095 	    break;
1096 
1097 	case DT_GNU_HASH:
1098 	    {
1099 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1100 		    dynp->d_un.d_ptr);
1101 		obj->nbuckets_gnu = hashtab[0];
1102 		obj->symndx_gnu = hashtab[1];
1103 		nmaskwords = hashtab[2];
1104 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1105 		/* Number of bitmask words is required to be power of 2 */
1106 		nmw_power2 = powerof2(nmaskwords);
1107 		obj->maskwords_bm_gnu = nmaskwords - 1;
1108 		obj->shift2_gnu = hashtab[3];
1109 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1110 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1111 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1112 		  obj->symndx_gnu;
1113 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1114 		  obj->buckets_gnu != NULL;
1115 	    }
1116 	    break;
1117 
1118 	case DT_NEEDED:
1119 	    if (!obj->rtld) {
1120 		Needed_Entry *nep = NEW(Needed_Entry);
1121 		nep->name = dynp->d_un.d_val;
1122 		nep->obj = NULL;
1123 		nep->next = NULL;
1124 
1125 		*needed_tail = nep;
1126 		needed_tail = &nep->next;
1127 	    }
1128 	    break;
1129 
1130 	case DT_FILTER:
1131 	    if (!obj->rtld) {
1132 		Needed_Entry *nep = NEW(Needed_Entry);
1133 		nep->name = dynp->d_un.d_val;
1134 		nep->obj = NULL;
1135 		nep->next = NULL;
1136 
1137 		*needed_filtees_tail = nep;
1138 		needed_filtees_tail = &nep->next;
1139 	    }
1140 	    break;
1141 
1142 	case DT_AUXILIARY:
1143 	    if (!obj->rtld) {
1144 		Needed_Entry *nep = NEW(Needed_Entry);
1145 		nep->name = dynp->d_un.d_val;
1146 		nep->obj = NULL;
1147 		nep->next = NULL;
1148 
1149 		*needed_aux_filtees_tail = nep;
1150 		needed_aux_filtees_tail = &nep->next;
1151 	    }
1152 	    break;
1153 
1154 	case DT_PLTGOT:
1155 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1156 	    break;
1157 
1158 	case DT_TEXTREL:
1159 	    obj->textrel = true;
1160 	    break;
1161 
1162 	case DT_SYMBOLIC:
1163 	    obj->symbolic = true;
1164 	    break;
1165 
1166 	case DT_RPATH:
1167 	    /*
1168 	     * We have to wait until later to process this, because we
1169 	     * might not have gotten the address of the string table yet.
1170 	     */
1171 	    *dyn_rpath = dynp;
1172 	    break;
1173 
1174 	case DT_SONAME:
1175 	    *dyn_soname = dynp;
1176 	    break;
1177 
1178 	case DT_RUNPATH:
1179 	    *dyn_runpath = dynp;
1180 	    break;
1181 
1182 	case DT_INIT:
1183 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1184 	    break;
1185 
1186 	case DT_PREINIT_ARRAY:
1187 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1188 	    break;
1189 
1190 	case DT_PREINIT_ARRAYSZ:
1191 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1192 	    break;
1193 
1194 	case DT_INIT_ARRAY:
1195 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1196 	    break;
1197 
1198 	case DT_INIT_ARRAYSZ:
1199 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1200 	    break;
1201 
1202 	case DT_FINI:
1203 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1204 	    break;
1205 
1206 	case DT_FINI_ARRAY:
1207 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1208 	    break;
1209 
1210 	case DT_FINI_ARRAYSZ:
1211 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1212 	    break;
1213 
1214 	case DT_DEBUG:
1215 	    /* XXX - not implemented yet */
1216 	    if (!early)
1217 		dbg("Filling in DT_DEBUG entry");
1218 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1219 	    break;
1220 
1221 	case DT_FLAGS:
1222 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1223 		    obj->z_origin = true;
1224 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1225 		    obj->symbolic = true;
1226 		if (dynp->d_un.d_val & DF_TEXTREL)
1227 		    obj->textrel = true;
1228 		if (dynp->d_un.d_val & DF_BIND_NOW)
1229 		    obj->bind_now = true;
1230 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1231 		    obj->static_tls = true;
1232 	    break;
1233 
1234 	case DT_FLAGS_1:
1235 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1236 		    obj->z_noopen = true;
1237 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1238 		    obj->z_origin = true;
1239 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1240 		    XXX ;*/
1241 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1242 		    obj->bind_now = true;
1243 		if (dynp->d_un.d_val & DF_1_NODELETE)
1244 		    obj->z_nodelete = true;
1245 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1246 		    obj->z_loadfltr = true;
1247 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1248 		    obj->z_interpose = true;
1249 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1250 		    obj->z_nodeflib = true;
1251 	    break;
1252 
1253 	default:
1254 	    if (!early) {
1255 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1256 		    (long)dynp->d_tag);
1257 	    }
1258 	    break;
1259 	}
1260     }
1261 
1262     obj->traced = false;
1263 
1264     if (plttype == DT_RELA) {
1265 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1266 	obj->pltrel = NULL;
1267 	obj->pltrelasize = obj->pltrelsize;
1268 	obj->pltrelsize = 0;
1269     }
1270 
1271     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1272     if (obj->valid_hash_sysv)
1273 	obj->dynsymcount = obj->nchains;
1274     else if (obj->valid_hash_gnu) {
1275 	obj->dynsymcount = 0;
1276 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1277 	    if (obj->buckets_gnu[bkt] == 0)
1278 		continue;
1279 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1280 	    do
1281 		obj->dynsymcount++;
1282 	    while ((*hashval++ & 1u) == 0);
1283 	}
1284 	obj->dynsymcount += obj->symndx_gnu;
1285     }
1286 }
1287 
1288 static void
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1289 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1290     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1291 {
1292 
1293     if (obj->z_origin && obj->origin_path == NULL) {
1294 	obj->origin_path = xmalloc(PATH_MAX);
1295 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1296 	    die();
1297     }
1298 
1299     if (dyn_runpath != NULL) {
1300 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1301 	if (obj->z_origin)
1302 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1303     }
1304     else if (dyn_rpath != NULL) {
1305 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1306 	if (obj->z_origin)
1307 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1308     }
1309 
1310     if (dyn_soname != NULL)
1311 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1312 }
1313 
1314 static void
digest_dynamic(Obj_Entry * obj,int early)1315 digest_dynamic(Obj_Entry *obj, int early)
1316 {
1317 	const Elf_Dyn *dyn_rpath;
1318 	const Elf_Dyn *dyn_soname;
1319 	const Elf_Dyn *dyn_runpath;
1320 
1321 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1322 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1323 }
1324 
1325 /*
1326  * Process a shared object's program header.  This is used only for the
1327  * main program, when the kernel has already loaded the main program
1328  * into memory before calling the dynamic linker.  It creates and
1329  * returns an Obj_Entry structure.
1330  */
1331 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1332 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1333 {
1334     Obj_Entry *obj;
1335     const Elf_Phdr *phlimit = phdr + phnum;
1336     const Elf_Phdr *ph;
1337     Elf_Addr note_start, note_end;
1338     int nsegs = 0;
1339 
1340     obj = obj_new();
1341     for (ph = phdr;  ph < phlimit;  ph++) {
1342 	if (ph->p_type != PT_PHDR)
1343 	    continue;
1344 
1345 	obj->phdr = phdr;
1346 	obj->phsize = ph->p_memsz;
1347 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1348 	break;
1349     }
1350 
1351     obj->stack_flags = PF_X | PF_R | PF_W;
1352 
1353     for (ph = phdr;  ph < phlimit;  ph++) {
1354 	switch (ph->p_type) {
1355 
1356 	case PT_INTERP:
1357 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1358 	    break;
1359 
1360 	case PT_LOAD:
1361 	    if (nsegs == 0) {	/* First load segment */
1362 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1363 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1364 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1365 		  obj->vaddrbase;
1366 	    } else {		/* Last load segment */
1367 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1368 		  obj->vaddrbase;
1369 	    }
1370 	    nsegs++;
1371 	    break;
1372 
1373 	case PT_DYNAMIC:
1374 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1375 	    break;
1376 
1377 	case PT_TLS:
1378 	    obj->tlsindex = 1;
1379 	    obj->tlssize = ph->p_memsz;
1380 	    obj->tlsalign = ph->p_align;
1381 	    obj->tlsinitsize = ph->p_filesz;
1382 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1383 	    break;
1384 
1385 	case PT_GNU_STACK:
1386 	    obj->stack_flags = ph->p_flags;
1387 	    break;
1388 
1389 	case PT_GNU_RELRO:
1390 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1391 	    obj->relro_size = round_page(ph->p_memsz);
1392 	    break;
1393 
1394 	case PT_NOTE:
1395 	    obj->note_present = true;
1396 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1397 	    note_end = note_start + ph->p_filesz;
1398 	    digest_notes(obj, note_start, note_end);
1399 	    break;
1400 	}
1401     }
1402     if (nsegs < 1) {
1403 	_rtld_error("%s: too few PT_LOAD segments", path);
1404 	return NULL;
1405     }
1406 
1407     obj->entry = entry;
1408     return obj;
1409 }
1410 
1411 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1412 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1413 {
1414 	const Elf_Note *note;
1415 	const char *note_name;
1416 	uintptr_t p;
1417 
1418 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1419 	    note = (const Elf_Note *)((const char *)(note + 1) +
1420 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1421 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1422 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1423 		    note->n_descsz != sizeof(int32_t))
1424 			continue;
1425 		if (note->n_type != ABI_NOTETYPE &&
1426 		    note->n_type != CRT_NOINIT_NOTETYPE)
1427 			continue;
1428 		note_name = (const char *)(note + 1);
1429 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1430 			continue;
1431 		switch (note->n_type) {
1432 		case ABI_NOTETYPE:
1433 			/* DragonFly osrel note */
1434 			p = (uintptr_t)(note + 1);
1435 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1436 			obj->osrel = *(const int32_t *)(p);
1437 			dbg("note osrel %d", obj->osrel);
1438 			break;
1439 		case CRT_NOINIT_NOTETYPE:
1440 			/* DragonFly 'crt does not call init' note */
1441 			obj->crt_no_init = true;
1442 			dbg("note crt_no_init");
1443 			break;
1444 		}
1445 	}
1446 }
1447 
1448 static Obj_Entry *
dlcheck(void * handle)1449 dlcheck(void *handle)
1450 {
1451     Obj_Entry *obj;
1452 
1453     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1454 	if (obj == (Obj_Entry *) handle)
1455 	    break;
1456 
1457     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1458 	_rtld_error("Invalid shared object handle %p", handle);
1459 	return NULL;
1460     }
1461     return obj;
1462 }
1463 
1464 /*
1465  * If the given object is already in the donelist, return true.  Otherwise
1466  * add the object to the list and return false.
1467  */
1468 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1469 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1470 {
1471     unsigned int i;
1472 
1473     for (i = 0;  i < dlp->num_used;  i++)
1474 	if (dlp->objs[i] == obj)
1475 	    return true;
1476     /*
1477      * Our donelist allocation should always be sufficient.  But if
1478      * our threads locking isn't working properly, more shared objects
1479      * could have been loaded since we allocated the list.  That should
1480      * never happen, but we'll handle it properly just in case it does.
1481      */
1482     if (dlp->num_used < dlp->num_alloc)
1483 	dlp->objs[dlp->num_used++] = obj;
1484     return false;
1485 }
1486 
1487 /*
1488  * Hash function for symbol table lookup.  Don't even think about changing
1489  * this.  It is specified by the System V ABI.
1490  */
1491 unsigned long
elf_hash(const char * name)1492 elf_hash(const char *name)
1493 {
1494     const unsigned char *p = (const unsigned char *) name;
1495     unsigned long h = 0;
1496     unsigned long g;
1497 
1498     while (*p != '\0') {
1499 	h = (h << 4) + *p++;
1500 	if ((g = h & 0xf0000000) != 0)
1501 	    h ^= g >> 24;
1502 	h &= ~g;
1503     }
1504     return h;
1505 }
1506 
1507 /*
1508  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1509  * unsigned in case it's implemented with a wider type.
1510  */
1511 static uint_fast32_t
gnu_hash(const char * s)1512 gnu_hash(const char *s)
1513 {
1514 	uint_fast32_t h;
1515 	unsigned char c;
1516 
1517 	h = 5381;
1518 	for (c = *s; c != '\0'; c = *++s)
1519 		h = h * 33 + c;
1520 	return (h & 0xffffffff);
1521 }
1522 
1523 
1524 /*
1525  * Find the library with the given name, and return its full pathname.
1526  * The returned string is dynamically allocated.  Generates an error
1527  * message and returns NULL if the library cannot be found.
1528  *
1529  * If the second argument is non-NULL, then it refers to an already-
1530  * loaded shared object, whose library search path will be searched.
1531  *
1532  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1533  * descriptor (which is close-on-exec) will be passed out via the third
1534  * argument.
1535  *
1536  * The search order is:
1537  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1538  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1539  *   LD_LIBRARY_PATH
1540  *   DT_RUNPATH in the referencing file
1541  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1542  *	 from list)
1543  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1544  *
1545  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1546  */
1547 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1548 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1549 {
1550     char *pathname;
1551     char *name;
1552     bool nodeflib, objgiven;
1553 
1554     objgiven = refobj != NULL;
1555     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1556 	if (xname[0] != '/' && !trust) {
1557 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1558 	      xname);
1559 	    return NULL;
1560 	}
1561 	if (objgiven && refobj->z_origin) {
1562 		return (origin_subst(__DECONST(char *, xname),
1563 		    refobj->origin_path));
1564 	} else {
1565 		return (xstrdup(xname));
1566 	}
1567     }
1568 
1569     if (libmap_disable || !objgiven ||
1570 	(name = lm_find(refobj->path, xname)) == NULL)
1571 	name = (char *)xname;
1572 
1573     dbg(" Searching for \"%s\"", name);
1574 
1575     nodeflib = objgiven ? refobj->z_nodeflib : false;
1576     if ((objgiven &&
1577       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1578       (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1579       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1580       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1581       (objgiven &&
1582       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1583       (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1584       (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1585       (objgiven && !nodeflib &&
1586       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1587 	return (pathname);
1588 
1589     if (objgiven && refobj->path != NULL) {
1590 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1591 	  name, basename(refobj->path));
1592     } else {
1593 	_rtld_error("Shared object \"%s\" not found", name);
1594     }
1595     return NULL;
1596 }
1597 
1598 /*
1599  * Given a symbol number in a referencing object, find the corresponding
1600  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1601  * no definition was found.  Returns a pointer to the Obj_Entry of the
1602  * defining object via the reference parameter DEFOBJ_OUT.
1603  */
1604 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1605 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1606     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1607     RtldLockState *lockstate)
1608 {
1609     const Elf_Sym *ref;
1610     const Elf_Sym *def;
1611     const Obj_Entry *defobj;
1612     SymLook req;
1613     const char *name;
1614     int res;
1615 
1616     /*
1617      * If we have already found this symbol, get the information from
1618      * the cache.
1619      */
1620     if (symnum >= refobj->dynsymcount)
1621 	return NULL;	/* Bad object */
1622     if (cache != NULL && cache[symnum].sym != NULL) {
1623 	*defobj_out = cache[symnum].obj;
1624 	return cache[symnum].sym;
1625     }
1626 
1627     ref = refobj->symtab + symnum;
1628     name = refobj->strtab + ref->st_name;
1629     def = NULL;
1630     defobj = NULL;
1631 
1632     /*
1633      * We don't have to do a full scale lookup if the symbol is local.
