xref: /netbsd-src/sys/dev/ic/rt2560.c (revision 0706dce3343250f0732e46058a213d1ff1558346)
1 /*	$NetBSD: rt2560.c,v 1.40 2021/12/05 02:47:01 msaitoh Exp $	*/
2 /*	$OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $  */
3 /*	$FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4 
5 /*-
6  * Copyright (c) 2005, 2006
7  *	Damien Bergamini <damien.bergamini@free.fr>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*-
23  * Ralink Technology RT2560 chipset driver
24  * http://www.ralinktech.com/
25  */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.40 2021/12/05 02:47:01 msaitoh Exp $");
28 
29 
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <machine/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/if_ether.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_rssadapt.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/ic/rt2560reg.h>
63 #include <dev/ic/rt2560var.h>
64 
65 #ifdef RAL_DEBUG
66 #define DPRINTF(x)	do { if (rt2560_debug > 0) printf x; } while (0)
67 #define DPRINTFN(n, x)	do { if (rt2560_debug >= (n)) printf x; } while (0)
68 int rt2560_debug = 0;
69 #else
70 #define DPRINTF(x)
71 #define DPRINTFN(n, x)
72 #endif
73 
74 static int	rt2560_alloc_tx_ring(struct rt2560_softc *,
75 		    struct rt2560_tx_ring *, int);
76 static void	rt2560_reset_tx_ring(struct rt2560_softc *,
77 		    struct rt2560_tx_ring *);
78 static void	rt2560_free_tx_ring(struct rt2560_softc *,
79 		    struct rt2560_tx_ring *);
80 static int	rt2560_alloc_rx_ring(struct rt2560_softc *,
81 		    struct rt2560_rx_ring *, int);
82 static void	rt2560_reset_rx_ring(struct rt2560_softc *,
83 		    struct rt2560_rx_ring *);
84 static void	rt2560_free_rx_ring(struct rt2560_softc *,
85 		    struct rt2560_rx_ring *);
86 static struct ieee80211_node *
87 		rt2560_node_alloc(struct ieee80211_node_table *);
88 static int	rt2560_media_change(struct ifnet *);
89 static void	rt2560_next_scan(void *);
90 static void	rt2560_iter_func(void *, struct ieee80211_node *);
91 static void	rt2560_update_rssadapt(void *);
92 static int	rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
93     		    int);
94 static uint16_t	rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
95 static void	rt2560_encryption_intr(struct rt2560_softc *);
96 static void	rt2560_tx_intr(struct rt2560_softc *);
97 static void	rt2560_prio_intr(struct rt2560_softc *);
98 static void	rt2560_decryption_intr(struct rt2560_softc *);
99 static void	rt2560_rx_intr(struct rt2560_softc *);
100 static void	rt2560_beacon_expire(struct rt2560_softc *);
101 static void	rt2560_wakeup_expire(struct rt2560_softc *);
102 static uint8_t	rt2560_rxrate(struct rt2560_rx_desc *);
103 static int	rt2560_ack_rate(struct ieee80211com *, int);
104 static uint16_t	rt2560_txtime(int, int, uint32_t);
105 static uint8_t	rt2560_plcp_signal(int);
106 static void	rt2560_setup_tx_desc(struct rt2560_softc *,
107 		    struct rt2560_tx_desc *, uint32_t, int, int, int,
108 		    bus_addr_t);
109 static int	rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
110 		    struct ieee80211_node *);
111 static int	rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
112 		    struct ieee80211_node *);
113 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
114 		    struct ieee80211_frame *, uint16_t);
115 static int	rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
116 		    struct ieee80211_node *);
117 static void	rt2560_start(struct ifnet *);
118 static void	rt2560_watchdog(struct ifnet *);
119 static int	rt2560_reset(struct ifnet *);
120 static int	rt2560_ioctl(struct ifnet *, u_long, void *);
121 static void	rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
122 static uint8_t	rt2560_bbp_read(struct rt2560_softc *, uint8_t);
123 static void	rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
124 static void	rt2560_set_chan(struct rt2560_softc *,
125 		    struct ieee80211_channel *);
126 static void	rt2560_disable_rf_tune(struct rt2560_softc *);
127 static void	rt2560_enable_tsf_sync(struct rt2560_softc *);
128 static void	rt2560_update_plcp(struct rt2560_softc *);
129 static void	rt2560_update_slot(struct ifnet *);
130 static void	rt2560_set_basicrates(struct rt2560_softc *);
131 static void	rt2560_update_led(struct rt2560_softc *, int, int);
132 static void	rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
133 static void	rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
134 static void	rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
135 static void	rt2560_update_promisc(struct rt2560_softc *);
136 static void	rt2560_set_txantenna(struct rt2560_softc *, int);
137 static void	rt2560_set_rxantenna(struct rt2560_softc *, int);
138 static const char *rt2560_get_rf(int);
139 static void	rt2560_read_eeprom(struct rt2560_softc *);
140 static int	rt2560_bbp_init(struct rt2560_softc *);
141 static int	rt2560_init(struct ifnet *);
142 static void	rt2560_stop(struct ifnet *, int);
143 static void	rt2560_softintr(void *);
144 
145 /*
146  * Default values for MAC registers; values taken from the reference driver.
147  */
148 static const struct {
149 	uint32_t	reg;
150 	uint32_t	val;
151 } rt2560_def_mac[] = {
152 	{ RT2560_PSCSR0,      0x00020002 },
153 	{ RT2560_PSCSR1,      0x00000002 },
154 	{ RT2560_PSCSR2,      0x00020002 },
155 	{ RT2560_PSCSR3,      0x00000002 },
156 	{ RT2560_TIMECSR,     0x00003f21 },
157 	{ RT2560_CSR9,        0x00000780 },
158 	{ RT2560_CSR11,       0x07041483 },
159 	{ RT2560_CNT3,        0x00000000 },
160 	{ RT2560_TXCSR1,      0x07614562 },
161 	{ RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
162 	{ RT2560_ACKPCTCSR,   0x7038140a },
163 	{ RT2560_ARTCSR1,     0x1d21252d },
164 	{ RT2560_ARTCSR2,     0x1919191d },
165 	{ RT2560_RXCSR0,      0xffffffff },
166 	{ RT2560_RXCSR3,      0xb3aab3af },
167 	{ RT2560_PCICSR,      0x000003b8 },
168 	{ RT2560_PWRCSR0,     0x3f3b3100 },
169 	{ RT2560_GPIOCSR,     0x0000ff00 },
170 	{ RT2560_TESTCSR,     0x000000f0 },
171 	{ RT2560_PWRCSR1,     0x000001ff },
172 	{ RT2560_MACCSR0,     0x00213223 },
173 	{ RT2560_MACCSR1,     0x00235518 },
174 	{ RT2560_RLPWCSR,     0x00000040 },
175 	{ RT2560_RALINKCSR,   0x9a009a11 },
176 	{ RT2560_CSR7,        0xffffffff },
177 	{ RT2560_BBPCSR1,     0x82188200 },
178 	{ RT2560_TXACKCSR0,   0x00000020 },
179 	{ RT2560_SECCSR3,     0x0000e78f }
180 };
181 
182 /*
183  * Default values for BBP registers; values taken from the reference driver.
184  */
185 static const struct {
186 	uint8_t	reg;
187 	uint8_t	val;
188 } rt2560_def_bbp[] = {
189 	{  3, 0x02 },
190 	{  4, 0x19 },
191 	{ 14, 0x1c },
192 	{ 15, 0x30 },
193 	{ 16, 0xac },
194 	{ 17, 0x48 },
195 	{ 18, 0x18 },
196 	{ 19, 0xff },
197 	{ 20, 0x1e },
198 	{ 21, 0x08 },
199 	{ 22, 0x08 },
200 	{ 23, 0x08 },
201 	{ 24, 0x80 },
202 	{ 25, 0x50 },
203 	{ 26, 0x08 },
204 	{ 27, 0x23 },
205 	{ 30, 0x10 },
206 	{ 31, 0x2b },
207 	{ 32, 0xb9 },
208 	{ 34, 0x12 },
209 	{ 35, 0x50 },
210 	{ 39, 0xc4 },
211 	{ 40, 0x02 },
212 	{ 41, 0x60 },
213 	{ 53, 0x10 },
214 	{ 54, 0x18 },
215 	{ 56, 0x08 },
216 	{ 57, 0x10 },
217 	{ 58, 0x08 },
218 	{ 61, 0x60 },
219 	{ 62, 0x10 },
220 	{ 75, 0xff }
221 };
222 
223 /*
224  * Default values for RF register R2 indexed by channel numbers; values taken
225  * from the reference driver.
226  */
227 static const uint32_t rt2560_rf2522_r2[] = {
228 	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
229 	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
230 };
231 
232 static const uint32_t rt2560_rf2523_r2[] = {
233 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
234 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
235 };
236 
237 static const uint32_t rt2560_rf2524_r2[] = {
238 	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
239 	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
240 };
241 
242 static const uint32_t rt2560_rf2525_r2[] = {
243 	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
244 	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
245 };
246 
247 static const uint32_t rt2560_rf2525_hi_r2[] = {
248 	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
249 	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
250 };
251 
252 static const uint32_t rt2560_rf2525e_r2[] = {
253 	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
254 	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
255 };
256 
257 static const uint32_t rt2560_rf2526_hi_r2[] = {
258 	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
259 	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
260 };
261 
262 static const uint32_t rt2560_rf2526_r2[] = {
263 	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
264 	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
265 };
266 
267 /*
268  * For dual-band RF, RF registers R1 and R4 also depend on channel number;
269  * values taken from the reference driver.
