1 /* $NetBSD: rpc_machdep.c,v 1.101 2022/05/15 20:37:50 andvar Exp $ */
2
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependent functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50 #include "opt_ddb.h"
51 #include "opt_modular.h"
52 #include "vidcvideo.h"
53 #include "podulebus.h"
54
55 #include <sys/param.h>
56
57 __KERNEL_RCSID(0, "$NetBSD: rpc_machdep.c,v 1.101 2022/05/15 20:37:50 andvar Exp $");
58
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/reboot.h>
62 #include <sys/proc.h>
63 #include <sys/msgbuf.h>
64 #include <sys/exec.h>
65 #include <sys/exec_aout.h>
66 #include <sys/ksyms.h>
67 #include <sys/bus.h>
68 #include <sys/cpu.h>
69 #include <sys/intr.h>
70 #include <sys/device.h>
71
72 #include <dev/cons.h>
73
74 #include <dev/ic/pckbcvar.h>
75
76 #include <dev/i2c/i2cvar.h>
77 #include <dev/i2c/pcf8583var.h>
78
79 #include <machine/db_machdep.h>
80 #include <ddb/db_sym.h>
81 #include <ddb/db_extern.h>
82
83 #include <uvm/uvm.h>
84
85 #include <arm/locore.h>
86 #include <arm/undefined.h>
87 #include <arm/arm32/machdep.h>
88 #include <arm/arm32/pmap.h>
89
90 #include <machine/rtc.h>
91 #include <machine/signal.h>
92 #include <machine/bootconfig.h>
93 #include <machine/io.h>
94
95 #include <arm/iomd/vidc.h>
96 #include <arm/iomd/iomdreg.h>
97 #include <arm/iomd/iomdvar.h>
98 #include <arm/iomd/vidcvideo.h>
99 #include <arm/iomd/iomdiicvar.h>
100
101 static i2c_tag_t acorn32_i2c_tag;
102
103 #include "ksyms.h"
104
105 /* Kernel text starts at the base of the kernel address space. */
106 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
107 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
108
109 /*
110 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
111 * Fixed mappings exist from 0xf6000000 - 0xffffffff
112 */
113 #define KERNEL_VM_SIZE 0x05000000
114
115 struct bootconfig bootconfig; /* Boot config storage */
116 videomemory_t videomemory; /* Video memory descriptor */
117
118 char *boot_args = NULL; /* holds the pre-processed boot arguments */
119 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
120
121 extern int *vidc_base;
122 extern uint32_t iomd_base;
123 extern struct bus_space iomd_bs_tag;
124
125 paddr_t physical_start;
126 paddr_t kernel_start;
127 paddr_t physical_freestart;
128 paddr_t physical_freeend;
129 paddr_t physical_end;
130 paddr_t dma_range_begin;
131 paddr_t dma_range_end;
132
133 u_int free_pages;
134 paddr_t memoryblock_end;
135
136 #ifndef PMAP_STATIC_L1S
137 int max_processes = 64; /* Default number */
138 #endif /* !PMAP_STATIC_L1S */
139
140 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
141
142 paddr_t msgbufphys;
143
144 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
145 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
146 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel 0-4MB*/
147 #define KERNEL_PT_KERNEL_4MB 3 /* Page table for mapping kernel 4-8MB*/
148 #define KERNEL_PT_VMDATA 4 /* Page tables for mapping kernel VM */
149 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
150 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
151
152 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
153
154 #ifdef CPU_SA110
155 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
156 static vaddr_t sa110_cc_base;
157 #endif /* CPU_SA110 */
158
159 /* Prototypes */
160 void physcon_display_base(u_int);
161 extern void consinit(void);
162
163 void data_abort_handler(trapframe_t *);
164 void prefetch_abort_handler(trapframe_t *);
165 void undefinedinstruction_bounce(trapframe_t *frame);
166
167 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
168 static void process_kernel_args(void);
169
170 extern void dump_spl_masks(void);
171
172 void rpc_sa110_cc_setup(void);
173
174 void parse_rpc_bootargs(char *args);
175
176 extern void dumpsys(void);
177
178
179 # define console_flush() /* empty */
180
181
182 #define panic2(a) do { \
183 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
184 consinit(); \
185 panic a; \
186 } while (/* CONSTCOND */ 0)
187
188 /*
189 * void cpu_reboot(int howto, char *bootstr)
190 *
191 * Reboots the system
192 *
193 * Deal with any syncing, unmounting, dumping and shutdown hooks,
194 * then reset the CPU.