1634      * We know it will bind to the instance in this load module; to
1635      * which we already have a pointer (ie ref). By not doing a lookup,
1636      * we not only improve performance, but it also avoids unresolvable
1637      * symbols when local symbols are not in the hash table.
1638      *
1639      * This might occur for TLS module relocations, which simply use
1640      * symbol 0.
1641      */
1642     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1643 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1644 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1645 		symnum);
1646 	}
1647 	symlook_init(&req, name);
1648 	req.flags = flags;
1649 	req.ventry = fetch_ventry(refobj, symnum);
1650 	req.lockstate = lockstate;
1651 	res = symlook_default(&req, refobj);
1652 	if (res == 0) {
1653 	    def = req.sym_out;
1654 	    defobj = req.defobj_out;
1655 	}
1656     } else {
1657 	def = ref;
1658 	defobj = refobj;
1659     }
1660 
1661     /*
1662      * If we found no definition and the reference is weak, treat the
1663      * symbol as having the value zero.
1664      */
1665     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1666 	def = &sym_zero;
1667 	defobj = obj_main;
1668     }
1669 
1670     if (def != NULL) {
1671 	*defobj_out = defobj;
1672 	/* Record the information in the cache to avoid subsequent lookups. */
1673 	if (cache != NULL) {
1674 	    cache[symnum].sym = def;
1675 	    cache[symnum].obj = defobj;
1676 	}
1677     } else {
1678 	if (refobj != &obj_rtld)
1679 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1680     }
1681     return def;
1682 }
1683 
1684 /*
1685  * Return the search path from the ldconfig hints file, reading it if
1686  * necessary.  If nostdlib is true, then the default search paths are
1687  * not added to result.
1688  *
1689  * Returns NULL if there are problems with the hints file,
1690  * or if the search path there is empty.
1691  */
1692 static const char *
gethints(bool nostdlib)1693 gethints(bool nostdlib)
1694 {
1695 	static char *hints, *filtered_path;
1696 	struct elfhints_hdr hdr;
1697 	struct fill_search_info_args sargs, hargs;
1698 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1699 	struct dl_serpath *SLPpath, *hintpath;
1700 	char *p;
1701 	unsigned int SLPndx, hintndx, fndx, fcount;
1702 	int fd;
1703 	size_t flen;
1704 	bool skip;
1705 
1706 	/* First call, read the hints file */
1707 	if (hints == NULL) {
1708 		/* Keep from trying again in case the hints file is bad. */
1709 		hints = "";
1710 
1711 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1712 			return (NULL);
1713 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1714 		    hdr.magic != ELFHINTS_MAGIC ||
1715 		    hdr.version != 1) {
1716 			close(fd);
1717 			return (NULL);
1718 		}
1719 		p = xmalloc(hdr.dirlistlen + 1);
1720 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1721 		    read(fd, p, hdr.dirlistlen + 1) !=
1722 		    (ssize_t)hdr.dirlistlen + 1) {
1723 			free(p);
1724 			close(fd);
1725 			return (NULL);
1726 		}
1727 		hints = p;
1728 		close(fd);
1729 	}
1730 
1731 	/*
1732 	 * If caller agreed to receive list which includes the default
1733 	 * paths, we are done. Otherwise, if we still have not
1734 	 * calculated filtered result, do it now.
1735 	 */
1736 	if (!nostdlib)
1737 		return (hints[0] != '\0' ? hints : NULL);
1738 	if (filtered_path != NULL)
1739 		goto filt_ret;
1740 
1741 	/*
1742 	 * Obtain the list of all configured search paths, and the
1743 	 * list of the default paths.
1744 	 *
1745 	 * First estimate the size of the results.
1746 	 */
1747 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1748 	smeta.dls_cnt = 0;
1749 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1750 	hmeta.dls_cnt = 0;
1751 
1752 	sargs.request = RTLD_DI_SERINFOSIZE;
1753 	sargs.serinfo = &smeta;
1754 	hargs.request = RTLD_DI_SERINFOSIZE;
1755 	hargs.serinfo = &hmeta;
1756 
1757 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1758 	path_enumerate(p, fill_search_info, &hargs);
1759 
1760 	SLPinfo = xmalloc(smeta.dls_size);
1761 	hintinfo = xmalloc(hmeta.dls_size);
1762 
1763 	/*
1764 	 * Next fetch both sets of paths.
1765 	 */
1766 	sargs.request = RTLD_DI_SERINFO;
1767 	sargs.serinfo = SLPinfo;
1768 	sargs.serpath = &SLPinfo->dls_serpath[0];
1769 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1770 
1771 	hargs.request = RTLD_DI_SERINFO;
1772 	hargs.serinfo = hintinfo;
1773 	hargs.serpath = &hintinfo->dls_serpath[0];
1774 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1775 
1776 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1777 	path_enumerate(p, fill_search_info, &hargs);
1778 
1779 	/*
1780 	 * Now calculate the difference between two sets, by excluding
1781 	 * standard paths from the full set.
1782 	 */
1783 	fndx = 0;
1784 	fcount = 0;
1785 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1786 	hintpath = &hintinfo->dls_serpath[0];
1787 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1788 		skip = false;
1789 		SLPpath = &SLPinfo->dls_serpath[0];
1790 		/*
1791 		 * Check each standard path against current.
1792 		 */
1793 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1794 			/* matched, skip the path */
1795 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1796 				skip = true;
1797 				break;
1798 			}
1799 		}
1800 		if (skip)
1801 			continue;
1802 		/*
1803 		 * Not matched against any standard path, add the path
1804 		 * to result. Separate consecutive paths with ':'.
1805 		 */
1806 		if (fcount > 0) {
1807 			filtered_path[fndx] = ':';
1808 			fndx++;
1809 		}
1810 		fcount++;
1811 		flen = strlen(hintpath->dls_name);
1812 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1813 		fndx += flen;
1814 	}
1815 	filtered_path[fndx] = '\0';
1816 
1817 	free(SLPinfo);
1818 	free(hintinfo);
1819 
1820 filt_ret:
1821 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1822 }
1823 
1824 static void
init_dag(Obj_Entry * root)1825 init_dag(Obj_Entry *root)
1826 {
1827     const Needed_Entry *needed;
1828     const Objlist_Entry *elm;
1829     DoneList donelist;
1830 
1831     if (root->dag_inited)
1832 	return;
1833     donelist_init(&donelist);
1834 
1835     /* Root object belongs to own DAG. */
1836     objlist_push_tail(&root->dldags, root);
1837     objlist_push_tail(&root->dagmembers, root);
1838     donelist_check(&donelist, root);
1839 
1840     /*
1841      * Add dependencies of root object to DAG in breadth order
1842      * by exploiting the fact that each new object get added
1843      * to the tail of the dagmembers list.
1844      */
1845     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1846 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1847 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1848 		continue;
1849 	    objlist_push_tail(&needed->obj->dldags, root);
1850 	    objlist_push_tail(&root->dagmembers, needed->obj);
1851 	}
1852     }
1853     root->dag_inited = true;
1854 }
1855 
1856 static void
process_nodelete(Obj_Entry * root)1857 process_nodelete(Obj_Entry *root)
1858 {
1859 	const Objlist_Entry *elm;
1860 
1861 	/*
1862 	 * Walk over object DAG and process every dependent object that
1863 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1864 	 * which then should have its reference upped separately.
1865 	 */
1866 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1867 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1868 		    !elm->obj->ref_nodel) {
1869 			dbg("obj %s nodelete", elm->obj->path);
1870 			init_dag(elm->obj);
1871 			ref_dag(elm->obj);
1872 			elm->obj->ref_nodel = true;
1873 		}
1874 	}
1875 }
1876 
1877 /*
1878  * Initialize the dynamic linker.  The argument is the address at which
1879  * the dynamic linker has been mapped into memory.  The primary task of
1880  * this function is to relocate the dynamic linker.
1881  */
1882 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)1883 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1884 {
1885     Obj_Entry objtmp;	/* Temporary rtld object */
1886     const Elf_Ehdr *ehdr;
1887     const Elf_Dyn *dyn_rpath;
1888     const Elf_Dyn *dyn_soname;
1889     const Elf_Dyn *dyn_runpath;
1890 
1891     /*
1892      * Conjure up an Obj_Entry structure for the dynamic linker.
1893      *
1894      * The "path" member can't be initialized yet because string constants
1895      * cannot yet be accessed. Below we will set it correctly.
1896      */
1897     memset(&objtmp, 0, sizeof(objtmp));
1898     objtmp.path = NULL;
1899     objtmp.rtld = true;
1900     objtmp.mapbase = mapbase;
1901 #ifdef PIC
1902     objtmp.relocbase = mapbase;
1903 #endif
1904     if (RTLD_IS_DYNAMIC()) {
1905 	objtmp.dynamic = rtld_dynamic(&objtmp);
1906 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1907 	assert(objtmp.needed == NULL);
1908 	assert(!objtmp.textrel);
1909 
1910 	/*
1911 	 * Temporarily put the dynamic linker entry into the object list, so
1912 	 * that symbols can be found.
1913 	 */
1914 
1915 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1916     }
1917     ehdr = (Elf_Ehdr *)mapbase;
1918     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1919     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1920 
1921     /* Initialize the object list. */
1922     obj_tail = &obj_list;
1923 
1924     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1925     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1926 
1927 #ifdef ENABLE_OSRELDATE
1928     if (aux_info[AT_OSRELDATE] != NULL)
1929 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1930 #endif
1931 
1932     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1933 
1934     /* Replace the path with a dynamically allocated copy. */
1935     obj_rtld.path = xstrdup(PATH_RTLD);
1936 
1937     r_debug.r_brk = r_debug_state;
1938     r_debug.r_state = RT_CONSISTENT;
1939 }
1940 
1941 /*
1942  * Add the init functions from a needed object list (and its recursive
1943  * needed objects) to "list".  This is not used directly; it is a helper
1944  * function for initlist_add_objects().  The write lock must be held
1945  * when this function is called.
1946  */
1947 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)1948 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1949 {
1950     /* Recursively process the successor needed objects. */
1951     if (needed->next != NULL)
1952 	initlist_add_neededs(needed->next, list);
1953 
1954     /* Process the current needed object. */
1955     if (needed->obj != NULL)
1956 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1957 }
1958 
1959 /*
1960  * Scan all of the DAGs rooted in the range of objects from "obj" to
1961  * "tail" and add their init functions to "list".  This recurses over
1962  * the DAGs and ensure the proper init ordering such that each object's
1963  * needed libraries are initialized before the object itself.  At the
1964  * same time, this function adds the objects to the global finalization
1965  * list "list_fini" in the opposite order.  The write lock must be
1966  * held when this function is called.
1967  */
1968 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry ** tail,Objlist * list)1969 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1970 {
1971 
1972     if (obj->init_scanned || obj->init_done)
1973 	return;
1974     obj->init_scanned = true;
1975 
1976     /* Recursively process the successor objects. */
1977     if (&obj->next != tail)
1978 	initlist_add_objects(obj->next, tail, list);
1979 
1980     /* Recursively process the needed objects. */
1981     if (obj->needed != NULL)
1982 	initlist_add_neededs(obj->needed, list);
1983     if (obj->needed_filtees != NULL)
1984 	initlist_add_neededs(obj->needed_filtees, list);
1985     if (obj->needed_aux_filtees != NULL)
1986 	initlist_add_neededs(obj->needed_aux_filtees, list);
1987 
1988     /* Add the object to the init list. */
1989     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1990       obj->init_array != (Elf_Addr)NULL)
1991 	objlist_push_tail(list, obj);
1992 
1993     /* Add the object to the global fini list in the reverse order. */
1994     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1995       && !obj->on_fini_list) {
1996 	objlist_push_head(&list_fini, obj);
1997 	obj->on_fini_list = true;
1998     }
1999 }
2000 
2001 #ifndef FPTR_TARGET
2002 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2003 #endif
2004 
2005 static void
free_needed_filtees(Needed_Entry * n)2006 free_needed_filtees(Needed_Entry *n)
2007 {
2008     Needed_Entry *needed, *needed1;
2009 
2010     for (needed = n; needed != NULL; needed = needed->next) {
2011 	if (needed->obj != NULL) {
2012 	    dlclose(needed->obj);
2013 	    needed->obj = NULL;
2014 	}
2015     }
2016     for (needed = n; needed != NULL; needed = needed1) {
2017 	needed1 = needed->next;
2018 	free(needed);
2019     }
2020 }
2021 
2022 static void
unload_filtees(Obj_Entry * obj)2023 unload_filtees(Obj_Entry *obj)
2024 {
2025 
2026     free_needed_filtees(obj->needed_filtees);
2027     obj->needed_filtees = NULL;
2028     free_needed_filtees(obj->needed_aux_filtees);
2029     obj->needed_aux_filtees = NULL;
2030     obj->filtees_loaded = false;
2031 }
2032 
2033 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2034 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2035     RtldLockState *lockstate)
2036 {
2037 
2038     for (; needed != NULL; needed = needed->next) {
2039 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2040 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2041 	  RTLD_LOCAL, lockstate);
2042     }
2043 }
2044 
2045 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2046 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2047 {
2048 
2049     lock_restart_for_upgrade(lockstate);
2050     if (!obj->filtees_loaded) {
2051 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2052 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2053 	obj->filtees_loaded = true;
2054     }
2055 }
2056 
2057 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2058 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2059 {
2060     Obj_Entry *obj1;
2061 
2062     for (; needed != NULL; needed = needed->next) {
2063 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2064 	  flags & ~RTLD_LO_NOLOAD);
2065 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2066 	    return (-1);
2067     }
2068     return (0);
2069 }
2070 
2071 /*
2072  * Given a shared object, traverse its list of needed objects, and load
2073  * each of them.  Returns 0 on success.  Generates an error message and
2074  * returns -1 on failure.
2075  */
2076 static int
load_needed_objects(Obj_Entry * first,int flags)2077 load_needed_objects(Obj_Entry *first, int flags)
2078 {
2079     Obj_Entry *obj;
2080 
2081     for (obj = first;  obj != NULL;  obj = obj->next) {
2082 	if (process_needed(obj, obj->needed, flags) == -1)
2083 	    return (-1);
2084     }
2085     return (0);
2086 }
2087 
2088 static int
load_preload_objects(void)2089 load_preload_objects(void)
2090 {
2091     char *p = ld_preload;
2092     Obj_Entry *obj;
2093     static const char delim[] = " \t:;";
2094 
2095     if (p == NULL)
2096 	return 0;
2097 
2098     p += strspn(p, delim);
2099     while (*p != '\0') {
2100 	size_t len = strcspn(p, delim);
2101 	char savech;
2102 	SymLook req;
2103 	int res;
2104 
2105 	savech = p[len];
2106 	p[len] = '\0';
2107 	obj = load_object(p, -1, NULL, 0);
2108 	if (obj == NULL)
2109 	    return -1;	/* XXX - cleanup */
2110 	obj->z_interpose = true;
2111 	p[len] = savech;
2112 	p += len;
2113 	p += strspn(p, delim);
2114 
2115 	/* Check for the magic tracing function */
2116 	symlook_init(&req, RTLD_FUNCTRACE);
2117 	res = symlook_obj(&req, obj);
2118 	if (res == 0) {
2119 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2120 				      req.sym_out->st_value);
2121 	    rtld_functrace_obj = req.defobj_out;
2122 	}
2123     }
2124     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2125     return 0;
2126 }
2127 
2128 static const char *
printable_path(const char * path)2129 printable_path(const char *path)
2130 {
2131 
2132 	return (path == NULL ? "<unknown>" : path);
2133 }
2134 
2135 /*
2136  * Load a shared object into memory, if it is not already loaded.  The
2137  * object may be specified by name or by user-supplied file descriptor
2138  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2139  * duplicate is.