270  */
271 static const struct {
272 	uint8_t		chan;
273 	uint32_t	r1;
274 	uint32_t	r2;
275 	uint32_t	r4;
276 } rt2560_rf5222[] = {
277 	{   1, 0x08808, 0x0044d, 0x00282 },
278 	{   2, 0x08808, 0x0044e, 0x00282 },
279 	{   3, 0x08808, 0x0044f, 0x00282 },
280 	{   4, 0x08808, 0x00460, 0x00282 },
281 	{   5, 0x08808, 0x00461, 0x00282 },
282 	{   6, 0x08808, 0x00462, 0x00282 },
283 	{   7, 0x08808, 0x00463, 0x00282 },
284 	{   8, 0x08808, 0x00464, 0x00282 },
285 	{   9, 0x08808, 0x00465, 0x00282 },
286 	{  10, 0x08808, 0x00466, 0x00282 },
287 	{  11, 0x08808, 0x00467, 0x00282 },
288 	{  12, 0x08808, 0x00468, 0x00282 },
289 	{  13, 0x08808, 0x00469, 0x00282 },
290 	{  14, 0x08808, 0x0046b, 0x00286 },
291 
292 	{  36, 0x08804, 0x06225, 0x00287 },
293 	{  40, 0x08804, 0x06226, 0x00287 },
294 	{  44, 0x08804, 0x06227, 0x00287 },
295 	{  48, 0x08804, 0x06228, 0x00287 },
296 	{  52, 0x08804, 0x06229, 0x00287 },
297 	{  56, 0x08804, 0x0622a, 0x00287 },
298 	{  60, 0x08804, 0x0622b, 0x00287 },
299 	{  64, 0x08804, 0x0622c, 0x00287 },
300 
301 	{ 100, 0x08804, 0x02200, 0x00283 },
302 	{ 104, 0x08804, 0x02201, 0x00283 },
303 	{ 108, 0x08804, 0x02202, 0x00283 },
304 	{ 112, 0x08804, 0x02203, 0x00283 },
305 	{ 116, 0x08804, 0x02204, 0x00283 },
306 	{ 120, 0x08804, 0x02205, 0x00283 },
307 	{ 124, 0x08804, 0x02206, 0x00283 },
308 	{ 128, 0x08804, 0x02207, 0x00283 },
309 	{ 132, 0x08804, 0x02208, 0x00283 },
310 	{ 136, 0x08804, 0x02209, 0x00283 },
311 	{ 140, 0x08804, 0x0220a, 0x00283 },
312 
313 	{ 149, 0x08808, 0x02429, 0x00281 },
314 	{ 153, 0x08808, 0x0242b, 0x00281 },
315 	{ 157, 0x08808, 0x0242d, 0x00281 },
316 	{ 161, 0x08808, 0x0242f, 0x00281 }
317 };
318 
319 int
rt2560_attach(void * xsc,int id)320 rt2560_attach(void *xsc, int id)
321 {
322 	struct rt2560_softc *sc = xsc;
323 	struct ieee80211com *ic = &sc->sc_ic;
324 	struct ifnet *ifp = &sc->sc_if;
325 	int error, i;
326 
327 	callout_init(&sc->scan_ch, 0);
328 	callout_init(&sc->rssadapt_ch, 0);
329 
330 	/* retrieve RT2560 rev. no */
331 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
332 
333 	/* retrieve MAC address */
334 	rt2560_get_macaddr(sc, ic->ic_myaddr);
335 
336 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
337 	    ether_sprintf(ic->ic_myaddr));
338 
339 	/* retrieve RF rev. no and various other things from EEPROM */
340 	rt2560_read_eeprom(sc);
341 
342 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
343 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
344 
345 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2560_softintr, sc);
346 	if (sc->sc_soft_ih == NULL) {
347 		aprint_error_dev(sc->sc_dev, "could not establish softint\n)");
348 		goto fail0;
349 	}
350 
351 	/*
352 	 * Allocate Tx and Rx rings.
353 	 */
354 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
355 	if (error != 0) {
356 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring\n)");
357 		goto fail1;
358 	}
359 
360 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
361 	if (error != 0) {
362 		aprint_error_dev(sc->sc_dev, "could not allocate ATIM ring\n");
363 		goto fail2;
364 	}
365 
366 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
367 	if (error != 0) {
368 		aprint_error_dev(sc->sc_dev, "could not allocate Prio ring\n");
369 		goto fail3;
370 	}
371 
372 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
373 	if (error != 0) {
374 		aprint_error_dev(sc->sc_dev, "could not allocate Beacon ring\n");
375 		goto fail4;
376 	}
377 
378 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
379 	if (error != 0) {
380 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
381 		goto fail5;
382 	}
383 
384 	ifp->if_softc = sc;
385 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
386 	ifp->if_init = rt2560_init;
387 	ifp->if_stop = rt2560_stop;
388 	ifp->if_ioctl = rt2560_ioctl;
389 	ifp->if_start = rt2560_start;
390 	ifp->if_watchdog = rt2560_watchdog;
391 	IFQ_SET_READY(&ifp->if_snd);
392 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
393 
394 	ic->ic_ifp = ifp;
395 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
396 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
397 	ic->ic_state = IEEE80211_S_INIT;
398 
399 	/* set device capabilities */
400 	ic->ic_caps =
401 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
402 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
403 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
404 	    IEEE80211_C_TXPMGT |	/* tx power management */
405 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
406 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
407 	    IEEE80211_C_WPA;		/* 802.11i */
408 
409 	if (sc->rf_rev == RT2560_RF_5222) {
410 		/* set supported .11a rates */
411 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
412 
413 		/* set supported .11a channels */
414 		for (i = 36; i <= 64; i += 4) {
415 			ic->ic_channels[i].ic_freq =
416 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
417 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
418 		}
419 		for (i = 100; i <= 140; i += 4) {
420 			ic->ic_channels[i].ic_freq =
421 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
422 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
423 		}
424 		for (i = 149; i <= 161; i += 4) {
425 			ic->ic_channels[i].ic_freq =
426 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
427 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
428 		}
429 	}
430 
431 	/* set supported .11b and .11g rates */
432 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
433 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
434 
435 	/* set supported .11b and .11g channels (1 through 14) */
436 	for (i = 1; i <= 14; i++) {
437 		ic->ic_channels[i].ic_freq =
438 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
439 		ic->ic_channels[i].ic_flags =
440 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
441 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
442 	}
443 
444 	if_initialize(ifp);
445 	ieee80211_ifattach(ic);
446 	/* Use common softint-based if_input */
447 	ifp->if_percpuq = if_percpuq_create(ifp);
448 	if_register(ifp);
449 
450 	ic->ic_node_alloc = rt2560_node_alloc;
451 	ic->ic_updateslot = rt2560_update_slot;
452 	ic->ic_reset = rt2560_reset;
453 
454 	/* override state transition machine */
455 	sc->sc_newstate = ic->ic_newstate;
456 	ic->ic_newstate = rt2560_newstate;
457 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
458 
459 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
460 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
461 
462 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
463 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
464 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
465 
466 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
467 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
468 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
469 
470 
471 	sc->dwelltime = 200;
472 
473 	ieee80211_announce(ic);
474 
475 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
476 		pmf_class_network_register(sc->sc_dev, ifp);
477 	else
478 		aprint_error_dev(sc->sc_dev,
479 		    "couldn't establish power handler\n");
480 
481 	return 0;
482 
483 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
484 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
485 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
486 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
487 fail1:	softint_disestablish(sc->sc_soft_ih);
488 	sc->sc_soft_ih = NULL;
489 fail0:	return ENXIO;
490 }
491 
492 
493 int
rt2560_detach(void * xsc)494 rt2560_detach(void *xsc)
495 {
496 	struct rt2560_softc *sc = xsc;
497 	struct ifnet *ifp = &sc->sc_if;
498 
499 	callout_stop(&sc->scan_ch);
500 	callout_stop(&sc->rssadapt_ch);
501 
502 	pmf_device_deregister(sc->sc_dev);
503 
504 	rt2560_stop(ifp, 1);
505 
506 	ieee80211_ifdetach(&sc->sc_ic);	/* free all nodes */
507 	if_detach(ifp);
508 
509 	rt2560_free_tx_ring(sc, &sc->txq);
510 	rt2560_free_tx_ring(sc, &sc->atimq);
511 	rt2560_free_tx_ring(sc, &sc->prioq);
512 	rt2560_free_tx_ring(sc, &sc->bcnq);
513 	rt2560_free_rx_ring(sc, &sc->rxq);
514 
515 	if (sc->sc_soft_ih != NULL) {
516 		softint_disestablish(sc->sc_soft_ih);
517 		sc->sc_soft_ih = NULL;
518 	}
519 
520 	return 0;
521 }
522 
523 int
rt2560_alloc_tx_ring(struct rt2560_softc * sc,struct rt2560_tx_ring * ring,int count)524 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
525     int count)
526 {
527 	int i, nsegs, error;
528 
529 	ring->count = count;
530 	ring->queued = 0;
531 	ring->cur = ring->next = 0;
532 	ring->cur_encrypt = ring->next_encrypt = 0;
533 
534 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
535 	    count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
536 	if (error != 0) {
537 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
538 		goto fail;
539 	}
540 
541 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
542 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
543 	if (error != 0) {
544 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
545 		goto fail;
546 	}
547 
548 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
549 	    count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
550 	    BUS_DMA_NOWAIT);
551 	if (error != 0) {
552 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
553 		goto fail;
554 	}
555 
556 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
557 	    count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
558 	if (error != 0) {
559 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
560 		goto fail;
561 	}
562 
563 	memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
564 	ring->physaddr = ring->map->dm_segs->ds_addr;
565 
566 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
567 	    M_WAITOK | M_ZERO);
568 
569 	for (i = 0; i < count; i++) {
570 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
571 		    RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
572 		    &ring->data[i].map);
573 		if (error != 0) {
574 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
575 			goto fail;
576 		}
577 	}
578 
579 	return 0;
580 
581 fail:	rt2560_free_tx_ring(sc, ring);
582 	return error;
583 }
584 
585 void
rt2560_reset_tx_ring(struct rt2560_softc * sc,struct rt2560_tx_ring * ring)586 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
587 {
588 	struct rt2560_tx_desc *desc;
589 	struct rt2560_tx_data *data;
590 	int i;
591 
592 	for (i = 0; i < ring->count; i++) {
593 		desc = &ring->desc[i];
594 		data = &ring->data[i];
595 
596 		if (data->m != NULL) {
597 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
598 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
599 			bus_dmamap_unload(sc->sc_dmat, data->map);
600 			m_freem(data->m);
601 			data->m = NULL;
602 		}
603 
604 		if (data->ni != NULL) {
605 			ieee80211_free_node(data->ni);
606 			data->ni = NULL;
607 		}
608 
609 		desc->flags = 0;
610 	}
611 
612 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
613 	    BUS_DMASYNC_PREWRITE);
614 
615 	ring->queued = 0;
616 	ring->cur = ring->next = 0;
617 	ring->cur_encrypt = ring->next_encrypt = 0;
618 }
619 
620 void
rt2560_free_tx_ring(struct rt2560_softc * sc,struct rt2560_tx_ring * ring)621 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
622 {
623 	struct rt2560_tx_data *data;
624 	int i;
625 
626 	if (ring->desc != NULL) {
627 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
628 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
629 		bus_dmamap_unload(sc->sc_dmat, ring->map);
630 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
631 		    ring->count * RT2560_TX_DESC_SIZE);
632 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
633 	}
634 
635 	if (ring->data != NULL) {
636 		for (i = 0; i < ring->count; i++) {
637 			data = &ring->data[i];
638 
639 			if (data->m != NULL) {
640 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
641 				    data->map->dm_mapsize,
642 				    BUS_DMASYNC_POSTWRITE);
643 				bus_dmamap_unload(sc->sc_dmat, data->map);
644 				m_freem(data->m);
645 			}
646 
647 			if (data->ni != NULL)
648 				ieee80211_free_node(data->ni);
649 
650 
651 			if (data->map != NULL)
652 				bus_dmamap_destroy(sc->sc_dmat, data->map);
653 		}
654 		free(ring->data, M_DEVBUF);
655 	}
656 }
657 
658 int
rt2560_alloc_rx_ring(struct rt2560_softc * sc,struct rt2560_rx_ring * ring,int count)659 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
660     int count)
661 {
662 	struct rt2560_rx_desc *desc;
663 	struct rt2560_rx_data *data;
664 	int i, nsegs, error;
665 
666 	ring->count = count;
667 	ring->cur = ring->next = 0;
668 	ring->cur_decrypt = 0;
669 
670 	error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
671 	    count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
672 	if (error != 0) {
673 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
674 		goto fail;
675 	}
676 
677 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
678 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
679 	if (error != 0) {
680 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
681 		goto fail;
682 	}
683 
684 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
685 	    count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
686 	    BUS_DMA_NOWAIT);
687 	if (error != 0) {
688 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
689 		goto fail;
690 	}
691 
692 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
693 	    count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
694 	if (error != 0) {
695 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
696 		goto fail;
697 	}
698 
699 	memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
700 	ring->physaddr = ring->map->dm_segs->ds_addr;
701 
702 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
703 	    M_WAITOK | M_ZERO);
704 
705 	/*
706 	 * Pre-allocate Rx buffers and populate Rx ring.