195 */
196
197 /* NOTE: These variables will be removed, well some of them */
198
199 extern u_int current_mask;
200
201 void
cpu_reboot(int howto,char * bootstr)202 cpu_reboot(int howto, char *bootstr)
203 {
204
205 #ifdef DIAGNOSTIC
206 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
207
208 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
209 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
210 irqmasks[IPL_VM]);
211 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
212 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
213
214 dump_spl_masks();
215 #endif /* DIAGNOSTIC */
216
217 /*
218 * If we are still cold then hit the air brakes
219 * and crash to earth fast
220 */
221 if (cold) {
222 doshutdownhooks();
223 pmf_system_shutdown(boothowto);
224 printf("Halted while still in the ICE age.\n");
225 printf("The operating system has halted.\n");
226 printf("Please press any key to reboot.\n\n");
227 cngetc();
228 printf("rebooting...\n");
229 cpu_reset();
230 /*NOTREACHED*/
231 }
232
233 /* Disable console buffering */
234 cnpollc(1);
235
236 /*
237 * If RB_NOSYNC was not specified sync the discs.
238 * Note: Unless cold is set to 1 here, syslogd will die during
239 * the unmount. It looks like syslogd is getting woken up
240 * only to find that it cannot page part of the binary in as
241 * the filesystem has been unmounted.
242 */
243 if (!(howto & RB_NOSYNC))
244 bootsync();
245
246 /* Say NO to interrupts */
247 splhigh();
248
249 /* Do a dump if requested. */
250 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
251 dumpsys();
252
253 /*
254 * Auto reboot overload protection
255 *
256 * This code stops the kernel entering an endless loop of reboot
257 * - panic cycles. This will have the effect of stopping further
258 * reboots after it has rebooted 8 times after panics. A clean
259 * halt or reboot will reset the counter.
260 */
261
262 /*
263 * Have we done 8 reboots in a row ? If so halt rather than reboot
264 * since 8 panics in a row without 1 clean halt means something is
265 * seriously wrong.
266 */
267 if (cmos_read(RTC_ADDR_REBOOTCNT) > 8)
268 howto |= RB_HALT;
269
270 /*
271 * If we are rebooting on a panic then up the reboot count
272 * otherwise reset.
273 * This will thus be reset if the kernel changes the boot action from
274 * reboot to halt due to too any reboots.
275 */
276 if (((howto & RB_HALT) == 0) && panicstr)
277 cmos_write(RTC_ADDR_REBOOTCNT,
278 cmos_read(RTC_ADDR_REBOOTCNT) + 1);
279 else
280 cmos_write(RTC_ADDR_REBOOTCNT, 0);
281
282 /*
283 * If we need a RiscBSD reboot, request it buy setting a bit in
284 * the CMOS RAM. This can be detected by the RiscBSD boot loader
285 * during a RISCOS boot. No other way to do this as RISCOS is in ROM.
286 */
287 if ((howto & RB_HALT) == 0)
288 cmos_write(RTC_ADDR_BOOTOPTS,
289 cmos_read(RTC_ADDR_BOOTOPTS) | 0x02);
290
291 /* Run any shutdown hooks */
292 doshutdownhooks();
293
294 pmf_system_shutdown(boothowto);
295
296 /* Make sure IRQ's are disabled */
297 IRQdisable;
298
299 if (howto & RB_HALT) {
300 printf("The operating system has halted.\n");
301 printf("Please press any key to reboot.\n\n");
302 cngetc();
303 }
304
305 printf("rebooting...\n");
306 cpu_reset();
307 /*NOTREACHED*/
308 }
309
310
311 /*
312 * u_int initarm(BootConfig *bootconf)
313 *
314 * Initial entry point on startup. This gets called before main() is
315 * entered.
316 * It should be responsible for setting up everything that must be
317 * in place when main is called.
318 * This includes
319 * Taking a copy of the boot configuration structure.
320 * Initialising the physical console so characters can be printed.
321 * Setting up page tables for the kernel
322 * Relocating the kernel to the bottom of physical memory
323 */
324
325 /*
326 * this part is completely rewritten for the new bootloader ... It features
327 * a flat memory map with a mapping comparable to the EBSA arm32 machine
328 * to boost the portability and likeness of the code
329 */
330
331 /*
332 * Mapping table for core kernel memory. This memory is mapped at init
333 * time with section mappings.
334 *
335 * XXX One big assumption in the current architecture seems that the kernel is
336 * XXX supposed to be mapped into bootconfig.dram[0].