2140  *
2141  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2142  * on failure.
2143  */
2144 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2145 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2146 {
2147     Obj_Entry *obj;
2148     int fd;
2149     struct stat sb;
2150     char *path;
2151 
2152     fd = -1;
2153     if (name != NULL) {
2154 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2155 	    if (object_match_name(obj, name))
2156 		return (obj);
2157 	}
2158 
2159 	path = find_library(name, refobj, &fd);
2160 	if (path == NULL)
2161 	    return (NULL);
2162     } else
2163 	path = NULL;
2164 
2165     if (fd >= 0) {
2166 	/*
2167 	 * search_library_pathfds() opens a fresh file descriptor for the
2168 	 * library, so there is no need to dup().
2169 	 */
2170     } else if (fd_u == -1) {
2171 	/*
2172 	 * If we didn't find a match by pathname, or the name is not
2173 	 * supplied, open the file and check again by device and inode.
2174 	 * This avoids false mismatches caused by multiple links or ".."
2175 	 * in pathnames.
2176 	 *
2177 	 * To avoid a race, we open the file and use fstat() rather than
2178 	 * using stat().
2179 	 */
2180 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2181 	    _rtld_error("Cannot open \"%s\"", path);
2182 	    free(path);
2183 	    return (NULL);
2184 	}
2185     } else {
2186 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2187 	if (fd == -1) {
2188 	    _rtld_error("Cannot dup fd");
2189 	    free(path);
2190 	    return (NULL);
2191 	}
2192     }
2193     if (fstat(fd, &sb) == -1) {
2194 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2195 	close(fd);
2196 	free(path);
2197 	return NULL;
2198     }
2199     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2200 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2201 	    break;
2202     if (obj != NULL && name != NULL) {
2203 	object_add_name(obj, name);
2204 	free(path);
2205 	close(fd);
2206 	return obj;
2207     }
2208     if (flags & RTLD_LO_NOLOAD) {
2209 	free(path);
2210 	close(fd);
2211 	return (NULL);
2212     }
2213 
2214     /* First use of this object, so we must map it in */
2215     obj = do_load_object(fd, name, path, &sb, flags);
2216     if (obj == NULL)
2217 	free(path);
2218     close(fd);
2219 
2220     return obj;
2221 }
2222 
2223 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2224 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2225   int flags)
2226 {
2227     Obj_Entry *obj;
2228     struct statfs fs;
2229 
2230     /*
2231      * but first, make sure that environment variables haven't been
2232      * used to circumvent the noexec flag on a filesystem.
2233      */
2234     if (dangerous_ld_env) {
2235 	if (fstatfs(fd, &fs) != 0) {
2236 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2237 	    return NULL;
2238 	}
2239 	if (fs.f_flags & MNT_NOEXEC) {
2240 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2241 	    return NULL;
2242 	}
2243     }
2244     dbg("loading \"%s\"", printable_path(path));
2245     obj = map_object(fd, printable_path(path), sbp);
2246     if (obj == NULL)
2247         return NULL;
2248 
2249     /*
2250      * If DT_SONAME is present in the object, digest_dynamic2 already
2251      * added it to the object names.
2252      */
2253     if (name != NULL)
2254 	object_add_name(obj, name);
2255     obj->path = path;
2256     digest_dynamic(obj, 0);
2257     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2258 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2259     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2260       RTLD_LO_DLOPEN) {
2261 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2262 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2263 	munmap(obj->mapbase, obj->mapsize);
2264 	obj_free(obj);
2265 	return (NULL);
2266     }
2267 
2268     *obj_tail = obj;
2269     obj_tail = &obj->next;
2270     obj_count++;
2271     obj_loads++;
2272     linkmap_add(obj);	/* for GDB & dlinfo() */
2273 #if 0
2274     max_stack_flags |= obj->stack_flags;
2275 #endif
2276 
2277     dbg("  %p .. %p: %s", obj->mapbase,
2278          obj->mapbase + obj->mapsize - 1, obj->path);
2279     if (obj->textrel)
2280 	dbg("  WARNING: %s has impure text", obj->path);
2281     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2282 	obj->path);
2283 
2284     return obj;
2285 }
2286 
2287 static Obj_Entry *
obj_from_addr(const void * addr)2288 obj_from_addr(const void *addr)
2289 {
2290     Obj_Entry *obj;
2291 
2292     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2293 	if (addr < (void *) obj->mapbase)
2294 	    continue;
2295 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2296 	    return obj;
2297     }
2298     return NULL;
2299 }
2300 
2301 /*
2302  * If the main program is defined with a .preinit_array section, call
2303  * each function in order.  This must occur before the initialization
2304  * of any shared object or the main program.
2305  */
2306 static void
preinit_main(void)2307 preinit_main(void)
2308 {
2309     Elf_Addr *preinit_addr;
2310     int index;
2311 
2312     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2313     if (preinit_addr == NULL)
2314 	return;
2315 
2316     for (index = 0; index < obj_main->preinit_array_num; index++) {
2317 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2318 	    dbg("calling preinit function for %s at %p", obj_main->path,
2319 	      (void *)preinit_addr[index]);
2320 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2321 	      0, 0, obj_main->path);
2322 	    call_init_pointer(obj_main, preinit_addr[index]);
2323 	}
2324     }
2325 }
2326 
2327 /*
2328  * Call the finalization functions for each of the objects in "list"
2329  * belonging to the DAG of "root" and referenced once. If NULL "root"
2330  * is specified, every finalization function will be called regardless
2331  * of the reference count and the list elements won't be freed. All of
2332  * the objects are expected to have non-NULL fini functions.
2333  */
2334 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)2335 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2336 {
2337     Objlist_Entry *elm;
2338     char *saved_msg;
2339     Elf_Addr *fini_addr;
2340     int index;
2341 
2342     assert(root == NULL || root->refcount == 1);
2343 
2344     /*
2345      * Preserve the current error message since a fini function might
2346      * call into the dynamic linker and overwrite it.
2347      */
2348     saved_msg = errmsg_save();
2349     do {
2350 	STAILQ_FOREACH(elm, list, link) {
2351 	    if (root != NULL && (elm->obj->refcount != 1 ||
2352 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2353 		continue;
2354 
2355 	    /* Remove object from fini list to prevent recursive invocation. */
2356 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2357 	    /*
2358 	     * XXX: If a dlopen() call references an object while the
2359 	     * fini function is in progress, we might end up trying to
2360 	     * unload the referenced object in dlclose() or the object
2361 	     * won't be unloaded although its fini function has been
2362 	     * called.
2363 	     */
2364 	    lock_release(rtld_bind_lock, lockstate);
2365 
2366 	    /*
2367 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2368 	     * When this happens, DT_FINI_ARRAY is processed first.
2369 	     * It is also processed backwards.  It is possible to encounter
2370 	     * DT_FINI_ARRAY elements with values of 0 or 1, but they need
2371 	     * to be ignored.
2372 	     */
2373 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2374 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2375 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2376 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2377 			dbg("calling fini array function for %s at %p",
2378 			    elm->obj->path, (void *)fini_addr[index]);
2379 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2380 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2381 			call_initfini_pointer(elm->obj, fini_addr[index]);
2382 		    }
2383 		}
2384 	    }
2385 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2386 		dbg("calling fini function for %s at %p", elm->obj->path,
2387 		    (void *)elm->obj->fini);
2388 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2389 		    0, 0, elm->obj->path);
2390 		call_initfini_pointer(elm->obj, elm->obj->fini);
2391 	    }
2392 	    wlock_acquire(rtld_bind_lock, lockstate);
2393 	    /* No need to free anything if process is going down. */
2394 	    if (root != NULL)
2395 		free(elm);
2396 	    /*
2397 	     * We must restart the list traversal after every fini call
2398 	     * because a dlclose() call from the fini function or from
2399 	     * another thread might have modified the reference counts.
2400 	     */
2401 	    break;
2402 	}
2403     } while (elm != NULL);
2404     errmsg_restore(saved_msg);
2405 }
2406 
2407 /*
2408  * Call the initialization functions for each of the objects in
2409  * "list".  All of the objects are expected to have non-NULL init
2410  * functions.
2411  */
2412 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)2413 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2414 {
2415     Objlist_Entry *elm;
2416     Obj_Entry *obj;
2417     char *saved_msg;
2418     Elf_Addr *init_addr;
2419     int index;
2420 
2421     /*
2422      * Clean init_scanned flag so that objects can be rechecked and
2423      * possibly initialized earlier if any of vectors called below
2424      * cause the change by using dlopen.
2425      */
2426     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2427 	obj->init_scanned = false;
2428 
2429     /*
2430      * Preserve the current error message since an init function might
2431      * call into the dynamic linker and overwrite it.
2432      */
2433     saved_msg = errmsg_save();
2434     STAILQ_FOREACH(elm, list, link) {
2435 	if (elm->obj->init_done) /* Initialized early. */
2436 	    continue;
2437 
2438 	/*
2439 	 * Race: other thread might try to use this object before current
2440 	 * one completes the initilization. Not much can be done here
2441 	 * without better locking.
2442 	 */
2443 	elm->obj->init_done = true;
2444 	lock_release(rtld_bind_lock, lockstate);
2445 
2446         /*
2447          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2448          * When this happens, DT_INIT is processed first.
2449 	 * It is possible to encounter DT_INIT_ARRAY elements with values
2450 	 * of 0 or 1, but they need to be ignored.
2451          */
2452 	if (elm->obj->init != (Elf_Addr)NULL) {
2453 	    dbg("calling init function for %s at %p", elm->obj->path,
2454 	        (void *)elm->obj->init);
2455 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2456 	        0, 0, elm->obj->path);
2457 	    call_initfini_pointer(elm->obj, elm->obj->init);
2458 	}
2459 	init_addr = (Elf_Addr *)elm->obj->init_array;
2460 	if (init_addr != NULL) {
2461 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2462 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2463 		    dbg("calling init array function for %s at %p", elm->obj->path,
2464 			(void *)init_addr[index]);
2465 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2466 			(void *)init_addr[index], 0, 0, elm->obj->path);
2467 		    call_init_pointer(elm->obj, init_addr[index]);
2468 		}
2469 	    }
2470 	}
2471 	wlock_acquire(rtld_bind_lock, lockstate);
2472     }
2473     errmsg_restore(saved_msg);
2474 }
2475 
2476 static void
objlist_clear(Objlist * list)2477 objlist_clear(Objlist *list)
2478 {
2479     Objlist_Entry *elm;
2480 
2481     while (!STAILQ_EMPTY(list)) {
2482 	elm = STAILQ_FIRST(list);
2483 	STAILQ_REMOVE_HEAD(list, link);
2484 	free(elm);
2485     }
2486 }
2487 
2488 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)2489 objlist_find(Objlist *list, const Obj_Entry *obj)
2490 {
2491     Objlist_Entry *elm;
2492 
2493     STAILQ_FOREACH(elm, list, link)
2494 	if (elm->obj == obj)
2495 	    return elm;
2496     return NULL;
2497 }
2498 
2499 static void
objlist_init(Objlist * list)2500 objlist_init(Objlist *list)
2501 {
2502     STAILQ_INIT(list);
2503 }
2504 
2505 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)2506 objlist_push_head(Objlist *list, Obj_Entry *obj)
2507 {
2508     Objlist_Entry *elm;
2509 
2510     elm = NEW(Objlist_Entry);
2511     elm->obj = obj;
2512     STAILQ_INSERT_HEAD(list, elm, link);
2513 }
2514 
2515 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)2516 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2517 {
2518     Objlist_Entry *elm;
2519 
2520     elm = NEW(Objlist_Entry);
2521     elm->obj = obj;
2522     STAILQ_INSERT_TAIL(list, elm, link);
2523 }
2524 
2525 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)2526 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2527 {
2528 	Objlist_Entry *elm, *listelm;
2529 
2530 	STAILQ_FOREACH(listelm, list, link) {
2531 		if (listelm->obj == listobj)
2532 			break;
2533 	}
2534 	elm = NEW(Objlist_Entry);
2535 	elm->obj = obj;
2536 	if (listelm != NULL)
2537 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2538 	else
2539 		STAILQ_INSERT_TAIL(list, elm, link);
2540 }
2541 
2542 static void
objlist_remove(Objlist * list,Obj_Entry * obj)2543 objlist_remove(Objlist *list, Obj_Entry *obj)
2544 {
2545     Objlist_Entry *elm;
2546 
2547     if ((elm = objlist_find(list, obj)) != NULL) {
2548 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2549 	free(elm);
2550     }
2551 }
2552 
2553 /*
2554  * Relocate dag rooted in the specified object.
2555  * Returns 0 on success, or -1 on failure.
2556  */
2557 
2558 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)2559 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2560     int flags, RtldLockState *lockstate)
2561 {
2562 	Objlist_Entry *elm;
2563 	int error;
2564 
2565 	error = 0;
2566 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2567 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2568 		    lockstate);
2569 		if (error == -1)
2570 			break;
2571 	}
2572 	return (error);
2573 }
2574 
2575 /*
2576  * Prepare for, or clean after, relocating an object marked with
2577  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2578  * segments are remapped read-write.  After relocations are done, the
2579  * segment's permissions are returned back to the modes specified in
2580  * the phdrs.  If any relocation happened, or always for wired
2581  * program, COW is triggered.
2582  */
2583 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)2584 reloc_textrel_prot(Obj_Entry *obj, bool before)
2585 {
2586 	const Elf_Phdr *ph;
2587 	void *base;
2588 	size_t l, sz;
2589 	int prot;
2590 
2591 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2592 	    l--, ph++) {
2593 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2594 			continue;
2595 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2596 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2597 		    trunc_page(ph->p_vaddr);
2598 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2599 	/*
2600 	 * Make sure modified text segments are included in the
2601 	 * core dump since we modified it.  This unfortunately causes the
2602 	 * entire text segment to core-out but we don't have much of a
2603 	 * choice.  We could try to only reenable core dumps on pages
2604 	 * in which relocations occured but that is likely most of the text
2605 	 * pages anyway, and even that would not work because the rest of
2606 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2607 	 * (created due to our modifications) backed by the original OBJT_VNODE
2608 	 * object, and the ELF coredump code is currently only able to dump
2609 	 * vnode records for pure vnode-backed mappings, not vnode backings
2610 	 * to memory objects.
2611 	 */
2612 		if (before == false)
2613 			madvise(base, sz, MADV_CORE);
2614 		if (mprotect(base, sz, prot) == -1) {
2615 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2616 			    obj->path, before ? "en" : "dis",
2617 			    rtld_strerror(errno));
2618 			return (-1);
2619 		}
2620 	}
2621 	return (0);
2622 }
2623 
2624 /*
2625  * Relocate single object.