707 	 */
708 	for (i = 0; i < count; i++) {
709 		desc = &sc->rxq.desc[i];
710 		data = &sc->rxq.data[i];
711 
712 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
713 		    0, BUS_DMA_NOWAIT, &data->map);
714 		if (error != 0) {
715 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
716 			goto fail;
717 		}
718 
719 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
720 		if (data->m == NULL) {
721 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
722 			error = ENOMEM;
723 			goto fail;
724 		}
725 
726 		MCLGET(data->m, M_DONTWAIT);
727 		if (!(data->m->m_flags & M_EXT)) {
728 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
729 			error = ENOMEM;
730 			goto fail;
731 		}
732 
733 		error = bus_dmamap_load(sc->sc_dmat, data->map,
734 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
735 		if (error != 0) {
736 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
737 			goto fail;
738 		}
739 
740 		desc->flags = htole32(RT2560_RX_BUSY);
741 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
742 	}
743 
744 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
745 	    BUS_DMASYNC_PREWRITE);
746 
747 	return 0;
748 
749 fail:	rt2560_free_rx_ring(sc, ring);
750 	return error;
751 }
752 
753 void
rt2560_reset_rx_ring(struct rt2560_softc * sc,struct rt2560_rx_ring * ring)754 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
755 {
756 	int i;
757 
758 	for (i = 0; i < ring->count; i++) {
759 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
760 		ring->data[i].drop = 0;
761 	}
762 
763 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
764 	    BUS_DMASYNC_PREWRITE);
765 
766 	ring->cur = ring->next = 0;
767 	ring->cur_decrypt = 0;
768 }
769 
770 void
rt2560_free_rx_ring(struct rt2560_softc * sc,struct rt2560_rx_ring * ring)771 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
772 {
773 	struct rt2560_rx_data *data;
774 	int i;
775 
776 	if (ring->desc != NULL) {
777 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
778 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
779 		bus_dmamap_unload(sc->sc_dmat, ring->map);
780 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
781 		    ring->count * RT2560_RX_DESC_SIZE);
782 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
783 	}
784 
785 	if (ring->data != NULL) {
786 		for (i = 0; i < ring->count; i++) {
787 			data = &ring->data[i];
788 
789 			if (data->m != NULL) {
790 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
791 				    data->map->dm_mapsize,
792 				    BUS_DMASYNC_POSTREAD);
793 				bus_dmamap_unload(sc->sc_dmat, data->map);
794 				m_freem(data->m);
795 			}
796 
797 			if (data->map != NULL)
798 				bus_dmamap_destroy(sc->sc_dmat, data->map);
799 		}
800 		free(ring->data, M_DEVBUF);
801 	}
802 }
803 
804 struct ieee80211_node *
rt2560_node_alloc(struct ieee80211_node_table * nt)805 rt2560_node_alloc(struct ieee80211_node_table *nt)
806 {
807 	struct rt2560_node *rn;
808 
809 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
810 	    M_NOWAIT | M_ZERO);
811 
812 	return (rn != NULL) ? &rn->ni : NULL;
813 }
814 
815 int
rt2560_media_change(struct ifnet * ifp)816 rt2560_media_change(struct ifnet *ifp)
817 {
818 	int error;
819 
820 	error = ieee80211_media_change(ifp);
821 	if (error != ENETRESET)
822 		return error;
823 
824 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
825 		rt2560_init(ifp);
826 
827 	return 0;
828 }
829 
830 /*
831  * This function is called periodically (every 200ms) during scanning to
832  * switch from one channel to another.
833  */
834 void
rt2560_next_scan(void * arg)835 rt2560_next_scan(void *arg)
836 {
837 	struct rt2560_softc *sc = arg;
838 	struct ieee80211com *ic = &sc->sc_ic;
839 	int s;
840 
841 	s = splnet();
842 	if (ic->ic_state == IEEE80211_S_SCAN)
843 		ieee80211_next_scan(ic);
844 	splx(s);
845 }
846 
847 /*
848  * This function is called for each neighbor node.
849  */
850 void
rt2560_iter_func(void * arg,struct ieee80211_node * ni)851 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
852 {
853 	struct rt2560_node *rn = (struct rt2560_node *)ni;
854 
855 	ieee80211_rssadapt_updatestats(&rn->rssadapt);
856 }
857 
858 /*
859  * This function is called periodically (every 100ms) in RUN state to update
860  * the rate adaptation statistics.
861  */
862 void
rt2560_update_rssadapt(void * arg)863 rt2560_update_rssadapt(void *arg)
864 {
865 	struct rt2560_softc *sc = arg;
866 	struct ieee80211com *ic = &sc->sc_ic;
867 	int s;
868 
869 	s = splnet();
870 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
871 
872 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
873 	splx(s);
874 }
875 
876 int
rt2560_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)877 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
878 {
879 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
880 	enum ieee80211_state ostate;
881 	struct ieee80211_node *ni;
882 	struct mbuf *m;
883 	int error = 0;
884 
885 	ostate = ic->ic_state;
886 	callout_stop(&sc->scan_ch);
887 
888 	switch (nstate) {
889 	case IEEE80211_S_INIT:
890 		callout_stop(&sc->rssadapt_ch);
891 
892 		if (ostate == IEEE80211_S_RUN) {
893 			/* abort TSF synchronization */
894 			RAL_WRITE(sc, RT2560_CSR14, 0);
895 
896 			/* turn association led off */
897 			rt2560_update_led(sc, 0, 0);
898 		}
899 		break;
900 
901 	case IEEE80211_S_SCAN:
902 		rt2560_set_chan(sc, ic->ic_curchan);
903 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
904 		    rt2560_next_scan, sc);
905 		break;
906 
907 	case IEEE80211_S_AUTH:
908 		rt2560_set_chan(sc, ic->ic_curchan);
909 		break;
910 
911 	case IEEE80211_S_ASSOC:
912 		rt2560_set_chan(sc, ic->ic_curchan);
913 		break;
914 
915 	case IEEE80211_S_RUN:
916 		rt2560_set_chan(sc, ic->ic_curchan);
917 
918 		ni = ic->ic_bss;
919 
920 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
921 			rt2560_update_plcp(sc);
922 			rt2560_set_basicrates(sc);
923 			rt2560_set_bssid(sc, ni->ni_bssid);
924 		}
925 
926 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
927 		    ic->ic_opmode == IEEE80211_M_IBSS) {
928 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
929 			if (m == NULL) {
930 				aprint_error_dev(sc->sc_dev, "could not allocate beacon\n");
931 				error = ENOBUFS;
932 				break;
933 			}
934 
935 			ieee80211_ref_node(ni);
936 			error = rt2560_tx_bcn(sc, m, ni);
937 			if (error != 0)
938 				break;
939 		}
940 
941 		/* turn association led on */
942 		rt2560_update_led(sc, 1, 0);
943 
944 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
945 			callout_reset(&sc->rssadapt_ch, hz / 10,
946 			    rt2560_update_rssadapt, sc);
947 			rt2560_enable_tsf_sync(sc);
948 		}
949 		break;
950 	}
951 
952 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
953 }
954 
955 /*
956  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
957  * 93C66).
958  */
959 uint16_t
rt2560_eeprom_read(struct rt2560_softc * sc,uint8_t addr)960 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
961 {
962 	uint32_t tmp;
963 	uint16_t val;
964 	int n;
965 
966 	/* clock C once before the first command */
967 	RT2560_EEPROM_CTL(sc, 0);
968 
969 	RT2560_EEPROM_CTL(sc, RT2560_S);
970 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
971 	RT2560_EEPROM_CTL(sc, RT2560_S);
972 
973 	/* write start bit (1) */
974 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
975 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
976 
977 	/* write READ opcode (10) */
978 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
979 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
980 	RT2560_EEPROM_CTL(sc, RT2560_S);
981 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
982 
983 	/* write address (A5-A0 or A7-A0) */
984 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
985 	for (; n >= 0; n--) {
986 		RT2560_EEPROM_CTL(sc, RT2560_S |
987 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
988 		RT2560_EEPROM_CTL(sc, RT2560_S |
989 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
990 	}
991 
992 	RT2560_EEPROM_CTL(sc, RT2560_S);
993 
994 	/* read data Q15-Q0 */
995 	val = 0;
996 	for (n = 15; n >= 0; n--) {
997 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
998 		tmp = RAL_READ(sc, RT2560_CSR21);
999 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1000 		RT2560_EEPROM_CTL(sc, RT2560_S);
1001 	}
1002 
1003 	RT2560_EEPROM_CTL(sc, 0);
1004 
1005 	/* clear Chip Select and clock C */
1006 	RT2560_EEPROM_CTL(sc, RT2560_S);
1007 	RT2560_EEPROM_CTL(sc, 0);
1008 	RT2560_EEPROM_CTL(sc, RT2560_C);
1009 
1010 	return val;
1011 }
1012 
1013 /*
1014  * Some frames were processed by the hardware cipher engine and are ready for
1015  * transmission.