337 */
338
339 #define ONE_MB 0x100000
340
341 struct l1_sec_map {
342 vaddr_t va;
343 paddr_t pa;
344 vsize_t size;
345 vm_prot_t prot;
346 int cache;
347 } l1_sec_table[] = {
348 /* Map 1Mb section for VIDC20 */
349 { VIDC_BASE, VIDC_HW_BASE,
350 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
351 PTE_NOCACHE },
352
353 /* Map 1Mb section from IOMD */
354 { IOMD_BASE, IOMD_HW_BASE,
355 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
356 PTE_NOCACHE },
357
358 /* Map 1Mb of COMBO (and module space) */
359 { IO_BASE, IO_HW_BASE,
360 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
361 PTE_NOCACHE },
362 #if NPODULEBUS > 0 /* XXXJRT */
363 /* Map the Fast and Sync simple podule space */
364 { SYNC_PODULE_BASE & 0xfff00000, SYNC_PODULE_HW_BASE & 0xfff00000,
365 L1_S_SIZE, VM_PROT_READ|VM_PROT_WRITE,
366 PTE_NOCACHE },
367 /* Map the EASI podule space */
368 { EASI_BASE, EASI_HW_BASE,
369 MAX_PODULES * EASI_SIZE, VM_PROT_READ|VM_PROT_WRITE,
370 PTE_NOCACHE },
371 #endif
372 { 0, 0, 0, 0, 0 }
373 };
374
375
376 static void
canonicalise_bootconfig(struct bootconfig * bootconf,struct bootconfig * raw_bootconf)377 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
378 {
379 /* check for bootconfig v2+ structure */
380 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
381 /* v2+ cleaned up structure found */
382 *bootconf = *raw_bootconf;
383 return;
384 } else {
385 panic2(("Internal error: no valid bootconfig block found"));
386 }
387 }
388
389
390 vaddr_t
initarm(void * cookie)391 initarm(void *cookie)
392 {
393 struct bootconfig *raw_bootconf = cookie;
394 int loop;
395 int loop1;
396 u_int logical;
397 u_int kerneldatasize;
398 u_int l1pagetable;
399 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
400 bool hasKinetic = false;
401 paddr_t kinetic_physical_start;
402
403 /*
404 * Heads up ... Setup the CPU / MMU / TLB functions
405 */
406 set_cpufuncs();
407
408 /* canonicalise the boot configuration structure to allow versioning */
409 canonicalise_bootconfig(&bootconfig, raw_bootconf);
410 booted_kernel = bootconfig.kernelname;
411
412 /* if the wscons interface is used, switch off VERBOSE booting :( */
413 #if NVIDCVIDEO>0
414 # undef VERBOSE_INIT_ARM
415 #endif
416
417 /*
418 * Initialise the video memory descriptor
419 *
420 * Note: all references to the video memory virtual/physical address
421 * should go via this structure.
422 */
423
424 /* Hardwire it on the place the bootloader tells us */
425 videomemory.vidm_vbase = bootconfig.display_start;
426 videomemory.vidm_pbase = bootconfig.display_phys;
427 videomemory.vidm_size = bootconfig.display_size;
428 if (bootconfig.vram[0].pages)
429 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
430 else
431 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
432 vidc_base = (int *) VIDC_HW_BASE;
433 iomd_base = IOMD_HW_BASE;
434
435 /*
436 * Initialise the physical console
437 * This is done in main() but for the moment we do it here so that
438 * we can use printf in initarm() before main() has been called.
439 * only for `vidcconsole!' ... not wscons
440 */
441 #if NVIDCVIDEO == 0
442 consinit();
443 #endif
444
445 /*
446 * Initialise the diagnostic serial console
447 * This allows a means of generating output during initarm().
448 * Once all the memory map changes are complete we can call consinit()
449 * and not have to worry about things moving.
450 */
451 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
452 /* XXX snif .... i am still not able to this */
453
454 /*
455 * We have the following memory map (derived from EBSA)
456 *
457 * virtual address == physical address apart from the areas:
458 * 0x00000000 -> 0x000fffff which is mapped to
459 * top 1MB of physical memory
460 * 0xf0000000 -> 0xf0ffffff which is mapped to
461 * physical address 0x10000000 -> 0x10ffffff
462 * or on a Kinetic:
463 * physical address 0x20400000 -> 0x20ffffff
464 *
465 * This means that the kernel is mapped suitably for continuing
466 * execution, all I/O is mapped 1:1 virtual to physical and
467 * physical memory is accessible.
468 *
469 * The initarm() has the responsibility for creating the kernel
470 * page tables.
471 * It must also set up various memory pointers that are used
472 * by pmap etc.