2626  * Returns 0 on success, or -1 on failure.
2627  */
2628 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)2629 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2630     int flags, RtldLockState *lockstate)
2631 {
2632 
2633 	if (obj->relocated)
2634 		return (0);
2635 	obj->relocated = true;
2636 	if (obj != rtldobj)
2637 		dbg("relocating \"%s\"", obj->path);
2638 
2639 	if (obj->symtab == NULL || obj->strtab == NULL ||
2640 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2641 		_rtld_error("%s: Shared object has no run-time symbol table",
2642 			    obj->path);
2643 		return (-1);
2644 	}
2645 
2646 	/* There are relocations to the write-protected text segment. */
2647 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2648 		return (-1);
2649 
2650 	/* Process the non-PLT non-IFUNC relocations. */
2651 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2652 		return (-1);
2653 
2654 	/* Re-protected the text segment. */
2655 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2656 		return (-1);
2657 
2658 	/* Set the special PLT or GOT entries. */
2659 	init_pltgot(obj);
2660 
2661 	/* Process the PLT relocations. */
2662 	if (reloc_plt(obj) == -1)
2663 		return (-1);
2664 	/* Relocate the jump slots if we are doing immediate binding. */
2665 	if (obj->bind_now || bind_now)
2666 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2667 			return (-1);
2668 
2669 	/*
2670 	 * Process the non-PLT IFUNC relocations.  The relocations are
2671 	 * processed in two phases, because IFUNC resolvers may
2672 	 * reference other symbols, which must be readily processed
2673 	 * before resolvers are called.
2674 	 */
2675 	if (obj->non_plt_gnu_ifunc &&
2676 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2677 		return (-1);
2678 
2679 	/*
2680 	 * Set up the magic number and version in the Obj_Entry.  These
2681 	 * were checked in the crt1.o from the original ElfKit, so we
2682 	 * set them for backward compatibility.
2683 	 */
2684 	obj->magic = RTLD_MAGIC;
2685 	obj->version = RTLD_VERSION;
2686 
2687 	/*
2688 	 * Set relocated data to read-only status if protection specified
2689 	 */
2690 
2691 	if (obj->relro_size) {
2692 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2693 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2694 		  obj->path, rtld_strerror(errno));
2695 		return (-1);
2696 	    }
2697 	    obj->relro_protected = true;
2698 	}
2699 	return (0);
2700 }
2701 
2702 /*
2703  * Relocate newly-loaded shared objects.  The argument is a pointer to
2704  * the Obj_Entry for the first such object.  All objects from the first
2705  * to the end of the list of objects are relocated.  Returns 0 on success,
2706  * or -1 on failure.
2707  */
2708 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)2709 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2710     int flags, RtldLockState *lockstate)
2711 {
2712 	Obj_Entry *obj;
2713 	int error;
2714 
2715 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2716 		error = relocate_object(obj, bind_now, rtldobj, flags,
2717 		    lockstate);
2718 		if (error == -1)
2719 			break;
2720 	}
2721 	return (error);
2722 }
2723 
2724 /*
2725  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2726  * referencing STT_GNU_IFUNC symbols is postponed till the other
2727  * relocations are done.  The indirect functions specified as
2728  * ifunc are allowed to call other symbols, so we need to have
2729  * objects relocated before asking for resolution from indirects.
2730  *
2731  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2732  * instead of the usual lazy handling of PLT slots.  It is
2733  * consistent with how GNU does it.
2734  */
2735 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)2736 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2737     RtldLockState *lockstate)
2738 {
2739 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2740 		return (-1);
2741 	if (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
2742 	    lockstate) == -1)
2743 		return (-1);
2744 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2745 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2746 		return (-1);
2747 	return (0);
2748 }
2749 
2750 static int
resolve_objects_ifunc(Obj_Entry * first,bool bind_now,int flags,RtldLockState * lockstate)2751 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2752     RtldLockState *lockstate)
2753 {
2754 	Obj_Entry *obj;
2755 
2756 	for (obj = first;  obj != NULL;  obj = obj->next) {
2757 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2758 			return (-1);
2759 	}
2760 	return (0);
2761 }
2762 
2763 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)2764 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2765     RtldLockState *lockstate)
2766 {
2767 	Objlist_Entry *elm;
2768 
2769 	STAILQ_FOREACH(elm, list, link) {
2770 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2771 		    lockstate) == -1)
2772 			return (-1);
2773 	}
2774 	return (0);
2775 }
2776 
2777 /*
2778  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2779  * before the process exits.
2780  */
2781 static void
rtld_exit(void)2782 rtld_exit(void)
2783 {
2784     RtldLockState lockstate;
2785 
2786     wlock_acquire(rtld_bind_lock, &lockstate);
2787     dbg("rtld_exit()");
2788     objlist_call_fini(&list_fini, NULL, &lockstate);
2789     /* No need to remove the items from the list, since we are exiting. */
2790     if (!libmap_disable)
2791         lm_fini();
2792     lock_release(rtld_bind_lock, &lockstate);
2793 }
2794 
2795 /*
2796  * Iterate over a search path, translate each element, and invoke the
2797  * callback on the result.
2798  */
2799 static void *
path_enumerate(const char * path,path_enum_proc callback,void * arg)2800 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2801 {
2802     const char *trans;
2803     if (path == NULL)
2804 	return (NULL);
2805 
2806     path += strspn(path, ":;");
2807     while (*path != '\0') {
2808 	size_t len;
2809 	char  *res;
2810 
2811 	len = strcspn(path, ":;");
2812 	trans = lm_findn(NULL, path, len);
2813 	if (trans)
2814 	    res = callback(trans, strlen(trans), arg);
2815 	else
2816 	    res = callback(path, len, arg);
2817 
2818 	if (res != NULL)
2819 	    return (res);
2820 
2821 	path += len;
2822 	path += strspn(path, ":;");
2823     }
2824 
2825     return (NULL);
2826 }
2827 
2828 struct try_library_args {
2829     const char	*name;
2830     size_t	 namelen;
2831     char	*buffer;
2832     size_t	 buflen;
2833 };
2834 
2835 static void *
try_library_path(const char * dir,size_t dirlen,void * param)2836 try_library_path(const char *dir, size_t dirlen, void *param)
2837 {
2838     struct try_library_args *arg;
2839 
2840     arg = param;
2841     if (*dir == '/' || trust) {
2842 	char *pathname;
2843 
2844 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2845 		return (NULL);
2846 
2847 	pathname = arg->buffer;
2848 	strncpy(pathname, dir, dirlen);
2849 	pathname[dirlen] = '/';
2850 	strcpy(pathname + dirlen + 1, arg->name);
2851 
2852 	dbg("  Trying \"%s\"", pathname);
2853 	if (access(pathname, F_OK) == 0) {		/* We found it */
2854 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2855 	    strcpy(pathname, arg->buffer);
2856 	    return (pathname);
2857 	}
2858     }
2859     return (NULL);
2860 }
2861 
2862 static char *
search_library_path(const char * name,const char * path)2863 search_library_path(const char *name, const char *path)
2864 {
2865     char *p;
2866     struct try_library_args arg;
2867 
2868     if (path == NULL)
2869 	return NULL;
2870 
2871     arg.name = name;
2872     arg.namelen = strlen(name);
2873     arg.buffer = xmalloc(PATH_MAX);
2874     arg.buflen = PATH_MAX;
2875 
2876     p = path_enumerate(path, try_library_path, &arg);
2877 
2878     free(arg.buffer);
2879 
2880     return (p);
2881 }
2882 
2883 
2884 /*
2885  * Finds the library with the given name using the directory descriptors
2886  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2887  *
2888  * Returns a freshly-opened close-on-exec file descriptor for the library,
2889  * or -1 if the library cannot be found.
2890  */
2891 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)2892 search_library_pathfds(const char *name, const char *path, int *fdp)
2893 {
2894 	char *envcopy, *fdstr, *found, *last_token;
2895 	size_t len;
2896 	int dirfd, fd;
2897 
2898 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2899 
2900 	/* Don't load from user-specified libdirs into setuid binaries. */
2901 	if (!trust)
2902 		return (NULL);
2903 
2904 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2905 	if (path == NULL)
2906 		return (NULL);
2907 
2908 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2909 	if (name[0] == '/') {
2910 		dbg("Absolute path (%s) passed to %s", name, __func__);
2911 		return (NULL);
2912 	}
2913 
2914 	/*
2915 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2916 	 * copy of the path, as strtok_r rewrites separator tokens
2917 	 * with '\0'.
2918 	 *
2919 	 * NOTE: strtok() uses a __thread static and cannot be used by rtld.
2920 	 */
2921 	found = NULL;
2922 	envcopy = xstrdup(path);
2923 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2924 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2925 		dirfd = parse_libdir(fdstr);
2926 		if (dirfd < 0)
2927 			break;
2928 		fd = openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2929 		if (fd >= 0) {
2930 			*fdp = fd;
2931 			len = strlen(fdstr) + strlen(name) + 3;
2932 			found = xmalloc(len);
2933 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2934 				_rtld_error("error generating '%d/%s'",
2935 				    dirfd, name);
2936 				die();
2937 			}
2938 			dbg("open('%s') => %d", found, fd);
2939 			break;
2940 		}
2941 	}
2942 	free(envcopy);
2943 
2944 	return (found);
2945 }
2946 
2947 
2948 int
dlclose(void * handle)2949 dlclose(void *handle)
2950 {
2951     Obj_Entry *root;
2952     RtldLockState lockstate;
2953 
2954     wlock_acquire(rtld_bind_lock, &lockstate);
2955     root = dlcheck(handle);
2956     if (root == NULL) {
2957 	lock_release(rtld_bind_lock, &lockstate);
2958 	return -1;
2959     }
2960     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2961 	root->path);
2962 
2963     /* Unreference the object and its dependencies. */
2964     root->dl_refcount--;
2965 
2966     if (root->refcount == 1) {
2967 	/*
2968 	 * The object will be no longer referenced, so we must unload it.
2969 	 * First, call the fini functions.
2970 	 */
2971 	objlist_call_fini(&list_fini, root, &lockstate);
2972 
2973 	unref_dag(root);
2974 
2975 	/* Finish cleaning up the newly-unreferenced objects. */
2976 	GDB_STATE(RT_DELETE,&root->linkmap);
2977 	unload_object(root);
2978 	GDB_STATE(RT_CONSISTENT,NULL);
2979     } else
2980 	unref_dag(root);
2981 
2982     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2983     lock_release(rtld_bind_lock, &lockstate);
2984     return 0;
2985 }
2986 
2987 char *
dlerror(void)2988 dlerror(void)
2989 {
2990     char *msg = error_message;
2991     error_message = NULL;
2992     return msg;
2993 }
2994 
2995 void *
dlopen(const char * name,int mode)2996 dlopen(const char *name, int mode)
2997 {
2998 
2999 	return (rtld_dlopen(name, -1, mode));
3000 }
3001 
3002 void *
fdlopen(int fd,int mode)3003 fdlopen(int fd, int mode)
3004 {
3005 
3006 	return (rtld_dlopen(NULL, fd, mode));
3007 }
3008 
3009 static void *
rtld_dlopen(const char * name,int fd,int mode)3010 rtld_dlopen(const char *name, int fd, int mode)
3011 {
3012     RtldLockState lockstate;
3013     int lo_flags;
3014 
3015     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3016     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3017     if (ld_tracing != NULL) {
3018 	rlock_acquire(rtld_bind_lock, &lockstate);
3019 	if (sigsetjmp(lockstate.env, 0) != 0)
3020 	    lock_upgrade(rtld_bind_lock, &lockstate);
3021 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3022 	lock_release(rtld_bind_lock, &lockstate);
3023     }
3024     lo_flags = RTLD_LO_DLOPEN;
3025     if (mode & RTLD_NODELETE)
3026 	    lo_flags |= RTLD_LO_NODELETE;
3027     if (mode & RTLD_NOLOAD)
3028 	    lo_flags |= RTLD_LO_NOLOAD;
3029     if (ld_tracing != NULL)
3030 	    lo_flags |= RTLD_LO_TRACE;
3031 
3032     return (dlopen_object(name, fd, obj_main, lo_flags,
3033       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3034 }
3035 
3036 static void
dlopen_cleanup(Obj_Entry * obj)3037 dlopen_cleanup(Obj_Entry *obj)
3038 {
3039 
3040 	obj->dl_refcount--;
3041 	unref_dag(obj);
3042 	if (obj->refcount == 0)
3043 		unload_object(obj);
3044 }
3045 
3046 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3047 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3048     int mode, RtldLockState *lockstate)
3049 {
3050     Obj_Entry **old_obj_tail;
3051     Obj_Entry *obj;
3052     Objlist initlist;
3053     RtldLockState mlockstate;
3054     int result;
3055 
3056     objlist_init(&initlist);
3057 
3058     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3059 	wlock_acquire(rtld_bind_lock, &mlockstate);
3060 	lockstate = &mlockstate;
3061     }
3062     GDB_STATE(RT_ADD,NULL);
3063 
3064     old_obj_tail = obj_tail;
3065     obj = NULL;
3066     if (name == NULL && fd == -1) {
3067 	obj = obj_main;
3068 	obj->refcount++;
3069     } else {
3070 	obj = load_object(name, fd, refobj, lo_flags);
3071     }
3072 
3073     if (obj) {
3074 	obj->dl_refcount++;
3075 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3076 	    objlist_push_tail(&list_global, obj);
3077 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3078 	    assert(*old_obj_tail == obj);
3079 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3080 		!allocate_tls_offset(obj)) {
3081 		    _rtld_error("%s: No space available "
3082 				"for static TLS",
3083 				obj->path);
3084 		    result = -1;
3085 	    } else {
3086 		    result = 0;
3087 	    }
3088 	    if (result == 0) {
3089 		result = load_needed_objects(
3090 			    obj,
3091 			    lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3092 	    }
3093 	    init_dag(obj);
3094 	    ref_dag(obj);
3095 	    if (result != -1)
3096 		result = rtld_verify_versions(&obj->dagmembers);
3097 	    if (result != -1 && ld_tracing)
3098 		goto trace;
3099 	    if (result == -1 || relocate_object_dag(obj,
3100 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3101 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3102 	      lockstate) == -1) {
3103 		dlopen_cleanup(obj);
3104 		obj = NULL;
3105 	    } else if (lo_flags & RTLD_LO_EARLY) {
3106 		/*
3107 		 * Do not call the init functions for early loaded
3108 		 * filtees.  The image is still not initialized enough
3109 		 * for them to work.
3110 		 *
3111 		 * Our object is found by the global object list and
3112 		 * will be ordered among all init calls done right
3113 		 * before transferring control to main.
3114 		 */
3115 	    } else {
3116 		/* Make list of init functions to call. */
3117 		initlist_add_objects(obj, &obj->next, &initlist);
3118 	    }
3119 	    /*
3120 	     * Process all no_delete objects here, given them own
3121 	     * DAGs to prevent their dependencies from being unloaded.
3122 	     * This has to be done after we have loaded all of the
3123 	     * dependencies, so that we do not miss any.
3124 	     */
3125 	    if (obj != NULL)
3126 		process_nodelete(obj);
3127 	} else {
3128 	    /*
3129 	     * Bump the reference counts for objects on this DAG.  If
3130 	     * this is the first dlopen() call for the object that was
3131 	     * already loaded as a dependency, initialize the dag
3132 	     * starting at it.