1016  */
1017 void
rt2560_encryption_intr(struct rt2560_softc * sc)1018 rt2560_encryption_intr(struct rt2560_softc *sc)
1019 {
1020 	struct rt2560_tx_desc *desc;
1021 	int hw;
1022 
1023 	/* retrieve last descriptor index processed by cipher engine */
1024 	hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1025 	    RT2560_TX_DESC_SIZE;
1026 
1027 	for (; sc->txq.next_encrypt != hw;) {
1028 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1029 
1030 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1031 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1032 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1033 
1034 		if (le32toh(desc->flags) &
1035 		    (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1036 			break;
1037 
1038 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1039 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1040 		    RT2560_TX_CIPHER_TKIP)
1041 			desc->eiv = bswap32(desc->eiv);
1042 
1043 		/* mark the frame ready for transmission */
1044 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1045 
1046 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1047 		    sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1048 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1049 
1050 		DPRINTFN(15, ("encryption done idx=%u\n",
1051 		    sc->txq.next_encrypt));
1052 
1053 		sc->txq.next_encrypt =
1054 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1055 	}
1056 
1057 	/* kick Tx */
1058 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1059 }
1060 
1061 void
rt2560_tx_intr(struct rt2560_softc * sc)1062 rt2560_tx_intr(struct rt2560_softc *sc)
1063 {
1064 	struct ieee80211com *ic = &sc->sc_ic;
1065 	struct ifnet *ifp = ic->ic_ifp;
1066 	struct rt2560_tx_desc *desc;
1067 	struct rt2560_tx_data *data;
1068 	struct rt2560_node *rn;
1069 	int s;
1070 
1071 	s = splnet();
1072 
1073 	for (;;) {
1074 		desc = &sc->txq.desc[sc->txq.next];
1075 		data = &sc->txq.data[sc->txq.next];
1076 
1077 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1078 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1079 		    BUS_DMASYNC_POSTREAD);
1080 
1081 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1082 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1083 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1084 			break;
1085 
1086 		rn = (struct rt2560_node *)data->ni;
1087 
1088 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1089 		case RT2560_TX_SUCCESS:
1090 			DPRINTFN(10, ("data frame sent successfully\n"));
1091 			if (data->id.id_node != NULL) {
1092 				ieee80211_rssadapt_raise_rate(ic,
1093 				    &rn->rssadapt, &data->id);
1094 			}
1095 			if_statinc(ifp, if_opackets);
1096 			break;
1097 
1098 		case RT2560_TX_SUCCESS_RETRY:
1099 			DPRINTFN(9, ("data frame sent after %u retries\n",
1100 			    (le32toh(desc->flags) >> 5) & 0x7));
1101 			if_statinc(ifp, if_opackets);
1102 			break;
1103 
1104 		case RT2560_TX_FAIL_RETRY:
1105 			DPRINTFN(9, ("sending data frame failed (too much "
1106 			    "retries)\n"));
1107 			if (data->id.id_node != NULL) {
1108 				ieee80211_rssadapt_lower_rate(ic, data->ni,
1109 				    &rn->rssadapt, &data->id);
1110 			}
1111 			if_statinc(ifp, if_oerrors);
1112 			break;
1113 
1114 		case RT2560_TX_FAIL_INVALID:
1115 		case RT2560_TX_FAIL_OTHER:
1116 		default:
1117 			aprint_error_dev(sc->sc_dev,
1118 			    "sending data frame failed 0x%08x\n",
1119 			    le32toh(desc->flags));
1120 			if_statinc(ifp, if_oerrors);
1121 		}
1122 
1123 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1124 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1125 		bus_dmamap_unload(sc->sc_dmat, data->map);
1126 		m_freem(data->m);
1127 		data->m = NULL;
1128 		ieee80211_free_node(data->ni);
1129 		data->ni = NULL;
1130 
1131 		/* descriptor is no longer valid */
1132 		desc->flags &= ~htole32(RT2560_TX_VALID);
1133 
1134 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1135 		    sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1136 		    BUS_DMASYNC_PREWRITE);
1137 
1138 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1139 
1140 		sc->txq.queued--;
1141 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1142 	}
1143 
1144 	sc->sc_tx_timer = 0;
1145 	ifp->if_flags &= ~IFF_OACTIVE;
1146 	rt2560_start(ifp); /* in softint */
1147 
1148 	splx(s);
1149 }
1150 
1151 void
rt2560_prio_intr(struct rt2560_softc * sc)1152 rt2560_prio_intr(struct rt2560_softc *sc)
1153 {
1154 	struct ieee80211com *ic = &sc->sc_ic;
1155 	struct ifnet *ifp = ic->ic_ifp;
1156 	struct rt2560_tx_desc *desc;
1157 	struct rt2560_tx_data *data;
1158 	int s;
1159 
1160 	s = splnet();
1161 
1162 	for (;;) {
1163 		desc = &sc->prioq.desc[sc->prioq.next];
1164 		data = &sc->prioq.data[sc->prioq.next];
1165 
1166 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1167 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1168 		    BUS_DMASYNC_POSTREAD);
1169 
1170 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1171 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1172 			break;
1173 
1174 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1175 		case RT2560_TX_SUCCESS:
1176 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1177 			break;
1178 
1179 		case RT2560_TX_SUCCESS_RETRY:
1180 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1181 			    (le32toh(desc->flags) >> 5) & 0x7));
1182 			break;
1183 
1184 		case RT2560_TX_FAIL_RETRY:
1185 			DPRINTFN(9, ("sending mgt frame failed (too much "
1186 			    "retries)\n"));
1187 			break;
1188 
1189 		case RT2560_TX_FAIL_INVALID:
1190 		case RT2560_TX_FAIL_OTHER:
1191 		default:
1192 			aprint_error_dev(sc->sc_dev, "sending mgt frame failed 0x%08x\n",
1193 			    le32toh(desc->flags));
1194 		}
1195 
1196 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1197 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1198 		bus_dmamap_unload(sc->sc_dmat, data->map);
1199 		m_freem(data->m);
1200 		data->m = NULL;
1201 		ieee80211_free_node(data->ni);
1202 		data->ni = NULL;
1203 
1204 		/* descriptor is no longer valid */
1205 		desc->flags &= ~htole32(RT2560_TX_VALID);
1206 
1207 		bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1208 		    sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1209 		    BUS_DMASYNC_PREWRITE);
1210 
1211 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1212 
1213 		sc->prioq.queued--;
1214 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1215 	}
1216 
1217 	sc->sc_tx_timer = 0;
1218 	ifp->if_flags &= ~IFF_OACTIVE;
1219 	rt2560_start(ifp); /* in softint */
1220 
1221 	splx(s);
1222 }
1223 
1224 /*
1225  * Some frames were processed by the hardware cipher engine and are ready for
1226  * transmission to the IEEE802.11 layer.
1227  */
1228 void
rt2560_decryption_intr(struct rt2560_softc * sc)1229 rt2560_decryption_intr(struct rt2560_softc *sc)
1230 {
1231 	struct ieee80211com *ic = &sc->sc_ic;
1232 	struct ifnet *ifp = ic->ic_ifp;
1233 	struct rt2560_rx_desc *desc;
1234 	struct rt2560_rx_data *data;
1235 	struct rt2560_node *rn;
1236 	struct ieee80211_frame *wh;
1237 	struct ieee80211_node *ni;
1238 	struct mbuf *mnew, *m;
1239 	int hw, error, s;
1240 
1241 	/* retrieve last descriptor index processed by cipher engine */
1242 	hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1243 	    RT2560_RX_DESC_SIZE;
1244 
1245 	for (; sc->rxq.cur_decrypt != hw;) {
1246 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1247 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1248 
1249 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1250 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1251 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1252 
1253 		if (le32toh(desc->flags) &
1254 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1255 			break;
1256 
1257 		if (data->drop) {
1258 			if_statinc(ifp, if_ierrors);
1259 			goto skip;
1260 		}
1261 
1262 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1263 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1264 			if_statinc(ifp, if_ierrors);
1265 			goto skip;
1266 		}
1267 
1268 		/*
1269 		 * Try to allocate a new mbuf for this ring element and load it
1270 		 * before processing the current mbuf.  If the ring element
1271 		 * cannot be loaded, drop the received packet and reuse the old
1272 		 * mbuf.  In the unlikely case that the old mbuf can't be
1273 		 * reloaded either, explicitly panic.
1274 		 */
1275 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1276 		if (mnew == NULL) {
1277 			if_statinc(ifp, if_ierrors);
1278 			goto skip;
1279 		}
1280 
1281 		MCLGET(mnew, M_DONTWAIT);
1282 		if (!(mnew->m_flags & M_EXT)) {
1283 			m_freem(mnew);
1284 			if_statinc(ifp, if_ierrors);
1285 			goto skip;
1286 		}
1287 
1288 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1289 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1290 		bus_dmamap_unload(sc->sc_dmat, data->map);
1291 
1292 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1293 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1294 		if (error != 0) {
1295 			m_freem(mnew);
1296 
1297 			/* try to reload the old mbuf */
1298 			error = bus_dmamap_load(sc->sc_dmat, data->map,
1299 			    mtod(data->m, void *), MCLBYTES, NULL,
1300 			    BUS_DMA_NOWAIT);
1301 			if (error != 0) {
1302 				/* very unlikely that it will fail... */
1303 				panic("%s: could not load old rx mbuf",
1304 				    device_xname(sc->sc_dev));
1305 			}
1306 			/* physical address may have changed */
1307 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1308 			if_statinc(ifp, if_ierrors);
1309 			goto skip;
1310 		}
1311 
1312 		/*
1313 		 * New mbuf successfully loaded, update Rx ring and continue
1314 		 * processing.
1315 		 */
1316 		m = data->m;
1317 		data->m = mnew;
1318 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1319 
1320 		/* finalize mbuf */
1321 		m_set_rcvif(m, ifp);
1322 		m->m_pkthdr.len = m->m_len =
1323 		    (le32toh(desc->flags) >> 16) & 0xfff;
1324 
1325 		s = splnet();
1326 
1327 		if (sc->sc_drvbpf != NULL) {
1328 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1329 			uint32_t tsf_lo, tsf_hi;
1330 
1331 			/* get timestamp (low and high 32 bits) */
1332 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1333 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1334 
1335 			tap->wr_tsf =
1336 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1337 			tap->wr_flags = 0;
1338 			tap->wr_rate = rt2560_rxrate(desc);
1339 			tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1340 			tap->wr_chan_flags =
1341 			    htole16(ic->ic_ibss_chan->ic_flags);
1342 			tap->wr_antenna = sc->rx_ant;
1343 			tap->wr_antsignal = desc->rssi;
1344 
1345 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m,
1346 			    BPF_D_IN);
1347 		}
1348 
1349 		wh = mtod(m, struct ieee80211_frame *);
1350 		ni = ieee80211_find_rxnode(ic,
1351 		    (struct ieee80211_frame_min *)wh);
1352 
1353 		/* send the frame to the 802.11 layer */
1354 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1355 
1356 		/* give rssi to the rate adatation algorithm */
1357 		rn = (struct rt2560_node *)ni;
1358 		ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1359 
1360 		/* node is no longer needed */
1361 		ieee80211_free_node(ni);
1362 
1363 		splx(s);
1364 
1365 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1366 
1367 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1368 		    sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1369 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1370 
1371 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1372 
1373 		sc->rxq.cur_decrypt =
1374 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1375 	}
1376 
1377 	/*
1378 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1379 	 * without calling if_start().
1380 	 */
1381 	s = splnet();
1382 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1383 		rt2560_start(ifp);
1384 	splx(s);
1385 }
1386 
1387 /*
1388  * Some frames were received. Pass them to the hardware cipher engine before
1389  * sending them to the 802.11 layer.
1390  */
1391 void
rt2560_rx_intr(struct rt2560_softc * sc)1392 rt2560_rx_intr(struct rt2560_softc *sc)
1393 {
1394 	struct rt2560_rx_desc *desc;
1395 	struct rt2560_rx_data *data;
1396 
1397 	for (;;) {
1398 		desc = &sc->rxq.desc[sc->rxq.cur];
1399 		data = &sc->rxq.data[sc->rxq.cur];
1400 
1401 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1402 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1403 		    BUS_DMASYNC_POSTREAD);
1404 
1405 		if (le32toh(desc->flags) &
1406 		    (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1407 			break;
1408 
1409 		data->drop = 0;
1410 
1411 		if (le32toh(desc->flags) &
1412 		    (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1413 			/*
1414 			 * This should not happen since we did not request
1415 			 * to receive those frames when we filled RXCSR0.
