xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reload1.c (revision a24feef748bbe755c403696a742e5e3ca7dae1b4)
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35 
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45 #include "function-abi.h"
46 
47 /* This file contains the reload pass of the compiler, which is
48    run after register allocation has been done.  It checks that
49    each insn is valid (operands required to be in registers really
50    are in registers of the proper class) and fixes up invalid ones
51    by copying values temporarily into registers for the insns
52    that need them.
53 
54    The results of register allocation are described by the vector
55    reg_renumber; the insns still contain pseudo regs, but reg_renumber
56    can be used to find which hard reg, if any, a pseudo reg is in.
57 
58    The technique we always use is to free up a few hard regs that are
59    called ``reload regs'', and for each place where a pseudo reg
60    must be in a hard reg, copy it temporarily into one of the reload regs.
61 
62    Reload regs are allocated locally for every instruction that needs
63    reloads.  When there are pseudos which are allocated to a register that
64    has been chosen as a reload reg, such pseudos must be ``spilled''.
65    This means that they go to other hard regs, or to stack slots if no other
66    available hard regs can be found.  Spilling can invalidate more
67    insns, requiring additional need for reloads, so we must keep checking
68    until the process stabilizes.
69 
70    For machines with different classes of registers, we must keep track
71    of the register class needed for each reload, and make sure that
72    we allocate enough reload registers of each class.
73 
74    The file reload.c contains the code that checks one insn for
75    validity and reports the reloads that it needs.  This file
76    is in charge of scanning the entire rtl code, accumulating the
77    reload needs, spilling, assigning reload registers to use for
78    fixing up each insn, and generating the new insns to copy values
79    into the reload registers.  */
80 
81 struct target_reload default_target_reload;
82 #if SWITCHABLE_TARGET
83 struct target_reload *this_target_reload = &default_target_reload;
84 #endif
85 
86 #define spill_indirect_levels			\
87   (this_target_reload->x_spill_indirect_levels)
88 
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90    into which reg N has been reloaded (perhaps for a previous insn).  */
91 static rtx *reg_last_reload_reg;
92 
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94    for an output reload that stores into reg N.  */
95 static regset_head reg_has_output_reload;
96 
97 /* Indicates which hard regs are reload-registers for an output reload
98    in the current insn.  */
99 static HARD_REG_SET reg_is_output_reload;
100 
101 /* Widest mode in which each pseudo reg is referred to (via subreg).  */
102 static machine_mode *reg_max_ref_mode;
103 
104 /* Vector to remember old contents of reg_renumber before spilling.  */
105 static short *reg_old_renumber;
106 
107 /* During reload_as_needed, element N contains the last pseudo regno reloaded
108    into hard register N.  If that pseudo reg occupied more than one register,
109    reg_reloaded_contents points to that pseudo for each spill register in
110    use; all of these must remain set for an inheritance to occur.  */
111 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 
113 /* During reload_as_needed, element N contains the insn for which
114    hard register N was last used.   Its contents are significant only
115    when reg_reloaded_valid is set for this register.  */
116 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 
118 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid.  */
119 static HARD_REG_SET reg_reloaded_valid;
120 /* Indicate if the register was dead at the end of the reload.
121    This is only valid if reg_reloaded_contents is set and valid.  */
122 static HARD_REG_SET reg_reloaded_dead;
123 
124 /* Number of spill-regs so far; number of valid elements of spill_regs.  */
125 static int n_spills;
126 
127 /* In parallel with spill_regs, contains REG rtx's for those regs.
128    Holds the last rtx used for any given reg, or 0 if it has never
129    been used for spilling yet.  This rtx is reused, provided it has
130    the proper mode.  */
131 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
132 
133 /* In parallel with spill_regs, contains nonzero for a spill reg
134    that was stored after the last time it was used.
135    The precise value is the insn generated to do the store.  */
136 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
137 
138 /* This is the register that was stored with spill_reg_store.  This is a
139    copy of reload_out / reload_out_reg when the value was stored; if
140    reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg.  */
141 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
142 
143 /* This table is the inverse mapping of spill_regs:
144    indexed by hard reg number,
145    it contains the position of that reg in spill_regs,
146    or -1 for something that is not in spill_regs.
147 
148    ?!?  This is no longer accurate.  */
149 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
150 
151 /* This reg set indicates registers that can't be used as spill registers for
152    the currently processed insn.  These are the hard registers which are live
153    during the insn, but not allocated to pseudos, as well as fixed
154    registers.  */
155 static HARD_REG_SET bad_spill_regs;
156 
157 /* These are the hard registers that can't be used as spill register for any
158    insn.  This includes registers used for user variables and registers that
159    we can't eliminate.  A register that appears in this set also can't be used
160    to retry register allocation.  */
161 static HARD_REG_SET bad_spill_regs_global;
162 
163 /* Describes order of use of registers for reloading
164    of spilled pseudo-registers.  `n_spills' is the number of
165    elements that are actually valid; new ones are added at the end.
166 
167    Both spill_regs and spill_reg_order are used on two occasions:
168    once during find_reload_regs, where they keep track of the spill registers
169    for a single insn, but also during reload_as_needed where they show all
170    the registers ever used by reload.  For the latter case, the information
171    is calculated during finish_spills.  */
172 static short spill_regs[FIRST_PSEUDO_REGISTER];
173 
174 /* This vector of reg sets indicates, for each pseudo, which hard registers
175    may not be used for retrying global allocation because the register was
176    formerly spilled from one of them.  If we allowed reallocating a pseudo to
177    a register that it was already allocated to, reload might not
178    terminate.  */
179 static HARD_REG_SET *pseudo_previous_regs;
180 
181 /* This vector of reg sets indicates, for each pseudo, which hard
182    registers may not be used for retrying global allocation because they
183    are used as spill registers during one of the insns in which the
184    pseudo is live.  */
185 static HARD_REG_SET *pseudo_forbidden_regs;
186 
187 /* All hard regs that have been used as spill registers for any insn are
188    marked in this set.  */
189 static HARD_REG_SET used_spill_regs;
190 
191 /* Index of last register assigned as a spill register.  We allocate in
192    a round-robin fashion.  */
193 static int last_spill_reg;
194 
195 /* Record the stack slot for each spilled hard register.  */
196 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
197 
198 /* Width allocated so far for that stack slot.  */
199 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
200 
201 /* Record which pseudos needed to be spilled.  */
202 static regset_head spilled_pseudos;
203 
204 /* Record which pseudos changed their allocation in finish_spills.  */
205 static regset_head changed_allocation_pseudos;
206 
207 /* Used for communication between order_regs_for_reload and count_pseudo.
208    Used to avoid counting one pseudo twice.  */
209 static regset_head pseudos_counted;
210 
211 /* First uid used by insns created by reload in this function.
212    Used in find_equiv_reg.  */
213 int reload_first_uid;
214 
215 /* Flag set by local-alloc or global-alloc if anything is live in
216    a call-clobbered reg across calls.  */
217 int caller_save_needed;
218 
219 /* Set to 1 while reload_as_needed is operating.
220    Required by some machines to handle any generated moves differently.  */
221 int reload_in_progress = 0;
222 
223 /* This obstack is used for allocation of rtl during register elimination.
224    The allocated storage can be freed once find_reloads has processed the
225    insn.  */
226 static struct obstack reload_obstack;
227 
228 /* Points to the beginning of the reload_obstack.  All insn_chain structures
229    are allocated first.  */
230 static char *reload_startobj;
231 
232 /* The point after all insn_chain structures.  Used to quickly deallocate
233    memory allocated in copy_reloads during calculate_needs_all_insns.  */
234 static char *reload_firstobj;
235 
236 /* This points before all local rtl generated by register elimination.
237    Used to quickly free all memory after processing one insn.  */
238 static char *reload_insn_firstobj;
239 
240 /* List of insn_chain instructions, one for every insn that reload needs to
241    examine.  */
242 class insn_chain *reload_insn_chain;
243 
244 /* TRUE if we potentially left dead insns in the insn stream and want to
245    run DCE immediately after reload, FALSE otherwise.  */
246 static bool need_dce;
247 
248 /* List of all insns needing reloads.  */
249 static class insn_chain *insns_need_reload;
250 
251 /* This structure is used to record information about register eliminations.
252    Each array entry describes one possible way of eliminating a register
253    in favor of another.   If there is more than one way of eliminating a
254    particular register, the most preferred should be specified first.  */
255 
256 struct elim_table
257 {
258   int from;			/* Register number to be eliminated.  */
259   int to;			/* Register number used as replacement.  */
260   poly_int64_pod initial_offset; /* Initial difference between values.  */
261   int can_eliminate;		/* Nonzero if this elimination can be done.  */
262   int can_eliminate_previous;	/* Value returned by TARGET_CAN_ELIMINATE
263 				   target hook in previous scan over insns
264 				   made by reload.  */
265   poly_int64_pod offset;	/* Current offset between the two regs.  */
266   poly_int64_pod previous_offset; /* Offset at end of previous insn.  */
267   int ref_outside_mem;		/* "to" has been referenced outside a MEM.  */
268   rtx from_rtx;			/* REG rtx for the register to be eliminated.
269 				   We cannot simply compare the number since
270 				   we might then spuriously replace a hard
271 				   register corresponding to a pseudo
272 				   assigned to the reg to be eliminated.  */
273   rtx to_rtx;			/* REG rtx for the replacement.  */
274 };
275 
276 static struct elim_table *reg_eliminate = 0;
277 
278 /* This is an intermediate structure to initialize the table.  It has
279    exactly the members provided by ELIMINABLE_REGS.  */
280 static const struct elim_table_1
281 {
282   const int from;
283   const int to;
284 } reg_eliminate_1[] =
285 
286   ELIMINABLE_REGS;
287 
288 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
289 
290 /* Record the number of pending eliminations that have an offset not equal
291    to their initial offset.  If nonzero, we use a new copy of each
292    replacement result in any insns encountered.  */
293 int num_not_at_initial_offset;
294 
295 /* Count the number of registers that we may be able to eliminate.  */
296 static int num_eliminable;
297 /* And the number of registers that are equivalent to a constant that
298    can be eliminated to frame_pointer / arg_pointer + constant.  */
299 static int num_eliminable_invariants;
300 
301 /* For each label, we record the offset of each elimination.  If we reach
302    a label by more than one path and an offset differs, we cannot do the
303    elimination.  This information is indexed by the difference of the
304    number of the label and the first label number.  We can't offset the
305    pointer itself as this can cause problems on machines with segmented
306    memory.  The first table is an array of flags that records whether we
307    have yet encountered a label and the second table is an array of arrays,
308    one entry in the latter array for each elimination.  */
309 
310 static int first_label_num;
311 static char *offsets_known_at;
312 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
313 
314 vec<reg_equivs_t, va_gc> *reg_equivs;
315 
316 /* Stack of addresses where an rtx has been changed.  We can undo the
317    changes by popping items off the stack and restoring the original
318    value at each location.
319 
320    We use this simplistic undo capability rather than copy_rtx as copy_rtx
321    will not make a deep copy of a normally sharable rtx, such as
322    (const (plus (symbol_ref) (const_int))).  If such an expression appears
323    as R1 in gen_reload_chain_without_interm_reg_p, then a shared
324    rtx expression would be changed.  See PR 42431.  */
325 
326 typedef rtx *rtx_p;
327 static vec<rtx_p> substitute_stack;
328 
329 /* Number of labels in the current function.  */
330 
331 static int num_labels;
332 
333 static void replace_pseudos_in (rtx *, machine_mode, rtx);
334 static void maybe_fix_stack_asms (void);
335 static void copy_reloads (class insn_chain *);
336 static void calculate_needs_all_insns (int);
337 static int find_reg (class insn_chain *, int);
338 static void find_reload_regs (class insn_chain *);
339 static void select_reload_regs (void);
340 static void delete_caller_save_insns (void);
341 
342 static void spill_failure (rtx_insn *, enum reg_class);
343 static void count_spilled_pseudo (int, int, int);
344 static void delete_dead_insn (rtx_insn *);
345 static void alter_reg (int, int, bool);
346 static void set_label_offsets (rtx, rtx_insn *, int);
347 static void check_eliminable_occurrences (rtx);
348 static void elimination_effects (rtx, machine_mode);
349 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
350 static int eliminate_regs_in_insn (rtx_insn *, int);
351 static void update_eliminable_offsets (void);
352 static void mark_not_eliminable (rtx, const_rtx, void *);
353 static void set_initial_elim_offsets (void);
354 static bool verify_initial_elim_offsets (void);
355 static void set_initial_label_offsets (void);
356 static void set_offsets_for_label (rtx_insn *);
357 static void init_eliminable_invariants (rtx_insn *, bool);
358 static void init_elim_table (void);
359 static void free_reg_equiv (void);
360 static void update_eliminables (HARD_REG_SET *);
361 static bool update_eliminables_and_spill (void);
362 static void elimination_costs_in_insn (rtx_insn *);
363 static void spill_hard_reg (unsigned int, int);
364 static int finish_spills (int);
365 static void scan_paradoxical_subregs (rtx);
366 static void count_pseudo (int);
367 static void order_regs_for_reload (class insn_chain *);
368 static void reload_as_needed (int);
369 static void forget_old_reloads_1 (rtx, const_rtx, void *);
370 static void forget_marked_reloads (regset);
371 static int reload_reg_class_lower (const void *, const void *);
372 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
373 				    machine_mode);
374 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
375 				     machine_mode);
376 static int reload_reg_free_p (unsigned int, int, enum reload_type);
377 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
378 					rtx, rtx, int, int);
379 static int free_for_value_p (int, machine_mode, int, enum reload_type,
380 			     rtx, rtx, int, int);
381 static int allocate_reload_reg (class insn_chain *, int, int);
382 static int conflicts_with_override (rtx);
383 static void failed_reload (rtx_insn *, int);
384 static int set_reload_reg (int, int);
385 static void choose_reload_regs_init (class insn_chain *, rtx *);
386 static void choose_reload_regs (class insn_chain *);
387 static void emit_input_reload_insns (class insn_chain *, struct reload *,
388 				     rtx, int);
389 static void emit_output_reload_insns (class insn_chain *, struct reload *,
390 				      int);
391 static void do_input_reload (class insn_chain *, struct reload *, int);
392 static void do_output_reload (class insn_chain *, struct reload *, int);
393 static void emit_reload_insns (class insn_chain *);
394 static void delete_output_reload (rtx_insn *, int, int, rtx);
395 static void delete_address_reloads (rtx_insn *, rtx_insn *);
396 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
397 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
398 static void add_auto_inc_notes (rtx_insn *, rtx);
399 static void substitute (rtx *, const_rtx, rtx);
400 static bool gen_reload_chain_without_interm_reg_p (int, int);
401 static int reloads_conflict (int, int);
402 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
403 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
404 
405 /* Initialize the reload pass.  This is called at the beginning of compilation
406    and may be called again if the target is reinitialized.  */
407 
408 void
init_reload(void)409 init_reload (void)
410 {
411   int i;
412 
413   /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
414      Set spill_indirect_levels to the number of levels such addressing is
415      permitted, zero if it is not permitted at all.  */
416 
417   rtx tem
418     = gen_rtx_MEM (Pmode,
419 		   gen_rtx_PLUS (Pmode,
420 				 gen_rtx_REG (Pmode,
421 					      LAST_VIRTUAL_REGISTER + 1),
422 				 gen_int_mode (4, Pmode)));
423   spill_indirect_levels = 0;
424 
425   while (memory_address_p (QImode, tem))
426     {
427       spill_indirect_levels++;
428       tem = gen_rtx_MEM (Pmode, tem);
429     }
430 
431   /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)).  */
432 
433   tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
434   indirect_symref_ok = memory_address_p (QImode, tem);
435 
436   /* See if reg+reg is a valid (and offsettable) address.  */
437 
438   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
439     {
440       tem = gen_rtx_PLUS (Pmode,
441 			  gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
442 			  gen_rtx_REG (Pmode, i));
443 
444       /* This way, we make sure that reg+reg is an offsettable address.  */
445       tem = plus_constant (Pmode, tem, 4);
446 
447       for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
448 	if (!double_reg_address_ok[mode]
449 	    && memory_address_p ((enum machine_mode)mode, tem))
450 	  double_reg_address_ok[mode] = 1;
451     }
452 
453   /* Initialize obstack for our rtl allocation.  */
454   if (reload_startobj == NULL)
455     {
456       gcc_obstack_init (&reload_obstack);
457       reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
458     }
459 
460   INIT_REG_SET (&spilled_pseudos);
461   INIT_REG_SET (&changed_allocation_pseudos);
462   INIT_REG_SET (&pseudos_counted);
463 }
464 
465 /* List of insn chains that are currently unused.  */
466 static class insn_chain *unused_insn_chains = 0;
467 
468 /* Allocate an empty insn_chain structure.  */
469 class insn_chain *
new_insn_chain(void)470 new_insn_chain (void)
471 {
472   class insn_chain *c;
473 
474   if (unused_insn_chains == 0)
475     {
476       c = XOBNEW (&reload_obstack, class insn_chain);
477       INIT_REG_SET (&c->live_throughout);
478       INIT_REG_SET (&c->dead_or_set);
479     }
480   else
481     {
482       c = unused_insn_chains;
483       unused_insn_chains = c->next;
484     }
485   c->is_caller_save_insn = 0;
486   c->need_operand_change = 0;
487   c->need_reload = 0;
488   c->need_elim = 0;
489   return c;
490 }
491 
492 /* Small utility function to set all regs in hard reg set TO which are
493    allocated to pseudos in regset FROM.  */
494 
495 void
compute_use_by_pseudos(HARD_REG_SET * to,regset from)496 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
497 {
498   unsigned int regno;
499   reg_set_iterator rsi;
500 
501   EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
502     {
503       int r = reg_renumber[regno];
504 
505       if (r < 0)
506 	{
507 	  /* reload_combine uses the information from DF_LIVE_IN,
508 	     which might still contain registers that have not
509 	     actually been allocated since they have an
510 	     equivalence.  */
511 	  gcc_assert (ira_conflicts_p || reload_completed);
512 	}
513       else
514 	add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
515     }
516 }
517 
518 /* Replace all pseudos found in LOC with their corresponding
519    equivalences.  */
520 
521 static void
replace_pseudos_in(rtx * loc,machine_mode mem_mode,rtx usage)522 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
523 {
524   rtx x = *loc;
525   enum rtx_code code;
526   const char *fmt;
527   int i, j;
528 
529   if (! x)
530     return;
531 
532   code = GET_CODE (x);
533   if (code == REG)
534     {
535       unsigned int regno = REGNO (x);
536 
537       if (regno < FIRST_PSEUDO_REGISTER)
538 	return;
539 
540       x = eliminate_regs_1 (x, mem_mode, usage, true, false);
541       if (x != *loc)
542 	{
543 	  *loc = x;
544 	  replace_pseudos_in (loc, mem_mode, usage);
545 	  return;
546 	}
547 
548       if (reg_equiv_constant (regno))
549 	*loc = reg_equiv_constant (regno);
550       else if (reg_equiv_invariant (regno))
551 	*loc = reg_equiv_invariant (regno);
552       else if (reg_equiv_mem (regno))
553 	*loc = reg_equiv_mem (regno);
554       else if (reg_equiv_address (regno))
555 	*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
556       else
557 	{
558 	  gcc_assert (!REG_P (regno_reg_rtx[regno])
559 		      || REGNO (regno_reg_rtx[regno]) != regno);
560 	  *loc = regno_reg_rtx[regno];
561 	}
562 
563       return;
564     }
565   else if (code == MEM)
566     {
567       replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
568       return;
569     }
570 
571   /* Process each of our operands recursively.  */
572   fmt = GET_RTX_FORMAT (code);
573   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
574     if (*fmt == 'e')
575       replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
576     else if (*fmt == 'E')
577       for (j = 0; j < XVECLEN (x, i); j++)
578 	replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
579 }
580 
581 /* Determine if the current function has an exception receiver block
582    that reaches the exit block via non-exceptional edges  */
583 
584 static bool
has_nonexceptional_receiver(void)585 has_nonexceptional_receiver (void)
586 {
587   edge e;
588   edge_iterator ei;
589   basic_block *tos, *worklist, bb;
590 
591   /* If we're not optimizing, then just err on the safe side.  */
592   if (!optimize)
593     return true;
594 
595   /* First determine which blocks can reach exit via normal paths.  */
596   tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
597 
598   FOR_EACH_BB_FN (bb, cfun)
599     bb->flags &= ~BB_REACHABLE;
600 
601   /* Place the exit block on our worklist.  */
602   EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
603   *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
604 
605   /* Iterate: find everything reachable from what we've already seen.  */
606   while (tos != worklist)
607     {
608       bb = *--tos;
609 
610       FOR_EACH_EDGE (e, ei, bb->preds)
611 	if (!(e->flags & EDGE_ABNORMAL))
612 	  {
613 	    basic_block src = e->src;
614 
615 	    if (!(src->flags & BB_REACHABLE))
616 	      {
617 		src->flags |= BB_REACHABLE;
618 		*tos++ = src;
619 	      }
620 	  }
621     }
622   free (worklist);
623 
624   /* Now see if there's a reachable block with an exceptional incoming
625      edge.  */
626   FOR_EACH_BB_FN (bb, cfun)
627     if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
628       return true;
629 
630   /* No exceptional block reached exit unexceptionally.  */
631   return false;
632 }
633 
634 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
635    zero elements) to MAX_REG_NUM elements.