3133 	     */
3134 	    init_dag(obj);
3135 	    ref_dag(obj);
3136 
3137 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3138 		goto trace;
3139 	}
3140 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3141 	  obj->z_nodelete) && !obj->ref_nodel) {
3142 	    dbg("obj %s nodelete", obj->path);
3143 	    ref_dag(obj);
3144 	    obj->z_nodelete = obj->ref_nodel = true;
3145 	}
3146     }
3147 
3148     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3149 	name);
3150     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3151 
3152     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3153 	map_stacks_exec(lockstate);
3154 	if (obj)
3155 	    distribute_static_tls(&initlist, lockstate);
3156     }
3157 
3158     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3159       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3160       lockstate) == -1) {
3161 	objlist_clear(&initlist);
3162 	dlopen_cleanup(obj);
3163 	if (lockstate == &mlockstate)
3164 	    lock_release(rtld_bind_lock, lockstate);
3165 	return (NULL);
3166     }
3167 
3168     if (!(lo_flags & RTLD_LO_EARLY)) {
3169 	/* Call the init functions. */
3170 	objlist_call_init(&initlist, lockstate);
3171     }
3172     objlist_clear(&initlist);
3173     if (lockstate == &mlockstate)
3174 	lock_release(rtld_bind_lock, lockstate);
3175     return obj;
3176 trace:
3177     trace_loaded_objects(obj);
3178     if (lockstate == &mlockstate)
3179 	lock_release(rtld_bind_lock, lockstate);
3180     exit(0);
3181 }
3182 
3183 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3184 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3185     int flags)
3186 {
3187     DoneList donelist;
3188     const Obj_Entry *obj, *defobj;
3189     const Elf_Sym *def;
3190     SymLook req;
3191     RtldLockState lockstate;
3192     tls_index ti;
3193     int res;
3194 
3195     def = NULL;
3196     defobj = NULL;
3197     symlook_init(&req, name);
3198     req.ventry = ve;
3199     req.flags = flags | SYMLOOK_IN_PLT;
3200     req.lockstate = &lockstate;
3201 
3202     rlock_acquire(rtld_bind_lock, &lockstate);
3203     if (sigsetjmp(lockstate.env, 0) != 0)
3204 	    lock_upgrade(rtld_bind_lock, &lockstate);
3205     if (handle == NULL || handle == RTLD_NEXT ||
3206 	handle == RTLD_DEFAULT || handle == RTLD_SELF ||
3207 	handle == RTLD_ALL) {
3208 
3209 	if (handle != RTLD_ALL) {
3210 		if ((obj = obj_from_addr(retaddr)) == NULL) {
3211 		    _rtld_error("Cannot determine caller's shared object");
3212 		    lock_release(rtld_bind_lock, &lockstate);
3213 		    return NULL;
3214 		}
3215 	} else {
3216 		obj = obj_list;
3217 	}
3218 	if (handle == NULL) {	/* Just the caller's shared object. */
3219 	    res = symlook_obj(&req, obj);
3220 	    if (res == 0) {
3221 		def = req.sym_out;
3222 		defobj = req.defobj_out;
3223 	    }
3224 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3225 		   handle == RTLD_SELF || /* ... caller included */
3226 		   handle == RTLD_ALL) {  /* All Objects */
3227 	    if (handle == RTLD_NEXT)
3228 		obj = obj->next;
3229 	    for (; obj != NULL; obj = obj->next) {
3230 		res = symlook_obj(&req, obj);
3231 		if (res == 0) {
3232 		    if (def == NULL ||
3233 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3234 			def = req.sym_out;
3235 			defobj = req.defobj_out;
3236 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3237 			    break;
3238 		    }
3239 		}
3240 	    }
3241 	    /*
3242 	     * Search the dynamic linker itself, and possibly resolve the
3243 	     * symbol from there.  This is how the application links to
3244 	     * dynamic linker services such as dlopen.
3245 	     */
3246 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3247 		res = symlook_obj(&req, &obj_rtld);
3248 		if (res == 0) {
3249 		    def = req.sym_out;
3250 		    defobj = req.defobj_out;
3251 		}
3252 	    }
3253 	} else {
3254 	    assert(handle == RTLD_DEFAULT);
3255 	    res = symlook_default(&req, obj);
3256 	    if (res == 0) {
3257 		defobj = req.defobj_out;
3258 		def = req.sym_out;
3259 	    }
3260 	}
3261     } else {
3262 	if ((obj = dlcheck(handle)) == NULL) {
3263 	    lock_release(rtld_bind_lock, &lockstate);
3264 	    return NULL;
3265 	}
3266 
3267 	donelist_init(&donelist);
3268 	if (obj->mainprog) {
3269             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3270 	    res = symlook_global(&req, &donelist);
3271 	    if (res == 0) {
3272 		def = req.sym_out;
3273 		defobj = req.defobj_out;
3274 	    }
3275 	    /*
3276 	     * Search the dynamic linker itself, and possibly resolve the
3277 	     * symbol from there.  This is how the application links to
3278 	     * dynamic linker services such as dlopen.
3279 	     */
3280 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3281 		res = symlook_obj(&req, &obj_rtld);
3282 		if (res == 0) {
3283 		    def = req.sym_out;
3284 		    defobj = req.defobj_out;
3285 		}
3286 	    }
3287 	}
3288 	else {
3289 	    /* Search the whole DAG rooted at the given object. */
3290 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3291 	    if (res == 0) {
3292 		def = req.sym_out;
3293 		defobj = req.defobj_out;
3294 	    }
3295 	}
3296     }
3297 
3298     if (def != NULL) {
3299 	lock_release(rtld_bind_lock, &lockstate);
3300 
3301 	/*
3302 	 * The value required by the caller is derived from the value
3303 	 * of the symbol. this is simply the relocated value of the
3304 	 * symbol.
3305 	 */
3306 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3307 	    return (make_function_pointer(def, defobj));
3308 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3309 	    return (rtld_resolve_ifunc(defobj, def));
3310 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3311 	    ti.ti_module = defobj->tlsindex;
3312 	    ti.ti_offset = def->st_value;
3313 	    return (__tls_get_addr(&ti));
3314 	} else
3315 	    return (defobj->relocbase + def->st_value);
3316     }
3317 
3318     _rtld_error("Undefined symbol \"%s\"", name);
3319     lock_release(rtld_bind_lock, &lockstate);
3320     return NULL;
3321 }
3322 
3323 void *
dlsym(void * handle,const char * name)3324 dlsym(void *handle, const char *name)
3325 {
3326 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3327 	    SYMLOOK_DLSYM);
3328 }
3329 
3330 dlfunc_t
dlfunc(void * handle,const char * name)3331 dlfunc(void *handle, const char *name)
3332 {
3333 	union {
3334 		void *d;
3335 		dlfunc_t f;
3336 	} rv;
3337 
3338 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3339 	    SYMLOOK_DLSYM);
3340 	return (rv.f);
3341 }
3342 
3343 void *
dlvsym(void * handle,const char * name,const char * version)3344 dlvsym(void *handle, const char *name, const char *version)
3345 {
3346 	Ver_Entry ventry;
3347 
3348 	ventry.name = version;
3349 	ventry.file = NULL;
3350 	ventry.hash = elf_hash(version);
3351 	ventry.flags= 0;
3352 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3353 	    SYMLOOK_DLSYM);
3354 }
3355 
3356 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)3357 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3358 {
3359     const Obj_Entry *obj;
3360     RtldLockState lockstate;
3361 
3362     rlock_acquire(rtld_bind_lock, &lockstate);
3363     obj = obj_from_addr(addr);
3364     if (obj == NULL) {
3365         _rtld_error("No shared object contains address");
3366 	lock_release(rtld_bind_lock, &lockstate);
3367         return (0);
3368     }
3369     rtld_fill_dl_phdr_info(obj, phdr_info);
3370     lock_release(rtld_bind_lock, &lockstate);
3371     return (1);
3372 }
3373 
3374 int
dladdr(const void * addr,Dl_info * info)3375 dladdr(const void *addr, Dl_info *info)
3376 {
3377     const Obj_Entry *obj;
3378     const Elf_Sym *def;
3379     void *symbol_addr;
3380     unsigned long symoffset;
3381     RtldLockState lockstate;
3382 
3383     rlock_acquire(rtld_bind_lock, &lockstate);
3384     obj = obj_from_addr(addr);
3385     if (obj == NULL) {
3386         _rtld_error("No shared object contains address");
3387 	lock_release(rtld_bind_lock, &lockstate);
3388         return 0;
3389     }
3390     info->dli_fname = obj->path;
3391     info->dli_fbase = obj->mapbase;
3392     info->dli_saddr = NULL;
3393     info->dli_sname = NULL;
3394 
3395     /*
3396      * Walk the symbol list looking for the symbol whose address is
3397      * closest to the address sent in.
3398      */
3399     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3400         def = obj->symtab + symoffset;
3401 
3402         /*
3403          * For skip the symbol if st_shndx is either SHN_UNDEF or
3404          * SHN_COMMON.
3405          */
3406         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3407             continue;
3408 
3409         /*
3410          * If the symbol is greater than the specified address, or if it
3411          * is further away from addr than the current nearest symbol,
3412          * then reject it.
3413          */
3414         symbol_addr = obj->relocbase + def->st_value;
3415         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3416             continue;
3417 
3418         /* Update our idea of the nearest symbol. */
3419         info->dli_sname = obj->strtab + def->st_name;
3420         info->dli_saddr = symbol_addr;
3421 
3422         /* Exact match? */
3423         if (info->dli_saddr == addr)
3424             break;
3425     }
3426     lock_release(rtld_bind_lock, &lockstate);
3427     return 1;
3428 }
3429 
3430 int
dlinfo(void * handle,int request,void * p)3431 dlinfo(void *handle, int request, void *p)
3432 {
3433     const Obj_Entry *obj;
3434     RtldLockState lockstate;
3435     int error;
3436 
3437     rlock_acquire(rtld_bind_lock, &lockstate);
3438 
3439     if (handle == NULL || handle == RTLD_SELF) {
3440 	void *retaddr;
3441 
3442 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3443 	if ((obj = obj_from_addr(retaddr)) == NULL)
3444 	    _rtld_error("Cannot determine caller's shared object");
3445     } else
3446 	obj = dlcheck(handle);
3447 
3448     if (obj == NULL) {
3449 	lock_release(rtld_bind_lock, &lockstate);
3450 	return (-1);
3451     }
3452 
3453     error = 0;
3454     switch (request) {
3455     case RTLD_DI_LINKMAP:
3456 	*((struct link_map const **)p) = &obj->linkmap;
3457 	break;
3458     case RTLD_DI_ORIGIN:
3459 	error = rtld_dirname(obj->path, p);
3460 	break;
3461 
3462     case RTLD_DI_SERINFOSIZE:
3463     case RTLD_DI_SERINFO:
3464 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3465 	break;
3466 
3467     default:
3468 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3469 	error = -1;
3470     }
3471 
3472     lock_release(rtld_bind_lock, &lockstate);
3473 
3474     return (error);
3475 }
3476 
3477 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)3478 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3479 {
3480 
3481 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3482 	phdr_info->dlpi_name = obj->path;
3483 	phdr_info->dlpi_phdr = obj->phdr;
3484 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3485 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3486 	phdr_info->dlpi_tls_data = obj->tlsinit;
3487 	phdr_info->dlpi_adds = obj_loads;
3488 	phdr_info->dlpi_subs = obj_loads - obj_count;
3489 }
3490 
3491 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)3492 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3493 {
3494     struct dl_phdr_info phdr_info;
3495     const Obj_Entry *obj;
3496     RtldLockState bind_lockstate, phdr_lockstate;
3497     int error;
3498 
3499     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3500     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3501 
3502     error = 0;
3503 
3504     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3505 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3506 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3507 		break;
3508 
3509     }
3510     if (error == 0) {
3511 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3512 	error = callback(&phdr_info, sizeof(phdr_info), param);
3513     }
3514 
3515     lock_release(rtld_bind_lock, &bind_lockstate);
3516     lock_release(rtld_phdr_lock, &phdr_lockstate);
3517 
3518     return (error);
3519 }
3520 
3521 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)3522 fill_search_info(const char *dir, size_t dirlen, void *param)
3523 {
3524     struct fill_search_info_args *arg;
3525 
3526     arg = param;
3527 
3528     if (arg->request == RTLD_DI_SERINFOSIZE) {
3529 	arg->serinfo->dls_cnt ++;
3530 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3531     } else {
3532 	struct dl_serpath *s_entry;
3533 
3534 	s_entry = arg->serpath;
3535 	s_entry->dls_name  = arg->strspace;
3536 	s_entry->dls_flags = arg->flags;
3537 
3538 	strncpy(arg->strspace, dir, dirlen);
3539 	arg->strspace[dirlen] = '\0';
3540 
3541 	arg->strspace += dirlen + 1;
3542 	arg->serpath++;
3543     }
3544 
3545     return (NULL);
3546 }
3547 
3548 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)3549 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3550 {
3551     struct dl_serinfo _info;
3552     struct fill_search_info_args args;
3553 
3554     args.request = RTLD_DI_SERINFOSIZE;
3555     args.serinfo = &_info;
3556 
3557     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3558     _info.dls_cnt  = 0;
3559 
3560     path_enumerate(obj->rpath, fill_search_info, &args);
3561     path_enumerate(ld_library_path, fill_search_info, &args);
3562     path_enumerate(obj->runpath, fill_search_info, &args);
3563     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3564     if (!obj->z_nodeflib)
3565       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3566 
3567 
3568     if (request == RTLD_DI_SERINFOSIZE) {
3569 	info->dls_size = _info.dls_size;
3570 	info->dls_cnt = _info.dls_cnt;
3571 	return (0);
3572     }
3573 
3574     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3575 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3576 	return (-1);
3577     }
3578 
3579     args.request  = RTLD_DI_SERINFO;
3580     args.serinfo  = info;
3581     args.serpath  = &info->dls_serpath[0];
3582     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3583 
3584     args.flags = LA_SER_RUNPATH;
3585     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3586 	return (-1);
3587 
3588     args.flags = LA_SER_LIBPATH;
3589     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3590 	return (-1);
3591 
3592     args.flags = LA_SER_RUNPATH;
3593     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3594 	return (-1);
3595 
3596     args.flags = LA_SER_CONFIG;
3597     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3598       != NULL)
3599 	return (-1);
3600 
3601     args.flags = LA_SER_DEFAULT;
3602     if (!obj->z_nodeflib &&
3603       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3604 	return (-1);
3605     return (0);
3606 }
3607 
3608 static int
rtld_dirname(const char * path,char * bname)3609 rtld_dirname(const char *path, char *bname)
3610 {
3611     const char *endp;
3612 
3613     /* Empty or NULL string gets treated as "." */
3614     if (path == NULL || *path == '\0') {
3615 	bname[0] = '.';
3616 	bname[1] = '\0';
3617 	return (0);
3618     }
3619 
3620     /* Strip trailing slashes */
3621     endp = path + strlen(path) - 1;
3622     while (endp > path && *endp == '/')
3623 	endp--;
3624 
3625     /* Find the start of the dir */
3626     while (endp > path && *endp != '/')
3627 	endp--;
3628 
3629     /* Either the dir is "/" or there are no slashes */
3630     if (endp == path) {
3631 	bname[0] = *endp == '/' ? '/' : '.';
3632 	bname[1] = '\0';
3633 	return (0);
3634     } else {
3635 	do {
3636 	    endp--;
3637 	} while (endp > path && *endp == '/');
3638     }
3639 
3640     if (endp - path + 2 > PATH_MAX)
3641     {
3642 	_rtld_error("Filename is too long: %s", path);
3643 	return(-1);
3644     }
3645 
3646     strncpy(bname, path, endp - path + 1);
3647     bname[endp - path + 1] = '\0';
3648     return (0);
3649 }
3650 
3651 static int
rtld_dirname_abs(const char * path,char * base)3652 rtld_dirname_abs(const char *path, char *base)
3653 {
3654 	char base_rel[PATH_MAX];
3655 
3656 	if (rtld_dirname(path, base) == -1)
3657 		return (-1);
3658 	if (base[0] == '/')
3659 		return (0);
3660 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3661 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3662 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3663 		return (-1);
3664 	strcpy(base, base_rel);
3665 	return (0);
3666 }
3667 
3668 static void
linkmap_add(Obj_Entry * obj)3669 linkmap_add(Obj_Entry *obj)
3670 {
3671     struct link_map *l = &obj->linkmap;
3672     struct link_map *prev;
3673 
3674     obj->linkmap.l_name = obj->path;
3675     obj->linkmap.l_addr = obj->mapbase;
3676     obj->linkmap.l_ld = obj->dynamic;
3677 
3678     if (r_debug.r_map == NULL) {
3679 	r_debug.r_map = l;
3680 	return;
3681     }
3682 
3683     /*
3684      * Scan to the end of the list, but not past the entry for the
3685      * dynamic linker, which we want to keep at the very end.