473 */
474
475 #ifdef FORCE_VERBOSE_INIT_ARM
476 /*
477 * note that this will stop working after we switch to the new
478 * L1 Table
479 */
480 memset((void *) (videomemory.vidm_vbase), 0x55, videomemory.vidm_size);
481 consinit();
482 printf("\n\n\n\n\n\n\n");
483 #define VERBOSE_INIT_ARM
484 #endif
485 /* START OF REAL NEW STUFF */
486
487 /* Check to make sure the page size is correct */
488 if (PAGE_SIZE != bootconfig.pagesize)
489 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
490 bootconfig.pagesize, PAGE_SIZE));
491
492 /* process arguments */
493 process_kernel_args();
494
495 /*
496 * Now set up the page tables for the kernel ... this part is copied
497 * in a (modified?) way from the EBSA machine port....
498 */
499
500 #ifdef VERBOSE_INIT_ARM
501 printf("Allocating page tables\n");
502 #endif
503 /*
504 * Set up the variables that define the availability of physical
505 * memory
506 */
507 physical_start = 0xffffffff;
508 physical_end = 0;
509 kinetic_physical_start = 0xffffffff;
510 #ifdef VERBOSE_INIT_ARM
511 printf("memory blocks:\n");
512 #endif
513 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
514 #ifdef VERBOSE_INIT_ARM
515 printf("0x%x + 0x%0x, type = 0x%08x\n", bootconfig.dram[loop].address,
516 bootconfig.dram[loop].pages * PAGE_SIZE,
517 bootconfig.dram[loop].flags);
518 #endif
519 if (bootconfig.dram[loop].address < physical_start)
520 physical_start = bootconfig.dram[loop].address;
521 memoryblock_end = bootconfig.dram[loop].address +
522 bootconfig.dram[loop].pages * PAGE_SIZE;
523 if (memoryblock_end > physical_end)
524 physical_end = memoryblock_end;
525 physmem += bootconfig.dram[loop].pages;
526 if (bootconfig.dram[loop].flags & PHYSMEM_TYPE_PROCESSOR_ONLY) {
527 hasKinetic = true;
528 if (bootconfig.dram[loop].address < kinetic_physical_start)
529 kinetic_physical_start = bootconfig.dram[loop].address;
530 }
531 };
532
533 if (hasKinetic)
534 {
535 /* Kinetics can only DMA from the Normal DRAM */
536 dma_range_begin = 0xffffffff;
537 dma_range_end = 0;
538 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
539 if (bootconfig.dram[loop].flags == PHYSMEM_TYPE_GENERIC) {
540 if (bootconfig.dram[loop].address < dma_range_begin)
541 dma_range_begin = bootconfig.dram[loop].address;
542 memoryblock_end = bootconfig.dram[loop].address +
543 bootconfig.dram[loop].pages * PAGE_SIZE;
544 if (memoryblock_end > dma_range_end)
545 dma_range_end = memoryblock_end;
546 }
547 }
548 dma_range_end = (paddr_t) MIN(dma_range_end, 256*1024*1024);
549 } else {
550 /* everything else DMAs all the memory */
551 dma_range_begin = (paddr_t) physical_start;
552 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
553 }
554
555 /* set the location of the kernel in physical memory */
556 if (hasKinetic) {
557 kernel_start = kinetic_physical_start;
558 } else {
559 kernel_start = physical_start;
560 }
561 physical_freestart = kernel_start;
562 free_pages = bootconfig.drampages;
563 physical_freeend = physical_end;
564
565 /*
566 * AHUM !! set this variable ... it was set up in the old 1st
567 * stage bootloader
568 */
569 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
570
571 /* Update the address of the first free page of physical memory */
572 physical_freestart +=
573 bootconfig.kernsize + bootconfig.scratchsize;
574 free_pages -= (bootconfig.kernsize + bootconfig.scratchsize) / PAGE_SIZE;
575
576 /* Define a macro to simplify memory allocation */
577 #define valloc_pages(var, np) \
578 alloc_pages((var).pv_pa, (np)); \
579 (var).pv_va = KERNEL_BASE + (var).pv_pa - kernel_start;
580
581 #define alloc_pages(var, np) \
582 (var) = physical_freestart; \
583 physical_freestart += ((np) * PAGE_SIZE); \
584 free_pages -= (np); \
585 memset((char *)(var), 0, ((np) * PAGE_SIZE));
586
587 loop1 = 0;
588 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
589 /* Are we 16KB aligned for an L1 ? */
590 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
591 && kernel_l1pt.pv_pa == 0) {
592 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
593 } else {
594 valloc_pages(kernel_pt_table[loop1],
595 L2_TABLE_SIZE / PAGE_SIZE);
596 ++loop1;
597 }
598 }
599
600
601 #ifdef DIAGNOSTIC
602 /* This should never be able to happen but better confirm that. */
603 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
604 panic2(("initarm: Failed to align the kernel page "
605 "directory\n"));
606 #endif
607
608 /*
609 * Allocate a page for the system page mapped to V0x00000000
610 * This page will just contain the system vectors and can be
611 * shared by all processes.