636 
637    Initialize all new fields to NULL and update REG_EQUIVS_SIZE.  */
638 void
grow_reg_equivs(void)639 grow_reg_equivs (void)
640 {
641   int old_size = vec_safe_length (reg_equivs);
642   int max_regno = max_reg_num ();
643   int i;
644   reg_equivs_t ze;
645 
646   memset (&ze, 0, sizeof (reg_equivs_t));
647   vec_safe_reserve (reg_equivs, max_regno);
648   for (i = old_size; i < max_regno; i++)
649     reg_equivs->quick_insert (i, ze);
650 }
651 
652 
653 /* Global variables used by reload and its subroutines.  */
654 
655 /* The current basic block while in calculate_elim_costs_all_insns.  */
656 static basic_block elim_bb;
657 
658 /* Set during calculate_needs if an insn needs register elimination.  */
659 static int something_needs_elimination;
660 /* Set during calculate_needs if an insn needs an operand changed.  */
661 static int something_needs_operands_changed;
662 /* Set by alter_regs if we spilled a register to the stack.  */
663 static bool something_was_spilled;
664 
665 /* Nonzero means we couldn't get enough spill regs.  */
666 static int failure;
667 
668 /* Temporary array of pseudo-register number.  */
669 static int *temp_pseudo_reg_arr;
670 
671 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
672    If that insn didn't set the register (i.e., it copied the register to
673    memory), just delete that insn instead of the equivalencing insn plus
674    anything now dead.  If we call delete_dead_insn on that insn, we may
675    delete the insn that actually sets the register if the register dies
676    there and that is incorrect.  */
677 static void
remove_init_insns()678 remove_init_insns ()
679 {
680   for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
681     {
682       if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
683 	{
684 	  rtx list;
685 	  for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
686 	    {
687 	      rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
688 
689 	      /* If we already deleted the insn or if it may trap, we can't
690 		 delete it.  The latter case shouldn't happen, but can
691 		 if an insn has a variable address, gets a REG_EH_REGION
692 		 note added to it, and then gets converted into a load
693 		 from a constant address.  */
694 	      if (NOTE_P (equiv_insn)
695 		  || can_throw_internal (equiv_insn))
696 		;
697 	      else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
698 		delete_dead_insn (equiv_insn);
699 	      else
700 		SET_INSN_DELETED (equiv_insn);
701 	    }
702 	}
703     }
704 }
705 
706 /* Return true if remove_init_insns will delete INSN.  */
707 static bool
will_delete_init_insn_p(rtx_insn * insn)708 will_delete_init_insn_p (rtx_insn *insn)
709 {
710   rtx set = single_set (insn);
711   if (!set || !REG_P (SET_DEST (set)))
712     return false;
713   unsigned regno = REGNO (SET_DEST (set));
714 
715   if (can_throw_internal (insn))
716     return false;
717 
718   if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
719     return false;
720 
721   for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
722     {
723       rtx equiv_insn = XEXP (list, 0);
724       if (equiv_insn == insn)
725 	return true;
726     }
727   return false;
728 }
729 
730 /* Main entry point for the reload pass.
731 
732    FIRST is the first insn of the function being compiled.
733 
734    GLOBAL nonzero means we were called from global_alloc
735    and should attempt to reallocate any pseudoregs that we
736    displace from hard regs we will use for reloads.
737    If GLOBAL is zero, we do not have enough information to do that,
738    so any pseudo reg that is spilled must go to the stack.
739 
740    Return value is TRUE if reload likely left dead insns in the
741    stream and a DCE pass should be run to elimiante them.  Else the
742    return value is FALSE.  */
743 
744 bool
reload(rtx_insn * first,int global)745 reload (rtx_insn *first, int global)
746 {
747   int i, n;
748   rtx_insn *insn;
749   struct elim_table *ep;
750   basic_block bb;
751   bool inserted;
752 
753   /* Make sure even insns with volatile mem refs are recognizable.  */
754   init_recog ();
755 
756   failure = 0;
757 
758   reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
759 
760   /* Make sure that the last insn in the chain
761      is not something that needs reloading.  */
762   emit_note (NOTE_INSN_DELETED);
763 
764   /* Enable find_equiv_reg to distinguish insns made by reload.  */
765   reload_first_uid = get_max_uid ();
766 
767   /* Initialize the secondary memory table.  */
768   clear_secondary_mem ();
769 
770   /* We don't have a stack slot for any spill reg yet.  */
771   memset (spill_stack_slot, 0, sizeof spill_stack_slot);
772   memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
773 
774   /* Initialize the save area information for caller-save, in case some
775      are needed.  */
776   init_save_areas ();
777 
778   /* Compute which hard registers are now in use
779      as homes for pseudo registers.
780      This is done here rather than (eg) in global_alloc
781      because this point is reached even if not optimizing.  */
782   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
783     mark_home_live (i);
784 
785   /* A function that has a nonlocal label that can reach the exit
786      block via non-exceptional paths must save all call-saved
787      registers.  */
788   if (cfun->has_nonlocal_label
789       && has_nonexceptional_receiver ())
790     crtl->saves_all_registers = 1;
791 
792   if (crtl->saves_all_registers)
793     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
794       if (! crtl->abi->clobbers_full_reg_p (i)
795 	  && ! fixed_regs[i]
796 	  && ! LOCAL_REGNO (i))
797 	df_set_regs_ever_live (i, true);
798 
799   /* Find all the pseudo registers that didn't get hard regs
800      but do have known equivalent constants or memory slots.
801      These include parameters (known equivalent to parameter slots)
802      and cse'd or loop-moved constant memory addresses.
803 
804      Record constant equivalents in reg_equiv_constant
805      so they will be substituted by find_reloads.
806      Record memory equivalents in reg_mem_equiv so they can
807      be substituted eventually by altering the REG-rtx's.  */
808 
809   grow_reg_equivs ();
810   reg_old_renumber = XCNEWVEC (short, max_regno);
811   memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
812   pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
813   pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
814 
815   CLEAR_HARD_REG_SET (bad_spill_regs_global);
816 
817   init_eliminable_invariants (first, true);
818   init_elim_table ();
819 
820   /* Alter each pseudo-reg rtx to contain its hard reg number.  Assign
821      stack slots to the pseudos that lack hard regs or equivalents.
822      Do not touch virtual registers.  */
823 
824   temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
825   for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
826     temp_pseudo_reg_arr[n++] = i;
827 
828   if (ira_conflicts_p)
829     /* Ask IRA to order pseudo-registers for better stack slot
830        sharing.  */
831     ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
832 
833   for (i = 0; i < n; i++)
834     alter_reg (temp_pseudo_reg_arr[i], -1, false);
835 
836   /* If we have some registers we think can be eliminated, scan all insns to
837      see if there is an insn that sets one of these registers to something
838      other than itself plus a constant.  If so, the register cannot be
839      eliminated.  Doing this scan here eliminates an extra pass through the
840      main reload loop in the most common case where register elimination
841      cannot be done.  */
842   for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
843     if (INSN_P (insn))
844       note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL);
845 
846   maybe_fix_stack_asms ();
847 
848   insns_need_reload = 0;
849   something_needs_elimination = 0;
850 
851   /* Initialize to -1, which means take the first spill register.  */
852   last_spill_reg = -1;
853 
854   /* Spill any hard regs that we know we can't eliminate.  */
855   CLEAR_HARD_REG_SET (used_spill_regs);
856   /* There can be multiple ways to eliminate a register;
857      they should be listed adjacently.
858      Elimination for any register fails only if all possible ways fail.  */
859   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
860     {
861       int from = ep->from;
862       int can_eliminate = 0;
863       do
864 	{
865           can_eliminate |= ep->can_eliminate;
866           ep++;
867 	}
868       while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
869       if (! can_eliminate)
870 	spill_hard_reg (from, 1);
871     }
872 
873   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
874     spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
875 
876   finish_spills (global);
877 
878   /* From now on, we may need to generate moves differently.  We may also
879      allow modifications of insns which cause them to not be recognized.
880      Any such modifications will be cleaned up during reload itself.  */
881   reload_in_progress = 1;
882 
883   /* This loop scans the entire function each go-round
884      and repeats until one repetition spills no additional hard regs.  */
885   for (;;)
886     {
887       int something_changed;
888       poly_int64 starting_frame_size;
889 
890       starting_frame_size = get_frame_size ();
891       something_was_spilled = false;
892 
893       set_initial_elim_offsets ();
894       set_initial_label_offsets ();
895 
896       /* For each pseudo register that has an equivalent location defined,
897 	 try to eliminate any eliminable registers (such as the frame pointer)
898 	 assuming initial offsets for the replacement register, which
899 	 is the normal case.
900 
901 	 If the resulting location is directly addressable, substitute
902 	 the MEM we just got directly for the old REG.
903 
904 	 If it is not addressable but is a constant or the sum of a hard reg
905 	 and constant, it is probably not addressable because the constant is
906 	 out of range, in that case record the address; we will generate
907 	 hairy code to compute the address in a register each time it is
908 	 needed.  Similarly if it is a hard register, but one that is not
909 	 valid as an address register.
910 
911 	 If the location is not addressable, but does not have one of the
912 	 above forms, assign a stack slot.  We have to do this to avoid the
913 	 potential of producing lots of reloads if, e.g., a location involves
914 	 a pseudo that didn't get a hard register and has an equivalent memory
915 	 location that also involves a pseudo that didn't get a hard register.
916 
917 	 Perhaps at some point we will improve reload_when_needed handling
918 	 so this problem goes away.  But that's very hairy.  */
919 
920       for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
921 	if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
922 	  {
923 	    rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
924 				    NULL_RTX);
925 
926 	    if (strict_memory_address_addr_space_p
927 		  (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
928 		   MEM_ADDR_SPACE (x)))
929 	      reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
930 	    else if (CONSTANT_P (XEXP (x, 0))
931 		     || (REG_P (XEXP (x, 0))
932 			 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
933 		     || (GET_CODE (XEXP (x, 0)) == PLUS
934 			 && REG_P (XEXP (XEXP (x, 0), 0))
935 			 && (REGNO (XEXP (XEXP (x, 0), 0))
936 			     < FIRST_PSEUDO_REGISTER)
937 			 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
938 	      reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
939 	    else
940 	      {
941 		/* Make a new stack slot.  Then indicate that something
942 		   changed so we go back and recompute offsets for
943 		   eliminable registers because the allocation of memory
944 		   below might change some offset.  reg_equiv_{mem,address}
945 		   will be set up for this pseudo on the next pass around
946 		   the loop.  */
947 		reg_equiv_memory_loc (i) = 0;
948 		reg_equiv_init (i) = 0;
949 		alter_reg (i, -1, true);
950 	      }
951 	  }
952 
953       if (caller_save_needed)
954 	setup_save_areas ();
955 
956       if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
957 	{
958 	  /* If we have a stack frame, we must align it now.  The
959 	     stack size may be a part of the offset computation for
960 	     register elimination.  So if this changes the stack size,
961 	     then repeat the elimination bookkeeping.  We don't
962 	     realign when there is no stack, as that will cause a
963 	     stack frame when none is needed should
964 	     TARGET_STARTING_FRAME_OFFSET not be already aligned to
965 	     STACK_BOUNDARY.  */
966 	  assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
967 	}
968       /* If we allocated another stack slot, redo elimination bookkeeping.  */
969       if (something_was_spilled
970 	  || maybe_ne (starting_frame_size, get_frame_size ()))
971 	{
972 	  if (update_eliminables_and_spill ())
973 	    finish_spills (0);
974 	  continue;
975 	}
976 
977       if (caller_save_needed)
978 	{
979 	  save_call_clobbered_regs ();
980 	  /* That might have allocated new insn_chain structures.  */
981 	  reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
982 	}
983 
984       calculate_needs_all_insns (global);
985 
986       if (! ira_conflicts_p)
987 	/* Don't do it for IRA.  We need this info because we don't
988 	   change live_throughout and dead_or_set for chains when IRA
989 	   is used.  */
990 	CLEAR_REG_SET (&spilled_pseudos);
991 
992       something_changed = 0;
993 
994       /* If we allocated any new memory locations, make another pass
995 	 since it might have changed elimination offsets.  */
996       if (something_was_spilled
997 	  || maybe_ne (starting_frame_size, get_frame_size ()))
998 	something_changed = 1;
999 
1000       /* Even if the frame size remained the same, we might still have
1001 	 changed elimination offsets, e.g. if find_reloads called
1002 	 force_const_mem requiring the back end to allocate a constant
1003 	 pool base register that needs to be saved on the stack.  */
1004       else if (!verify_initial_elim_offsets ())
1005 	something_changed = 1;
1006 
1007       if (update_eliminables_and_spill ())
1008 	{
1009 	  finish_spills (0);
1010 	  something_changed = 1;
1011 	}
1012       else
1013 	{
1014 	  select_reload_regs ();
1015 	  if (failure)
1016 	    goto failed;
1017 	  if (insns_need_reload)
1018 	    something_changed |= finish_spills (global);
1019 	}
1020 
1021       if (! something_changed)
1022 	break;
1023 
1024       if (caller_save_needed)
1025 	delete_caller_save_insns ();
1026 
1027       obstack_free (&reload_obstack, reload_firstobj);
1028     }
1029 
1030   /* If global-alloc was run, notify it of any register eliminations we have
1031      done.  */
1032   if (global)
1033     for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1034       if (ep->can_eliminate)
1035 	mark_elimination (ep->from, ep->to);
1036 
1037   remove_init_insns ();
1038 
1039   /* Use the reload registers where necessary
1040      by generating move instructions to move the must-be-register
1041      values into or out of the reload registers.  */
1042 
1043   if (insns_need_reload != 0 || something_needs_elimination
1044       || something_needs_operands_changed)
1045     {
1046       poly_int64 old_frame_size = get_frame_size ();
1047 
1048       reload_as_needed (global);
1049 
1050       gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1051 
1052       gcc_assert (verify_initial_elim_offsets ());
1053     }
1054 
1055   /* If we were able to eliminate the frame pointer, show that it is no
1056      longer live at the start of any basic block.  If it ls live by
1057      virtue of being in a pseudo, that pseudo will be marked live
1058      and hence the frame pointer will be known to be live via that
1059      pseudo.  */
1060 
1061   if (! frame_pointer_needed)
1062     FOR_EACH_BB_FN (bb, cfun)
1063       bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1064 
1065   /* Come here (with failure set nonzero) if we can't get enough spill
1066      regs.  */
1067  failed:
1068 
1069   CLEAR_REG_SET (&changed_allocation_pseudos);
1070   CLEAR_REG_SET (&spilled_pseudos);
1071   reload_in_progress = 0;
1072 
1073   /* Now eliminate all pseudo regs by modifying them into
1074      their equivalent memory references.
1075      The REG-rtx's for the pseudos are modified in place,
1076      so all insns that used to refer to them now refer to memory.
1077 
1078      For a reg that has a reg_equiv_address, all those insns
1079      were changed by reloading so that no insns refer to it any longer;
1080      but the DECL_RTL of a variable decl may refer to it,
1081      and if so this causes the debugging info to mention the variable.  */
1082 
1083   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1084     {
1085       rtx addr = 0;
1086 
1087       if (reg_equiv_mem (i))
1088 	addr = XEXP (reg_equiv_mem (i), 0);
1089 
1090       if (reg_equiv_address (i))
1091 	addr = reg_equiv_address (i);
1092 
1093       if (addr)
1094 	{
1095 	  if (reg_renumber[i] < 0)
1096 	    {
1097 	      rtx reg = regno_reg_rtx[i];
1098 
1099 	      REG_USERVAR_P (reg) = 0;
1100 	      PUT_CODE (reg, MEM);
1101 	      XEXP (reg, 0) = addr;
1102 	      if (reg_equiv_memory_loc (i))
1103 		MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1104 	      else
1105 		MEM_ATTRS (reg) = 0;
1106 	      MEM_NOTRAP_P (reg) = 1;
1107 	    }
1108 	  else if (reg_equiv_mem (i))
1109 	    XEXP (reg_equiv_mem (i), 0) = addr;
1110 	}
1111 
1112       /* We don't want complex addressing modes in debug insns
1113 	 if simpler ones will do, so delegitimize equivalences
1114 	 in debug insns.  */
1115       if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1116 	{
1117 	  rtx reg = regno_reg_rtx[i];
1118 	  rtx equiv = 0;
1119 	  df_ref use, next;
1120 
1121 	  if (reg_equiv_constant (i))
1122 	    equiv = reg_equiv_constant (i);
1123 	  else if (reg_equiv_invariant (i))
1124 	    equiv = reg_equiv_invariant (i);
1125 	  else if (reg && MEM_P (reg))
1126 	    equiv = targetm.delegitimize_address (reg);
1127 	  else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1128 	    equiv = reg;
1129 
1130 	  if (equiv == reg)
1131 	    continue;
1132 
1133 	  for (use = DF_REG_USE_CHAIN (i); use; use = next)
1134 	    {
1135 	      insn = DF_REF_INSN (use);
1136 
1137 	      /* Make sure the next ref is for a different instruction,
1138 		 so that we're not affected by the rescan.  */
1139 	      next = DF_REF_NEXT_REG (use);
1140 	      while (next && DF_REF_INSN (next) == insn)
1141 		next = DF_REF_NEXT_REG (next);
1142 
1143 	      if (DEBUG_BIND_INSN_P (insn))
1144 		{
1145 		  if (!equiv)
1146 		    {
1147 		      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1148 		      df_insn_rescan_debug_internal (insn);
1149 		    }
1150 		  else
1151 		    INSN_VAR_LOCATION_LOC (insn)
1152 		      = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1153 					      reg, equiv);
1154 		}
1155 	    }
1156 	}
1157     }
1158 
1159   /* We must set reload_completed now since the cleanup_subreg_operands call
1160      below will re-recognize each insn and reload may have generated insns
1161      which are only valid during and after reload.  */
1162   reload_completed = 1;
1163 
1164   /* Make a pass over all the insns and delete all USEs which we inserted
1165      only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
1166      notes.  Delete all CLOBBER insns, except those that refer to the return
1167      value and the special mem:BLK CLOBBERs added to prevent the scheduler
1168      from misarranging variable-array code, and simplify (subreg (reg))
1169      operands.  Strip and regenerate REG_INC notes that may have been moved
1170      around.  */
1171 
1172   for (insn = first; insn; insn = NEXT_INSN (insn))
1173     if (INSN_P (insn))
1174       {
1175 	rtx *pnote;
1176 
1177 	if (CALL_P (insn))
1178 	  replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1179 			      VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1180 
1181 	if ((GET_CODE (PATTERN (insn)) == USE
1182 	     /* We mark with QImode USEs introduced by reload itself.  */
1183 	     && (GET_MODE (insn) == QImode
1184 		 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1185 	    || (GET_CODE (PATTERN (insn)) == CLOBBER
1186 		&& (!MEM_P (XEXP (PATTERN (insn), 0))
1187 		    || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1188 		    || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1189 			&& XEXP (XEXP (PATTERN (insn), 0), 0)
1190 				!= stack_pointer_rtx))
1191 		&& (!REG_P (XEXP (PATTERN (insn), 0))
1192 		    || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1193 	  {
1194 	    delete_insn (insn);
1195 	    continue;
1196 	  }
1197 
1198 	/* Some CLOBBERs may survive until here and still reference unassigned
1199 	   pseudos with const equivalent, which may in turn cause ICE in later
1200 	   passes if the reference remains in place.  */
1201 	if (GET_CODE (PATTERN (insn)) == CLOBBER)
1202 	  replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1203 			      VOIDmode, PATTERN (insn));
1204 
1205 	/* Discard obvious no-ops, even without -O.  This optimization
1206 	   is fast and doesn't interfere with debugging.  */
1207 	if (NONJUMP_INSN_P (insn)
1208 	    && GET_CODE (PATTERN (insn)) == SET
1209 	    && REG_P (SET_SRC (PATTERN (insn)))
1210 	    && REG_P (SET_DEST (PATTERN (insn)))
1211 	    && (REGNO (SET_SRC (PATTERN (insn)))
1212 		== REGNO (SET_DEST (PATTERN (insn)))))
1213 	  {
1214 	    delete_insn (insn);
1215 	    continue;
1216 	  }
1217 
1218 	pnote = &REG_NOTES (insn);
1219 	while (*pnote != 0)
1220 	  {
1221 	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
1222 		|| REG_NOTE_KIND (*pnote) == REG_UNUSED
1223 		|| REG_NOTE_KIND (*pnote) == REG_INC)
1224 	      *pnote = XEXP (*pnote, 1);
1225 	    else
1226 	      pnote = &XEXP (*pnote, 1);
1227 	  }
1228 
1229 	if (AUTO_INC_DEC)
1230 	  add_auto_inc_notes (insn, PATTERN (insn));
1231 
1232 	/* Simplify (subreg (reg)) if it appears as an operand.  */
1233 	cleanup_subreg_operands (insn);
1234 
1235 	/* Clean up invalid ASMs so that they don't confuse later passes.