3686      */
3687     for (prev = r_debug.r_map;
3688       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3689       prev = prev->l_next)
3690 	;
3691 
3692     /* Link in the new entry. */
3693     l->l_prev = prev;
3694     l->l_next = prev->l_next;
3695     if (l->l_next != NULL)
3696 	l->l_next->l_prev = l;
3697     prev->l_next = l;
3698 }
3699 
3700 static void
linkmap_delete(Obj_Entry * obj)3701 linkmap_delete(Obj_Entry *obj)
3702 {
3703     struct link_map *l = &obj->linkmap;
3704 
3705     if (l->l_prev == NULL) {
3706 	if ((r_debug.r_map = l->l_next) != NULL)
3707 	    l->l_next->l_prev = NULL;
3708 	return;
3709     }
3710 
3711     if ((l->l_prev->l_next = l->l_next) != NULL)
3712 	l->l_next->l_prev = l->l_prev;
3713 }
3714 
3715 /*
3716  * Function for the debugger to set a breakpoint on to gain control.
3717  *
3718  * The two parameters allow the debugger to easily find and determine
3719  * what the runtime loader is doing and to whom it is doing it.
3720  *
3721  * When the loadhook trap is hit (r_debug_state, set at program
3722  * initialization), the arguments can be found on the stack:
3723  *
3724  *  +8   struct link_map *m
3725  *  +4   struct r_debug  *rd
3726  *  +0   RetAddr
3727  */
3728 void
r_debug_state(struct r_debug * rd,struct link_map * m)3729 r_debug_state(struct r_debug* rd, struct link_map *m)
3730 {
3731     /*
3732      * The following is a hack to force the compiler to emit calls to
3733      * this function, even when optimizing.  If the function is empty,
3734      * the compiler is not obliged to emit any code for calls to it,
3735      * even when marked __noinline.  However, gdb depends on those
3736      * calls being made.
3737      */
3738     __asm __volatile("" : : : "memory");
3739 }
3740 
3741 /*
3742  * A function called after init routines have completed. This can be used to
3743  * break before a program's entry routine is called, and can be used when
3744  * main is not available in the symbol table.
3745  */
3746 void
_r_debug_postinit(struct link_map * m)3747 _r_debug_postinit(struct link_map *m)
3748 {
3749 
3750 	/* See r_debug_state(). */
3751 	__asm __volatile("" : : : "memory");
3752 }
3753 
3754 /*
3755  * Get address of the pointer variable in the main program.
3756  * Prefer non-weak symbol over the weak one.
3757  */
3758 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)3759 get_program_var_addr(const char *name, RtldLockState *lockstate)
3760 {
3761     SymLook req;
3762     DoneList donelist;
3763 
3764     symlook_init(&req, name);
3765     req.lockstate = lockstate;
3766     donelist_init(&donelist);
3767     if (symlook_global(&req, &donelist) != 0)
3768 	return (NULL);
3769     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3770 	return ((const void **)make_function_pointer(req.sym_out,
3771 	  req.defobj_out));
3772     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3773 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3774     else
3775 	return ((const void **)(req.defobj_out->relocbase +
3776 	  req.sym_out->st_value));
3777 }
3778 
3779 /*
3780  * Set a pointer variable in the main program to the given value.  This
3781  * is used to set key variables such as "environ" before any of the
3782  * init functions are called.
3783  */
3784 static void
set_program_var(const char * name,const void * value)3785 set_program_var(const char *name, const void *value)
3786 {
3787     const void **addr;
3788 
3789     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3790 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3791 	*addr = value;
3792     }
3793 }
3794 
3795 /*
3796  * Search the global objects, including dependencies and main object,
3797  * for the given symbol.
3798  */
3799 static int
symlook_global(SymLook * req,DoneList * donelist)3800 symlook_global(SymLook *req, DoneList *donelist)
3801 {
3802     SymLook req1;
3803     const Objlist_Entry *elm;
3804     int res;
3805 
3806     symlook_init_from_req(&req1, req);
3807 
3808     /* Search all objects loaded at program start up. */
3809     if (req->defobj_out == NULL ||
3810       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3811 	res = symlook_list(&req1, &list_main, donelist);
3812 	if (res == 0 && (req->defobj_out == NULL ||
3813 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3814 	    req->sym_out = req1.sym_out;
3815 	    req->defobj_out = req1.defobj_out;
3816 	    assert(req->defobj_out != NULL);
3817 	}
3818     }
3819 
3820     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3821     STAILQ_FOREACH(elm, &list_global, link) {
3822 	if (req->defobj_out != NULL &&
3823 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3824 	    break;
3825 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3826 	if (res == 0 && (req->defobj_out == NULL ||
3827 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3828 	    req->sym_out = req1.sym_out;
3829 	    req->defobj_out = req1.defobj_out;
3830 	    assert(req->defobj_out != NULL);
3831 	}
3832     }
3833 
3834     return (req->sym_out != NULL ? 0 : ESRCH);
3835 }
3836 
3837 /*
3838  * This is a special version of getenv which is far more efficient
3839  * at finding LD_ environment vars.
3840  */
3841 static
3842 const char *
_getenv_ld(const char * id)3843 _getenv_ld(const char *id)
3844 {
3845     const char *envp;
3846     int i, j;
3847     int idlen = strlen(id);
3848 
3849     if (ld_index == LD_ARY_CACHE)
3850 	return(getenv(id));
3851     if (ld_index == 0) {
3852 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3853 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3854 		ld_ary[j++] = envp;
3855 	}
3856 	if (j == 0)
3857 		ld_ary[j++] = "";
3858 	ld_index = j;
3859     }
3860     for (i = ld_index - 1; i >= 0; --i) {
3861 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3862 	    return(ld_ary[i] + idlen + 1);
3863     }
3864     return(NULL);
3865 }
3866 
3867 /*
3868  * Given a symbol name in a referencing object, find the corresponding
3869  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3870  * no definition was found.  Returns a pointer to the Obj_Entry of the
3871  * defining object via the reference parameter DEFOBJ_OUT.
3872  */
3873 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)3874 symlook_default(SymLook *req, const Obj_Entry *refobj)
3875 {
3876     DoneList donelist;
3877     const Objlist_Entry *elm;
3878     SymLook req1;
3879     int res;
3880 
3881     donelist_init(&donelist);
3882     symlook_init_from_req(&req1, req);
3883 
3884     /* Look first in the referencing object if linked symbolically. */
3885     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3886 	res = symlook_obj(&req1, refobj);
3887 	if (res == 0) {
3888 	    req->sym_out = req1.sym_out;
3889 	    req->defobj_out = req1.defobj_out;
3890 	    assert(req->defobj_out != NULL);
3891 	}
3892     }
3893 
3894     symlook_global(req, &donelist);
3895 
3896     /* Search all dlopened DAGs containing the referencing object. */
3897     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3898 	if (req->sym_out != NULL &&
3899 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3900 	    break;
3901 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3902 	if (res == 0 && (req->sym_out == NULL ||
3903 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3904 	    req->sym_out = req1.sym_out;
3905 	    req->defobj_out = req1.defobj_out;
3906 	    assert(req->defobj_out != NULL);
3907 	}
3908     }
3909 
3910     /*
3911      * Search the dynamic linker itself, and possibly resolve the
3912      * symbol from there.  This is how the application links to
3913      * dynamic linker services such as dlopen.
3914      */
3915     if (req->sym_out == NULL ||
3916       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3917 	res = symlook_obj(&req1, &obj_rtld);
3918 	if (res == 0) {
3919 	    req->sym_out = req1.sym_out;
3920 	    req->defobj_out = req1.defobj_out;
3921 	    assert(req->defobj_out != NULL);
3922 	}
3923     }
3924 
3925     return (req->sym_out != NULL ? 0 : ESRCH);
3926 }
3927 
3928 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)3929 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3930 {
3931     const Elf_Sym *def;
3932     const Obj_Entry *defobj;
3933     const Objlist_Entry *elm;
3934     SymLook req1;
3935     int res;
3936 
3937     def = NULL;
3938     defobj = NULL;
3939     STAILQ_FOREACH(elm, objlist, link) {
3940 	if (donelist_check(dlp, elm->obj))
3941 	    continue;
3942 	symlook_init_from_req(&req1, req);
3943 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3944 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3945 		def = req1.sym_out;
3946 		defobj = req1.defobj_out;
3947 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3948 		    break;
3949 	    }
3950 	}
3951     }
3952     if (def != NULL) {
3953 	req->sym_out = def;
3954 	req->defobj_out = defobj;
3955 	return (0);
3956     }
3957     return (ESRCH);
3958 }
3959 
3960 /*
3961  * Search the chain of DAGS cointed to by the given Needed_Entry
3962  * for a symbol of the given name.  Each DAG is scanned completely
3963  * before advancing to the next one.  Returns a pointer to the symbol,
3964  * or NULL if no definition was found.
3965  */
3966 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)3967 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3968 {
3969     const Elf_Sym *def;
3970     const Needed_Entry *n;
3971     const Obj_Entry *defobj;
3972     SymLook req1;
3973     int res;
3974 
3975     def = NULL;
3976     defobj = NULL;
3977     symlook_init_from_req(&req1, req);
3978     for (n = needed; n != NULL; n = n->next) {
3979 	if (n->obj == NULL ||
3980 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3981 	    continue;
3982 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3983 	    def = req1.sym_out;
3984 	    defobj = req1.defobj_out;
3985 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3986 		break;
3987 	}
3988     }
3989     if (def != NULL) {
3990 	req->sym_out = def;
3991 	req->defobj_out = defobj;
3992 	return (0);
3993     }
3994     return (ESRCH);
3995 }
3996 
3997 /*
3998  * Search the symbol table of a single shared object for a symbol of
3999  * the given name and version, if requested.  Returns a pointer to the
4000  * symbol, or NULL if no definition was found.  If the object is
4001  * filter, return filtered symbol from filtee.
4002  *
4003  * The symbol's hash value is passed in for efficiency reasons; that
4004  * eliminates many recomputations of the hash value.
4005  */
4006 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4007 symlook_obj(SymLook *req, const Obj_Entry *obj)
4008 {
4009     DoneList donelist;
4010     SymLook req1;
4011     int flags, res, mres;
4012 
4013     /*
4014      * If there is at least one valid hash at this point, we prefer to
4015      * use the faster GNU version if available.
4016      */
4017     if (obj->valid_hash_gnu)
4018 	mres = symlook_obj1_gnu(req, obj);
4019     else if (obj->valid_hash_sysv)
4020 	mres = symlook_obj1_sysv(req, obj);
4021     else
4022 	return (EINVAL);
4023 
4024     if (mres == 0) {
4025 	if (obj->needed_filtees != NULL) {
4026 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4027 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4028 	    donelist_init(&donelist);
4029 	    symlook_init_from_req(&req1, req);
4030 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4031 	    if (res == 0) {
4032 		req->sym_out = req1.sym_out;
4033 		req->defobj_out = req1.defobj_out;
4034 	    }
4035 	    return (res);
4036 	}
4037 	if (obj->needed_aux_filtees != NULL) {
4038 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4039 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4040 	    donelist_init(&donelist);
4041 	    symlook_init_from_req(&req1, req);
4042 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4043 	    if (res == 0) {
4044 		req->sym_out = req1.sym_out;
4045 		req->defobj_out = req1.defobj_out;
4046 		return (res);
4047 	    }
4048 	}
4049     }
4050     return (mres);
4051 }
4052 
4053 /* Symbol match routine common to both hash functions */
4054 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4055 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4056     const unsigned long symnum)
4057 {
4058 	Elf_Versym verndx;
4059 	const Elf_Sym *symp;
4060 	const char *strp;
4061 
4062 	symp = obj->symtab + symnum;
4063 	strp = obj->strtab + symp->st_name;
4064 
4065 	switch (ELF_ST_TYPE(symp->st_info)) {
4066 	case STT_FUNC:
4067 	case STT_NOTYPE:
4068 	case STT_OBJECT:
4069 	case STT_COMMON:
4070 	case STT_GNU_IFUNC:
4071 		if (symp->st_value == 0)
4072 			return (false);
4073 		/* fallthrough */
4074 	case STT_TLS:
4075 		if (symp->st_shndx != SHN_UNDEF)
4076 			break;
4077 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4078 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4079 			break;
4080 		/* fallthrough */
4081 	default:
4082 		return (false);
4083 	}
4084 	if (strcmp(req->name, strp) != 0)
4085 		return (false);
4086 
4087 	if (req->ventry == NULL) {
4088 		if (obj->versyms != NULL) {
4089 			verndx = VER_NDX(obj->versyms[symnum]);
4090 			if (verndx > obj->vernum) {
4091 				_rtld_error(
4092 				    "%s: symbol %s references wrong version %d",
4093 				    obj->path, obj->strtab + symnum, verndx);
4094 				return (false);
4095 			}
4096 			/*
4097 			 * If we are not called from dlsym (i.e. this
4098 			 * is a normal relocation from unversioned
4099 			 * binary), accept the symbol immediately if
4100 			 * it happens to have first version after this
4101 			 * shared object became versioned.  Otherwise,
4102 			 * if symbol is versioned and not hidden,
4103 			 * remember it. If it is the only symbol with
4104 			 * this name exported by the shared object, it
4105 			 * will be returned as a match by the calling
4106 			 * function. If symbol is global (verndx < 2)
4107 			 * accept it unconditionally.