612 */
613 alloc_pages(systempage.pv_pa, 1);
614
615 /* Allocate stacks for all modes */
616 valloc_pages(irqstack, IRQ_STACK_SIZE);
617 valloc_pages(abtstack, ABT_STACK_SIZE);
618 valloc_pages(undstack, UND_STACK_SIZE);
619 valloc_pages(kernelstack, UPAGES);
620
621 #ifdef VERBOSE_INIT_ARM
622 printf("Setting up stacks :\n");
623 printf("IRQ stack: p0x%08lx v0x%08lx\n",
624 irqstack.pv_pa, irqstack.pv_va);
625 printf("ABT stack: p0x%08lx v0x%08lx\n",
626 abtstack.pv_pa, abtstack.pv_va);
627 printf("UND stack: p0x%08lx v0x%08lx\n",
628 undstack.pv_pa, undstack.pv_va);
629 printf("SVC stack: p0x%08lx v0x%08lx\n",
630 kernelstack.pv_pa, kernelstack.pv_va);
631 printf("\n");
632 #endif
633
634 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
635
636 #ifdef CPU_SA110
637 /*
638 * XXX totally stuffed hack to work round problems introduced
639 * in recent versions of the pmap code. Due to the calls used there
640 * we cannot allocate virtual memory during bootstrap.
641 */
642 sa110_cc_base = (KERNEL_BASE + (physical_freestart - kernel_start)
643 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
644 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
645 #endif /* CPU_SA110 */
646
647 /*
648 * Ok we have allocated physical pages for the primary kernel
649 * page tables
650 */
651
652 #ifdef VERBOSE_INIT_ARM
653 printf("Creating L1 page table p@0x%08x\n", (uint32_t)kernel_l1pt.pv_pa);
654 #endif
655
656 /*
657 * Now we start construction of the L1 page table
658 * We start by mapping the L2 page tables into the L1.
659 * This means that we can replace L1 mappings later on if necessary
660 */
661 l1pagetable = kernel_l1pt.pv_pa;
662
663 /* Map the L2 pages tables in the L1 page table */
664 pmap_link_l2pt(l1pagetable, 0x00000000,
665 &kernel_pt_table[KERNEL_PT_SYS]);
666 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
667 &kernel_pt_table[KERNEL_PT_KERNEL]);
668 pmap_link_l2pt(l1pagetable, KERNEL_BASE + 0x00400000,
669 &kernel_pt_table[KERNEL_PT_KERNEL_4MB]);
670 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
671 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
672 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
673 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
674 &kernel_pt_table[KERNEL_PT_VMEM]);
675
676 /* update the top of the kernel VM */
677 pmap_curmaxkvaddr =
678 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
679
680 #ifdef VERBOSE_INIT_ARM
681 printf("Mapping kernel\n");
682 #endif
683
684 /* Now we fill in the L2 pagetable for the kernel code/data */
685 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
686 /*
687 * The defines are a workaround for a recent problem that occurred
688 * with ARM 610 processors and some ARM 710 processors
689 * Other ARM 710 and StrongARM processors don't have a problem.
690 */
691 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
692 #if defined(CPU_ARM6) || defined(CPU_ARM7)
693 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
694 kernel_start, kernexec->a_text,
695 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
696 #else /* CPU_ARM6 || CPU_ARM7 */
697 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
698 kernel_start, kernexec->a_text,
699 VM_PROT_READ, PTE_CACHE);
700 #endif /* CPU_ARM6 || CPU_ARM7 */
701 logical += pmap_map_chunk(l1pagetable,
702 KERNEL_TEXT_BASE + logical, kernel_start + logical,
703 kerneldatasize - kernexec->a_text,
704 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
705 } else { /* !ZMAGIC */
706 /*
707 * Most likely an ELF kernel ...
708 * XXX no distinction yet between read only and
709 * read/write area's ...
710 */
711 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
712 kernel_start, kerneldatasize,
713 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
714 };
715
716
717 #ifdef VERBOSE_INIT_ARM
718 printf("Constructing L2 page tables\n");
719 #endif
720
721 /* Map the stack pages */
722 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
723 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
724 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
725 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
726 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
727 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
728 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
729 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
730
731 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
732 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
733
734 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
735 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
736 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
737 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
738 }
739
740 /* Now we fill in the L2 pagetable for the VRAM */
741 /*
742 * Current architectures mean that the VRAM is always in 1
743 * continuous bank. This means that we can just map the 2 meg
744 * that the VRAM would occupy. In theory we don't need a page
745 * table for VRAM, we could section map it but we would need
746 * the page tables if DRAM was in use.