1236 	   See PR 21299.  */
1237 	if (asm_noperands (PATTERN (insn)) >= 0)
1238 	  {
1239 	    extract_insn (insn);
1240 	    if (!constrain_operands (1, get_enabled_alternatives (insn)))
1241 	      {
1242 		error_for_asm (insn,
1243 			       "%<asm%> operand has impossible constraints");
1244 		delete_insn (insn);
1245 		continue;
1246 	      }
1247 	  }
1248       }
1249 
1250   free (temp_pseudo_reg_arr);
1251 
1252   /* Indicate that we no longer have known memory locations or constants.  */
1253   free_reg_equiv ();
1254 
1255   free (reg_max_ref_mode);
1256   free (reg_old_renumber);
1257   free (pseudo_previous_regs);
1258   free (pseudo_forbidden_regs);
1259 
1260   CLEAR_HARD_REG_SET (used_spill_regs);
1261   for (i = 0; i < n_spills; i++)
1262     SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1263 
1264   /* Free all the insn_chain structures at once.  */
1265   obstack_free (&reload_obstack, reload_startobj);
1266   unused_insn_chains = 0;
1267 
1268   inserted = fixup_abnormal_edges ();
1269 
1270   /* We've possibly turned single trapping insn into multiple ones.  */
1271   if (cfun->can_throw_non_call_exceptions)
1272     {
1273       auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1274       bitmap_ones (blocks);
1275       find_many_sub_basic_blocks (blocks);
1276     }
1277 
1278   if (inserted)
1279     commit_edge_insertions ();
1280 
1281   /* Replacing pseudos with their memory equivalents might have
1282      created shared rtx.  Subsequent passes would get confused
1283      by this, so unshare everything here.  */
1284   unshare_all_rtl_again (first);
1285 
1286 #ifdef STACK_BOUNDARY
1287   /* init_emit has set the alignment of the hard frame pointer
1288      to STACK_BOUNDARY.  It is very likely no longer valid if
1289      the hard frame pointer was used for register allocation.  */
1290   if (!frame_pointer_needed)
1291     REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1292 #endif
1293 
1294   substitute_stack.release ();
1295 
1296   gcc_assert (bitmap_empty_p (&spilled_pseudos));
1297 
1298   reload_completed = !failure;
1299 
1300   return need_dce;
1301 }
1302 
1303 /* Yet another special case.  Unfortunately, reg-stack forces people to
1304    write incorrect clobbers in asm statements.  These clobbers must not
1305    cause the register to appear in bad_spill_regs, otherwise we'll call
1306    fatal_insn later.  We clear the corresponding regnos in the live
1307    register sets to avoid this.
1308    The whole thing is rather sick, I'm afraid.  */
1309 
1310 static void
maybe_fix_stack_asms(void)1311 maybe_fix_stack_asms (void)
1312 {
1313 #ifdef STACK_REGS
1314   const char *constraints[MAX_RECOG_OPERANDS];
1315   machine_mode operand_mode[MAX_RECOG_OPERANDS];
1316   class insn_chain *chain;
1317 
1318   for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1319     {
1320       int i, noperands;
1321       HARD_REG_SET clobbered, allowed;
1322       rtx pat;
1323 
1324       if (! INSN_P (chain->insn)
1325 	  || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1326 	continue;
1327       pat = PATTERN (chain->insn);
1328       if (GET_CODE (pat) != PARALLEL)
1329 	continue;
1330 
1331       CLEAR_HARD_REG_SET (clobbered);
1332       CLEAR_HARD_REG_SET (allowed);
1333 
1334       /* First, make a mask of all stack regs that are clobbered.  */
1335       for (i = 0; i < XVECLEN (pat, 0); i++)
1336 	{
1337 	  rtx t = XVECEXP (pat, 0, i);
1338 	  if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1339 	    SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1340 	}
1341 
1342       /* Get the operand values and constraints out of the insn.  */
1343       decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1344 			   constraints, operand_mode, NULL);
1345 
1346       /* For every operand, see what registers are allowed.  */
1347       for (i = 0; i < noperands; i++)
1348 	{
1349 	  const char *p = constraints[i];
1350 	  /* For every alternative, we compute the class of registers allowed
1351 	     for reloading in CLS, and merge its contents into the reg set
1352 	     ALLOWED.  */
1353 	  int cls = (int) NO_REGS;
1354 
1355 	  for (;;)
1356 	    {
1357 	      char c = *p;
1358 
1359 	      if (c == '\0' || c == ',' || c == '#')
1360 		{
1361 		  /* End of one alternative - mark the regs in the current
1362 		     class, and reset the class.  */
1363 		  allowed |= reg_class_contents[cls];
1364 		  cls = NO_REGS;
1365 		  p++;
1366 		  if (c == '#')
1367 		    do {
1368 		      c = *p++;
1369 		    } while (c != '\0' && c != ',');
1370 		  if (c == '\0')
1371 		    break;
1372 		  continue;
1373 		}
1374 
1375 	      switch (c)
1376 		{
1377 		case 'g':
1378 		  cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1379 		  break;
1380 
1381 		default:
1382 		  enum constraint_num cn = lookup_constraint (p);
1383 		  if (insn_extra_address_constraint (cn))
1384 		    cls = (int) reg_class_subunion[cls]
1385 		      [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1386 					     ADDRESS, SCRATCH)];
1387 		  else
1388 		    cls = (int) reg_class_subunion[cls]
1389 		      [reg_class_for_constraint (cn)];
1390 		  break;
1391 		}
1392 	      p += CONSTRAINT_LEN (c, p);
1393 	    }
1394 	}
1395       /* Those of the registers which are clobbered, but allowed by the
1396 	 constraints, must be usable as reload registers.  So clear them
1397 	 out of the life information.  */
1398       allowed &= clobbered;
1399       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1400 	if (TEST_HARD_REG_BIT (allowed, i))
1401 	  {
1402 	    CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1403 	    CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1404 	  }
1405     }
1406 
1407 #endif
1408 }
1409 
1410 /* Copy the global variables n_reloads and rld into the corresponding elts
1411    of CHAIN.  */
1412 static void
copy_reloads(class insn_chain * chain)1413 copy_reloads (class insn_chain *chain)
1414 {
1415   chain->n_reloads = n_reloads;
1416   chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1417   memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1418   reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1419 }
1420 
1421 /* Walk the chain of insns, and determine for each whether it needs reloads
1422    and/or eliminations.  Build the corresponding insns_need_reload list, and
1423    set something_needs_elimination as appropriate.  */
1424 static void
calculate_needs_all_insns(int global)1425 calculate_needs_all_insns (int global)
1426 {
1427   class insn_chain **pprev_reload = &insns_need_reload;
1428   class insn_chain *chain, *next = 0;
1429 
1430   something_needs_elimination = 0;
1431 
1432   reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1433   for (chain = reload_insn_chain; chain != 0; chain = next)
1434     {
1435       rtx_insn *insn = chain->insn;
1436 
1437       next = chain->next;
1438 
1439       /* Clear out the shortcuts.  */
1440       chain->n_reloads = 0;
1441       chain->need_elim = 0;
1442       chain->need_reload = 0;
1443       chain->need_operand_change = 0;
1444 
1445       /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1446 	 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1447 	 what effects this has on the known offsets at labels.  */
1448 
1449       if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1450 	  || (INSN_P (insn) && REG_NOTES (insn) != 0))
1451 	set_label_offsets (insn, insn, 0);
1452 
1453       if (INSN_P (insn))
1454 	{
1455 	  rtx old_body = PATTERN (insn);
1456 	  int old_code = INSN_CODE (insn);
1457 	  rtx old_notes = REG_NOTES (insn);
1458 	  int did_elimination = 0;
1459 	  int operands_changed = 0;
1460 
1461 	  /* Skip insns that only set an equivalence.  */
1462 	  if (will_delete_init_insn_p (insn))
1463 	    continue;
1464 
1465 	  /* If needed, eliminate any eliminable registers.  */
1466 	  if (num_eliminable || num_eliminable_invariants)
1467 	    did_elimination = eliminate_regs_in_insn (insn, 0);
1468 
1469 	  /* Analyze the instruction.  */
1470 	  operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1471 					   global, spill_reg_order);
1472 
1473 	  /* If a no-op set needs more than one reload, this is likely
1474 	     to be something that needs input address reloads.  We
1475 	     can't get rid of this cleanly later, and it is of no use
1476 	     anyway, so discard it now.
1477 	     We only do this when expensive_optimizations is enabled,
1478 	     since this complements reload inheritance / output
1479 	     reload deletion, and it can make debugging harder.  */
1480 	  if (flag_expensive_optimizations && n_reloads > 1)
1481 	    {
1482 	      rtx set = single_set (insn);
1483 	      if (set
1484 		  &&
1485 		  ((SET_SRC (set) == SET_DEST (set)
1486 		    && REG_P (SET_SRC (set))
1487 		    && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1488 		   || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1489 		       && reg_renumber[REGNO (SET_SRC (set))] < 0
1490 		       && reg_renumber[REGNO (SET_DEST (set))] < 0
1491 		       && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1492 		       && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1493 		       && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1494 				       reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1495 		{
1496 		  if (ira_conflicts_p)
1497 		    /* Inform IRA about the insn deletion.  */
1498 		    ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1499 						   REGNO (SET_SRC (set)));
1500 		  delete_insn (insn);
1501 		  /* Delete it from the reload chain.  */
1502 		  if (chain->prev)
1503 		    chain->prev->next = next;
1504 		  else
1505 		    reload_insn_chain = next;
1506 		  if (next)
1507 		    next->prev = chain->prev;
1508 		  chain->next = unused_insn_chains;
1509 		  unused_insn_chains = chain;
1510 		  continue;
1511 		}
1512 	    }
1513 	  if (num_eliminable)
1514 	    update_eliminable_offsets ();
1515 
1516 	  /* Remember for later shortcuts which insns had any reloads or
1517 	     register eliminations.  */
1518 	  chain->need_elim = did_elimination;
1519 	  chain->need_reload = n_reloads > 0;
1520 	  chain->need_operand_change = operands_changed;
1521 
1522 	  /* Discard any register replacements done.  */
1523 	  if (did_elimination)
1524 	    {
1525 	      obstack_free (&reload_obstack, reload_insn_firstobj);
1526 	      PATTERN (insn) = old_body;
1527 	      INSN_CODE (insn) = old_code;
1528 	      REG_NOTES (insn) = old_notes;
1529 	      something_needs_elimination = 1;
1530 	    }
1531 
1532 	  something_needs_operands_changed |= operands_changed;
1533 
1534 	  if (n_reloads != 0)
1535 	    {
1536 	      copy_reloads (chain);
1537 	      *pprev_reload = chain;
1538 	      pprev_reload = &chain->next_need_reload;
1539 	    }
1540 	}
1541     }
1542   *pprev_reload = 0;
1543 }
1544 
1545 /* This function is called from the register allocator to set up estimates
1546    for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1547    an invariant.  The structure is similar to calculate_needs_all_insns.  */
1548 
1549 void
calculate_elim_costs_all_insns(void)1550 calculate_elim_costs_all_insns (void)
1551 {
1552   int *reg_equiv_init_cost;
1553   basic_block bb;
1554   int i;
1555 
1556   reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1557   init_elim_table ();
1558   init_eliminable_invariants (get_insns (), false);
1559 
1560   set_initial_elim_offsets ();
1561   set_initial_label_offsets ();
1562 
1563   FOR_EACH_BB_FN (bb, cfun)
1564     {
1565       rtx_insn *insn;
1566       elim_bb = bb;
1567 
1568       FOR_BB_INSNS (bb, insn)
1569 	{
1570 	  /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1571 	     include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1572 	     what effects this has on the known offsets at labels.  */
1573 
1574 	  if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1575 	      || (INSN_P (insn) && REG_NOTES (insn) != 0))
1576 	    set_label_offsets (insn, insn, 0);
1577 
1578 	  if (INSN_P (insn))
1579 	    {
1580 	      rtx set = single_set (insn);
1581 
1582 	      /* Skip insns that only set an equivalence.  */
1583 	      if (set && REG_P (SET_DEST (set))
1584 		  && reg_renumber[REGNO (SET_DEST (set))] < 0
1585 		  && (reg_equiv_constant (REGNO (SET_DEST (set)))
1586 		      || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1587 		{
1588 		  unsigned regno = REGNO (SET_DEST (set));
1589 		  rtx_insn_list *init = reg_equiv_init (regno);
1590 		  if (init)
1591 		    {
1592 		      rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1593 						false, true);
1594 		      machine_mode mode = GET_MODE (SET_DEST (set));
1595 		      int cost = set_src_cost (t, mode,
1596 					       optimize_bb_for_speed_p (bb));
1597 		      int freq = REG_FREQ_FROM_BB (bb);
1598 
1599 		      reg_equiv_init_cost[regno] = cost * freq;
1600 		      continue;
1601 		    }
1602 		}
1603 	      /* If needed, eliminate any eliminable registers.  */
1604 	      if (num_eliminable || num_eliminable_invariants)
1605 		elimination_costs_in_insn (insn);
1606 
1607 	      if (num_eliminable)
1608 		update_eliminable_offsets ();
1609 	    }
1610 	}
1611     }
1612   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1613     {
1614       if (reg_equiv_invariant (i))
1615 	{
1616 	  if (reg_equiv_init (i))
1617 	    {
1618 	      int cost = reg_equiv_init_cost[i];
1619 	      if (dump_file)
1620 		fprintf (dump_file,
1621 			 "Reg %d has equivalence, initial gains %d\n", i, cost);
1622 	      if (cost != 0)
1623 		ira_adjust_equiv_reg_cost (i, cost);
1624 	    }
1625 	  else
1626 	    {
1627 	      if (dump_file)
1628 		fprintf (dump_file,
1629 			 "Reg %d had equivalence, but can't be eliminated\n",
1630 			 i);
1631 	      ira_adjust_equiv_reg_cost (i, 0);
1632 	    }
1633 	}
1634     }
1635 
1636   free (reg_equiv_init_cost);
1637   free (offsets_known_at);
1638   free (offsets_at);
1639   offsets_at = NULL;
1640   offsets_known_at = NULL;
1641 }
1642 
1643 /* Comparison function for qsort to decide which of two reloads
1644    should be handled first.  *P1 and *P2 are the reload numbers.  */
1645 
1646 static int
reload_reg_class_lower(const void * r1p,const void * r2p)1647 reload_reg_class_lower (const void *r1p, const void *r2p)
1648 {
1649   int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1650   int t;
1651 
1652   /* Consider required reloads before optional ones.  */
1653   t = rld[r1].optional - rld[r2].optional;
1654   if (t != 0)
1655     return t;
1656 
1657   /* Count all solitary classes before non-solitary ones.  */
1658   t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1659        - (reg_class_size[(int) rld[r1].rclass] == 1));
1660   if (t != 0)
1661     return t;
1662 
1663   /* Aside from solitaires, consider all multi-reg groups first.  */
1664   t = rld[r2].nregs - rld[r1].nregs;
1665   if (t != 0)
1666     return t;
1667 
1668   /* Consider reloads in order of increasing reg-class number.  */
1669   t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1670   if (t != 0)
1671     return t;
1672 
1673   /* If reloads are equally urgent, sort by reload number,
1674      so that the results of qsort leave nothing to chance.  */
1675   return r1 - r2;
1676 }
1677 
1678 /* The cost of spilling each hard reg.  */
1679 static int spill_cost[FIRST_PSEUDO_REGISTER];
1680 
1681 /* When spilling multiple hard registers, we use SPILL_COST for the first
1682    spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
1683    only the first hard reg for a multi-reg pseudo.  */
1684 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1685 
1686 /* Map of hard regno to pseudo regno currently occupying the hard
1687    reg.  */
1688 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1689 
1690 /* Update the spill cost arrays, considering that pseudo REG is live.  */
1691 
1692 static void
count_pseudo(int reg)1693 count_pseudo (int reg)
1694 {
1695   int freq = REG_FREQ (reg);
1696   int r = reg_renumber[reg];
1697   int nregs;
1698 
1699   /* Ignore spilled pseudo-registers which can be here only if IRA is used.  */
1700   if (ira_conflicts_p && r < 0)
1701     return;
1702 
1703   if (REGNO_REG_SET_P (&pseudos_counted, reg)
1704       || REGNO_REG_SET_P (&spilled_pseudos, reg))
1705     return;
1706 
1707   SET_REGNO_REG_SET (&pseudos_counted, reg);
1708 
1709   gcc_assert (r >= 0);
1710 
1711   spill_add_cost[r] += freq;
1712   nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1713   while (nregs-- > 0)
1714     {
1715       hard_regno_to_pseudo_regno[r + nregs] = reg;
1716       spill_cost[r + nregs] += freq;
1717     }
1718 }
1719 
1720 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1721    contents of BAD_SPILL_REGS for the insn described by CHAIN.  */
1722 
1723 static void
order_regs_for_reload(class insn_chain * chain)1724 order_regs_for_reload (class insn_chain *chain)
1725 {
1726   unsigned i;
1727   HARD_REG_SET used_by_pseudos;
1728   HARD_REG_SET used_by_pseudos2;
1729   reg_set_iterator rsi;
1730 
1731   bad_spill_regs = fixed_reg_set;
1732 
1733   memset (spill_cost, 0, sizeof spill_cost);
1734   memset (spill_add_cost, 0, sizeof spill_add_cost);
1735   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736     hard_regno_to_pseudo_regno[i] = -1;
1737 
1738   /* Count number of uses of each hard reg by pseudo regs allocated to it
1739      and then order them by decreasing use.  First exclude hard registers
1740      that are live in or across this insn.  */
1741 
1742   REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1743   REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1744   bad_spill_regs |= used_by_pseudos;
1745   bad_spill_regs |= used_by_pseudos2;
1746 
1747   /* Now find out which pseudos are allocated to it, and update
1748      hard_reg_n_uses.  */
1749   CLEAR_REG_SET (&pseudos_counted);
1750 
1751   EXECUTE_IF_SET_IN_REG_SET
1752     (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1753     {
1754       count_pseudo (i);
1755     }
1756   EXECUTE_IF_SET_IN_REG_SET
1757     (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1758     {
1759       count_pseudo (i);
1760     }
1761   CLEAR_REG_SET (&pseudos_counted);
1762 }
1763 
1764 /* Vector of reload-numbers showing the order in which the reloads should
1765    be processed.  */
1766 static short reload_order[MAX_RELOADS];
1767 
1768 /* This is used to keep track of the spill regs used in one insn.  */
1769 static HARD_REG_SET used_spill_regs_local;
1770 
1771 /* We decided to spill hard register SPILLED, which has a size of
1772    SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