1416 			 */
1417 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1418 			    le32toh(desc->flags)));
1419 			data->drop = 1;
1420 		}
1421 
1422 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1423 			DPRINTFN(5, ("bad length\n"));
1424 			data->drop = 1;
1425 		}
1426 
1427 		/* mark the frame for decryption */
1428 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1429 
1430 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1431 		    sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1432 		    BUS_DMASYNC_PREWRITE);
1433 
1434 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1435 
1436 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1437 	}
1438 
1439 	/* kick decrypt */
1440 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1441 }
1442 
1443 /*
1444  * This function is called periodically in IBSS mode when a new beacon must be
1445  * sent out.
1446  */
1447 static void
rt2560_beacon_expire(struct rt2560_softc * sc)1448 rt2560_beacon_expire(struct rt2560_softc *sc)
1449 {
1450 	struct ieee80211com *ic = &sc->sc_ic;
1451 	struct rt2560_tx_data *data;
1452 
1453 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1454 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1455 		return;
1456 
1457 	data = &sc->bcnq.data[sc->bcnq.next];
1458 
1459 	bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1460 	    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1461 	bus_dmamap_unload(sc->sc_dmat, data->map);
1462 
1463 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1464 
1465 	bpf_mtap3(ic->ic_rawbpf, data->m, BPF_D_OUT);
1466 	rt2560_tx_bcn(sc, data->m, data->ni);
1467 
1468 	DPRINTFN(15, ("beacon expired\n"));
1469 
1470 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1471 }
1472 
1473 static void
rt2560_wakeup_expire(struct rt2560_softc * sc)1474 rt2560_wakeup_expire(struct rt2560_softc *sc)
1475 {
1476 	DPRINTFN(15, ("wakeup expired\n"));
1477 }
1478 
1479 int
rt2560_intr(void * arg)1480 rt2560_intr(void *arg)
1481 {
1482 	struct rt2560_softc *sc = arg;
1483 	struct ifnet *ifp = &sc->sc_if;
1484 	uint32_t r;
1485 
1486 	if (!device_is_active(sc->sc_dev))
1487 		return 0;
1488 
1489 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1490 		return 0;       /* not for us */
1491 
1492 	/* disable interrupts */
1493 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1494 
1495 	/* don't re-enable interrupts if we're shutting down */
1496 	if (!(ifp->if_flags & IFF_RUNNING))
1497 		return 0;
1498 
1499 	softint_schedule(sc->sc_soft_ih);
1500 	return 1;
1501 }
1502 
1503 static void
rt2560_softintr(void * arg)1504 rt2560_softintr(void *arg)
1505 {
1506 	struct rt2560_softc *sc = arg;
1507 	struct ifnet *ifp = &sc->sc_if;
1508 	uint32_t r;
1509 
1510 	if (!device_is_active(sc->sc_dev) || !(ifp->if_flags & IFF_RUNNING))
1511 		return;
1512 
1513 	if ((r = RAL_READ(sc, RT2560_CSR7)) == 0)
1514 		goto out;
1515 
1516 	/* acknowledge interrupts */
1517 	RAL_WRITE(sc, RT2560_CSR7, r);
1518 
1519 	if (r & RT2560_BEACON_EXPIRE)
1520 		rt2560_beacon_expire(sc);
1521 
1522 	if (r & RT2560_WAKEUP_EXPIRE)
1523 		rt2560_wakeup_expire(sc);
1524 
1525 	if (r & RT2560_ENCRYPTION_DONE)
1526 		rt2560_encryption_intr(sc);
1527 
1528 	if (r & RT2560_TX_DONE)
1529 		rt2560_tx_intr(sc);
1530 
1531 	if (r & RT2560_PRIO_DONE)
1532 		rt2560_prio_intr(sc);
1533 
1534 	if (r & RT2560_DECRYPTION_DONE)
1535 		rt2560_decryption_intr(sc);
1536 
1537 	if (r & RT2560_RX_DONE)
1538 		rt2560_rx_intr(sc);
1539 
1540 out:
1541 	/* re-enable interrupts */
1542 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1543 }
1544 
1545 /* quickly determine if a given rate is CCK or OFDM */
1546 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1547 
1548 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1549 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1550 
1551 #define RAL_SIFS		10	/* us */
1552 
1553 #define RT2560_RXTX_TURNAROUND	10	/* us */
1554 
1555 /*
1556  * This function is only used by the Rx radiotap code. It returns the rate at
1557  * which a given frame was received.
1558  */
1559 static uint8_t
rt2560_rxrate(struct rt2560_rx_desc * desc)1560 rt2560_rxrate(struct rt2560_rx_desc *desc)
1561 {
1562 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1563 		/* reverse function of rt2560_plcp_signal */
1564 		switch (desc->rate) {
1565 		case 0xb:	return 12;
1566 		case 0xf:	return 18;
1567 		case 0xa:	return 24;
1568 		case 0xe:	return 36;
1569 		case 0x9:	return 48;
1570 		case 0xd:	return 72;
1571 		case 0x8:	return 96;
1572 		case 0xc:	return 108;
1573 		}
1574 	} else {
1575 		if (desc->rate == 10)
1576 			return 2;
1577 		if (desc->rate == 20)
1578 			return 4;
1579 		if (desc->rate == 55)
1580 			return 11;
1581 		if (desc->rate == 110)
1582 			return 22;
1583 	}
1584 	return 2;	/* should not get there */
1585 }
1586 
1587 /*
1588  * Return the expected ack rate for a frame transmitted at rate `rate'.
1589  * XXX: this should depend on the destination node basic rate set.
1590  */
1591 static int
rt2560_ack_rate(struct ieee80211com * ic,int rate)1592 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1593 {
1594 	switch (rate) {
1595 	/* CCK rates */
1596 	case 2:
1597 		return 2;
1598 	case 4:
1599 	case 11:
1600 	case 22:
1601 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1602 
1603 	/* OFDM rates */
1604 	case 12:
1605 	case 18:
1606 		return 12;
1607 	case 24:
1608 	case 36:
1609 		return 24;
1610 	case 48:
1611 	case 72:
1612 	case 96:
1613 	case 108:
1614 		return 48;
1615 	}
1616 
1617 	/* default to 1Mbps */
1618 	return 2;
1619 }
1620 
1621 /*
1622  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1623  * The function automatically determines the operating mode depending on the
1624  * given rate. `flags' indicates whether short preamble is in use or not.
1625  */
1626 static uint16_t
rt2560_txtime(int len,int rate,uint32_t flags)1627 rt2560_txtime(int len, int rate, uint32_t flags)
1628 {
1629 	uint16_t txtime;
1630 
1631 	if (RAL_RATE_IS_OFDM(rate)) {
1632 		/* IEEE Std 802.11a-1999, pp. 37 */
1633 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1634 		txtime = 16 + 4 + 4 * txtime + 6;
1635 	} else {
1636 		/* IEEE Std 802.11b-1999, pp. 28 */
1637 		txtime = (16 * len + rate - 1) / rate;
1638 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1639 			txtime +=  72 + 24;
1640 		else
1641 			txtime += 144 + 48;
1642 	}
1643 	return txtime;
1644 }
1645 
1646 static uint8_t
rt2560_plcp_signal(int rate)1647 rt2560_plcp_signal(int rate)
1648 {
1649 	switch (rate) {
1650 	/* CCK rates (returned values are device-dependent) */
1651 	case 2:		return 0x0;
1652 	case 4:		return 0x1;
1653 	case 11:	return 0x2;
1654 	case 22:	return 0x3;
1655 
1656 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1657 	case 12:	return 0xb;
1658 	case 18:	return 0xf;
1659 	case 24:	return 0xa;
1660 	case 36:	return 0xe;
1661 	case 48:	return 0x9;
1662 	case 72:	return 0xd;
1663 	case 96:	return 0x8;
1664 	case 108:	return 0xc;
1665 
1666 	/* unsupported rates (should not get there) */
1667 	default:	return 0xff;
1668 	}
1669 }
1670 
1671 static void
rt2560_setup_tx_desc(struct rt2560_softc * sc,struct rt2560_tx_desc * desc,uint32_t flags,int len,int rate,int encrypt,bus_addr_t physaddr)1672 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1673     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1674 {
1675 	struct ieee80211com *ic = &sc->sc_ic;
1676 	uint16_t plcp_length;
1677 	int remainder;
1678 
1679 	desc->flags = htole32(flags);
1680 	desc->flags |= htole32(len << 16);
1681 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1682 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1683 
1684 	desc->physaddr = htole32(physaddr);
1685 	desc->wme = htole16(
1686 	    RT2560_AIFSN(2) |
1687 	    RT2560_LOGCWMIN(3) |
1688 	    RT2560_LOGCWMAX(8));
1689 
1690 	/* setup PLCP fields */
1691 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1692 	desc->plcp_service = 4;
1693 
1694 	len += IEEE80211_CRC_LEN;
1695 	if (RAL_RATE_IS_OFDM(rate)) {
1696 		desc->flags |= htole32(RT2560_TX_OFDM);
1697 
1698 		plcp_length = len & 0xfff;
1699 		desc->plcp_length_hi = plcp_length >> 6;
1700 		desc->plcp_length_lo = plcp_length & 0x3f;
1701 	} else {
1702 		plcp_length = (16 * len + rate - 1) / rate;
1703 		if (rate == 22) {
1704 			remainder = (16 * len) % 22;
1705 			if (remainder != 0 && remainder < 7)
1706 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1707 		}
1708 		desc->plcp_length_hi = plcp_length >> 8;
1709 		desc->plcp_length_lo = plcp_length & 0xff;
1710 
1711 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1712 			desc->plcp_signal |= 0x08;
1713 	}
1714 }
1715 
1716 static int
rt2560_tx_bcn(struct rt2560_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1717 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1718     struct ieee80211_node *ni)
1719 {
1720 	struct rt2560_tx_desc *desc;
1721 	struct rt2560_tx_data *data;
1722 	int rate, error;
1723 
1724 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1725 	data = &sc->bcnq.data[sc->bcnq.cur];
1726 
1727 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1728 
1729 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1730 	    BUS_DMA_NOWAIT);
1731 	if (error != 0) {
1732 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1733 		    error);
1734 		m_freem(m0);
1735 		return error;
1736 	}
1737 
1738 	data->m = m0;
1739 	data->ni = ni;
1740 
1741 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1742 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1743 	    data->map->dm_segs->ds_addr);
1744 
1745 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1746 	    BUS_DMASYNC_PREWRITE);
1747 	bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1748 	    sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1749 	    BUS_DMASYNC_PREWRITE);
1750 
1751 	return 0;
1752 }
1753 
1754 static int
rt2560_tx_mgt(struct rt2560_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1755 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1756     struct ieee80211_node *ni)
1757 {
1758 	struct ieee80211com *ic = &sc->sc_ic;
1759 	struct rt2560_tx_desc *desc;
1760 	struct rt2560_tx_data *data;
1761 	struct ieee80211_frame *wh;
1762 	struct ieee80211_key *k;
1763 	uint16_t dur;
1764 	uint32_t flags = 0;
1765 	int rate, error;
1766 
1767 	desc = &sc->prioq.desc[sc->prioq.cur];
1768 	data = &sc->prioq.data[sc->prioq.cur];
1769 
1770 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1771 
1772 	wh = mtod(m0, struct ieee80211_frame *);
1773 
1774 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1775 		k = ieee80211_crypto_encap(ic, ni, m0);
1776 		if (k == NULL) {
1777 			m_freem(m0);
1778 			return ENOBUFS;
1779 		}
1780 
1781 		/* packet header may have moved, reset our local pointer */
1782 		wh = mtod(m0, struct ieee80211_frame *);
1783 	}
1784 
1785 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1786 	    BUS_DMA_NOWAIT);
1787 	if (error != 0) {
1788 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1789 		    error);
1790 		m_freem(m0);
1791 		return error;
1792 	}
1793 
1794 	if (sc->sc_drvbpf != NULL) {
1795 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1796 
1797 		tap->wt_flags = 0;
1798 		tap->wt_rate = rate;
1799 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1800 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1801 		tap->wt_antenna = sc->tx_ant;
1802 
1803 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1804 	}
1805 
1806 	data->m = m0;
1807 	data->ni = ni;
1808 
1809 	wh = mtod(m0, struct ieee80211_frame *);
1810 
1811 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1812 		flags |= RT2560_TX_ACK;
1813 
1814 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1815 		    RAL_SIFS;
1816 		*(uint16_t *)wh->i_dur = htole16(dur);
1817 
1818 		/* tell hardware to add timestamp for probe responses */
1819 		if ((wh->i_fc[0] &
1820 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1821 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1822 			flags |= RT2560_TX_TIMESTAMP;
1823 	}
1824 
1825 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1826 	    data->map->dm_segs->ds_addr);
1827 
1828 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1829 	    BUS_DMASYNC_PREWRITE);
1830 	bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1831 	    sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1832 	    BUS_DMASYNC_PREWRITE);
1833 
1834 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1835 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1836 
1837 	/* kick prio */
1838 	sc->prioq.queued++;
1839 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1840 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1841 
1842 	return 0;
1843 }
1844 
1845 /*
1846  * Build a RTS control frame.