4108 			 */
4109 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4110 			    verndx == VER_NDX_GIVEN) {
4111 				result->sym_out = symp;
4112 				return (true);
4113 			}
4114 			else if (verndx >= VER_NDX_GIVEN) {
4115 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4116 				    == 0) {
4117 					if (result->vsymp == NULL)
4118 						result->vsymp = symp;
4119 					result->vcount++;
4120 				}
4121 				return (false);
4122 			}
4123 		}
4124 		result->sym_out = symp;
4125 		return (true);
4126 	}
4127 	if (obj->versyms == NULL) {
4128 		if (object_match_name(obj, req->ventry->name)) {
4129 			_rtld_error("%s: object %s should provide version %s "
4130 			    "for symbol %s", obj_rtld.path, obj->path,
4131 			    req->ventry->name, obj->strtab + symnum);
4132 			return (false);
4133 		}
4134 	} else {
4135 		verndx = VER_NDX(obj->versyms[symnum]);
4136 		if (verndx > obj->vernum) {
4137 			_rtld_error("%s: symbol %s references wrong version %d",
4138 			    obj->path, obj->strtab + symnum, verndx);
4139 			return (false);
4140 		}
4141 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4142 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4143 			/*
4144 			 * Version does not match. Look if this is a
4145 			 * global symbol and if it is not hidden. If
4146 			 * global symbol (verndx < 2) is available,
4147 			 * use it. Do not return symbol if we are
4148 			 * called by dlvsym, because dlvsym looks for
4149 			 * a specific version and default one is not
4150 			 * what dlvsym wants.
4151 			 */
4152 			if ((req->flags & SYMLOOK_DLSYM) ||
4153 			    (verndx >= VER_NDX_GIVEN) ||
4154 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4155 				return (false);
4156 		}
4157 	}
4158 	result->sym_out = symp;
4159 	return (true);
4160 }
4161 
4162 /*
4163  * Search for symbol using SysV hash function.
4164  * obj->buckets is known not to be NULL at this point; the test for this was
4165  * performed with the obj->valid_hash_sysv assignment.
4166  */
4167 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4168 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4169 {
4170 	unsigned long symnum;
4171 	Sym_Match_Result matchres;
4172 
4173 	matchres.sym_out = NULL;
4174 	matchres.vsymp = NULL;
4175 	matchres.vcount = 0;
4176 
4177 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4178 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4179 		if (symnum >= obj->nchains)
4180 			return (ESRCH);	/* Bad object */
4181 
4182 		if (matched_symbol(req, obj, &matchres, symnum)) {
4183 			req->sym_out = matchres.sym_out;
4184 			req->defobj_out = obj;
4185 			return (0);
4186 		}
4187 	}
4188 	if (matchres.vcount == 1) {
4189 		req->sym_out = matchres.vsymp;
4190 		req->defobj_out = obj;
4191 		return (0);
4192 	}
4193 	return (ESRCH);
4194 }
4195 
4196 /* Search for symbol using GNU hash function */
4197 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)4198 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4199 {
4200 	Elf_Addr bloom_word;
4201 	const Elf32_Word *hashval;
4202 	Elf32_Word bucket;
4203 	Sym_Match_Result matchres;
4204 	unsigned int h1, h2;
4205 	unsigned long symnum;
4206 
4207 	matchres.sym_out = NULL;
4208 	matchres.vsymp = NULL;
4209 	matchres.vcount = 0;
4210 
4211 	/* Pick right bitmask word from Bloom filter array */
4212 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4213 	    obj->maskwords_bm_gnu];
4214 
4215 	/* Calculate modulus word size of gnu hash and its derivative */
4216 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4217 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4218 
4219 	/* Filter out the "definitely not in set" queries */
4220 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4221 		return (ESRCH);
4222 
4223 	/* Locate hash chain and corresponding value element*/
4224 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4225 	if (bucket == 0)
4226 		return (ESRCH);
4227 	hashval = &obj->chain_zero_gnu[bucket];
4228 	do {
4229 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4230 			symnum = hashval - obj->chain_zero_gnu;
4231 			if (matched_symbol(req, obj, &matchres, symnum)) {
4232 				req->sym_out = matchres.sym_out;
4233 				req->defobj_out = obj;
4234 				return (0);
4235 			}
4236 		}
4237 	} while ((*hashval++ & 1) == 0);
4238 	if (matchres.vcount == 1) {
4239 		req->sym_out = matchres.vsymp;
4240 		req->defobj_out = obj;
4241 		return (0);
4242 	}
4243 	return (ESRCH);
4244 }
4245 
4246 static void
trace_loaded_objects(Obj_Entry * obj)4247 trace_loaded_objects(Obj_Entry *obj)
4248 {
4249     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4250     int		c;
4251 
4252     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4253 	main_local = "";
4254 
4255     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4256 	fmt1 = "\t%o => %p (%x)\n";
4257 
4258     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4259 	fmt2 = "\t%o (%x)\n";
4260 
4261     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4262 
4263     for (; obj; obj = obj->next) {
4264 	Needed_Entry		*needed;
4265 	char			*name, *path;
4266 	bool			is_lib;
4267 
4268 	if (list_containers && obj->needed != NULL)
4269 	    rtld_printf("%s:\n", obj->path);
4270 	for (needed = obj->needed; needed; needed = needed->next) {
4271 	    if (needed->obj != NULL) {
4272 		if (needed->obj->traced && !list_containers)
4273 		    continue;
4274 		needed->obj->traced = true;
4275 		path = needed->obj->path;
4276 	    } else
4277 		path = "not found";
4278 
4279 	    name = (char *)obj->strtab + needed->name;
4280 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4281 
4282 	    fmt = is_lib ? fmt1 : fmt2;
4283 	    while ((c = *fmt++) != '\0') {
4284 		switch (c) {
4285 		default:
4286 		    rtld_putchar(c);
4287 		    continue;
4288 		case '\\':
4289 		    switch (c = *fmt) {
4290 		    case '\0':
4291 			continue;
4292 		    case 'n':
4293 			rtld_putchar('\n');
4294 			break;
4295 		    case 't':
4296 			rtld_putchar('\t');
4297 			break;
4298 		    }
4299 		    break;
4300 		case '%':
4301 		    switch (c = *fmt) {
4302 		    case '\0':
4303 			continue;
4304 		    case '%':
4305 		    default:
4306 			rtld_putchar(c);
4307 			break;
4308 		    case 'A':
4309 			rtld_putstr(main_local);
4310 			break;
4311 		    case 'a':
4312 			rtld_putstr(obj_main->path);
4313 			break;
4314 		    case 'o':
4315 			rtld_putstr(name);
4316 			break;
4317 		    case 'p':
4318 			rtld_putstr(path);
4319 			break;
4320 		    case 'x':
4321 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4322 			  0);
4323 			break;
4324 		    }
4325 		    break;
4326 		}
4327 		++fmt;
4328 	    }
4329 	}
4330     }
4331 }
4332 
4333 /*
4334  * Unload a dlopened object and its dependencies from memory and from
4335  * our data structures.  It is assumed that the DAG rooted in the
4336  * object has already been unreferenced, and that the object has a
4337  * reference count of 0.
4338  */
4339 static void
unload_object(Obj_Entry * root)4340 unload_object(Obj_Entry *root)
4341 {
4342     Obj_Entry *obj;
4343     Obj_Entry **linkp;
4344 
4345     assert(root->refcount == 0);
4346 
4347     /*
4348      * Pass over the DAG removing unreferenced objects from
4349      * appropriate lists.
4350      */
4351     unlink_object(root);
4352 
4353     /* Unmap all objects that are no longer referenced. */
4354     linkp = &obj_list->next;
4355     while ((obj = *linkp) != NULL) {
4356 	if (obj->refcount == 0) {
4357 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4358 		obj->path);
4359 	    dbg("unloading \"%s\"", obj->path);
4360 	    unload_filtees(root);
4361 	    munmap(obj->mapbase, obj->mapsize);
4362 	    linkmap_delete(obj);
4363 	    *linkp = obj->next;
4364 	    obj_count--;
4365 	    obj_free(obj);
4366 	} else
4367 	    linkp = &obj->next;
4368     }
4369     obj_tail = linkp;
4370 }
4371 
4372 static void
unlink_object(Obj_Entry * root)4373 unlink_object(Obj_Entry *root)
4374 {
4375     Objlist_Entry *elm;
4376 
4377     if (root->refcount == 0) {
4378 	/* Remove the object from the RTLD_GLOBAL list. */
4379 	objlist_remove(&list_global, root);
4380 
4381     	/* Remove the object from all objects' DAG lists. */
4382 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4383 	    objlist_remove(&elm->obj->dldags, root);
4384 	    if (elm->obj != root)
4385 		unlink_object(elm->obj);
4386 	}
4387     }
4388 }
4389 
4390 static void
ref_dag(Obj_Entry * root)4391 ref_dag(Obj_Entry *root)
4392 {
4393     Objlist_Entry *elm;
4394 
4395     assert(root->dag_inited);
4396     STAILQ_FOREACH(elm, &root->dagmembers, link)
4397 	elm->obj->refcount++;
4398 }
4399 
4400 static void
unref_dag(Obj_Entry * root)4401 unref_dag(Obj_Entry *root)
4402 {
4403     Objlist_Entry *elm;
4404 
4405     assert(root->dag_inited);
4406     STAILQ_FOREACH(elm, &root->dagmembers, link)
4407 	elm->obj->refcount--;
4408 }
4409 
4410 /*
4411  * Common code for MD __tls_get_addr().
4412  */
4413 void *
tls_get_addr_common(Elf_Addr ** dtvp,int index,size_t offset)4414 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4415 {
4416     Elf_Addr* dtv = *dtvp;
4417     RtldLockState lockstate;
4418 
4419     /* Check dtv generation in case new modules have arrived */
4420     if (dtv[0] != tls_dtv_generation) {
4421 	Elf_Addr* newdtv;
4422 	int to_copy;
4423 
4424 	wlock_acquire(rtld_bind_lock, &lockstate);
4425 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4426 	to_copy = dtv[1];
4427 	if (to_copy > tls_max_index)
4428 	    to_copy = tls_max_index;
4429 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4430 	newdtv[0] = tls_dtv_generation;
4431 	newdtv[1] = tls_max_index;
4432 	free(dtv);
4433 	cpu_sfence();
4434 	dtv = *dtvp = newdtv;
4435 	lock_release(rtld_bind_lock, &lockstate);
4436     }
4437 
4438     /* Dynamically allocate module TLS if necessary */
4439     if (!dtv[index + 1]) {
4440 	/* Signal safe, wlock will block out signals. */
4441 	wlock_acquire(rtld_bind_lock, &lockstate);
4442 	dtv = *dtvp;
4443 	if (!dtv[index + 1])
4444 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4445 	lock_release(rtld_bind_lock, &lockstate);
4446     }
4447     return ((void *)(dtv[index + 1] + offset));
4448 }
4449 
4450 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4451 
4452 /*
4453  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4454  * static area is based on negative offsets relative to the tcb.
4455  *
4456  * The TCB contains an errno pointer for the system call layer, but because
4457  * we are the RTLD we really have no idea how the caller was compiled so
4458  * the information has to be passed in.  errno can either be:
4459  *
4460  *	type 0	errno is a simple non-TLS global pointer.
4461  *		(special case for e.g. libc_rtld)
4462  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4463  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4464  */
4465 struct tls_tcb *
allocate_tls(Obj_Entry * objs)4466 allocate_tls(Obj_Entry *objs)
4467 {
4468     Obj_Entry *obj;
4469     size_t data_size;
4470     size_t dtv_size;
4471     struct tls_tcb *tcb;
4472     Elf_Addr *dtv;
4473     Elf_Addr addr;
4474 
4475     /*
4476      * Allocate the new TCB.  static TLS storage is placed just before the
4477      * TCB to support the %gs:OFFSET (negative offset) model.
4478      */
4479     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4480 		~RTLD_STATIC_TLS_ALIGN_MASK;
4481     tcb = malloc(data_size + sizeof(*tcb));
4482     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4483 
4484     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4485     dtv = malloc(dtv_size);
4486     bzero(dtv, dtv_size);
4487 
4488 #ifdef RTLD_TCB_HAS_SELF_POINTER
4489     tcb->tcb_self = tcb;
4490 #endif
4491     tcb->tcb_dtv = dtv;
4492     tcb->tcb_pthread = NULL;
4493 
4494     dtv[0] = tls_dtv_generation;
4495     dtv[1] = tls_max_index;
4496 
4497     for (obj = objs; obj; obj = obj->next) {
4498 	if (obj->tlsoffset) {
4499 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4500 	    memset((void *)(addr + obj->tlsinitsize),
4501 		   0, obj->tlssize - obj->tlsinitsize);
4502 	    if (obj->tlsinit) {
4503 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4504 		obj->static_tls_copied = true;
4505 	    }
4506 	    dtv[obj->tlsindex + 1] = addr;
4507 	}
4508     }
4509     return(tcb);
4510 }
4511 
4512 void
free_tls(struct tls_tcb * tcb)4513 free_tls(struct tls_tcb *tcb)
4514 {
4515     Elf_Addr *dtv;
4516     int dtv_size, i;
4517     Elf_Addr tls_start, tls_end;
4518     size_t data_size;
4519 
4520     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4521 		~RTLD_STATIC_TLS_ALIGN_MASK;
4522 
4523     dtv = tcb->tcb_dtv;
4524     dtv_size = dtv[1];
4525     tls_end = (Elf_Addr)tcb;
4526     tls_start = (Elf_Addr)tcb - data_size;
4527     for (i = 0; i < dtv_size; i++) {
4528 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4529 	    free((void *)dtv[i+2]);
4530 	}
4531     }
4532     free(dtv);
4533 
4534     free((void*) tls_start);
4535 }
4536 
4537 #else
4538 #error "Unsupported TLS layout"
4539 #endif
4540 
4541 /*
4542  * Allocate TLS block for module with given index.
4543  */
4544 void *
allocate_module_tls(int index)4545 allocate_module_tls(int index)
4546 {
4547     Obj_Entry* obj;
4548     char* p;
4549 
4550     for (obj = obj_list; obj; obj = obj->next) {
4551 	if (obj->tlsindex == index)
4552 	    break;
4553     }
4554     if (!obj) {
4555 	_rtld_error("Can't find module with TLS index %d", index);
4556 	die();
4557     }
4558 
4559     if (obj->tls_static) {
4560 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4561         p = (char *)tls_get_tcb() - obj->tlsoffset;
4562 #else
4563 #error "Unsupported TLS layout"
4564 #endif
4565         return p;
4566     }
4567 
4568     p = malloc(obj->tlssize);
4569     if (p == NULL) {
4570 	_rtld_error("Cannot allocate TLS block for index %d", index);
4571 	die();
4572     }
4573     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4574     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4575 
4576     return p;
4577 }
4578 
4579 bool
allocate_tls_offset(Obj_Entry * obj)4580 allocate_tls_offset(Obj_Entry *obj)
4581 {
4582     size_t off;
4583 
4584     if (obj->tls_static)
4585 	return true;
4586 
4587     if (obj->tls_dynamic)
4588         return false;
4589 
4590     if (obj->tlssize == 0) {
4591 	obj->tls_static = true;
4592 	return true;
4593     }
4594 
4595     if (obj->tlsindex == 1)
4596 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4597     else
4598 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4599 				   obj->tlssize, obj->tlsalign);
4600 
4601     /*
4602      * If we have already fixed the size of the static TLS block, we
4603      * must stay within that size. When allocating the static TLS, we
4604      * leave a small amount of space spare to be used for dynamically
4605      * loading modules which use static TLS.