1773    is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
1774    update SPILL_COST/SPILL_ADD_COST.  */
1775 
1776 static void
count_spilled_pseudo(int spilled,int spilled_nregs,int reg)1777 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1778 {
1779   int freq = REG_FREQ (reg);
1780   int r = reg_renumber[reg];
1781   int nregs;
1782 
1783   /* Ignore spilled pseudo-registers which can be here only if IRA is used.  */
1784   if (ira_conflicts_p && r < 0)
1785     return;
1786 
1787   gcc_assert (r >= 0);
1788 
1789   nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1790 
1791   if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1792       || spilled + spilled_nregs <= r || r + nregs <= spilled)
1793     return;
1794 
1795   SET_REGNO_REG_SET (&spilled_pseudos, reg);
1796 
1797   spill_add_cost[r] -= freq;
1798   while (nregs-- > 0)
1799     {
1800       hard_regno_to_pseudo_regno[r + nregs] = -1;
1801       spill_cost[r + nregs] -= freq;
1802     }
1803 }
1804 
1805 /* Find reload register to use for reload number ORDER.  */
1806 
1807 static int
find_reg(class insn_chain * chain,int order)1808 find_reg (class insn_chain *chain, int order)
1809 {
1810   int rnum = reload_order[order];
1811   struct reload *rl = rld + rnum;
1812   int best_cost = INT_MAX;
1813   int best_reg = -1;
1814   unsigned int i, j, n;
1815   int k;
1816   HARD_REG_SET not_usable;
1817   HARD_REG_SET used_by_other_reload;
1818   reg_set_iterator rsi;
1819   static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1820   static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1821 
1822   not_usable = (bad_spill_regs
1823 		| bad_spill_regs_global
1824 		| ~reg_class_contents[rl->rclass]);
1825 
1826   CLEAR_HARD_REG_SET (used_by_other_reload);
1827   for (k = 0; k < order; k++)
1828     {
1829       int other = reload_order[k];
1830 
1831       if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1832 	for (j = 0; j < rld[other].nregs; j++)
1833 	  SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1834     }
1835 
1836   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1837     {
1838 #ifdef REG_ALLOC_ORDER
1839       unsigned int regno = reg_alloc_order[i];
1840 #else
1841       unsigned int regno = i;
1842 #endif
1843 
1844       if (! TEST_HARD_REG_BIT (not_usable, regno)
1845 	  && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1846 	  && targetm.hard_regno_mode_ok (regno, rl->mode))
1847 	{
1848 	  int this_cost = spill_cost[regno];
1849 	  int ok = 1;
1850 	  unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1851 
1852 	  for (j = 1; j < this_nregs; j++)
1853 	    {
1854 	      this_cost += spill_add_cost[regno + j];
1855 	      if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1856 		  || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1857 		ok = 0;
1858 	    }
1859 	  if (! ok)
1860 	    continue;
1861 
1862 	  if (ira_conflicts_p)
1863 	    {
1864 	      /* Ask IRA to find a better pseudo-register for
1865 		 spilling.  */
1866 	      for (n = j = 0; j < this_nregs; j++)
1867 		{
1868 		  int r = hard_regno_to_pseudo_regno[regno + j];
1869 
1870 		  if (r < 0)
1871 		    continue;
1872 		  if (n == 0 || regno_pseudo_regs[n - 1] != r)
1873 		    regno_pseudo_regs[n++] = r;
1874 		}
1875 	      regno_pseudo_regs[n++] = -1;
1876 	      if (best_reg < 0
1877 		  || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1878 						      best_regno_pseudo_regs,
1879 						      rl->in, rl->out,
1880 						      chain->insn))
1881 		{
1882 		  best_reg = regno;
1883 		  for (j = 0;; j++)
1884 		    {
1885 		      best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1886 		      if (regno_pseudo_regs[j] < 0)
1887 			break;
1888 		    }
1889 		}
1890 	      continue;
1891 	    }
1892 
1893 	  if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1894 	    this_cost--;
1895 	  if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1896 	    this_cost--;
1897 	  if (this_cost < best_cost
1898 	      /* Among registers with equal cost, prefer caller-saved ones, or
1899 		 use REG_ALLOC_ORDER if it is defined.  */
1900 	      || (this_cost == best_cost
1901 #ifdef REG_ALLOC_ORDER
1902 		  && (inv_reg_alloc_order[regno]
1903 		      < inv_reg_alloc_order[best_reg])
1904 #else
1905 		  && crtl->abi->clobbers_full_reg_p (regno)
1906 		  && !crtl->abi->clobbers_full_reg_p (best_reg)
1907 #endif
1908 		  ))
1909 	    {
1910 	      best_reg = regno;
1911 	      best_cost = this_cost;
1912 	    }
1913 	}
1914     }
1915   if (best_reg == -1)
1916     return 0;
1917 
1918   if (dump_file)
1919     fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1920 
1921   rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1922   rl->regno = best_reg;
1923 
1924   EXECUTE_IF_SET_IN_REG_SET
1925     (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1926     {
1927       count_spilled_pseudo (best_reg, rl->nregs, j);
1928     }
1929 
1930   EXECUTE_IF_SET_IN_REG_SET
1931     (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1932     {
1933       count_spilled_pseudo (best_reg, rl->nregs, j);
1934     }
1935 
1936   for (i = 0; i < rl->nregs; i++)
1937     {
1938       gcc_assert (spill_cost[best_reg + i] == 0);
1939       gcc_assert (spill_add_cost[best_reg + i] == 0);
1940       gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1941       SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1942     }
1943   return 1;
1944 }
1945 
1946 /* Find more reload regs to satisfy the remaining need of an insn, which
1947    is given by CHAIN.
1948    Do it by ascending class number, since otherwise a reg
1949    might be spilled for a big class and might fail to count
1950    for a smaller class even though it belongs to that class.  */
1951 
1952 static void
find_reload_regs(class insn_chain * chain)1953 find_reload_regs (class insn_chain *chain)
1954 {
1955   int i;
1956 
1957   /* In order to be certain of getting the registers we need,
1958      we must sort the reloads into order of increasing register class.
1959      Then our grabbing of reload registers will parallel the process
1960      that provided the reload registers.  */
1961   for (i = 0; i < chain->n_reloads; i++)
1962     {
1963       /* Show whether this reload already has a hard reg.  */
1964       if (chain->rld[i].reg_rtx)
1965 	{
1966 	  chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1967 	  chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1968 	}
1969       else
1970 	chain->rld[i].regno = -1;
1971       reload_order[i] = i;
1972     }
1973 
1974   n_reloads = chain->n_reloads;
1975   memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1976 
1977   CLEAR_HARD_REG_SET (used_spill_regs_local);
1978 
1979   if (dump_file)
1980     fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1981 
1982   qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1983 
1984   /* Compute the order of preference for hard registers to spill.  */
1985 
1986   order_regs_for_reload (chain);
1987 
1988   for (i = 0; i < n_reloads; i++)
1989     {
1990       int r = reload_order[i];
1991 
1992       /* Ignore reloads that got marked inoperative.  */
1993       if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1994 	  && ! rld[r].optional
1995 	  && rld[r].regno == -1)
1996 	if (! find_reg (chain, i))
1997 	  {
1998 	    if (dump_file)
1999 	      fprintf (dump_file, "reload failure for reload %d\n", r);
2000 	    spill_failure (chain->insn, rld[r].rclass);
2001 	    failure = 1;
2002 	    return;
2003 	  }
2004     }
2005 
2006   chain->used_spill_regs = used_spill_regs_local;
2007   used_spill_regs |= used_spill_regs_local;
2008 
2009   memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2010 }
2011 
2012 static void
select_reload_regs(void)2013 select_reload_regs (void)
2014 {
2015   class insn_chain *chain;
2016 
2017   /* Try to satisfy the needs for each insn.  */
2018   for (chain = insns_need_reload; chain != 0;
2019        chain = chain->next_need_reload)
2020     find_reload_regs (chain);
2021 }
2022 
2023 /* Delete all insns that were inserted by emit_caller_save_insns during
2024    this iteration.  */
2025 static void
delete_caller_save_insns(void)2026 delete_caller_save_insns (void)
2027 {
2028   class insn_chain *c = reload_insn_chain;
2029 
2030   while (c != 0)
2031     {
2032       while (c != 0 && c->is_caller_save_insn)
2033 	{
2034 	  class insn_chain *next = c->next;
2035 	  rtx_insn *insn = c->insn;
2036 
2037 	  if (c == reload_insn_chain)
2038 	    reload_insn_chain = next;
2039 	  delete_insn (insn);
2040 
2041 	  if (next)
2042 	    next->prev = c->prev;
2043 	  if (c->prev)
2044 	    c->prev->next = next;
2045 	  c->next = unused_insn_chains;
2046 	  unused_insn_chains = c;
2047 	  c = next;
2048 	}
2049       if (c != 0)
2050 	c = c->next;
2051     }
2052 }
2053 
2054 /* Handle the failure to find a register to spill.
2055    INSN should be one of the insns which needed this particular spill reg.  */
2056 
2057 static void
spill_failure(rtx_insn * insn,enum reg_class rclass)2058 spill_failure (rtx_insn *insn, enum reg_class rclass)
2059 {
2060   if (asm_noperands (PATTERN (insn)) >= 0)
2061     error_for_asm (insn, "cannot find a register in class %qs while "
2062 		   "reloading %<asm%>",
2063 		   reg_class_names[rclass]);
2064   else
2065     {
2066       error ("unable to find a register to spill in class %qs",
2067 	     reg_class_names[rclass]);
2068 
2069       if (dump_file)
2070 	{
2071 	  fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2072 	  debug_reload_to_stream (dump_file);
2073 	}
2074       fatal_insn ("this is the insn:", insn);
2075     }
2076 }
2077 
2078 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2079    data that is dead in INSN.  */
2080 
2081 static void
delete_dead_insn(rtx_insn * insn)2082 delete_dead_insn (rtx_insn *insn)
2083 {
2084   rtx_insn *prev = prev_active_insn (insn);
2085   rtx prev_dest;
2086 
2087   /* If the previous insn sets a register that dies in our insn make
2088      a note that we want to run DCE immediately after reload.
2089 
2090      We used to delete the previous insn & recurse, but that's wrong for
2091      block local equivalences.  Instead of trying to figure out the exact
2092      circumstances where we can delete the potentially dead insns, just
2093      let DCE do the job.  */
2094   if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2095       && GET_CODE (PATTERN (prev)) == SET
2096       && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2097       && reg_mentioned_p (prev_dest, PATTERN (insn))
2098       && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2099       && ! side_effects_p (SET_SRC (PATTERN (prev))))
2100     need_dce = 1;
2101 
2102   SET_INSN_DELETED (insn);
2103 }
2104 
2105 /* Modify the home of pseudo-reg I.
2106    The new home is present in reg_renumber[I].
2107 
2108    FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2109    or it may be -1, meaning there is none or it is not relevant.
2110    This is used so that all pseudos spilled from a given hard reg
2111    can share one stack slot.  */
2112 
2113 static void
alter_reg(int i,int from_reg,bool dont_share_p)2114 alter_reg (int i, int from_reg, bool dont_share_p)
2115 {
2116   /* When outputting an inline function, this can happen
2117      for a reg that isn't actually used.  */
2118   if (regno_reg_rtx[i] == 0)
2119     return;
2120 
2121   /* If the reg got changed to a MEM at rtl-generation time,
2122      ignore it.  */
2123   if (!REG_P (regno_reg_rtx[i]))
2124     return;
2125 
2126   /* Modify the reg-rtx to contain the new hard reg
2127      number or else to contain its pseudo reg number.  */
2128   SET_REGNO (regno_reg_rtx[i],
2129 	     reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2130 
2131   /* If we have a pseudo that is needed but has no hard reg or equivalent,
2132      allocate a stack slot for it.  */
2133 
2134   if (reg_renumber[i] < 0
2135       && REG_N_REFS (i) > 0
2136       && reg_equiv_constant (i) == 0
2137       && (reg_equiv_invariant (i) == 0
2138 	  || reg_equiv_init (i) == 0)
2139       && reg_equiv_memory_loc (i) == 0)
2140     {
2141       rtx x = NULL_RTX;
2142       machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2143       poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2144       unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2145       machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2146       poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2147       /* ??? Seems strange to derive the minimum alignment from the size,
2148 	 but that's the traditional behavior.  For polynomial-size modes,
2149 	 the natural extension is to use the minimum possible size.  */
2150       unsigned int min_align
2151 	= constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2152       poly_int64 adjust = 0;
2153 
2154       something_was_spilled = true;
2155 
2156       if (ira_conflicts_p)
2157 	{
2158 	  /* Mark the spill for IRA.  */
2159 	  SET_REGNO_REG_SET (&spilled_pseudos, i);
2160 	  if (!dont_share_p)
2161 	    x = ira_reuse_stack_slot (i, inherent_size, total_size);
2162 	}
2163 
2164       if (x)
2165 	;
2166 
2167       /* Each pseudo reg has an inherent size which comes from its own mode,
2168 	 and a total size which provides room for paradoxical subregs
2169 	 which refer to the pseudo reg in wider modes.
2170 
2171 	 We can use a slot already allocated if it provides both
2172 	 enough inherent space and enough total space.
2173 	 Otherwise, we allocate a new slot, making sure that it has no less
2174 	 inherent space, and no less total space, then the previous slot.  */
2175       else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 	{
2177 	  rtx stack_slot;
2178 
2179 	  /* The sizes are taken from a subreg operation, which guarantees
2180 	     that they're ordered.  */
2181 	  gcc_checking_assert (ordered_p (total_size, inherent_size));
2182 
2183 	  /* No known place to spill from => no slot to reuse.  */
2184 	  x = assign_stack_local (mode, total_size,
2185 				  min_align > inherent_align
2186 				  || maybe_gt (total_size, inherent_size)
2187 				  ? -1 : 0);
2188 
2189 	  stack_slot = x;
2190 
2191 	  /* Cancel the big-endian correction done in assign_stack_local.
2192 	     Get the address of the beginning of the slot.  This is so we
2193 	     can do a big-endian correction unconditionally below.  */
2194 	  if (BYTES_BIG_ENDIAN)
2195 	    {
2196 	      adjust = inherent_size - total_size;
2197 	      if (maybe_ne (adjust, 0))
2198 		{
2199 		  poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2200 		  machine_mode mem_mode
2201 		    = int_mode_for_size (total_bits, 1).else_blk ();
2202 		  stack_slot = adjust_address_nv (x, mem_mode, adjust);
2203 		}
2204 	    }
2205 
2206 	  if (! dont_share_p && ira_conflicts_p)
2207 	    /* Inform IRA about allocation a new stack slot.  */
2208 	    ira_mark_new_stack_slot (stack_slot, i, total_size);
2209 	}
2210 
2211       /* Reuse a stack slot if possible.  */
2212       else if (spill_stack_slot[from_reg] != 0
2213 	       && known_ge (spill_stack_slot_width[from_reg], total_size)
2214 	       && known_ge (GET_MODE_SIZE
2215 			    (GET_MODE (spill_stack_slot[from_reg])),
2216 			    inherent_size)
2217 	       && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2218 	x = spill_stack_slot[from_reg];
2219 
2220       /* Allocate a bigger slot.  */
2221       else
2222 	{
2223 	  /* Compute maximum size needed, both for inherent size
2224 	     and for total size.  */
2225 	  rtx stack_slot;
2226 
2227 	  if (spill_stack_slot[from_reg])
2228 	    {
2229 	      if (partial_subreg_p (mode,
2230 				    GET_MODE (spill_stack_slot[from_reg])))
2231 		mode = GET_MODE (spill_stack_slot[from_reg]);
2232 	      total_size = ordered_max (total_size,
2233 					spill_stack_slot_width[from_reg]);
2234 	      if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2235 		min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2236 	    }
2237 
2238 	  /* The sizes are taken from a subreg operation, which guarantees
2239 	     that they're ordered.  */
2240 	  gcc_checking_assert (ordered_p (total_size, inherent_size));
2241 
2242 	  /* Make a slot with that size.  */
2243 	  x = assign_stack_local (mode, total_size,
2244 				  min_align > inherent_align
2245 				  || maybe_gt (total_size, inherent_size)
2246 				  ? -1 : 0);
2247 	  stack_slot = x;
2248 
2249 	  /* Cancel the  big-endian correction done in assign_stack_local.
2250 	     Get the address of the beginning of the slot.  This is so we
2251 	     can do a big-endian correction unconditionally below.  */
2252 	  if (BYTES_BIG_ENDIAN)
2253 	    {
2254 	      adjust = GET_MODE_SIZE (mode) - total_size;
2255 	      if (maybe_ne (adjust, 0))
2256 		{
2257 		  poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2258 		  machine_mode mem_mode
2259 		    = int_mode_for_size (total_bits, 1).else_blk ();
2260 		  stack_slot = adjust_address_nv (x, mem_mode, adjust);
2261 		}
2262 	    }
2263 
2264 	  spill_stack_slot[from_reg] = stack_slot;
2265 	  spill_stack_slot_width[from_reg] = total_size;
2266 	}
2267 
2268       /* On a big endian machine, the "address" of the slot
2269 	 is the address of the low part that fits its inherent mode.  */
2270       adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2271 
2272       /* If we have any adjustment to make, or if the stack slot is the
2273 	 wrong mode, make a new stack slot.  */
2274       x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2275 
2276       /* Set all of the memory attributes as appropriate for a spill.  */
2277       set_mem_attrs_for_spill (x);
2278 
2279       /* Save the stack slot for later.  */
2280       reg_equiv_memory_loc (i) = x;
2281     }
2282 }
2283 
2284 /* Mark the slots in regs_ever_live for the hard regs used by
2285    pseudo-reg number REGNO, accessed in MODE.  */
2286 
2287 static void
mark_home_live_1(int regno,machine_mode mode)2288 mark_home_live_1 (int regno, machine_mode mode)
2289 {
2290   int i, lim;
2291 
2292   i = reg_renumber[regno];
2293   if (i < 0)
2294     return;
2295   lim = end_hard_regno (mode, i);
2296   while (i < lim)
2297     df_set_regs_ever_live (i++, true);
2298 }
2299 
2300 /* Mark the slots in regs_ever_live for the hard regs
2301    used by pseudo-reg number REGNO.  */
2302 
2303 void
mark_home_live(int regno)2304 mark_home_live (int regno)
2305 {
2306   if (reg_renumber[regno] >= 0)
2307     mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2308 }
2309 
2310 /* This function handles the tracking of elimination offsets around branches.