1847  */
1848 static struct mbuf *
rt2560_get_rts(struct rt2560_softc * sc,struct ieee80211_frame * wh,uint16_t dur)1849 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1850     uint16_t dur)
1851 {
1852 	struct ieee80211_frame_rts *rts;
1853 	struct mbuf *m;
1854 
1855 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1856 	if (m == NULL) {
1857 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1858 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1859 		return NULL;
1860 	}
1861 
1862 	rts = mtod(m, struct ieee80211_frame_rts *);
1863 
1864 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1865 	    IEEE80211_FC0_SUBTYPE_RTS;
1866 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1867 	*(uint16_t *)rts->i_dur = htole16(dur);
1868 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1869 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1870 
1871 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1872 
1873 	return m;
1874 }
1875 
1876 static int
rt2560_tx_data(struct rt2560_softc * sc,struct mbuf * m0,struct ieee80211_node * ni)1877 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1878     struct ieee80211_node *ni)
1879 {
1880 	struct ieee80211com *ic = &sc->sc_ic;
1881 	struct rt2560_tx_desc *desc;
1882 	struct rt2560_tx_data *data;
1883 	struct rt2560_node *rn;
1884 	struct ieee80211_rateset *rs;
1885 	struct ieee80211_frame *wh;
1886 	struct ieee80211_key *k;
1887 	struct mbuf *mnew;
1888 	uint16_t dur;
1889 	uint32_t flags = 0;
1890 	int rate, error;
1891 
1892 	wh = mtod(m0, struct ieee80211_frame *);
1893 
1894 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1895 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1896 		rate = rs->rs_rates[ic->ic_fixed_rate];
1897 	} else {
1898 		rs = &ni->ni_rates;
1899 		rn = (struct rt2560_node *)ni;
1900 		ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1901 		    wh, m0->m_pkthdr.len, -1, NULL, 0);
1902 		rate = rs->rs_rates[ni->ni_txrate];
1903 	}
1904 	rate &= IEEE80211_RATE_VAL;
1905 
1906 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1907 		k = ieee80211_crypto_encap(ic, ni, m0);
1908 		if (k == NULL) {
1909 			m_freem(m0);
1910 			return ENOBUFS;
1911 		}
1912 
1913 		/* packet header may have moved, reset our local pointer */
1914 		wh = mtod(m0, struct ieee80211_frame *);
1915 	}
1916 
1917 	/*
1918 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1919 	 * for directed frames only when the length of the MPDU is greater
1920 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1921 	 */
1922 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1923 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1924 		struct mbuf *m;
1925 		int rtsrate, ackrate;
1926 
1927 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1928 		ackrate = rt2560_ack_rate(ic, rate);
1929 
1930 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1931 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1932 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1933 		      3 * RAL_SIFS;
1934 
1935 		m = rt2560_get_rts(sc, wh, dur);
1936 
1937 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1938 		data = &sc->txq.data[sc->txq.cur_encrypt];
1939 
1940 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1941 		    BUS_DMA_NOWAIT);
1942 		if (error != 0) {
1943 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1944 			    error);
1945 			m_freem(m);
1946 			m_freem(m0);
1947 			return error;
1948 		}
1949 
1950 		/* avoid multiple free() of the same node for each fragment */
1951 		ieee80211_ref_node(ni);
1952 
1953 		data->m = m;
1954 		data->ni = ni;
1955 
1956 		/* RTS frames are not taken into account for rssadapt */
1957 		data->id.id_node = NULL;
1958 
1959 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1960 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1961 		    data->map->dm_segs->ds_addr);
1962 
1963 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1964 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1965 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1966 		    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1967 		    RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1968 
1969 		sc->txq.queued++;
1970 		sc->txq.cur_encrypt =
1971 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1972 
1973 		/*
1974 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1975 		 * asynchronous data frame shall be transmitted after the CTS
1976 		 * frame and a SIFS period.
1977 		 */
1978 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1979 	}
1980 
1981 	data = &sc->txq.data[sc->txq.cur_encrypt];
1982 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1983 
1984 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1985 	    BUS_DMA_NOWAIT);
1986 	if (error != 0 && error != EFBIG) {
1987 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1988 		    error);
1989 		m_freem(m0);
1990 		return error;
1991 	}
1992 	if (error != 0) {
1993 		/* too many fragments, linearize */
1994 
1995 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1996 		if (mnew == NULL) {
1997 			m_freem(m0);
1998 			return ENOMEM;
1999 		}
2000 
2001 		m_copy_pkthdr(mnew, m0);
2002 		if (m0->m_pkthdr.len > MHLEN) {
2003 			MCLGET(mnew, M_DONTWAIT);
2004 			if (!(mnew->m_flags & M_EXT)) {
2005 				m_freem(m0);
2006 				m_freem(mnew);
2007 				return ENOMEM;
2008 			}
2009 		}
2010 
2011 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2012 		m_freem(m0);
2013 		mnew->m_len = mnew->m_pkthdr.len;
2014 		m0 = mnew;
2015 
2016 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2017 		    BUS_DMA_NOWAIT);
2018 		if (error != 0) {
2019 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2020 			    error);
2021 			m_freem(m0);
2022 			return error;
2023 		}
2024 
2025 		/* packet header have moved, reset our local pointer */
2026 		wh = mtod(m0, struct ieee80211_frame *);
2027 	}
2028 
2029 	if (sc->sc_drvbpf != NULL) {
2030 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2031 
2032 		tap->wt_flags = 0;
2033 		tap->wt_rate = rate;
2034 		tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2035 		tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2036 		tap->wt_antenna = sc->tx_ant;
2037 
2038 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
2039 	}
2040 
2041 	data->m = m0;
2042 	data->ni = ni;
2043 
2044 	/* remember link conditions for rate adaptation algorithm */
2045 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2046 		data->id.id_len = m0->m_pkthdr.len;
2047 		data->id.id_rateidx = ni->ni_txrate;
2048 		data->id.id_node = ni;
2049 		data->id.id_rssi = ni->ni_rssi;
2050 	} else
2051 		data->id.id_node = NULL;
2052 
2053 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2054 		flags |= RT2560_TX_ACK;
2055 
2056 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2057 		    ic->ic_flags) + RAL_SIFS;
2058 		*(uint16_t *)wh->i_dur = htole16(dur);
2059 	}
2060 
2061 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2062 	    data->map->dm_segs->ds_addr);
2063 
2064 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2065 	    BUS_DMASYNC_PREWRITE);
2066 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2067 	    sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2068 	    BUS_DMASYNC_PREWRITE);
2069 
2070 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2071 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2072 
2073 	/* kick encrypt */
2074 	sc->txq.queued++;
2075 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2076 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2077 
2078 	return 0;
2079 }
2080 
2081 static void
rt2560_start(struct ifnet * ifp)2082 rt2560_start(struct ifnet *ifp)
2083 {
2084 	struct rt2560_softc *sc = ifp->if_softc;
2085 	struct ieee80211com *ic = &sc->sc_ic;
2086 	struct mbuf *m0;
2087 	struct ieee80211_node *ni;
2088 	struct ether_header *eh;
2089 
2090 	/*
2091 	 * net80211 may still try to send management frames even if the
2092 	 * IFF_RUNNING flag is not set...
2093 	 */
2094 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2095 		return;
2096 
2097 	for (;;) {
2098 		IF_POLL(&ic->ic_mgtq, m0);
2099 		if (m0 != NULL) {
2100 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2101 				ifp->if_flags |= IFF_OACTIVE;
2102 				break;
2103 			}
2104 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2105 			if (m0 == NULL)
2106 				break;
2107 
2108 			ni = M_GETCTX(m0, struct ieee80211_node *);
2109 			M_CLEARCTX(m0);
2110 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2111 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2112 				break;
2113 
2114 		} else {
2115 			if (ic->ic_state != IEEE80211_S_RUN)
2116 				break;
2117 			IFQ_DEQUEUE(&ifp->if_snd, m0);
2118 			if (m0 == NULL)
2119 				break;
2120 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2121 				ifp->if_flags |= IFF_OACTIVE;
2122 				break;
2123 			}
2124 
2125 			if (m0->m_len < sizeof (struct ether_header) &&
2126 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2127                                 continue;
2128 
2129 			eh = mtod(m0, struct ether_header *);
2130 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2131 			if (ni == NULL) {
2132 				m_freem(m0);
2133 				continue;
2134 			}
2135 			bpf_mtap(ifp, m0, BPF_D_OUT);
2136 
2137 			m0 = ieee80211_encap(ic, m0, ni);
2138 			if (m0 == NULL) {
2139 				ieee80211_free_node(ni);
2140 				continue;
2141                         }
2142 
2143 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2144 
2145 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2146 				ieee80211_free_node(ni);
2147 				if_statinc(ifp, if_oerrors);
2148 				break;
2149 			}
2150 		}
2151 
2152 		sc->sc_tx_timer = 5;
2153 		ifp->if_timer = 1;
2154 	}
2155 }
2156 
2157 static void
rt2560_watchdog(struct ifnet * ifp)2158 rt2560_watchdog(struct ifnet *ifp)
2159 {
2160 	struct rt2560_softc *sc = ifp->if_softc;
2161 
2162 	ifp->if_timer = 0;
2163 
2164 	if (sc->sc_tx_timer > 0) {
2165 		if (--sc->sc_tx_timer == 0) {
2166 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2167 			rt2560_init(ifp);
2168 			if_statinc(ifp, if_oerrors);
2169 			return;
2170 		}
2171 		ifp->if_timer = 1;
2172 	}
2173 
2174 	ieee80211_watchdog(&sc->sc_ic);
2175 }
2176 
2177 /*
2178  * This function allows for fast channel switching in monitor mode (used by
2179  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2180  * generate a new beacon frame.