4606      */
4607     if (tls_static_space) {
4608 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4609 	    return false;
4610     }
4611 
4612     tls_last_offset = obj->tlsoffset = off;
4613     tls_last_size = obj->tlssize;
4614     obj->tls_static = true;
4615 
4616     return true;
4617 }
4618 
4619 void
free_tls_offset(Obj_Entry * obj)4620 free_tls_offset(Obj_Entry *obj)
4621 {
4622 #ifdef RTLD_STATIC_TLS_VARIANT_II
4623     /*
4624      * If we were the last thing to allocate out of the static TLS
4625      * block, we give our space back to the 'allocator'. This is a
4626      * simplistic workaround to allow libGL.so.1 to be loaded and
4627      * unloaded multiple times. We only handle the Variant II
4628      * mechanism for now - this really needs a proper allocator.
4629      */
4630     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4631 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4632 	tls_last_offset -= obj->tlssize;
4633 	tls_last_size = 0;
4634     }
4635 #endif
4636 }
4637 
4638 struct tls_tcb *
_rtld_allocate_tls(void)4639 _rtld_allocate_tls(void)
4640 {
4641     struct tls_tcb *new_tcb;
4642     RtldLockState lockstate;
4643 
4644     wlock_acquire(rtld_bind_lock, &lockstate);
4645     new_tcb = allocate_tls(obj_list);
4646     lock_release(rtld_bind_lock, &lockstate);
4647 
4648     return (new_tcb);
4649 }
4650 
4651 void
_rtld_free_tls(struct tls_tcb * tcb)4652 _rtld_free_tls(struct tls_tcb *tcb)
4653 {
4654     RtldLockState lockstate;
4655 
4656     wlock_acquire(rtld_bind_lock, &lockstate);
4657     free_tls(tcb);
4658     lock_release(rtld_bind_lock, &lockstate);
4659 }
4660 
4661 static void
object_add_name(Obj_Entry * obj,const char * name)4662 object_add_name(Obj_Entry *obj, const char *name)
4663 {
4664     Name_Entry *entry;
4665     size_t len;
4666 
4667     len = strlen(name);
4668     entry = malloc(sizeof(Name_Entry) + len);
4669 
4670     if (entry != NULL) {
4671 	strcpy(entry->name, name);
4672 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4673     }
4674 }
4675 
4676 static int
object_match_name(const Obj_Entry * obj,const char * name)4677 object_match_name(const Obj_Entry *obj, const char *name)
4678 {
4679     Name_Entry *entry;
4680 
4681     STAILQ_FOREACH(entry, &obj->names, link) {
4682 	if (strcmp(name, entry->name) == 0)
4683 	    return (1);
4684     }
4685     return (0);
4686 }
4687 
4688 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)4689 locate_dependency(const Obj_Entry *obj, const char *name)
4690 {
4691     const Objlist_Entry *entry;
4692     const Needed_Entry *needed;
4693 
4694     STAILQ_FOREACH(entry, &list_main, link) {
4695 	if (object_match_name(entry->obj, name))
4696 	    return entry->obj;
4697     }
4698 
4699     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4700 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4701 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4702 	    /*
4703 	     * If there is DT_NEEDED for the name we are looking for,
4704 	     * we are all set.  Note that object might not be found if
4705 	     * dependency was not loaded yet, so the function can
4706 	     * return NULL here.  This is expected and handled
4707 	     * properly by the caller.
4708 	     */
4709 	    return (needed->obj);
4710 	}
4711     }
4712     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4713 	obj->path, name);
4714     die();
4715 }
4716 
4717 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)4718 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4719     const Elf_Vernaux *vna)
4720 {
4721     const Elf_Verdef *vd;
4722     const char *vername;
4723 
4724     vername = refobj->strtab + vna->vna_name;
4725     vd = depobj->verdef;
4726     if (vd == NULL) {
4727 	_rtld_error("%s: version %s required by %s not defined",
4728 	    depobj->path, vername, refobj->path);
4729 	return (-1);
4730     }
4731     for (;;) {
4732 	if (vd->vd_version != VER_DEF_CURRENT) {
4733 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4734 		depobj->path, vd->vd_version);
4735 	    return (-1);
4736 	}
4737 	if (vna->vna_hash == vd->vd_hash) {
4738 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4739 		((char *)vd + vd->vd_aux);
4740 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4741 		return (0);
4742 	}
4743 	if (vd->vd_next == 0)
4744 	    break;
4745 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4746     }
4747     if (vna->vna_flags & VER_FLG_WEAK)
4748 	return (0);
4749     _rtld_error("%s: version %s required by %s not found",
4750 	depobj->path, vername, refobj->path);
4751     return (-1);
4752 }
4753 
4754 static int
rtld_verify_object_versions(Obj_Entry * obj)4755 rtld_verify_object_versions(Obj_Entry *obj)
4756 {
4757     const Elf_Verneed *vn;
4758     const Elf_Verdef  *vd;
4759     const Elf_Verdaux *vda;
4760     const Elf_Vernaux *vna;
4761     const Obj_Entry *depobj;
4762     int maxvernum, vernum;
4763 
4764     if (obj->ver_checked)
4765 	return (0);
4766     obj->ver_checked = true;
4767 
4768     maxvernum = 0;
4769     /*
4770      * Walk over defined and required version records and figure out
4771      * max index used by any of them. Do very basic sanity checking
4772      * while there.
4773      */
4774     vn = obj->verneed;
4775     while (vn != NULL) {
4776 	if (vn->vn_version != VER_NEED_CURRENT) {
4777 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4778 		obj->path, vn->vn_version);
4779 	    return (-1);
4780 	}
4781 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4782 	for (;;) {
4783 	    vernum = VER_NEED_IDX(vna->vna_other);
4784 	    if (vernum > maxvernum)
4785 		maxvernum = vernum;
4786 	    if (vna->vna_next == 0)
4787 		 break;
4788 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4789 	}
4790 	if (vn->vn_next == 0)
4791 	    break;
4792 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4793     }
4794 
4795     vd = obj->verdef;
4796     while (vd != NULL) {
4797 	if (vd->vd_version != VER_DEF_CURRENT) {
4798 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4799 		obj->path, vd->vd_version);
4800 	    return (-1);
4801 	}
4802 	vernum = VER_DEF_IDX(vd->vd_ndx);
4803 	if (vernum > maxvernum)
4804 		maxvernum = vernum;
4805 	if (vd->vd_next == 0)
4806 	    break;
4807 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4808     }
4809 
4810     if (maxvernum == 0)
4811 	return (0);
4812 
4813     /*
4814      * Store version information in array indexable by version index.
4815      * Verify that object version requirements are satisfied along the
4816      * way.
4817      */
4818     obj->vernum = maxvernum + 1;
4819     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4820 
4821     vd = obj->verdef;
4822     while (vd != NULL) {
4823 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4824 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4825 	    assert(vernum <= maxvernum);
4826 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4827 	    obj->vertab[vernum].hash = vd->vd_hash;
4828 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4829 	    obj->vertab[vernum].file = NULL;
4830 	    obj->vertab[vernum].flags = 0;
4831 	}
4832 	if (vd->vd_next == 0)
4833 	    break;
4834 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4835     }
4836 
4837     vn = obj->verneed;
4838     while (vn != NULL) {
4839 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4840 	if (depobj == NULL)
4841 	    return (-1);
4842 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4843 	for (;;) {
4844 	    if (check_object_provided_version(obj, depobj, vna))
4845 		return (-1);
4846 	    vernum = VER_NEED_IDX(vna->vna_other);
4847 	    assert(vernum <= maxvernum);
4848 	    obj->vertab[vernum].hash = vna->vna_hash;
4849 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4850 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4851 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4852 		VER_INFO_HIDDEN : 0;
4853 	    if (vna->vna_next == 0)
4854 		 break;
4855 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4856 	}
4857 	if (vn->vn_next == 0)
4858 	    break;
4859 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4860     }
4861     return 0;
4862 }
4863 
4864 static int
rtld_verify_versions(const Objlist * objlist)4865 rtld_verify_versions(const Objlist *objlist)
4866 {
4867     Objlist_Entry *entry;
4868     int rc;
4869 
4870     rc = 0;
4871     STAILQ_FOREACH(entry, objlist, link) {
4872 	/*
4873 	 * Skip dummy objects or objects that have their version requirements
4874 	 * already checked.
4875 	 */
4876 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4877 	    continue;
4878 	if (rtld_verify_object_versions(entry->obj) == -1) {
4879 	    rc = -1;
4880 	    if (ld_tracing == NULL)
4881 		break;
4882 	}
4883     }
4884     if (rc == 0 || ld_tracing != NULL)
4885 	rc = rtld_verify_object_versions(&obj_rtld);
4886     return rc;
4887 }
4888 
4889 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)4890 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4891 {
4892     Elf_Versym vernum;
4893 
4894     if (obj->vertab) {
4895 	vernum = VER_NDX(obj->versyms[symnum]);
4896 	if (vernum >= obj->vernum) {
4897 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4898 		obj->path, obj->strtab + symnum, vernum);
4899 	} else if (obj->vertab[vernum].hash != 0) {
4900 	    return &obj->vertab[vernum];
4901 	}
4902     }
4903     return NULL;
4904 }
4905 
4906 int
_rtld_get_stack_prot(void)4907 _rtld_get_stack_prot(void)
4908 {
4909 
4910 	return (stack_prot);
4911 }
4912 
4913 static void
map_stacks_exec(RtldLockState * lockstate)4914 map_stacks_exec(RtldLockState *lockstate)
4915 {
4916 	return;
4917 	/*
4918 	 * Stack protection must be implemented in the kernel before the dynamic
4919 	 * linker can handle PT_GNU_STACK sections.
4920 	 * The following is the FreeBSD implementation of map_stacks_exec()
4921 	 * void (*thr_map_stacks_exec)(void);
4922 	 *
4923 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4924 	 *     return;
4925 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4926 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4927 	 * if (thr_map_stacks_exec != NULL) {
4928 	 *     stack_prot |= PROT_EXEC;
4929 	 *     thr_map_stacks_exec();
4930 	 * }
4931 	 */
4932 }
4933 
4934 /*
4935  * Only called after all primary shared libraries are loaded (EARLY is
4936  * not set).  Resolves the static TLS distribution function at first-call.
4937  * This is typically a weak libc symbol that is overrideen by the threading
4938  * library.
4939  */
4940 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)4941 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
4942 {
4943 	Objlist_Entry *elm;
4944 	Obj_Entry *obj;
4945 	static void (*dtlsfunc)(size_t, void *, size_t, size_t);
4946 
4947 	/*
4948 	 * First time, resolve "_pthread_distribute_static_tls".
4949 	 */
4950 	if (dtlsfunc == NULL) {
4951 		dtlsfunc = (void *)dlfunc(RTLD_ALL,
4952 					  "_pthread_distribute_static_tls");
4953 		if (dtlsfunc == NULL)
4954 			return;
4955 	}
4956 
4957 	/*
4958 	 * Initialize static TLS data for the object list using the callback
4959 	 * function (to either libc or pthreads).
4960 	 */
4961 	STAILQ_FOREACH(elm, list, link) {
4962 		obj = elm->obj;
4963 		if (/*obj->marker ||*/ !obj->tls_static || obj->static_tls_copied)
4964 			continue;
4965 		dtlsfunc(obj->tlsoffset, obj->tlsinit,
4966 			 obj->tlsinitsize, obj->tlssize);
4967 		obj->static_tls_copied = true;
4968 	}
4969 }
4970 
4971 void
symlook_init(SymLook * dst,const char * name)4972 symlook_init(SymLook *dst, const char *name)
4973 {
4974 
4975 	bzero(dst, sizeof(*dst));
4976 	dst->name = name;
4977 	dst->hash = elf_hash(name);
4978 	dst->hash_gnu = gnu_hash(name);
4979 }
4980 
4981 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)4982 symlook_init_from_req(SymLook *dst, const SymLook *src)
4983 {
4984 
4985 	dst->name = src->name;
4986 	dst->hash = src->hash;
4987 	dst->hash_gnu = src->hash_gnu;
4988 	dst->ventry = src->ventry;
4989 	dst->flags = src->flags;
4990 	dst->defobj_out = NULL;
4991 	dst->sym_out = NULL;
4992 	dst->lockstate = src->lockstate;
4993 }
4994 
4995 
4996 /*
4997  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4998  */
4999 static int
parse_libdir(const char * str)5000 parse_libdir(const char *str)
5001 {
5002 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
5003 	const char *orig;
5004 	int fd;
5005 	char c;
5006 
5007 	orig = str;
5008 	fd = 0;
5009 	for (c = *str; c != '\0'; c = *++str) {
5010 		if (c < '0' || c > '9')
5011 			return (-1);
5012 
5013 		fd *= RADIX;
5014 		fd += c - '0';
5015 	}
5016 
5017 	/* Make sure we actually parsed something. */
5018 	if (str == orig) {
5019 		_rtld_error("failed to parse directory FD from '%s'", str);
5020 		return (-1);
5021 	}
5022 	return (fd);
5023 }
5024 
5025 #ifdef ENABLE_OSRELDATE
5026 /*
5027  * Overrides for libc_pic-provided functions.
5028  */
5029 
5030 int
__getosreldate(void)5031 __getosreldate(void)
5032 {
5033 	size_t len;
5034 	int oid[2];
5035 	int error, osrel;
5036 
5037 	if (osreldate != 0)
5038 		return (osreldate);
5039 
5040 	oid[0] = CTL_KERN;
5041 	oid[1] = KERN_OSRELDATE;
5042 	osrel = 0;
5043 	len = sizeof(osrel);
5044 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5045 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5046 		osreldate = osrel;
5047 	return (osreldate);
5048 }
5049 #endif
5050 
5051 /*
5052  * Ask the kernel for the extra tls space to allocate after calculating
5053  * base tls requirements in rtld-elf.  5.9 or later.
5054  */
5055 static int
__getstatictlsextra(void)5056 __getstatictlsextra(void)
5057 {
5058 	size_t len;
5059 	int oid[2];
5060 	int error;
5061 	int tls_extra;
5062 
5063 	oid[0] = CTL_KERN;
5064 	oid[1] = KERN_STATIC_TLS_EXTRA;
5065 	len = sizeof(tls_extra);
5066 	error = sysctl(oid, 2, &tls_extra, &len, NULL, 0);
5067 	if (error || len != sizeof(tls_extra))
5068 		tls_extra = RTLD_STATIC_TLS_EXTRA_DEFAULT;
5069 	if (tls_extra < RTLD_STATIC_TLS_EXTRA_MIN)
5070 		tls_extra = RTLD_STATIC_TLS_EXTRA_MIN;
5071 	if (tls_extra > RTLD_STATIC_TLS_EXTRA_MAX)
5072 		tls_extra = RTLD_STATIC_TLS_EXTRA_MAX;
5073 	return tls_extra;
5074 }
5075 
5076 /*
5077  * No unresolved symbols for rtld.
5078  */
5079 void
__pthread_cxa_finalize(struct dl_phdr_info * a)5080 __pthread_cxa_finalize(struct dl_phdr_info *a)
5081 {
5082 }
5083 
5084 const char *
rtld_strerror(int errnum)5085 rtld_strerror(int errnum)
5086 {
5087 
5088 	if (errnum < 0 || errnum >= sys_nerr)
5089 		return ("Unknown error");
5090 	return (sys_errlist[errnum]);
5091 }
5092