2311 
2312    X is a piece of RTL being scanned.
2313 
2314    INSN is the insn that it came from, if any.
2315 
2316    INITIAL_P is nonzero if we are to set the offset to be the initial
2317    offset and zero if we are setting the offset of the label to be the
2318    current offset.  */
2319 
2320 static void
set_label_offsets(rtx x,rtx_insn * insn,int initial_p)2321 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2322 {
2323   enum rtx_code code = GET_CODE (x);
2324   rtx tem;
2325   unsigned int i;
2326   struct elim_table *p;
2327 
2328   switch (code)
2329     {
2330     case LABEL_REF:
2331       if (LABEL_REF_NONLOCAL_P (x))
2332 	return;
2333 
2334       x = label_ref_label (x);
2335 
2336       /* fall through */
2337 
2338     case CODE_LABEL:
2339       /* If we know nothing about this label, set the desired offsets.  Note
2340 	 that this sets the offset at a label to be the offset before a label
2341 	 if we don't know anything about the label.  This is not correct for
2342 	 the label after a BARRIER, but is the best guess we can make.  If
2343 	 we guessed wrong, we will suppress an elimination that might have
2344 	 been possible had we been able to guess correctly.  */
2345 
2346       if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2347 	{
2348 	  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2349 	    offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2350 	      = (initial_p ? reg_eliminate[i].initial_offset
2351 		 : reg_eliminate[i].offset);
2352 	  offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2353 	}
2354 
2355       /* Otherwise, if this is the definition of a label and it is
2356 	 preceded by a BARRIER, set our offsets to the known offset of
2357 	 that label.  */
2358 
2359       else if (x == insn
2360 	       && (tem = prev_nonnote_insn (insn)) != 0
2361 	       && BARRIER_P (tem))
2362 	set_offsets_for_label (insn);
2363       else
2364 	/* If neither of the above cases is true, compare each offset
2365 	   with those previously recorded and suppress any eliminations
2366 	   where the offsets disagree.  */
2367 
2368 	for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2369 	  if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2370 			(initial_p ? reg_eliminate[i].initial_offset
2371 			 : reg_eliminate[i].offset)))
2372 	    reg_eliminate[i].can_eliminate = 0;
2373 
2374       return;
2375 
2376     case JUMP_TABLE_DATA:
2377       set_label_offsets (PATTERN (insn), insn, initial_p);
2378       return;
2379 
2380     case JUMP_INSN:
2381       set_label_offsets (PATTERN (insn), insn, initial_p);
2382 
2383       /* fall through */
2384 
2385     case INSN:
2386     case CALL_INSN:
2387       /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2388 	 to indirectly and hence must have all eliminations at their
2389 	 initial offsets.  */
2390       for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2391 	if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2392 	  set_label_offsets (XEXP (tem, 0), insn, 1);
2393       return;
2394 
2395     case PARALLEL:
2396     case ADDR_VEC:
2397     case ADDR_DIFF_VEC:
2398       /* Each of the labels in the parallel or address vector must be
2399 	 at their initial offsets.  We want the first field for PARALLEL
2400 	 and ADDR_VEC and the second field for ADDR_DIFF_VEC.  */
2401 
2402       for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2403 	set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2404 			   insn, initial_p);
2405       return;
2406 
2407     case SET:
2408       /* We only care about setting PC.  If the source is not RETURN,
2409 	 IF_THEN_ELSE, or a label, disable any eliminations not at
2410 	 their initial offsets.  Similarly if any arm of the IF_THEN_ELSE
2411 	 isn't one of those possibilities.  For branches to a label,
2412 	 call ourselves recursively.
2413 
2414 	 Note that this can disable elimination unnecessarily when we have
2415 	 a non-local goto since it will look like a non-constant jump to
2416 	 someplace in the current function.  This isn't a significant
2417 	 problem since such jumps will normally be when all elimination
2418 	 pairs are back to their initial offsets.  */
2419 
2420       if (SET_DEST (x) != pc_rtx)
2421 	return;
2422 
2423       switch (GET_CODE (SET_SRC (x)))
2424 	{
2425 	case PC:
2426 	case RETURN:
2427 	  return;
2428 
2429 	case LABEL_REF:
2430 	  set_label_offsets (SET_SRC (x), insn, initial_p);
2431 	  return;
2432 
2433 	case IF_THEN_ELSE:
2434 	  tem = XEXP (SET_SRC (x), 1);
2435 	  if (GET_CODE (tem) == LABEL_REF)
2436 	    set_label_offsets (label_ref_label (tem), insn, initial_p);
2437 	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2438 	    break;
2439 
2440 	  tem = XEXP (SET_SRC (x), 2);
2441 	  if (GET_CODE (tem) == LABEL_REF)
2442 	    set_label_offsets (label_ref_label (tem), insn, initial_p);
2443 	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2444 	    break;
2445 	  return;
2446 
2447 	default:
2448 	  break;
2449 	}
2450 
2451       /* If we reach here, all eliminations must be at their initial
2452 	 offset because we are doing a jump to a variable address.  */
2453       for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2454 	if (maybe_ne (p->offset, p->initial_offset))
2455 	  p->can_eliminate = 0;
2456       break;
2457 
2458     default:
2459       break;
2460     }
2461 }
2462 
2463 /* This function examines every reg that occurs in X and adjusts the
2464    costs for its elimination which are gathered by IRA.  INSN is the
2465    insn in which X occurs.  We do not recurse into MEM expressions.  */
2466 
2467 static void
note_reg_elim_costly(const_rtx x,rtx insn)2468 note_reg_elim_costly (const_rtx x, rtx insn)
2469 {
2470   subrtx_iterator::array_type array;
2471   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2472     {
2473       const_rtx x = *iter;
2474       if (MEM_P (x))
2475 	iter.skip_subrtxes ();
2476       else if (REG_P (x)
2477 	       && REGNO (x) >= FIRST_PSEUDO_REGISTER
2478 	       && reg_equiv_init (REGNO (x))
2479 	       && reg_equiv_invariant (REGNO (x)))
2480 	{
2481 	  rtx t = reg_equiv_invariant (REGNO (x));
2482 	  rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2483 	  int cost = set_src_cost (new_rtx, Pmode,
2484 				   optimize_bb_for_speed_p (elim_bb));
2485 	  int freq = REG_FREQ_FROM_BB (elim_bb);
2486 
2487 	  if (cost != 0)
2488 	    ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2489 	}
2490     }
2491 }
2492 
2493 /* Scan X and replace any eliminable registers (such as fp) with a
2494    replacement (such as sp), plus an offset.
2495 
2496    MEM_MODE is the mode of an enclosing MEM.  We need this to know how
2497    much to adjust a register for, e.g., PRE_DEC.  Also, if we are inside a
2498    MEM, we are allowed to replace a sum of a register and the constant zero
2499    with the register, which we cannot do outside a MEM.  In addition, we need
2500    to record the fact that a register is referenced outside a MEM.
2501 
2502    If INSN is an insn, it is the insn containing X.  If we replace a REG
2503    in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2504    CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2505    the REG is being modified.
2506 
2507    Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2508    That's used when we eliminate in expressions stored in notes.
2509    This means, do not set ref_outside_mem even if the reference
2510    is outside of MEMs.
2511 
2512    If FOR_COSTS is true, we are being called before reload in order to
2513    estimate the costs of keeping registers with an equivalence unallocated.
2514 
2515    REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2516    replacements done assuming all offsets are at their initial values.  If
2517    they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2518    encounter, return the actual location so that find_reloads will do
2519    the proper thing.  */
2520 
2521 static rtx
eliminate_regs_1(rtx x,machine_mode mem_mode,rtx insn,bool may_use_invariant,bool for_costs)2522 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2523 		  bool may_use_invariant, bool for_costs)
2524 {
2525   enum rtx_code code = GET_CODE (x);
2526   struct elim_table *ep;
2527   int regno;
2528   rtx new_rtx;
2529   int i, j;
2530   const char *fmt;
2531   int copied = 0;
2532 
2533   if (! current_function_decl)
2534     return x;
2535 
2536   switch (code)
2537     {
2538     CASE_CONST_ANY:
2539     case CONST:
2540     case SYMBOL_REF:
2541     case CODE_LABEL:
2542     case PC:
2543     case CC0:
2544     case ASM_INPUT:
2545     case ADDR_VEC:
2546     case ADDR_DIFF_VEC:
2547     case RETURN:
2548       return x;
2549 
2550     case REG:
2551       regno = REGNO (x);
2552 
2553       /* First handle the case where we encounter a bare register that
2554 	 is eliminable.  Replace it with a PLUS.  */
2555       if (regno < FIRST_PSEUDO_REGISTER)
2556 	{
2557 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2558 	       ep++)
2559 	    if (ep->from_rtx == x && ep->can_eliminate)
2560 	      return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2561 
2562 	}
2563       else if (reg_renumber && reg_renumber[regno] < 0
2564 	       && reg_equivs
2565 	       && reg_equiv_invariant (regno))
2566 	{
2567 	  if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2568 	    return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2569 			             mem_mode, insn, true, for_costs);
2570 	  /* There exists at least one use of REGNO that cannot be
2571 	     eliminated.  Prevent the defining insn from being deleted.  */
2572 	  reg_equiv_init (regno) = NULL;
2573 	  if (!for_costs)
2574 	    alter_reg (regno, -1, true);
2575 	}
2576       return x;
2577 
2578     /* You might think handling MINUS in a manner similar to PLUS is a
2579        good idea.  It is not.  It has been tried multiple times and every
2580        time the change has had to have been reverted.
2581 
2582        Other parts of reload know a PLUS is special (gen_reload for example)
2583        and require special code to handle code a reloaded PLUS operand.
2584 
2585        Also consider backends where the flags register is clobbered by a
2586        MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2587        lea instruction comes to mind).  If we try to reload a MINUS, we
2588        may kill the flags register that was holding a useful value.
2589 
2590        So, please before trying to handle MINUS, consider reload as a
2591        whole instead of this little section as well as the backend issues.  */
2592     case PLUS:
2593       /* If this is the sum of an eliminable register and a constant, rework
2594 	 the sum.  */
2595       if (REG_P (XEXP (x, 0))
2596 	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2597 	  && CONSTANT_P (XEXP (x, 1)))
2598 	{
2599 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2600 	       ep++)
2601 	    if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2602 	      {
2603 		/* The only time we want to replace a PLUS with a REG (this
2604 		   occurs when the constant operand of the PLUS is the negative
2605 		   of the offset) is when we are inside a MEM.  We won't want
2606 		   to do so at other times because that would change the
2607 		   structure of the insn in a way that reload can't handle.
2608 		   We special-case the commonest situation in
2609 		   eliminate_regs_in_insn, so just replace a PLUS with a
2610 		   PLUS here, unless inside a MEM.  In DEBUG_INSNs, it is
2611 		   always ok to replace a PLUS with just a REG.  */
2612 		if ((mem_mode != 0 || (insn && DEBUG_INSN_P (insn)))
2613 		    && CONST_INT_P (XEXP (x, 1))
2614 		    && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2615 		  return ep->to_rtx;
2616 		else
2617 		  return gen_rtx_PLUS (Pmode, ep->to_rtx,
2618 				       plus_constant (Pmode, XEXP (x, 1),
2619 						      ep->previous_offset));
2620 	      }
2621 
2622 	  /* If the register is not eliminable, we are done since the other
2623 	     operand is a constant.  */
2624 	  return x;
2625 	}
2626 
2627       /* If this is part of an address, we want to bring any constant to the
2628 	 outermost PLUS.  We will do this by doing register replacement in
2629 	 our operands and seeing if a constant shows up in one of them.
2630 
2631 	 Note that there is no risk of modifying the structure of the insn,
2632 	 since we only get called for its operands, thus we are either
2633 	 modifying the address inside a MEM, or something like an address
2634 	 operand of a load-address insn.  */
2635 
2636       {
2637 	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2638 				     for_costs);
2639 	rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2640 				     for_costs);
2641 
2642 	if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2643 	  {
2644 	    /* If one side is a PLUS and the other side is a pseudo that
2645 	       didn't get a hard register but has a reg_equiv_constant,
2646 	       we must replace the constant here since it may no longer
2647 	       be in the position of any operand.  */
2648 	    if (GET_CODE (new0) == PLUS && REG_P (new1)
2649 		&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
2650 		&& reg_renumber[REGNO (new1)] < 0
2651 		&& reg_equivs
2652 		&& reg_equiv_constant (REGNO (new1)) != 0)
2653 	      new1 = reg_equiv_constant (REGNO (new1));
2654 	    else if (GET_CODE (new1) == PLUS && REG_P (new0)
2655 		     && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2656 		     && reg_renumber[REGNO (new0)] < 0
2657 		     && reg_equiv_constant (REGNO (new0)) != 0)
2658 	      new0 = reg_equiv_constant (REGNO (new0));
2659 
2660 	    new_rtx = form_sum (GET_MODE (x), new0, new1);
2661 
2662 	    /* As above, if we are not inside a MEM we do not want to
2663 	       turn a PLUS into something else.  We might try to do so here
2664 	       for an addition of 0 if we aren't optimizing.  */
2665 	    if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2666 	      return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2667 	    else
2668 	      return new_rtx;
2669 	  }
2670       }
2671       return x;
2672 
2673     case MULT:
2674       /* If this is the product of an eliminable register and a
2675 	 constant, apply the distribute law and move the constant out
2676 	 so that we have (plus (mult ..) ..).  This is needed in order
2677 	 to keep load-address insns valid.   This case is pathological.
2678 	 We ignore the possibility of overflow here.  */
2679       if (REG_P (XEXP (x, 0))
2680 	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2681 	  && CONST_INT_P (XEXP (x, 1)))
2682 	for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2683 	     ep++)
2684 	  if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2685 	    {
2686 	      if (! mem_mode
2687 		  /* Refs inside notes or in DEBUG_INSNs don't count for
2688 		     this purpose.  */
2689 		  && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2690 				      || GET_CODE (insn) == INSN_LIST
2691 				      || DEBUG_INSN_P (insn))))
2692 		ep->ref_outside_mem = 1;
2693 
2694 	      return
2695 		plus_constant (Pmode,
2696 			       gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2697 			       ep->previous_offset * INTVAL (XEXP (x, 1)));
2698 	    }
2699 
2700       /* fall through */
2701 
2702     case CALL:
2703     case COMPARE:
2704     /* See comments before PLUS about handling MINUS.  */
2705     case MINUS:
2706     case DIV:      case UDIV:
2707     case MOD:      case UMOD:
2708     case AND:      case IOR:      case XOR:
2709     case ROTATERT: case ROTATE:
2710     case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2711     case NE:       case EQ:
2712     case GE:       case GT:       case GEU:    case GTU:
2713     case LE:       case LT:       case LEU:    case LTU:
2714       {
2715 	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2716 				     for_costs);
2717 	rtx new1 = XEXP (x, 1)
2718 	  ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2719 			      for_costs) : 0;
2720 
2721 	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2722 	  return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2723       }
2724       return x;
2725 
2726     case EXPR_LIST:
2727       /* If we have something in XEXP (x, 0), the usual case, eliminate it.  */
2728       if (XEXP (x, 0))
2729 	{
2730 	  new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2731 				      for_costs);
2732 	  if (new_rtx != XEXP (x, 0))
2733 	    {
2734 	      /* If this is a REG_DEAD note, it is not valid anymore.
2735 		 Using the eliminated version could result in creating a
2736 		 REG_DEAD note for the stack or frame pointer.  */
2737 	      if (REG_NOTE_KIND (x) == REG_DEAD)
2738 		return (XEXP (x, 1)
2739 			? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2740 					    for_costs)
2741 			: NULL_RTX);
2742 
2743 	      x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2744 	    }
2745 	}
2746 
2747       /* fall through */
2748 
2749     case INSN_LIST:
2750     case INT_LIST:
2751       /* Now do eliminations in the rest of the chain.  If this was
2752 	 an EXPR_LIST, this might result in allocating more memory than is
2753 	 strictly needed, but it simplifies the code.  */
2754       if (XEXP (x, 1))
2755 	{
2756 	  new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2757 				      for_costs);
2758 	  if (new_rtx != XEXP (x, 1))
2759 	    return
2760 	      gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2761 	}
2762       return x;
2763 
2764     case PRE_INC:
2765     case POST_INC:
2766     case PRE_DEC:
2767     case POST_DEC:
2768       /* We do not support elimination of a register that is modified.
2769 	 elimination_effects has already make sure that this does not
2770 	 happen.  */
2771       return x;
2772 
2773     case PRE_MODIFY:
2774     case POST_MODIFY:
2775       /* We do not support elimination of a register that is modified.
2776 	 elimination_effects has already make sure that this does not
2777 	 happen.  The only remaining case we need to consider here is
2778 	 that the increment value may be an eliminable register.  */
2779       if (GET_CODE (XEXP (x, 1)) == PLUS
2780 	  && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2781 	{
2782 	  rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2783 					  insn, true, for_costs);
2784 
2785 	  if (new_rtx != XEXP (XEXP (x, 1), 1))
2786 	    return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2787 				   gen_rtx_PLUS (GET_MODE (x),
2788 						 XEXP (x, 0), new_rtx));
2789 	}
2790       return x;
2791 
2792     case STRICT_LOW_PART:
2793     case NEG:          case NOT:
2794     case SIGN_EXTEND:  case ZERO_EXTEND:
2795     case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2796     case FLOAT:        case FIX:
2797     case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2798     case ABS:
2799     case SQRT:
2800     case FFS:
2801     case CLZ:
2802     case CTZ:
2803     case POPCOUNT:
2804     case PARITY:
2805     case BSWAP:
2806       new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2807 				  for_costs);
2808       if (new_rtx != XEXP (x, 0))
2809 	return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2810       return x;
2811 
2812     case SUBREG:
2813       /* Similar to above processing, but preserve SUBREG_BYTE.
2814 	 Convert (subreg (mem)) to (mem) if not paradoxical.
2815 	 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2816 	 pseudo didn't get a hard reg, we must replace this with the
2817 	 eliminated version of the memory location because push_reload
2818 	 may do the replacement in certain circumstances.  */
2819       if (REG_P (SUBREG_REG (x))
2820 	  && !paradoxical_subreg_p (x)
2821 	  && reg_equivs
2822 	  && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2823 	{
2824 	  new_rtx = SUBREG_REG (x);
2825 	}
2826       else
2827 	new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2828 
2829       if (new_rtx != SUBREG_REG (x))
2830 	{
2831 	  poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2832 	  poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2833 
2834 	  if (MEM_P (new_rtx)
2835 	      && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2836 		   /* On RISC machines, combine can create rtl of the form
2837 		      (set (subreg:m1 (reg:m2 R) 0) ...)
2838 		      where m1 < m2, and expects something interesting to
2839 		      happen to the entire word.  Moreover, it will use the
2840 		      (reg:m2 R) later, expecting all bits to be preserved.