2181  */
2182 static int
rt2560_reset(struct ifnet * ifp)2183 rt2560_reset(struct ifnet *ifp)
2184 {
2185 	struct rt2560_softc *sc = ifp->if_softc;
2186 	struct ieee80211com *ic = &sc->sc_ic;
2187 
2188 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2189 		return ENETRESET;
2190 
2191 	rt2560_set_chan(sc, ic->ic_curchan);
2192 
2193 	return 0;
2194 }
2195 
2196 int
rt2560_ioctl(struct ifnet * ifp,u_long cmd,void * data)2197 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2198 {
2199 	struct rt2560_softc *sc = ifp->if_softc;
2200 	struct ieee80211com *ic = &sc->sc_ic;
2201 	int s, error = 0;
2202 
2203 	s = splnet();
2204 
2205 	switch (cmd) {
2206 	case SIOCSIFFLAGS:
2207 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2208 			break;
2209 		if (ifp->if_flags & IFF_UP) {
2210 			if (ifp->if_flags & IFF_RUNNING)
2211 				rt2560_update_promisc(sc);
2212 			else
2213 				rt2560_init(ifp);
2214 		} else {
2215 			if (ifp->if_flags & IFF_RUNNING)
2216 				rt2560_stop(ifp, 1);
2217 		}
2218 		break;
2219 
2220 	case SIOCADDMULTI:
2221 	case SIOCDELMULTI:
2222 		/* XXX no h/w multicast filter? --dyoung */
2223 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2224 			error = 0;
2225 		break;
2226 
2227 	case SIOCS80211CHANNEL:
2228 		/*
2229 		 * This allows for fast channel switching in monitor mode
2230 		 * (used by kismet). In IBSS mode, we must explicitly reset
2231 		 * the interface to generate a new beacon frame.
2232 		 */
2233 		error = ieee80211_ioctl(ic, cmd, data);
2234 		if (error == ENETRESET &&
2235 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2236 			rt2560_set_chan(sc, ic->ic_ibss_chan);
2237 			error = 0;
2238 		}
2239 		break;
2240 
2241 	default:
2242 		error = ieee80211_ioctl(ic, cmd, data);
2243 	}
2244 
2245 	if (error == ENETRESET) {
2246 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2247 		    (IFF_UP | IFF_RUNNING))
2248 			rt2560_init(ifp);
2249 		error = 0;
2250 	}
2251 
2252 	splx(s);
2253 
2254 	return error;
2255 }
2256 
2257 static void
rt2560_bbp_write(struct rt2560_softc * sc,uint8_t reg,uint8_t val)2258 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2259 {
2260 	uint32_t tmp;
2261 	int ntries;
2262 
2263 	for (ntries = 0; ntries < 100; ntries++) {
2264 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2265 			break;
2266 		DELAY(1);
2267 	}
2268 	if (ntries == 100) {
2269 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2270 		return;
2271 	}
2272 
2273 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2274 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2275 
2276 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2277 }
2278 
2279 static uint8_t
rt2560_bbp_read(struct rt2560_softc * sc,uint8_t reg)2280 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2281 {
2282 	uint32_t val;
2283 	int ntries;
2284 
2285 	val = RT2560_BBP_BUSY | reg << 8;
2286 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2287 
2288 	for (ntries = 0; ntries < 100; ntries++) {
2289 		val = RAL_READ(sc, RT2560_BBPCSR);
2290 		if (!(val & RT2560_BBP_BUSY))
2291 			return val & 0xff;
2292 		DELAY(1);
2293 	}
2294 
2295 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2296 	return 0;
2297 }
2298 
2299 static void
rt2560_rf_write(struct rt2560_softc * sc,uint8_t reg,uint32_t val)2300 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2301 {
2302 	uint32_t tmp;
2303 	int ntries;
2304 
2305 	for (ntries = 0; ntries < 100; ntries++) {
2306 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2307 			break;
2308 		DELAY(1);
2309 	}
2310 	if (ntries == 100) {
2311 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2312 		return;
2313 	}
2314 
2315 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2316 	    (reg & 0x3);
2317 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2318 
2319 	/* remember last written value in sc */
2320 	sc->rf_regs[reg] = val;
2321 
2322 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2323 }
2324 
2325 static void
rt2560_set_chan(struct rt2560_softc * sc,struct ieee80211_channel * c)2326 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2327 {
2328 	struct ieee80211com *ic = &sc->sc_ic;
2329 	uint8_t power, tmp;
2330 	u_int i, chan;
2331 
2332 	chan = ieee80211_chan2ieee(ic, c);
2333 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2334 		return;
2335 
2336 	if (IEEE80211_IS_CHAN_2GHZ(c))
2337 		power = uimin(sc->txpow[chan - 1], 31);
2338 	else
2339 		power = 31;
2340 
2341 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2342 
2343 	switch (sc->rf_rev) {
2344 	case RT2560_RF_2522:
2345 		rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2346 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2347 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2348 		break;
2349 
2350 	case RT2560_RF_2523:
2351 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2352 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2353 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2354 		rt2560_rf_write(sc, RT2560_RF4,
2355 		    (chan == 14) ? 0x00280 : 0x00286);
2356 		break;
2357 
2358 	case RT2560_RF_2524:
2359 		rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2360 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2361 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2362 		rt2560_rf_write(sc, RT2560_RF4,
2363 		    (chan == 14) ? 0x00280 : 0x00286);
2364 		break;
2365 
2366 	case RT2560_RF_2525:
2367 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2368 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2369 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2370 		rt2560_rf_write(sc, RT2560_RF4,
2371 		    (chan == 14) ? 0x00280 : 0x00286);
2372 
2373 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2374 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2375 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2376 		rt2560_rf_write(sc, RT2560_RF4,
2377 		    (chan == 14) ? 0x00280 : 0x00286);
2378 		break;
2379 
2380 	case RT2560_RF_2525E:
2381 		rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2382 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2383 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2384 		rt2560_rf_write(sc, RT2560_RF4,
2385 		    (chan == 14) ? 0x00286 : 0x00282);
2386 		break;
2387 
2388 	case RT2560_RF_2526:
2389 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2390 		rt2560_rf_write(sc, RT2560_RF4,
2391 		   (chan & 1) ? 0x00386 : 0x00381);
2392 		rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2393 
2394 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2395 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2396 		rt2560_rf_write(sc, RT2560_RF4,
2397 		    (chan & 1) ? 0x00386 : 0x00381);
2398 		break;
2399 
2400 	/* dual-band RF */
2401 	case RT2560_RF_5222:
2402 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2403 
2404 		rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2405 		rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2406 		rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2407 		rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2408 		break;
2409 	}
2410 
2411 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2412 	    ic->ic_state != IEEE80211_S_SCAN) {
2413 		/* set Japan filter bit for channel 14 */
2414 		tmp = rt2560_bbp_read(sc, 70);
2415 
2416 		tmp &= ~RT2560_JAPAN_FILTER;
2417 		if (chan == 14)
2418 			tmp |= RT2560_JAPAN_FILTER;
2419 
2420 		rt2560_bbp_write(sc, 70, tmp);
2421 
2422 		DELAY(1000); /* RF needs a 1ms delay here */
2423 		rt2560_disable_rf_tune(sc);
2424 
2425 		/* clear CRC errors */
2426 		RAL_READ(sc, RT2560_CNT0);
2427 	}
2428 }
2429 
2430 /*
2431  * Disable RF auto-tuning.
2432  */
2433 static void
rt2560_disable_rf_tune(struct rt2560_softc * sc)2434 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2435 {
2436 	uint32_t tmp;
2437 
2438 	if (sc->rf_rev != RT2560_RF_2523) {
2439 		tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2440 		rt2560_rf_write(sc, RT2560_RF1, tmp);
2441 	}
2442 
2443 	tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2444 	rt2560_rf_write(sc, RT2560_RF3, tmp);
2445 
2446 	DPRINTFN(2, ("disabling RF autotune\n"));
2447 }
2448 
2449 /*
2450  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2451  * synchronization.
2452  */
2453 static void
rt2560_enable_tsf_sync(struct rt2560_softc * sc)2454 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2455 {
2456 	struct ieee80211com *ic = &sc->sc_ic;
2457 	uint16_t logcwmin, preload;
2458 	uint32_t tmp;
2459 
2460 	/* first, disable TSF synchronization */
2461 	RAL_WRITE(sc, RT2560_CSR14, 0);
2462 
2463 	tmp = 16 * ic->ic_bss->ni_intval;
2464 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2465 
2466 	RAL_WRITE(sc, RT2560_CSR13, 0);
2467 
2468 	logcwmin = 5;
2469 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2470 	tmp = logcwmin << 16 | preload;
2471 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2472 
2473 	/* finally, enable TSF synchronization */
2474 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2475 	if (ic->ic_opmode == IEEE80211_M_STA)
2476 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2477 	else
2478 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2479 		       RT2560_ENABLE_BEACON_GENERATOR;
2480 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2481 
2482 	DPRINTF(("enabling TSF synchronization\n"));
2483 }
2484 
2485 static void
rt2560_update_plcp(struct rt2560_softc * sc)2486 rt2560_update_plcp(struct rt2560_softc *sc)
2487 {
2488 	struct ieee80211com *ic = &sc->sc_ic;
2489 
2490 	/* no short preamble for 1Mbps */
2491 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2492 
2493 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2494 		/* values taken from the reference driver */
2495 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2496 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2497 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2498 	} else {
2499 		/* same values as above or'ed 0x8 */
2500 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2501 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2502 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2503 	}
2504 
2505 	DPRINTF(("updating PLCP for %s preamble\n",
2506 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2507 }
2508 
2509 /*
2510  * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2511  * know how these values are computed.