747 * XXX please map two adjacent virtual areas to ONE physical
748 * area
749 */
750 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
751 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
752 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
753 videomemory.vidm_pbase, videomemory.vidm_size,
754 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
755
756 /* Map the vector page. */
757 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
758 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
759
760 /* Map the core memory needed before autoconfig */
761 loop = 0;
762 while (l1_sec_table[loop].size) {
763 vsize_t sz;
764
765 #ifdef VERBOSE_INIT_ARM
766 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
767 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
768 l1_sec_table[loop].va);
769 #endif
770 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
771 pmap_map_section(l1pagetable,
772 l1_sec_table[loop].va + sz,
773 l1_sec_table[loop].pa + sz,
774 l1_sec_table[loop].prot,
775 l1_sec_table[loop].cache);
776 ++loop;
777 }
778
779 /*
780 * Now we have the real page tables in place so we can switch
781 * to them. Once this is done we will be running with the
782 * REAL kernel page tables.
783 */
784
785 /* be a client to all domains */
786 cpu_domains(0x55555555);
787
788 /* Switch tables */
789 #ifdef VERBOSE_INIT_ARM
790 printf("switching to new L1 page table\n");
791 #endif
792
793 cpu_setttb(kernel_l1pt.pv_pa, true);
794
795 /*
796 * We must now clean the cache again....
797 * Cleaning may be done by reading new data to displace any
798 * dirty data in the cache. This will have happened in cpu_setttb()
799 * but since we are boot strapping the addresses used for the read
800 * may have just been remapped and thus the cache could be out
801 * of sync. A re-clean after the switch will cure this.
802 * After booting there are no gross relocations of the kernel thus
803 * this problem will not occur after initarm().
804 */
805 cpu_idcache_wbinv_all();
806 cpu_tlb_flushID();
807 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
808
809 /*
810 * Moved from cpu_startup() as data_abort_handler() references
811 * this during uvm init
812 */
813 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
814
815 /*
816 * if there is support for a serial console ...we should now
817 * reattach it
818 */
819 /* fcomcndetach();*/
820
821 /*
822 * Reflect videomemory relocation in the videomemory structure
823 * and reinit console
824 */
825 if (bootconfig.vram[0].pages == 0) {
826 videomemory.vidm_vbase = VMEM_VBASE;
827 } else {
828 videomemory.vidm_vbase = VMEM_VBASE;
829 bootconfig.display_start = VMEM_VBASE;
830 };
831 vidc_base = (int *) VIDC_BASE;
832 iomd_base = IOMD_BASE;
833
834 #ifdef FORCE_VERBOSE_INIT_ARM2
835 consinit();
836 printf("\n\n\n\n\n\n\n");
837 #define VERBOSE_INIT_ARM
838 #endif
839
840 #ifdef VERBOSE_INIT_ARM
841 printf("running on the new L1 page table!\n");
842 printf("done.\n");
843 #endif
844
845 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
846
847 #ifdef VERBOSE_INIT_ARM
848 printf("\n");
849 #endif
850
851 /*
852 * Pages were allocated during the secondary bootstrap for the
853 * stacks for different CPU modes.
854 * We must now set the r13 registers in the different CPU modes to
855 * point to these stacks.
856 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
857 * of the stack memory.
858 */
859 #ifdef VERBOSE_INIT_ARM
860 printf("init subsystems: stacks ");
861 console_flush();
862 #endif
863
864 set_stackptr(PSR_IRQ32_MODE,
865 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
866 set_stackptr(PSR_ABT32_MODE,
867 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
868 set_stackptr(PSR_UND32_MODE,
869 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
870 #ifdef VERBOSE_INIT_ARM
871 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
872 kernelstack.pv_pa);
873 #endif /* VERBOSE_INIT_ARM */
874
875 /*
876 * Well we should set a data abort handler.
877 * Once things get going this will change as we will need a proper
878 * handler. Until then we will use a handler that just panics but
879 * tells us why.
880 * Initialisation of the vectors will just panic on a data abort.
881 * This just fills in a slightly better one.
882 */
883 #ifdef VERBOSE_INIT_ARM
884 printf("vectors ");
885 #endif
886 data_abort_handler_address = (u_int)data_abort_handler;
887 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
888 undefined_handler_address = (u_int)undefinedinstruction_bounce;
889 console_flush();
890
891
892 /*
893 * At last !