2841 		      So if the number of words is the same, preserve the
2842 		      subreg so that push_reload can see it.  */
2843 		   && !(WORD_REGISTER_OPERATIONS
2844 			&& known_equal_after_align_down (x_size - 1,
2845 							 new_size - 1,
2846 							 UNITS_PER_WORD)))
2847 		  || known_eq (x_size, new_size))
2848 	      )
2849 	    return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2850 	  else if (insn && GET_CODE (insn) == DEBUG_INSN)
2851 	    return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2852 	  else
2853 	    return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2854 	}
2855 
2856       return x;
2857 
2858     case MEM:
2859       /* Our only special processing is to pass the mode of the MEM to our
2860 	 recursive call and copy the flags.  While we are here, handle this
2861 	 case more efficiently.  */
2862 
2863       new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2864 				  for_costs);
2865       if (for_costs
2866 	  && memory_address_p (GET_MODE (x), XEXP (x, 0))
2867 	  && !memory_address_p (GET_MODE (x), new_rtx))
2868 	note_reg_elim_costly (XEXP (x, 0), insn);
2869 
2870       return replace_equiv_address_nv (x, new_rtx);
2871 
2872     case USE:
2873       /* Handle insn_list USE that a call to a pure function may generate.  */
2874       new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2875 				  for_costs);
2876       if (new_rtx != XEXP (x, 0))
2877 	return gen_rtx_USE (GET_MODE (x), new_rtx);
2878       return x;
2879 
2880     case CLOBBER:
2881     case ASM_OPERANDS:
2882       gcc_assert (insn && DEBUG_INSN_P (insn));
2883       break;
2884 
2885     case SET:
2886       gcc_unreachable ();
2887 
2888     default:
2889       break;
2890     }
2891 
2892   /* Process each of our operands recursively.  If any have changed, make a
2893      copy of the rtx.  */
2894   fmt = GET_RTX_FORMAT (code);
2895   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2896     {
2897       if (*fmt == 'e')
2898 	{
2899 	  new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2900 				      for_costs);
2901 	  if (new_rtx != XEXP (x, i) && ! copied)
2902 	    {
2903 	      x = shallow_copy_rtx (x);
2904 	      copied = 1;
2905 	    }
2906 	  XEXP (x, i) = new_rtx;
2907 	}
2908       else if (*fmt == 'E')
2909 	{
2910 	  int copied_vec = 0;
2911 	  for (j = 0; j < XVECLEN (x, i); j++)
2912 	    {
2913 	      new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2914 					  for_costs);
2915 	      if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2916 		{
2917 		  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2918 					     XVEC (x, i)->elem);
2919 		  if (! copied)
2920 		    {
2921 		      x = shallow_copy_rtx (x);
2922 		      copied = 1;
2923 		    }
2924 		  XVEC (x, i) = new_v;
2925 		  copied_vec = 1;
2926 		}
2927 	      XVECEXP (x, i, j) = new_rtx;
2928 	    }
2929 	}
2930     }
2931 
2932   return x;
2933 }
2934 
2935 rtx
eliminate_regs(rtx x,machine_mode mem_mode,rtx insn)2936 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2937 {
2938   if (reg_eliminate == NULL)
2939     {
2940       gcc_assert (targetm.no_register_allocation);
2941       return x;
2942     }
2943   return eliminate_regs_1 (x, mem_mode, insn, false, false);
2944 }
2945 
2946 /* Scan rtx X for modifications of elimination target registers.  Update
2947    the table of eliminables to reflect the changed state.  MEM_MODE is
2948    the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */
2949 
2950 static void
elimination_effects(rtx x,machine_mode mem_mode)2951 elimination_effects (rtx x, machine_mode mem_mode)
2952 {
2953   enum rtx_code code = GET_CODE (x);
2954   struct elim_table *ep;
2955   int regno;
2956   int i, j;
2957   const char *fmt;
2958 
2959   switch (code)
2960     {
2961     CASE_CONST_ANY:
2962     case CONST:
2963     case SYMBOL_REF:
2964     case CODE_LABEL:
2965     case PC:
2966     case CC0:
2967     case ASM_INPUT:
2968     case ADDR_VEC:
2969     case ADDR_DIFF_VEC:
2970     case RETURN:
2971       return;
2972 
2973     case REG:
2974       regno = REGNO (x);
2975 
2976       /* First handle the case where we encounter a bare register that
2977 	 is eliminable.  Replace it with a PLUS.  */
2978       if (regno < FIRST_PSEUDO_REGISTER)
2979 	{
2980 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2981 	       ep++)
2982 	    if (ep->from_rtx == x && ep->can_eliminate)
2983 	      {
2984 		if (! mem_mode)
2985 		  ep->ref_outside_mem = 1;
2986 		return;
2987 	      }
2988 
2989 	}
2990       else if (reg_renumber[regno] < 0
2991 	       && reg_equivs
2992 	       && reg_equiv_constant (regno)
2993 	       && ! function_invariant_p (reg_equiv_constant (regno)))
2994 	elimination_effects (reg_equiv_constant (regno), mem_mode);
2995       return;
2996 
2997     case PRE_INC:
2998     case POST_INC:
2999     case PRE_DEC:
3000     case POST_DEC:
3001     case POST_MODIFY:
3002     case PRE_MODIFY:
3003       /* If we modify the source of an elimination rule, disable it.  */
3004       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3005 	if (ep->from_rtx == XEXP (x, 0))
3006 	  ep->can_eliminate = 0;
3007 
3008       /* If we modify the target of an elimination rule by adding a constant,
3009 	 update its offset.  If we modify the target in any other way, we'll
3010 	 have to disable the rule as well.  */
3011       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3012 	if (ep->to_rtx == XEXP (x, 0))
3013 	  {
3014 	    poly_int64 size = GET_MODE_SIZE (mem_mode);
3015 
3016 	    /* If more bytes than MEM_MODE are pushed, account for them.  */
3017 #ifdef PUSH_ROUNDING
3018 	    if (ep->to_rtx == stack_pointer_rtx)
3019 	      size = PUSH_ROUNDING (size);
3020 #endif
3021 	    if (code == PRE_DEC || code == POST_DEC)
3022 	      ep->offset += size;
3023 	    else if (code == PRE_INC || code == POST_INC)
3024 	      ep->offset -= size;
3025 	    else if (code == PRE_MODIFY || code == POST_MODIFY)
3026 	      {
3027 		if (GET_CODE (XEXP (x, 1)) == PLUS
3028 		    && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3029 		    && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3030 		  ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3031 		else
3032 		  ep->can_eliminate = 0;
3033 	      }
3034 	  }
3035 
3036       /* These two aren't unary operators.  */
3037       if (code == POST_MODIFY || code == PRE_MODIFY)
3038 	break;
3039 
3040       /* Fall through to generic unary operation case.  */
3041       gcc_fallthrough ();
3042     case STRICT_LOW_PART:
3043     case NEG:          case NOT:
3044     case SIGN_EXTEND:  case ZERO_EXTEND:
3045     case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3046     case FLOAT:        case FIX:
3047     case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3048     case ABS:
3049     case SQRT:
3050     case FFS:
3051     case CLZ:
3052     case CTZ:
3053     case POPCOUNT:
3054     case PARITY:
3055     case BSWAP:
3056       elimination_effects (XEXP (x, 0), mem_mode);
3057       return;
3058 
3059     case SUBREG:
3060       if (REG_P (SUBREG_REG (x))
3061 	  && !paradoxical_subreg_p (x)
3062 	  && reg_equivs
3063 	  && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3064 	return;
3065 
3066       elimination_effects (SUBREG_REG (x), mem_mode);
3067       return;
3068 
3069     case USE:
3070       /* If using a register that is the source of an eliminate we still
3071 	 think can be performed, note it cannot be performed since we don't
3072 	 know how this register is used.  */
3073       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3074 	if (ep->from_rtx == XEXP (x, 0))
3075 	  ep->can_eliminate = 0;
3076 
3077       elimination_effects (XEXP (x, 0), mem_mode);
3078       return;
3079 
3080     case CLOBBER:
3081       /* If clobbering a register that is the replacement register for an
3082 	 elimination we still think can be performed, note that it cannot
3083 	 be performed.  Otherwise, we need not be concerned about it.  */
3084       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3085 	if (ep->to_rtx == XEXP (x, 0))
3086 	  ep->can_eliminate = 0;
3087 
3088       elimination_effects (XEXP (x, 0), mem_mode);
3089       return;
3090 
3091     case SET:
3092       /* Check for setting a register that we know about.  */
3093       if (REG_P (SET_DEST (x)))
3094 	{
3095 	  /* See if this is setting the replacement register for an
3096 	     elimination.
3097 
3098 	     If DEST is the hard frame pointer, we do nothing because we
3099 	     assume that all assignments to the frame pointer are for
3100 	     non-local gotos and are being done at a time when they are valid
3101 	     and do not disturb anything else.  Some machines want to
3102 	     eliminate a fake argument pointer (or even a fake frame pointer)
3103 	     with either the real frame or the stack pointer.  Assignments to
3104 	     the hard frame pointer must not prevent this elimination.  */
3105 
3106 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3107 	       ep++)
3108 	    if (ep->to_rtx == SET_DEST (x)
3109 		&& SET_DEST (x) != hard_frame_pointer_rtx)
3110 	      {
3111 		/* If it is being incremented, adjust the offset.  Otherwise,
3112 		   this elimination can't be done.  */
3113 		rtx src = SET_SRC (x);
3114 
3115 		if (GET_CODE (src) == PLUS
3116 		    && XEXP (src, 0) == SET_DEST (x)
3117 		    && CONST_INT_P (XEXP (src, 1)))
3118 		  ep->offset -= INTVAL (XEXP (src, 1));
3119 		else
3120 		  ep->can_eliminate = 0;
3121 	      }
3122 	}
3123 
3124       elimination_effects (SET_DEST (x), VOIDmode);
3125       elimination_effects (SET_SRC (x), VOIDmode);
3126       return;
3127 
3128     case MEM:
3129       /* Our only special processing is to pass the mode of the MEM to our
3130 	 recursive call.  */
3131       elimination_effects (XEXP (x, 0), GET_MODE (x));
3132       return;
3133 
3134     default:
3135       break;
3136     }
3137 
3138   fmt = GET_RTX_FORMAT (code);
3139   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3140     {
3141       if (*fmt == 'e')
3142 	elimination_effects (XEXP (x, i), mem_mode);
3143       else if (*fmt == 'E')
3144 	for (j = 0; j < XVECLEN (x, i); j++)
3145 	  elimination_effects (XVECEXP (x, i, j), mem_mode);
3146     }
3147 }
3148 
3149 /* Descend through rtx X and verify that no references to eliminable registers
3150    remain.  If any do remain, mark the involved register as not
3151    eliminable.  */
3152 
3153 static void
check_eliminable_occurrences(rtx x)3154 check_eliminable_occurrences (rtx x)
3155 {
3156   const char *fmt;
3157   int i;
3158   enum rtx_code code;
3159 
3160   if (x == 0)
3161     return;
3162 
3163   code = GET_CODE (x);
3164 
3165   if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3166     {
3167       struct elim_table *ep;
3168 
3169       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3170 	if (ep->from_rtx == x)
3171 	  ep->can_eliminate = 0;
3172       return;
3173     }
3174 
3175   fmt = GET_RTX_FORMAT (code);
3176   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3177     {
3178       if (*fmt == 'e')
3179 	check_eliminable_occurrences (XEXP (x, i));
3180       else if (*fmt == 'E')
3181 	{
3182 	  int j;
3183 	  for (j = 0; j < XVECLEN (x, i); j++)
3184 	    check_eliminable_occurrences (XVECEXP (x, i, j));
3185 	}
3186     }
3187 }
3188 
3189 /* Scan INSN and eliminate all eliminable registers in it.
3190 
3191    If REPLACE is nonzero, do the replacement destructively.  Also
3192    delete the insn as dead it if it is setting an eliminable register.
3193 
3194    If REPLACE is zero, do all our allocations in reload_obstack.
3195 
3196    If no eliminations were done and this insn doesn't require any elimination
3197    processing (these are not identical conditions: it might be updating sp,
3198    but not referencing fp; this needs to be seen during reload_as_needed so
3199    that the offset between fp and sp can be taken into consideration), zero
3200    is returned.  Otherwise, 1 is returned.  */
3201 
3202 static int
eliminate_regs_in_insn(rtx_insn * insn,int replace)3203 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3204 {
3205   int icode = recog_memoized (insn);
3206   rtx old_body = PATTERN (insn);
3207   int insn_is_asm = asm_noperands (old_body) >= 0;
3208   rtx old_set = single_set (insn);
3209   rtx new_body;
3210   int val = 0;
3211   int i;
3212   rtx substed_operand[MAX_RECOG_OPERANDS];
3213   rtx orig_operand[MAX_RECOG_OPERANDS];
3214   struct elim_table *ep;
3215   rtx plus_src, plus_cst_src;
3216 
3217   if (! insn_is_asm && icode < 0)
3218     {
3219       gcc_assert (DEBUG_INSN_P (insn)
3220 		  || GET_CODE (PATTERN (insn)) == USE
3221 		  || GET_CODE (PATTERN (insn)) == CLOBBER
3222 		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3223       if (DEBUG_BIND_INSN_P (insn))
3224 	INSN_VAR_LOCATION_LOC (insn)
3225 	  = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3226       return 0;
3227     }
3228 
3229   /* We allow one special case which happens to work on all machines we
3230      currently support: a single set with the source or a REG_EQUAL
3231      note being a PLUS of an eliminable register and a constant.  */
3232   plus_src = plus_cst_src = 0;
3233   if (old_set && REG_P (SET_DEST (old_set)))
3234     {
3235       if (GET_CODE (SET_SRC (old_set)) == PLUS)
3236 	plus_src = SET_SRC (old_set);
3237       /* First see if the source is of the form (plus (...) CST).  */
3238       if (plus_src
3239 	  && CONST_INT_P (XEXP (plus_src, 1)))
3240 	plus_cst_src = plus_src;
3241       else if (REG_P (SET_SRC (old_set))
3242 	       || plus_src)
3243 	{
3244 	  /* Otherwise, see if we have a REG_EQUAL note of the form
3245 	     (plus (...) CST).  */
3246 	  rtx links;
3247 	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3248 	    {
3249 	      if ((REG_NOTE_KIND (links) == REG_EQUAL
3250 		   || REG_NOTE_KIND (links) == REG_EQUIV)
3251 		  && GET_CODE (XEXP (links, 0)) == PLUS
3252 		  && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3253 		{
3254 		  plus_cst_src = XEXP (links, 0);
3255 		  break;
3256 		}
3257 	    }
3258 	}
3259 
3260       /* Check that the first operand of the PLUS is a hard reg or
3261 	 the lowpart subreg of one.  */
3262       if (plus_cst_src)
3263 	{
3264 	  rtx reg = XEXP (plus_cst_src, 0);
3265 	  if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3266 	    reg = SUBREG_REG (reg);
3267 
3268 	  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3269 	    plus_cst_src = 0;
3270 	}
3271     }
3272   if (plus_cst_src)
3273     {
3274       rtx reg = XEXP (plus_cst_src, 0);
3275       poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3276 
3277       if (GET_CODE (reg) == SUBREG)
3278 	reg = SUBREG_REG (reg);
3279 
3280       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3281 	if (ep->from_rtx == reg && ep->can_eliminate)
3282 	  {
3283 	    rtx to_rtx = ep->to_rtx;
3284 	    offset += ep->offset;
3285 	    offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3286 
3287 	    if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3288 	      to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3289 				    to_rtx);
3290 	    /* If we have a nonzero offset, and the source is already
3291 	       a simple REG, the following transformation would
3292 	       increase the cost of the insn by replacing a simple REG
3293 	       with (plus (reg sp) CST).  So try only when we already
3294 	       had a PLUS before.  */
3295 	    if (known_eq (offset, 0) || plus_src)
3296 	      {
3297 		rtx new_src = plus_constant (GET_MODE (to_rtx),
3298 					     to_rtx, offset);
3299 
3300 		new_body = old_body;
3301 		if (! replace)
3302 		  {
3303 		    new_body = copy_insn (old_body);
3304 		    if (REG_NOTES (insn))
3305 		      REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3306 		  }
3307 		PATTERN (insn) = new_body;
3308 		old_set = single_set (insn);
3309 
3310 		/* First see if this insn remains valid when we make the
3311 		   change.  If not, try to replace the whole pattern with
3312 		   a simple set (this may help if the original insn was a
3313 		   PARALLEL that was only recognized as single_set due to
3314 		   REG_UNUSED notes).  If this isn't valid either, keep
3315 		   the INSN_CODE the same and let reload fix it up.  */
3316 		if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3317 		  {
3318 		    rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3319 
3320 		    if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3321 		      SET_SRC (old_set) = new_src;
3322 		  }
3323 	      }
3324 	    else
3325 	      break;
3326 
3327 	    val = 1;
3328 	    /* This can't have an effect on elimination offsets, so skip right
3329 	       to the end.  */
3330 	    goto done;
3331 	  }
3332     }
3333 
3334   /* Determine the effects of this insn on elimination offsets.  */
3335   elimination_effects (old_body, VOIDmode);
3336 
3337   /* Eliminate all eliminable registers occurring in operands that
3338      can be handled by reload.  */
3339   extract_insn (insn);
3340   for (i = 0; i < recog_data.n_operands; i++)
3341     {
3342       orig_operand[i] = recog_data.operand[i];
3343       substed_operand[i] = recog_data.operand[i];
3344 
3345       /* For an asm statement, every operand is eliminable.  */
3346       if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3347 	{
3348 	  bool is_set_src, in_plus;
3349 
3350 	  /* Check for setting a register that we know about.  */
3351 	  if (recog_data.operand_type[i] != OP_IN
3352 	      && REG_P (orig_operand[i]))
3353 	    {
3354 	      /* If we are assigning to a register that can be eliminated, it
3355 		 must be as part of a PARALLEL, since the code above handles
3356 		 single SETs.  We must indicate that we can no longer
3357 		 eliminate this reg.  */
3358 	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3359 		   ep++)
3360 		if (ep->from_rtx == orig_operand[i])
3361 		  ep->can_eliminate = 0;
3362 	    }
3363 
3364 	  /* Companion to the above plus substitution, we can allow
3365 	     invariants as the source of a plain move.  */
3366 	  is_set_src = false;
3367 	  if (old_set
3368 	      && recog_data.operand_loc[i] == &SET_SRC (old_set))
3369 	    is_set_src = true;
3370 	  in_plus = false;
3371 	  if (plus_src
3372 	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3373 		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3374 	    in_plus = true;
3375 
3376 	  substed_operand[i]
3377 	    = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3378 			        replace ? insn : NULL_RTX,
3379 				is_set_src || in_plus, false);
3380 	  if (substed_operand[i] != orig_operand[i])
3381 	    val = 1;
3382 	  /* Terminate the search in check_eliminable_occurrences at
3383 	     this point.  */
3384 	  *recog_data.operand_loc[i] = 0;
3385 
3386 	  /* If an output operand changed from a REG to a MEM and INSN is an
3387 	     insn, write a CLOBBER insn.  */
3388 	  if (recog_data.operand_type[i] != OP_IN
3389 	      && REG_P (orig_operand[i])
3390 	      && MEM_P (substed_operand[i])
3391 	      && replace)
3392 	    emit_insn_after (gen_clobber (orig_operand[i]), insn);
3393 	}
3394     }
3395 
3396   for (i = 0; i < recog_data.n_dups; i++)
3397     *recog_data.dup_loc[i]
3398       = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3399 
3400   /* If any eliminable remain, they aren't eliminable anymore.  */
3401   check_eliminable_occurrences (old_body);
3402 
3403   /* Substitute the operands; the new values are in the substed_operand
3404      array.  */
3405   for (i = 0; i < recog_data.n_operands; i++)
3406     *recog_data.operand_loc[i] = substed_operand[i];
3407   for (i = 0; i < recog_data.n_dups; i++)
3408     *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3409 
3410   /* If we are replacing a body that was a (set X (plus Y Z)), try to
3411      re-recognize the insn.  We do this in case we had a simple addition
3412      but now can do this as a load-address.  This saves an insn in this
3413      common case.
3414      If re-recognition fails, the old insn code number will still be used,
3415      and some register operands may have changed into PLUS expressions.
3416      These will be handled by find_reloads by loading them into a register
3417      again.  */
3418 
3419   if (val)
3420     {
3421       /* If we aren't replacing things permanently and we changed something,
3422 	 make another copy to ensure that all the RTL is new.  Otherwise
3423 	 things can go wrong if find_reload swaps commutative operands
3424 	 and one is inside RTL that has been copied while the other is not.  */
3425       new_body = old_body;
3426       if (! replace)
3427 	{
3428 	  new_body = copy_insn (old_body);
3429 	  if (REG_NOTES (insn))
3430 	    REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3431 	}
3432       PATTERN (insn) = new_body;
3433 
3434       /* If we had a move insn but now we don't, rerecognize it.  This will
3435 	 cause spurious re-recognition if the old move had a PARALLEL since
3436 	 the new one still will, but we can't call single_set without
3437 	 having put NEW_BODY into the insn and the re-recognition won't
3438 	 hurt in this rare case.  */
3439       /* ??? Why this huge if statement - why don't we just rerecognize the
3440 	 thing always?  */
3441       if (! insn_is_asm
3442 	  && old_set != 0
3443 	  && ((REG_P (SET_SRC (old_set))
3444 	       && (GET_CODE (new_body) != SET
3445 		   || !REG_P (SET_SRC (new_body))))
3446 	      /* If this was a load from or store to memory, compare
3447 		 the MEM in recog_data.operand to the one in the insn.