2512  */
2513 static void
rt2560_update_slot(struct ifnet * ifp)2514 rt2560_update_slot(struct ifnet *ifp)
2515 {
2516 	struct rt2560_softc *sc = ifp->if_softc;
2517 	struct ieee80211com *ic = &sc->sc_ic;
2518 	uint8_t slottime;
2519 	uint16_t sifs, pifs, difs, eifs;
2520 	uint32_t tmp;
2521 
2522 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2523 
2524 	/* define the MAC slot boundaries */
2525 	sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2526 	pifs = sifs + slottime;
2527 	difs = sifs + 2 * slottime;
2528 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2529 
2530 	tmp = RAL_READ(sc, RT2560_CSR11);
2531 	tmp = (tmp & ~0x1f00) | slottime << 8;
2532 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2533 
2534 	tmp = pifs << 16 | sifs;
2535 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2536 
2537 	tmp = eifs << 16 | difs;
2538 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2539 
2540 	DPRINTF(("setting slottime to %uus\n", slottime));
2541 }
2542 
2543 static void
rt2560_set_basicrates(struct rt2560_softc * sc)2544 rt2560_set_basicrates(struct rt2560_softc *sc)
2545 {
2546 	struct ieee80211com *ic = &sc->sc_ic;
2547 
2548 	/* update basic rate set */
2549 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2550 		/* 11b basic rates: 1, 2Mbps */
2551 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2552 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2553 		/* 11a basic rates: 6, 12, 24Mbps */
2554 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2555 	} else {
2556 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2557 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2558 	}
2559 }
2560 
2561 static void
rt2560_update_led(struct rt2560_softc * sc,int led1,int led2)2562 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2563 {
2564 	uint32_t tmp;
2565 
2566 	/* set ON period to 70ms and OFF period to 30ms */
2567 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2568 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2569 }
2570 
2571 static void
rt2560_set_bssid(struct rt2560_softc * sc,uint8_t * bssid)2572 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2573 {
2574 	uint32_t tmp;
2575 
2576 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2577 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2578 
2579 	tmp = bssid[4] | bssid[5] << 8;
2580 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2581 
2582 	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2583 }
2584 
2585 static void
rt2560_set_macaddr(struct rt2560_softc * sc,uint8_t * addr)2586 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2587 {
2588 	uint32_t tmp;
2589 
2590 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2591 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2592 
2593 	tmp = addr[4] | addr[5] << 8;
2594 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2595 
2596 	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2597 }
2598 
2599 static void
rt2560_get_macaddr(struct rt2560_softc * sc,uint8_t * addr)2600 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2601 {
2602 	uint32_t tmp;
2603 
2604 	tmp = RAL_READ(sc, RT2560_CSR3);
2605 	addr[0] = tmp & 0xff;
2606 	addr[1] = (tmp >>  8) & 0xff;
2607 	addr[2] = (tmp >> 16) & 0xff;
2608 	addr[3] = (tmp >> 24);
2609 
2610 	tmp = RAL_READ(sc, RT2560_CSR4);
2611 	addr[4] = tmp & 0xff;
2612 	addr[5] = (tmp >> 8) & 0xff;
2613 }
2614 
2615 static void
rt2560_update_promisc(struct rt2560_softc * sc)2616 rt2560_update_promisc(struct rt2560_softc *sc)
2617 {
2618 	struct ifnet *ifp = &sc->sc_if;
2619 	uint32_t tmp;
2620 
2621 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2622 
2623 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2624 	if (!(ifp->if_flags & IFF_PROMISC))
2625 		tmp |= RT2560_DROP_NOT_TO_ME;
2626 
2627 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2628 
2629 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2630 	    "entering" : "leaving"));
2631 }
2632 
2633 static void
rt2560_set_txantenna(struct rt2560_softc * sc,int antenna)2634 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2635 {
2636 	uint32_t tmp;
2637 	uint8_t tx;
2638 
2639 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2640 	if (antenna == 1)
2641 		tx |= RT2560_BBP_ANTA;
2642 	else if (antenna == 2)
2643 		tx |= RT2560_BBP_ANTB;
2644 	else
2645 		tx |= RT2560_BBP_DIVERSITY;
2646 
2647 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2648 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2649 	    sc->rf_rev == RT2560_RF_5222)
2650 		tx |= RT2560_BBP_FLIPIQ;
2651 
2652 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2653 
2654 	/* update values for CCK and OFDM in BBPCSR1 */
2655 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2656 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2657 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2658 }
2659 
2660 static void
rt2560_set_rxantenna(struct rt2560_softc * sc,int antenna)2661 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2662 {
2663 	uint8_t rx;
2664 
2665 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2666 	if (antenna == 1)
2667 		rx |= RT2560_BBP_ANTA;
2668 	else if (antenna == 2)
2669 		rx |= RT2560_BBP_ANTB;
2670 	else
2671 		rx |= RT2560_BBP_DIVERSITY;
2672 
2673 	/* need to force no I/Q flip for RF 2525e and 2526 */
2674 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2675 		rx &= ~RT2560_BBP_FLIPIQ;
2676 
2677 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2678 }
2679 
2680 static const char *
rt2560_get_rf(int rev)2681 rt2560_get_rf(int rev)
2682 {
2683 	switch (rev) {
2684 	case RT2560_RF_2522:	return "RT2522";
2685 	case RT2560_RF_2523:	return "RT2523";
2686 	case RT2560_RF_2524:	return "RT2524";
2687 	case RT2560_RF_2525:	return "RT2525";
2688 	case RT2560_RF_2525E:	return "RT2525e";
2689 	case RT2560_RF_2526:	return "RT2526";
2690 	case RT2560_RF_5222:	return "RT5222";
2691 	default:		return "unknown";
2692 	}
2693 }
2694 
2695 static void
rt2560_read_eeprom(struct rt2560_softc * sc)2696 rt2560_read_eeprom(struct rt2560_softc *sc)
2697 {
2698 	uint16_t val;
2699 	int i;
2700 
2701 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2702 	sc->rf_rev =   (val >> 11) & 0x1f;
2703 	sc->hw_radio = (val >> 10) & 0x1;
2704 	sc->led_mode = (val >> 6)  & 0x7;
2705 	sc->rx_ant =   (val >> 4)  & 0x3;
2706 	sc->tx_ant =   (val >> 2)  & 0x3;
2707 	sc->nb_ant =   val & 0x3;
2708 
2709 	/* read default values for BBP registers */
2710 	for (i = 0; i < 16; i++) {
2711 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2712 		sc->bbp_prom[i].reg = val >> 8;
2713 		sc->bbp_prom[i].val = val & 0xff;
2714 	}
2715 
2716 	/* read Tx power for all b/g channels */
2717 	for (i = 0; i < 14 / 2; i++) {
2718 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2719 		sc->txpow[i * 2] = val >> 8;
2720 		sc->txpow[i * 2 + 1] = val & 0xff;
2721 	}
2722 }
2723 
2724 static int
rt2560_bbp_init(struct rt2560_softc * sc)2725 rt2560_bbp_init(struct rt2560_softc *sc)
2726 {
2727 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2728 	int i, ntries;
2729 
2730 	/* wait for BBP to be ready */
2731 	for (ntries = 0; ntries < 100; ntries++) {
2732 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2733 			break;
2734 		DELAY(1);
2735 	}
2736 	if (ntries == 100) {
2737 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2738 		return EIO;
2739 	}
2740 
2741 	/* initialize BBP registers to default values */
2742 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2743 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2744 		    rt2560_def_bbp[i].val);
2745 	}
2746 #if 0
2747 	/* initialize BBP registers to values stored in EEPROM */
2748 	for (i = 0; i < 16; i++) {
2749 		if (sc->bbp_prom[i].reg == 0xff)
2750 			continue;
2751 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2752 	}
2753 #endif
2754 
2755 	return 0;
2756 #undef N
2757 }
2758 
2759 static int
rt2560_init(struct ifnet * ifp)2760 rt2560_init(struct ifnet *ifp)
2761 {
2762 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2763 	struct rt2560_softc *sc = ifp->if_softc;
2764 	struct ieee80211com *ic = &sc->sc_ic;
2765 	uint32_t tmp;
2766 	int i;
2767 
2768 	/* for CardBus, power on the socket */
2769 	if (!(sc->sc_flags & RT2560_ENABLED)) {
2770 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2771 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
2772 			return EIO;
2773 		}
2774 		sc->sc_flags |= RT2560_ENABLED;
2775 	}
2776 
2777 	rt2560_stop(ifp, 1);
2778 
2779 	/* setup tx rings */
2780 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2781 	      RT2560_ATIM_RING_COUNT << 16 |
2782 	      RT2560_TX_RING_COUNT   <<  8 |
2783 	      RT2560_TX_DESC_SIZE;
2784 
2785 	/* rings _must_ be initialized in this _exact_ order! */
2786 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2787 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2788 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2789 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2790 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2791 
2792 	/* setup rx ring */
2793 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2794 
2795 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2796 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2797 
2798 	/* initialize MAC registers to default values */
2799 	for (i = 0; i < N(rt2560_def_mac); i++)
2800 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2801 
2802 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2803 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2804 
2805 	/* set basic rate set (will be updated later) */
2806 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2807 
2808 	rt2560_update_slot(ifp);
2809 	rt2560_update_plcp(sc);
2810 	rt2560_update_led(sc, 0, 0);
2811 
2812 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2813 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2814 
2815 	if (rt2560_bbp_init(sc) != 0) {
2816 		rt2560_stop(ifp, 1);
2817 		return EIO;
2818 	}
2819 
2820 	rt2560_set_txantenna(sc, 1);
2821 	rt2560_set_rxantenna(sc, 1);
2822 
2823 	/* set default BSS channel */
2824 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2825 	rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2826 
2827 	/* kick Rx */
2828 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2829 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2830 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2831 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2832 			tmp |= RT2560_DROP_TODS;
2833 		if (!(ifp->if_flags & IFF_PROMISC))
2834 			tmp |= RT2560_DROP_NOT_TO_ME;
2835 	}
2836 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2837 
2838 	/* clear old FCS and Rx FIFO errors */
2839 	RAL_READ(sc, RT2560_CNT0);
2840 	RAL_READ(sc, RT2560_CNT4);
2841 
2842 	/* clear any pending interrupts */
2843 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2844 
2845 	/* enable interrupts */
2846 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2847 
2848 	ifp->if_flags &= ~IFF_OACTIVE;
2849 	ifp->if_flags |= IFF_RUNNING;
2850 
2851 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2852 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2853 	else
2854 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2855 
2856 	return 0;
2857 #undef N
2858 }
2859 
2860 static void
rt2560_stop(struct ifnet * ifp,int disable)2861 rt2560_stop(struct ifnet *ifp, int disable)
2862 {
2863 	struct rt2560_softc *sc = ifp->if_softc;
2864 	struct ieee80211com *ic = &sc->sc_ic;
2865 
2866 	sc->sc_tx_timer = 0;
2867 	ifp->if_timer = 0;
2868 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2869 
2870 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
2871 
2872 	/* abort Tx */
2873 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2874 
2875 	/* disable Rx */
2876 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2877 
2878 	/* reset ASIC (and thus, BBP) */
2879 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2880 	RAL_WRITE(sc, RT2560_CSR1, 0);
2881 
2882 	/* disable interrupts */
2883 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2884 
2885 	/* clear any pending interrupt */
2886 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2887 
2888 	/* reset Tx and Rx rings */
2889 	rt2560_reset_tx_ring(sc, &sc->txq);
2890 	rt2560_reset_tx_ring(sc, &sc->atimq);
2891 	rt2560_reset_tx_ring(sc, &sc->prioq);
2892 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2893 	rt2560_reset_rx_ring(sc, &sc->rxq);
2894 }
2895