894 * We now have the kernel in physical memory from the bottom upwards.
895 * Kernel page tables are physically above this.
896 * The kernel is mapped to 0xf0000000
897 * The kernel data PTs will handle the mapping of
898 * 0xf1000000-0xf5ffffff (80 Mb)
899 * 2Meg of VRAM is mapped to 0xf7000000
900 * The page tables are mapped to 0xefc00000
901 * The IOMD is mapped to 0xf6000000
902 * The VIDC is mapped to 0xf6100000
903 * The IOMD/VIDC could be pushed up higher but i havent got
904 * sufficient documentation to do so; the addresses are not
905 * parametized yet and hard to read... better fix this before;
906 * its pretty unforgiving.
907 */
908
909 /* Initialise the undefined instruction handlers */
910 #ifdef VERBOSE_INIT_ARM
911 printf("undefined ");
912 #endif
913 undefined_init();
914 console_flush();
915
916 /* Load memory into UVM. */
917 #ifdef VERBOSE_INIT_ARM
918 printf("page ");
919 #endif
920 uvm_md_init();
921
922 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
923 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
924 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
925
926 if (end > physical_freestart)
927 {
928 if (start < physical_freestart)
929 start = physical_freestart;
930 if (end > physical_freeend)
931 end = physical_freeend;
932 }
933
934 if (bootconfig.dram[loop].flags & PHYSMEM_TYPE_PROCESSOR_ONLY) {
935 uvm_page_physload(atop(start), atop(end),
936 atop(start), atop(end), VM_FREELIST_DEFAULT);
937 } else {
938 uvm_page_physload(atop(start), atop(end),
939 atop(start), atop(end), VM_FREELIST_RPCDMA);
940 }
941 }
942
943 /* Boot strap pmap telling it where managed kernel virtual memory is */
944 #ifdef VERBOSE_INIT_ARM
945 printf("pmap ");
946 #endif
947 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
948 console_flush();
949
950 /* Setup the IRQ system */
951 #ifdef VERBOSE_INIT_ARM
952 printf("irq ");
953 #endif
954 console_flush();
955 irq_init();
956 #ifdef VERBOSE_INIT_ARM
957 printf("done.\n\n");
958 #endif
959
960 #if NVIDCVIDEO>0
961 consinit(); /* necessary ? */
962 #endif
963
964 /* Talk to the user */
965 printf("NetBSD/acorn32 booting ... \n");
966
967 /* Tell the user if his boot loader is too old */
968 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
969 (bootconfig.version != BOOTCONFIG_VERSION)) {
970 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
971 delay(5000000);
972 }
973
974 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
975 printf("Kernel arg string (@%p) %s\n",
976 bootconfig.args, bootconfig.args);
977 printf("\nBoot configuration structure reports the following "
978 "memory\n");
979
980 printf(" DRAM block 0a at %08x size %08x "
981 "DRAM block 0b at %08x size %08x\n\r",
982 bootconfig.dram[0].address,
983 bootconfig.dram[0].pages * bootconfig.pagesize,
984 bootconfig.dram[1].address,
985 bootconfig.dram[1].pages * bootconfig.pagesize);
986 printf(" DRAM block 1a at %08x size %08x "
987 "DRAM block 1b at %08x size %08x\n\r",
988 bootconfig.dram[2].address,
989 bootconfig.dram[2].pages * bootconfig.pagesize,
990 bootconfig.dram[3].address,
991 bootconfig.dram[3].pages * bootconfig.pagesize);
992 printf(" VRAM block 0 at %08x size %08x\n\r",
993 bootconfig.vram[0].address,
994 bootconfig.vram[0].pages * bootconfig.pagesize);
995 if (hasKinetic)
996 printf("%s", " Kinetic memory was detected\n\r");
997
998 /*
999 * Get a handle on the I2C interface so we can read
1000 * the NVRAM in the real-time clock chip.