3448 		 If they are not equal, then rerecognize the insn.  */
3449 	      || (old_set != 0
3450 		  && ((MEM_P (SET_SRC (old_set))
3451 		       && SET_SRC (old_set) != recog_data.operand[1])
3452 		      || (MEM_P (SET_DEST (old_set))
3453 			  && SET_DEST (old_set) != recog_data.operand[0])))
3454 	      /* If this was an add insn before, rerecognize.  */
3455 	      || GET_CODE (SET_SRC (old_set)) == PLUS))
3456 	{
3457 	  int new_icode = recog (PATTERN (insn), insn, 0);
3458 	  if (new_icode >= 0)
3459 	    INSN_CODE (insn) = new_icode;
3460 	}
3461     }
3462 
3463   /* Restore the old body.  If there were any changes to it, we made a copy
3464      of it while the changes were still in place, so we'll correctly return
3465      a modified insn below.  */
3466   if (! replace)
3467     {
3468       /* Restore the old body.  */
3469       for (i = 0; i < recog_data.n_operands; i++)
3470 	/* Restoring a top-level match_parallel would clobber the new_body
3471 	   we installed in the insn.  */
3472 	if (recog_data.operand_loc[i] != &PATTERN (insn))
3473 	  *recog_data.operand_loc[i] = orig_operand[i];
3474       for (i = 0; i < recog_data.n_dups; i++)
3475 	*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3476     }
3477 
3478   /* Update all elimination pairs to reflect the status after the current
3479      insn.  The changes we make were determined by the earlier call to
3480      elimination_effects.
3481 
3482      We also detect cases where register elimination cannot be done,
3483      namely, if a register would be both changed and referenced outside a MEM
3484      in the resulting insn since such an insn is often undefined and, even if
3485      not, we cannot know what meaning will be given to it.  Note that it is
3486      valid to have a register used in an address in an insn that changes it
3487      (presumably with a pre- or post-increment or decrement).
3488 
3489      If anything changes, return nonzero.  */
3490 
3491   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3492     {
3493       if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3494 	ep->can_eliminate = 0;
3495 
3496       ep->ref_outside_mem = 0;
3497 
3498       if (maybe_ne (ep->previous_offset, ep->offset))
3499 	val = 1;
3500     }
3501 
3502  done:
3503   /* If we changed something, perform elimination in REG_NOTES.  This is
3504      needed even when REPLACE is zero because a REG_DEAD note might refer
3505      to a register that we eliminate and could cause a different number
3506      of spill registers to be needed in the final reload pass than in
3507      the pre-passes.  */
3508   if (val && REG_NOTES (insn) != 0)
3509     REG_NOTES (insn)
3510       = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3511 			  false);
3512 
3513   return val;
3514 }
3515 
3516 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3517    register allocator.  INSN is the instruction we need to examine, we perform
3518    eliminations in its operands and record cases where eliminating a reg with
3519    an invariant equivalence would add extra cost.  */
3520 
3521 #pragma GCC diagnostic push
3522 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3523 static void
elimination_costs_in_insn(rtx_insn * insn)3524 elimination_costs_in_insn (rtx_insn *insn)
3525 {
3526   int icode = recog_memoized (insn);
3527   rtx old_body = PATTERN (insn);
3528   int insn_is_asm = asm_noperands (old_body) >= 0;
3529   rtx old_set = single_set (insn);
3530   int i;
3531   rtx orig_operand[MAX_RECOG_OPERANDS];
3532   rtx orig_dup[MAX_RECOG_OPERANDS];
3533   struct elim_table *ep;
3534   rtx plus_src, plus_cst_src;
3535   bool sets_reg_p;
3536 
3537   if (! insn_is_asm && icode < 0)
3538     {
3539       gcc_assert (DEBUG_INSN_P (insn)
3540 		  || GET_CODE (PATTERN (insn)) == USE
3541 		  || GET_CODE (PATTERN (insn)) == CLOBBER
3542 		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3543       return;
3544     }
3545 
3546   if (old_set != 0 && REG_P (SET_DEST (old_set))
3547       && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3548     {
3549       /* Check for setting an eliminable register.  */
3550       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3551 	if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3552 	  return;
3553     }
3554 
3555   /* We allow one special case which happens to work on all machines we
3556      currently support: a single set with the source or a REG_EQUAL
3557      note being a PLUS of an eliminable register and a constant.  */
3558   plus_src = plus_cst_src = 0;
3559   sets_reg_p = false;
3560   if (old_set && REG_P (SET_DEST (old_set)))
3561     {
3562       sets_reg_p = true;
3563       if (GET_CODE (SET_SRC (old_set)) == PLUS)
3564 	plus_src = SET_SRC (old_set);
3565       /* First see if the source is of the form (plus (...) CST).  */
3566       if (plus_src
3567 	  && CONST_INT_P (XEXP (plus_src, 1)))
3568 	plus_cst_src = plus_src;
3569       else if (REG_P (SET_SRC (old_set))
3570 	       || plus_src)
3571 	{
3572 	  /* Otherwise, see if we have a REG_EQUAL note of the form
3573 	     (plus (...) CST).  */
3574 	  rtx links;
3575 	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3576 	    {
3577 	      if ((REG_NOTE_KIND (links) == REG_EQUAL
3578 		   || REG_NOTE_KIND (links) == REG_EQUIV)
3579 		  && GET_CODE (XEXP (links, 0)) == PLUS
3580 		  && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3581 		{
3582 		  plus_cst_src = XEXP (links, 0);
3583 		  break;
3584 		}
3585 	    }
3586 	}
3587     }
3588 
3589   /* Determine the effects of this insn on elimination offsets.  */
3590   elimination_effects (old_body, VOIDmode);
3591 
3592   /* Eliminate all eliminable registers occurring in operands that
3593      can be handled by reload.  */
3594   extract_insn (insn);
3595   int n_dups = recog_data.n_dups;
3596   for (i = 0; i < n_dups; i++)
3597     orig_dup[i] = *recog_data.dup_loc[i];
3598 
3599   int n_operands = recog_data.n_operands;
3600   for (i = 0; i < n_operands; i++)
3601     {
3602       orig_operand[i] = recog_data.operand[i];
3603 
3604       /* For an asm statement, every operand is eliminable.  */
3605       if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3606 	{
3607 	  bool is_set_src, in_plus;
3608 
3609 	  /* Check for setting a register that we know about.  */
3610 	  if (recog_data.operand_type[i] != OP_IN
3611 	      && REG_P (orig_operand[i]))
3612 	    {
3613 	      /* If we are assigning to a register that can be eliminated, it
3614 		 must be as part of a PARALLEL, since the code above handles
3615 		 single SETs.  We must indicate that we can no longer
3616 		 eliminate this reg.  */
3617 	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3618 		   ep++)
3619 		if (ep->from_rtx == orig_operand[i])
3620 		  ep->can_eliminate = 0;
3621 	    }
3622 
3623 	  /* Companion to the above plus substitution, we can allow
3624 	     invariants as the source of a plain move.  */
3625 	  is_set_src = false;
3626 	  if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3627 	    is_set_src = true;
3628 	  if (is_set_src && !sets_reg_p)
3629 	    note_reg_elim_costly (SET_SRC (old_set), insn);
3630 	  in_plus = false;
3631 	  if (plus_src && sets_reg_p
3632 	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3633 		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3634 	    in_plus = true;
3635 
3636 	  eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3637 			    NULL_RTX,
3638 			    is_set_src || in_plus, true);
3639 	  /* Terminate the search in check_eliminable_occurrences at
3640 	     this point.  */
3641 	  *recog_data.operand_loc[i] = 0;
3642 	}
3643     }
3644 
3645   for (i = 0; i < n_dups; i++)
3646     *recog_data.dup_loc[i]
3647       = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3648 
3649   /* If any eliminable remain, they aren't eliminable anymore.  */
3650   check_eliminable_occurrences (old_body);
3651 
3652   /* Restore the old body.  */
3653   for (i = 0; i < n_operands; i++)
3654     *recog_data.operand_loc[i] = orig_operand[i];
3655   for (i = 0; i < n_dups; i++)
3656     *recog_data.dup_loc[i] = orig_dup[i];
3657 
3658   /* Update all elimination pairs to reflect the status after the current
3659      insn.  The changes we make were determined by the earlier call to
3660      elimination_effects.  */
3661 
3662   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663     {
3664       if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3665 	ep->can_eliminate = 0;
3666 
3667       ep->ref_outside_mem = 0;
3668     }
3669 
3670   return;
3671 }
3672 #pragma GCC diagnostic pop
3673 
3674 /* Loop through all elimination pairs.
3675    Recalculate the number not at initial offset.
3676 
3677    Compute the maximum offset (minimum offset if the stack does not
3678    grow downward) for each elimination pair.  */
3679 
3680 static void
update_eliminable_offsets(void)3681 update_eliminable_offsets (void)
3682 {
3683   struct elim_table *ep;
3684 
3685   num_not_at_initial_offset = 0;
3686   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3687     {
3688       ep->previous_offset = ep->offset;
3689       if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3690 	num_not_at_initial_offset++;
3691     }
3692 }
3693 
3694 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3695    replacement we currently believe is valid, mark it as not eliminable if X
3696    modifies DEST in any way other than by adding a constant integer to it.
3697 
3698    If DEST is the frame pointer, we do nothing because we assume that
3699    all assignments to the hard frame pointer are nonlocal gotos and are being
3700    done at a time when they are valid and do not disturb anything else.
3701    Some machines want to eliminate a fake argument pointer with either the
3702    frame or stack pointer.  Assignments to the hard frame pointer must not
3703    prevent this elimination.
3704 
3705    Called via note_stores from reload before starting its passes to scan
3706    the insns of the function.  */
3707 
3708 static void
mark_not_eliminable(rtx dest,const_rtx x,void * data ATTRIBUTE_UNUSED)3709 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3710 {
3711   unsigned int i;
3712 
3713   /* A SUBREG of a hard register here is just changing its mode.  We should
3714      not see a SUBREG of an eliminable hard register, but check just in
3715      case.  */
3716   if (GET_CODE (dest) == SUBREG)
3717     dest = SUBREG_REG (dest);
3718 
3719   if (dest == hard_frame_pointer_rtx)
3720     return;
3721 
3722   for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3723     if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3724 	&& (GET_CODE (x) != SET
3725 	    || GET_CODE (SET_SRC (x)) != PLUS
3726 	    || XEXP (SET_SRC (x), 0) != dest
3727 	    || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3728       {
3729 	reg_eliminate[i].can_eliminate_previous
3730 	  = reg_eliminate[i].can_eliminate = 0;
3731 	num_eliminable--;
3732       }
3733 }
3734 
3735 /* Verify that the initial elimination offsets did not change since the
3736    last call to set_initial_elim_offsets.  This is used to catch cases
3737    where something illegal happened during reload_as_needed that could
3738    cause incorrect code to be generated if we did not check for it.  */
3739 
3740 static bool
verify_initial_elim_offsets(void)3741 verify_initial_elim_offsets (void)
3742 {
3743   poly_int64 t;
3744   struct elim_table *ep;
3745 
3746   if (!num_eliminable)
3747     return true;
3748 
3749   targetm.compute_frame_layout ();
3750   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3751     {
3752       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3753       if (maybe_ne (t, ep->initial_offset))
3754 	return false;
3755     }
3756 
3757   return true;
3758 }
3759 
3760 /* Reset all offsets on eliminable registers to their initial values.  */
3761 
3762 static void
set_initial_elim_offsets(void)3763 set_initial_elim_offsets (void)
3764 {
3765   struct elim_table *ep = reg_eliminate;
3766 
3767   targetm.compute_frame_layout ();
3768   for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3769     {
3770       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3771       ep->previous_offset = ep->offset = ep->initial_offset;
3772     }
3773 
3774   num_not_at_initial_offset = 0;
3775 }
3776 
3777 /* Subroutine of set_initial_label_offsets called via for_each_eh_label.  */
3778 
3779 static void
set_initial_eh_label_offset(rtx label)3780 set_initial_eh_label_offset (rtx label)
3781 {
3782   set_label_offsets (label, NULL, 1);
3783 }
3784 
3785 /* Initialize the known label offsets.
3786    Set a known offset for each forced label to be at the initial offset
3787    of each elimination.  We do this because we assume that all
3788    computed jumps occur from a location where each elimination is
3789    at its initial offset.
3790    For all other labels, show that we don't know the offsets.  */
3791 
3792 static void
set_initial_label_offsets(void)3793 set_initial_label_offsets (void)
3794 {
3795   memset (offsets_known_at, 0, num_labels);
3796 
3797   unsigned int i;
3798   rtx_insn *insn;
3799   FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3800     set_label_offsets (insn, NULL, 1);
3801 
3802   for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3803     if (x->insn ())
3804       set_label_offsets (x->insn (), NULL, 1);
3805 
3806   for_each_eh_label (set_initial_eh_label_offset);
3807 }
3808 
3809 /* Set all elimination offsets to the known values for the code label given
3810    by INSN.  */
3811 
3812 static void
set_offsets_for_label(rtx_insn * insn)3813 set_offsets_for_label (rtx_insn *insn)
3814 {
3815   unsigned int i;
3816   int label_nr = CODE_LABEL_NUMBER (insn);
3817   struct elim_table *ep;
3818 
3819   num_not_at_initial_offset = 0;
3820   for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3821     {
3822       ep->offset = ep->previous_offset
3823 		 = offsets_at[label_nr - first_label_num][i];
3824       if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3825 	num_not_at_initial_offset++;
3826     }
3827 }
3828 
3829 /* See if anything that happened changes which eliminations are valid.
3830    For example, on the SPARC, whether or not the frame pointer can
3831    be eliminated can depend on what registers have been used.  We need
3832    not check some conditions again (such as flag_omit_frame_pointer)
3833    since they can't have changed.  */
3834 
3835 static void
update_eliminables(HARD_REG_SET * pset)3836 update_eliminables (HARD_REG_SET *pset)
3837 {
3838   int previous_frame_pointer_needed = frame_pointer_needed;
3839   struct elim_table *ep;
3840 
3841   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3842     if ((ep->from == HARD_FRAME_POINTER_REGNUM
3843          && targetm.frame_pointer_required ())
3844 	|| ! targetm.can_eliminate (ep->from, ep->to)
3845 	)
3846       ep->can_eliminate = 0;
3847 
3848   /* Look for the case where we have discovered that we can't replace
3849      register A with register B and that means that we will now be
3850      trying to replace register A with register C.  This means we can
3851      no longer replace register C with register B and we need to disable
3852      such an elimination, if it exists.  This occurs often with A == ap,
3853      B == sp, and C == fp.  */
3854 
3855   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3856     {
3857       struct elim_table *op;
3858       int new_to = -1;
3859 
3860       if (! ep->can_eliminate && ep->can_eliminate_previous)
3861 	{
3862 	  /* Find the current elimination for ep->from, if there is a
3863 	     new one.  */
3864 	  for (op = reg_eliminate;
3865 	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3866 	    if (op->from == ep->from && op->can_eliminate)
3867 	      {
3868 		new_to = op->to;
3869 		break;
3870 	      }
3871 
3872 	  /* See if there is an elimination of NEW_TO -> EP->TO.  If so,
3873 	     disable it.  */
3874 	  for (op = reg_eliminate;
3875 	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3876 	    if (op->from == new_to && op->to == ep->to)
3877 	      op->can_eliminate = 0;
3878 	}
3879     }
3880 
3881   /* See if any registers that we thought we could eliminate the previous
3882      time are no longer eliminable.  If so, something has changed and we
3883      must spill the register.  Also, recompute the number of eliminable
3884      registers and see if the frame pointer is needed; it is if there is
3885      no elimination of the frame pointer that we can perform.  */
3886 
3887   frame_pointer_needed = 1;
3888   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3889     {
3890       if (ep->can_eliminate
3891 	  && ep->from == FRAME_POINTER_REGNUM
3892 	  && ep->to != HARD_FRAME_POINTER_REGNUM
3893 	  && (! SUPPORTS_STACK_ALIGNMENT
3894 	      || ! crtl->stack_realign_needed))
3895 	frame_pointer_needed = 0;
3896 
3897       if (! ep->can_eliminate && ep->can_eliminate_previous)
3898 	{
3899 	  ep->can_eliminate_previous = 0;
3900 	  SET_HARD_REG_BIT (*pset, ep->from);
3901 	  num_eliminable--;
3902 	}
3903     }
3904 
3905   /* If we didn't need a frame pointer last time, but we do now, spill
3906      the hard frame pointer.  */
3907   if (frame_pointer_needed && ! previous_frame_pointer_needed)
3908     SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3909 }
3910 
3911 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3912    Return true iff a register was spilled.  */
3913 
3914 static bool
update_eliminables_and_spill(void)3915 update_eliminables_and_spill (void)
3916 {
3917   int i;
3918   bool did_spill = false;
3919   HARD_REG_SET to_spill;
3920   CLEAR_HARD_REG_SET (to_spill);
3921   update_eliminables (&to_spill);
3922   used_spill_regs &= ~to_spill;
3923 
3924   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3925     if (TEST_HARD_REG_BIT (to_spill, i))
3926       {
3927 	spill_hard_reg (i, 1);
3928 	did_spill = true;
3929 
3930 	/* Regardless of the state of spills, if we previously had
3931 	   a register that we thought we could eliminate, but now
3932 	   cannot eliminate, we must run another pass.
3933 
3934 	   Consider pseudos which have an entry in reg_equiv_* which
3935 	   reference an eliminable register.  We must make another pass
3936 	   to update reg_equiv_* so that we do not substitute in the
3937 	   old value from when we thought the elimination could be
3938 	   performed.  */
3939       }
3940   return did_spill;
3941 }
3942 
3943 /* Return true if X is used as the target register of an elimination.  */
3944 
3945 bool
elimination_target_reg_p(rtx x)3946 elimination_target_reg_p (rtx x)
3947 {
3948   struct elim_table *ep;
3949 
3950   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3951     if (ep->to_rtx == x && ep->can_eliminate)
3952       return true;
3953 
3954   return false;
3955 }
3956 
3957 /* Initialize the table of registers to eliminate.
3958    Pre-condition: global flag frame_pointer_needed has been set before
3959    calling this function.  */
3960 
3961 static void
init_elim_table(void)3962 init_elim_table (void)
3963 {
3964   struct elim_table *ep;
3965   const struct elim_table_1 *ep1;
3966 
3967   if (!reg_eliminate)
3968     reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3969 
3970   num_eliminable = 0;
3971 
3972   for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3973        ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3974     {
3975       ep->from = ep1->from;
3976       ep->to = ep1->to;
3977       ep->can_eliminate = ep->can_eliminate_previous
3978 	= (targetm.can_eliminate (ep->from, ep->to)
3979 	   && ! (ep->to == STACK_POINTER_REGNUM
3980 		 && frame_pointer_needed
3981 		 && (! SUPPORTS_STACK_ALIGNMENT
3982 		     || ! stack_realign_fp)));
3983     }
3984 
3985   /* Count the number of eliminable registers and build the FROM and TO
3986      REG rtx's.  Note that code in gen_rtx_REG will cause, e.g.,
3987      gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3988      We depend on this.  */
3989   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3990     {
3991       num_eliminable += ep->can_eliminate;
3992       ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3993       ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3994     }
3995 }
3996 
3997 /* Find all the pseudo registers that didn't get hard regs
3998    but do have known equivalent constants or memory slots.
3999    These include parameters (known equivalent to parameter slots)
4000    and cse'd or loop-moved constant memory addresses.
4001 
4002    Record constant equivalents in reg_equiv_constant
4003    so they will be substituted by find_reloads.