1001 */
1002 acorn32_i2c_tag = iomdiic_bootstrap_cookie();
1003
1004 if (cmos_read(RTC_ADDR_REBOOTCNT) > 0)
1005 printf("Warning: REBOOTCNT = %d\n",
1006 cmos_read(RTC_ADDR_REBOOTCNT));
1007
1008 #ifdef CPU_SA110
1009 if (cputype == CPU_ID_SA110)
1010 rpc_sa110_cc_setup();
1011 #endif /* CPU_SA110 */
1012
1013 #if NKSYMS || defined(DDB) || defined(MODULAR)
1014 ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
1015 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
1016 #endif
1017
1018
1019 #ifdef DDB
1020 db_machine_init();
1021 if (boothowto & RB_KDB)
1022 Debugger();
1023 #endif /* DDB */
1024
1025 /* We return the new stack pointer address */
1026 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
1027 }
1028
1029
1030 static void
process_kernel_args(void)1031 process_kernel_args(void)
1032 {
1033 char *args;
1034
1035 /* Ok now we will check the arguments for interesting parameters. */
1036 args = bootconfig.args;
1037 boothowto = 0;
1038
1039 /* Only arguments itself are passed from the new bootloader */
1040 while (*args == ' ')
1041 ++args;
1042
1043 boot_args = args;
1044 parse_mi_bootargs(boot_args);
1045 parse_rpc_bootargs(boot_args);
1046 }
1047
1048
1049 void
parse_rpc_bootargs(char * args)1050 parse_rpc_bootargs(char *args)
1051 {
1052 int integer;
1053
1054 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
1055 &integer)) {
1056 videodram_size = integer;
1057 /* Round to 4K page */
1058 videodram_size *= 1024;
1059 videodram_size = round_page(videodram_size);
1060 if (videodram_size > 1024*1024)
1061 videodram_size = 1024*1024;
1062 }
1063
1064 #if 0
1065 /* XXX this I would rather have in the new bootconfig structure */
1066 if (get_bootconf_option(args, "kinetic", BOOTOPT_TYPE_BOOLEAN,
1067 &integer)) {
1068 bootconfig.RPC_kinetic_card_support = 1;
1069 }
1070 #endif
1071 }
1072
1073
1074 #ifdef CPU_SA110
1075
1076 /*
1077 * For optimal cache cleaning we need two 16K banks of
1078 * virtual address space that NOTHING else will access
1079 * and then we alternate the cache cleaning between the
1080 * two banks.
1081 * The cache cleaning code requires 2 banks aligned
1082 * on total size boundary so the banks can be alternated by
1083 * xorring the size bit (assumes the bank size is a power of 2)
1084 */
1085 extern unsigned int sa1_cache_clean_addr;
1086 extern unsigned int sa1_cache_clean_size;
1087 void
rpc_sa110_cc_setup(void)1088 rpc_sa110_cc_setup(void)
1089 {
1090 int loop;
1091 paddr_t kaddr;
1092
1093 (void) pmap_extract(pmap_kernel(), KERNEL_TEXT_BASE, &kaddr);
1094 const pt_entry_t npte = L2_S_PROTO | kaddr |
1095 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1096 for (loop = 0; loop < CPU_SA110_CACHE_CLEAN_SIZE; loop += PAGE_SIZE) {
1097 pt_entry_t * const ptep = vtopte(sa110_cc_base + loop);
1098 l2pte_set(ptep, npte, 0);
1099 PTE_SYNC(ptep);
1100 }
1101 sa1_cache_clean_addr = sa110_cc_base;
1102 sa1_cache_clean_size = CPU_SA110_CACHE_CLEAN_SIZE / 2;
1103 }
1104 #endif /* CPU_SA110 */
1105
1106 /*
1107 * To convert from RISC OS addresses to real CMOS addresses, do this:
1108 *
1109 * if (riscosaddr < 0xc0)
1110 * realaddr = riscosaddr + 0x40;
1111 * else
1112 * realaddr = riscosaddr - 0xb0;
1113 */
1114
1115 /* Read a byte from CMOS RAM. */
1116 int
cmos_read(int location)1117 cmos_read(int location)
1118 {
1119 uint8_t val;
1120
1121 if (pcfrtc_bootstrap_read(acorn32_i2c_tag, 0x50,
1122 location, &val, 1) != 0)
1123 return (-1);
1124 return (val);
1125 }
1126
1127 /* Write a byte to CMOS RAM. */
1128 int
cmos_write(int location,int value)1129 cmos_write(int location, int value)
1130 {
1131 uint8_t val = value;
1132 int oldvalue, oldsum;
1133
1134 /* Get the old value and checksum. */
1135 if ((oldvalue = cmos_read(location)) < 0)
1136 return (-1);
1137 if ((oldsum = cmos_read(RTC_ADDR_CHECKSUM)) < 0)
1138 return (-1);
1139
1140 if (pcfrtc_bootstrap_write(acorn32_i2c_tag, 0x50,
1141 location, &val, 1) != 0)
1142 return (-1);
1143
1144 /* Now update the checksum. */
1145 val = (uint8_t)oldsum - (uint8_t)oldvalue + val;
1146 return (pcfrtc_bootstrap_write(acorn32_i2c_tag, 0x50,
1147 RTC_ADDR_CHECKSUM, &val, 1));
1148 }
1149
1150 /* End of machdep.c */
1151