4004    Record memory equivalents in reg_mem_equiv so they can
4005    be substituted eventually by altering the REG-rtx's.  */
4006 
4007 static void
init_eliminable_invariants(rtx_insn * first,bool do_subregs)4008 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4009 {
4010   int i;
4011   rtx_insn *insn;
4012 
4013   grow_reg_equivs ();
4014   if (do_subregs)
4015     reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4016   else
4017     reg_max_ref_mode = NULL;
4018 
4019   num_eliminable_invariants = 0;
4020 
4021   first_label_num = get_first_label_num ();
4022   num_labels = max_label_num () - first_label_num;
4023 
4024   /* Allocate the tables used to store offset information at labels.  */
4025   offsets_known_at = XNEWVEC (char, num_labels);
4026   offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4027     xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4028 
4029 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4030    to.  If DO_SUBREGS is true, also find all paradoxical subregs and
4031    find largest such for each pseudo.  FIRST is the head of the insn
4032    list.  */
4033 
4034   for (insn = first; insn; insn = NEXT_INSN (insn))
4035     {
4036       rtx set = single_set (insn);
4037 
4038       /* We may introduce USEs that we want to remove at the end, so
4039 	 we'll mark them with QImode.  Make sure there are no
4040 	 previously-marked insns left by say regmove.  */
4041       if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4042 	  && GET_MODE (insn) != VOIDmode)
4043 	PUT_MODE (insn, VOIDmode);
4044 
4045       if (do_subregs && NONDEBUG_INSN_P (insn))
4046 	scan_paradoxical_subregs (PATTERN (insn));
4047 
4048       if (set != 0 && REG_P (SET_DEST (set)))
4049 	{
4050 	  rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4051 	  rtx x;
4052 
4053 	  if (! note)
4054 	    continue;
4055 
4056 	  i = REGNO (SET_DEST (set));
4057 	  x = XEXP (note, 0);
4058 
4059 	  if (i <= LAST_VIRTUAL_REGISTER)
4060 	    continue;
4061 
4062 	  /* If flag_pic and we have constant, verify it's legitimate.  */
4063 	  if (!CONSTANT_P (x)
4064 	      || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4065 	    {
4066 	      /* It can happen that a REG_EQUIV note contains a MEM
4067 		 that is not a legitimate memory operand.  As later
4068 		 stages of reload assume that all addresses found
4069 		 in the reg_equiv_* arrays were originally legitimate,
4070 		 we ignore such REG_EQUIV notes.  */
4071 	      if (memory_operand (x, VOIDmode))
4072 		{
4073 		  /* Always unshare the equivalence, so we can
4074 		     substitute into this insn without touching the
4075 		       equivalence.  */
4076 		  reg_equiv_memory_loc (i) = copy_rtx (x);
4077 		}
4078 	      else if (function_invariant_p (x))
4079 		{
4080 		  machine_mode mode;
4081 
4082 		  mode = GET_MODE (SET_DEST (set));
4083 		  if (GET_CODE (x) == PLUS)
4084 		    {
4085 		      /* This is PLUS of frame pointer and a constant,
4086 			 and might be shared.  Unshare it.  */
4087 		      reg_equiv_invariant (i) = copy_rtx (x);
4088 		      num_eliminable_invariants++;
4089 		    }
4090 		  else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4091 		    {
4092 		      reg_equiv_invariant (i) = x;
4093 		      num_eliminable_invariants++;
4094 		    }
4095 		  else if (targetm.legitimate_constant_p (mode, x))
4096 		    reg_equiv_constant (i) = x;
4097 		  else
4098 		    {
4099 		      reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4100 		      if (! reg_equiv_memory_loc (i))
4101 			reg_equiv_init (i) = NULL;
4102 		    }
4103 		}
4104 	      else
4105 		{
4106 		  reg_equiv_init (i) = NULL;
4107 		  continue;
4108 		}
4109 	    }
4110 	  else
4111 	    reg_equiv_init (i) = NULL;
4112 	}
4113     }
4114 
4115   if (dump_file)
4116     for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4117       if (reg_equiv_init (i))
4118 	{
4119 	  fprintf (dump_file, "init_insns for %u: ", i);
4120 	  print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4121 	  fprintf (dump_file, "\n");
4122 	}
4123 }
4124 
4125 /* Indicate that we no longer have known memory locations or constants.
4126    Free all data involved in tracking these.  */
4127 
4128 static void
free_reg_equiv(void)4129 free_reg_equiv (void)
4130 {
4131   int i;
4132 
4133   free (offsets_known_at);
4134   free (offsets_at);
4135   offsets_at = 0;
4136   offsets_known_at = 0;
4137 
4138   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4139     if (reg_equiv_alt_mem_list (i))
4140       free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4141   vec_free (reg_equivs);
4142 }
4143 
4144 /* Kick all pseudos out of hard register REGNO.
4145 
4146    If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4147    because we found we can't eliminate some register.  In the case, no pseudos
4148    are allowed to be in the register, even if they are only in a block that
4149    doesn't require spill registers, unlike the case when we are spilling this
4150    hard reg to produce another spill register.
4151 
4152    Return nonzero if any pseudos needed to be kicked out.  */
4153 
4154 static void
spill_hard_reg(unsigned int regno,int cant_eliminate)4155 spill_hard_reg (unsigned int regno, int cant_eliminate)
4156 {
4157   int i;
4158 
4159   if (cant_eliminate)
4160     {
4161       SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4162       df_set_regs_ever_live (regno, true);
4163     }
4164 
4165   /* Spill every pseudo reg that was allocated to this reg
4166      or to something that overlaps this reg.  */
4167 
4168   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4169     if (reg_renumber[i] >= 0
4170 	&& (unsigned int) reg_renumber[i] <= regno
4171 	&& end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4172       SET_REGNO_REG_SET (&spilled_pseudos, i);
4173 }
4174 
4175 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4176    insns that need reloads, this function is used to actually spill pseudo
4177    registers and try to reallocate them.  It also sets up the spill_regs
4178    array for use by choose_reload_regs.
4179 
4180    GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4181    that we displace from hard registers.  */
4182 
4183 static int
finish_spills(int global)4184 finish_spills (int global)
4185 {
4186   class insn_chain *chain;
4187   int something_changed = 0;
4188   unsigned i;
4189   reg_set_iterator rsi;
4190 
4191   /* Build the spill_regs array for the function.  */
4192   /* If there are some registers still to eliminate and one of the spill regs
4193      wasn't ever used before, additional stack space may have to be
4194      allocated to store this register.  Thus, we may have changed the offset
4195      between the stack and frame pointers, so mark that something has changed.
4196 
4197      One might think that we need only set VAL to 1 if this is a call-used
4198      register.  However, the set of registers that must be saved by the
4199      prologue is not identical to the call-used set.  For example, the
4200      register used by the call insn for the return PC is a call-used register,
4201      but must be saved by the prologue.  */
4202 
4203   n_spills = 0;
4204   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4205     if (TEST_HARD_REG_BIT (used_spill_regs, i))
4206       {
4207 	spill_reg_order[i] = n_spills;
4208 	spill_regs[n_spills++] = i;
4209 	if (num_eliminable && ! df_regs_ever_live_p (i))
4210 	  something_changed = 1;
4211 	df_set_regs_ever_live (i, true);
4212       }
4213     else
4214       spill_reg_order[i] = -1;
4215 
4216   EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4217     if (reg_renumber[i] >= 0)
4218       {
4219 	SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4220 	/* Mark it as no longer having a hard register home.  */
4221 	reg_renumber[i] = -1;
4222 	if (ira_conflicts_p)
4223 	  /* Inform IRA about the change.  */
4224 	  ira_mark_allocation_change (i);
4225 	/* We will need to scan everything again.  */
4226 	something_changed = 1;
4227       }
4228 
4229   /* Retry global register allocation if possible.  */
4230   if (global && ira_conflicts_p)
4231     {
4232       unsigned int n;
4233 
4234       memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4235       /* For every insn that needs reloads, set the registers used as spill
4236 	 regs in pseudo_forbidden_regs for every pseudo live across the
4237 	 insn.  */
4238       for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4239 	{
4240 	  EXECUTE_IF_SET_IN_REG_SET
4241 	    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4242 	    {
4243 	      pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4244 	    }
4245 	  EXECUTE_IF_SET_IN_REG_SET
4246 	    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4247 	    {
4248 	      pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4249 	    }
4250 	}
4251 
4252       /* Retry allocating the pseudos spilled in IRA and the
4253 	 reload.  For each reg, merge the various reg sets that
4254 	 indicate which hard regs can't be used, and call
4255 	 ira_reassign_pseudos.  */
4256       for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4257 	if (reg_old_renumber[i] != reg_renumber[i])
4258 	  {
4259 	    if (reg_renumber[i] < 0)
4260 	      temp_pseudo_reg_arr[n++] = i;
4261 	    else
4262 	      CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4263 	  }
4264       if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4265 				bad_spill_regs_global,
4266 				pseudo_forbidden_regs, pseudo_previous_regs,
4267 				&spilled_pseudos))
4268 	something_changed = 1;
4269     }
4270   /* Fix up the register information in the insn chain.
4271      This involves deleting those of the spilled pseudos which did not get
4272      a new hard register home from the live_{before,after} sets.  */
4273   for (chain = reload_insn_chain; chain; chain = chain->next)
4274     {
4275       HARD_REG_SET used_by_pseudos;
4276       HARD_REG_SET used_by_pseudos2;
4277 
4278       if (! ira_conflicts_p)
4279 	{
4280 	  /* Don't do it for IRA because IRA and the reload still can
4281 	     assign hard registers to the spilled pseudos on next
4282 	     reload iterations.  */
4283 	  AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4284 	  AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4285 	}
4286       /* Mark any unallocated hard regs as available for spills.  That
4287 	 makes inheritance work somewhat better.  */
4288       if (chain->need_reload)
4289 	{
4290 	  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4291 	  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4292 	  used_by_pseudos |= used_by_pseudos2;
4293 
4294 	  compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4295 	  compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4296 	  /* Value of chain->used_spill_regs from previous iteration
4297 	     may be not included in the value calculated here because
4298 	     of possible removing caller-saves insns (see function
4299 	     delete_caller_save_insns.  */
4300 	  chain->used_spill_regs = ~used_by_pseudos & used_spill_regs;
4301 	}
4302     }
4303 
4304   CLEAR_REG_SET (&changed_allocation_pseudos);
4305   /* Let alter_reg modify the reg rtx's for the modified pseudos.  */
4306   for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4307     {
4308       int regno = reg_renumber[i];
4309       if (reg_old_renumber[i] == regno)
4310 	continue;
4311 
4312       SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4313 
4314       alter_reg (i, reg_old_renumber[i], false);
4315       reg_old_renumber[i] = regno;
4316       if (dump_file)
4317 	{
4318 	  if (regno == -1)
4319 	    fprintf (dump_file, " Register %d now on stack.\n\n", i);
4320 	  else
4321 	    fprintf (dump_file, " Register %d now in %d.\n\n",
4322 		     i, reg_renumber[i]);
4323 	}
4324     }
4325 
4326   return something_changed;
4327 }
4328 
4329 /* Find all paradoxical subregs within X and update reg_max_ref_mode.  */
4330 
4331 static void
scan_paradoxical_subregs(rtx x)4332 scan_paradoxical_subregs (rtx x)
4333 {
4334   int i;
4335   const char *fmt;
4336   enum rtx_code code = GET_CODE (x);
4337 
4338   switch (code)
4339     {
4340     case REG:
4341     case CONST:
4342     case SYMBOL_REF:
4343     case LABEL_REF:
4344     CASE_CONST_ANY:
4345     case CC0:
4346     case PC:
4347     case USE:
4348     case CLOBBER:
4349       return;
4350 
4351     case SUBREG:
4352       if (REG_P (SUBREG_REG (x)))
4353 	{
4354 	  unsigned int regno = REGNO (SUBREG_REG (x));
4355 	  if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4356 	    {
4357 	      reg_max_ref_mode[regno] = GET_MODE (x);
4358 	      mark_home_live_1 (regno, GET_MODE (x));
4359 	    }
4360 	}
4361       return;
4362 
4363     default:
4364       break;
4365     }
4366 
4367   fmt = GET_RTX_FORMAT (code);
4368   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4369     {
4370       if (fmt[i] == 'e')
4371 	scan_paradoxical_subregs (XEXP (x, i));
4372       else if (fmt[i] == 'E')
4373 	{
4374 	  int j;
4375 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4376 	    scan_paradoxical_subregs (XVECEXP (x, i, j));
4377 	}
4378     }
4379 }
4380 
4381 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4382    If *OP_PTR is a paradoxical subreg, try to remove that subreg
4383    and apply the corresponding narrowing subreg to *OTHER_PTR.
4384    Return true if the operands were changed, false otherwise.  */
4385 
4386 static bool
strip_paradoxical_subreg(rtx * op_ptr,rtx * other_ptr)4387 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4388 {
4389   rtx op, inner, other, tem;
4390 
4391   op = *op_ptr;
4392   if (!paradoxical_subreg_p (op))
4393     return false;
4394   inner = SUBREG_REG (op);
4395 
4396   other = *other_ptr;
4397   tem = gen_lowpart_common (GET_MODE (inner), other);
4398   if (!tem)
4399     return false;
4400 
4401   /* If the lowpart operation turned a hard register into a subreg,
4402      rather than simplifying it to another hard register, then the
4403      mode change cannot be properly represented.  For example, OTHER
4404      might be valid in its current mode, but not in the new one.  */
4405   if (GET_CODE (tem) == SUBREG
4406       && REG_P (other)
4407       && HARD_REGISTER_P (other))
4408     return false;
4409 
4410   *op_ptr = inner;
4411   *other_ptr = tem;
4412   return true;
4413 }
4414 
4415 /* A subroutine of reload_as_needed.  If INSN has a REG_EH_REGION note,
4416    examine all of the reload insns between PREV and NEXT exclusive, and
4417    annotate all that may trap.  */
4418 
4419 static void
fixup_eh_region_note(rtx_insn * insn,rtx_insn * prev,rtx_insn * next)4420 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4421 {
4422   rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4423   if (note == NULL)
4424     return;
4425   if (!insn_could_throw_p (insn))
4426     remove_note (insn, note);
4427   copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4428 }
4429 
4430 /* Reload pseudo-registers into hard regs around each insn as needed.
4431    Additional register load insns are output before the insn that needs it
4432    and perhaps store insns after insns that modify the reloaded pseudo reg.
4433 
4434    reg_last_reload_reg and reg_reloaded_contents keep track of
4435    which registers are already available in reload registers.
4436    We update these for the reloads that we perform,
4437    as the insns are scanned.  */
4438 
4439 static void
reload_as_needed(int live_known)4440 reload_as_needed (int live_known)
4441 {
4442   class insn_chain *chain;
4443 #if AUTO_INC_DEC
4444   int i;
4445 #endif
4446   rtx_note *marker;
4447 
4448   memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4449   memset (spill_reg_store, 0, sizeof spill_reg_store);
4450   reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4451   INIT_REG_SET (&reg_has_output_reload);
4452   CLEAR_HARD_REG_SET (reg_reloaded_valid);
4453 
4454   set_initial_elim_offsets ();
4455 
4456   /* Generate a marker insn that we will move around.  */
4457   marker = emit_note (NOTE_INSN_DELETED);
4458   unlink_insn_chain (marker, marker);
4459 
4460   for (chain = reload_insn_chain; chain; chain = chain->next)
4461     {
4462       rtx_insn *prev = 0;
4463       rtx_insn *insn = chain->insn;
4464       rtx_insn *old_next = NEXT_INSN (insn);
4465 #if AUTO_INC_DEC
4466       rtx_insn *old_prev = PREV_INSN (insn);
4467 #endif
4468 
4469       if (will_delete_init_insn_p (insn))
4470 	continue;
4471 
4472       /* If we pass a label, copy the offsets from the label information
4473 	 into the current offsets of each elimination.  */
4474       if (LABEL_P (insn))
4475 	set_offsets_for_label (insn);
4476 
4477       else if (INSN_P (insn))
4478 	{
4479 	  regset_head regs_to_forget;
4480 	  INIT_REG_SET (&regs_to_forget);
4481 	  note_stores (insn, forget_old_reloads_1, &regs_to_forget);
4482 
4483 	  /* If this is a USE and CLOBBER of a MEM, ensure that any
4484 	     references to eliminable registers have been removed.  */
4485 
4486 	  if ((GET_CODE (PATTERN (insn)) == USE
4487 	       || GET_CODE (PATTERN (insn)) == CLOBBER)
4488 	      && MEM_P (XEXP (PATTERN (insn), 0)))
4489 	    XEXP (XEXP (PATTERN (insn), 0), 0)
4490 	      = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4491 				GET_MODE (XEXP (PATTERN (insn), 0)),
4492 				NULL_RTX);
4493 
4494 	  /* If we need to do register elimination processing, do so.
4495 	     This might delete the insn, in which case we are done.  */
4496 	  if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4497 	    {
4498 	      eliminate_regs_in_insn (insn, 1);
4499 	      if (NOTE_P (insn))
4500 		{
4501 		  update_eliminable_offsets ();
4502 		  CLEAR_REG_SET (&regs_to_forget);
4503 		  continue;
4504 		}
4505 	    }
4506 
4507 	  /* If need_elim is nonzero but need_reload is zero, one might think
4508 	     that we could simply set n_reloads to 0.  However, find_reloads
4509 	     could have done some manipulation of the insn (such as swapping
4510 	     commutative operands), and these manipulations are lost during
4511 	     the first pass for every insn that needs register elimination.
4512 	     So the actions of find_reloads must be redone here.  */
4513 
4514 	  if (! chain->need_elim && ! chain->need_reload
4515 	      && ! chain->need_operand_change)
4516 	    n_reloads = 0;
4517 	  /* First find the pseudo regs that must be reloaded for this insn.
4518 	     This info is returned in the tables reload_... (see reload.h).
4519 	     Also modify the body of INSN by substituting RELOAD
4520 	     rtx's for those pseudo regs.  */
4521 	  else
4522 	    {
4523 	      CLEAR_REG_SET (&reg_has_output_reload);
4524 	      CLEAR_HARD_REG_SET (reg_is_output_reload);
4525 
4526 	      find_reloads (insn, 1, spill_indirect_levels, live_known,
4527 			    spill_reg_order);
4528 	    }
4529 
4530 	  if (n_reloads > 0)
4531 	    {
4532 	      rtx_insn *next = NEXT_INSN (insn);
4533 
4534 	      /* ??? PREV can get deleted by reload inheritance.
4535 		 Work around this by emitting a marker note.  */
4536 	      prev = PREV_INSN (insn);
4537 	      reorder_insns_nobb (marker, marker, prev);
4538 
4539 	      /* Now compute which reload regs to reload them into.  Perhaps
4540 		 reusing reload regs from previous insns, or else output
4541 		 load insns to reload them.  Maybe output store insns too.
4542 		 Record the choices of reload reg in reload_reg_rtx.  */
4543 	      choose_reload_regs (chain);
4544 
4545 	      /* Generate the insns to reload operands into or out of
4546 		 their reload regs.  */
4547 	      emit_reload_insns (chain);
4548 
4549 	      /* Substitute the chosen reload regs from reload_reg_rtx
4550 		 into the insn's body (or perhaps into the bodies of other
4551 		 load and store insn that we just made for reloading
4552 		 and that we moved the structure into).  */
4553 	      subst_reloads (insn);
4554 
4555 	      prev = PREV_INSN (marker);
4556 	      unlink_insn_chain (marker, marker);
4557 
4558 	      /* Adjust the exception region notes for loads and stores.  */
4559 	      if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4560 		fixup_eh_region_note (insn, prev, next);
4561 
4562 	      /* Adjust the location of REG_ARGS_SIZE.  */
4563 	      rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4564 	      if (p)
4565 		{
4566 		  remove_note (insn, p);
4567 		  fixup_args_size_notes (prev, PREV_INSN (next),
4568 					 get_args_size (p));
4569 		}
4570 
4571 	      /* If this was an ASM, make sure that all the reload insns
4572 		 we have generated are valid.  If not, give an error
4573 		 and delete them.  */
4574 	      if (asm_noperands (PATTERN (insn)) >= 0)
4575 		for (rtx_insn *p = NEXT_INSN (prev);
4576 		     p != next;
4577 		     p = NEXT_INSN (p))
4578 		  if (p != insn && INSN_P (p)
4579 		      && GET_CODE (PATTERN (p)) != USE
4580 		      && (recog_memoized (p) < 0
4581 			  || (extract_insn (p),
4582 			      !(constrain_operands (1,
4583 				  get_enabled_alternatives (p))))))
4584 		    {
4585 		      error_for_asm (insn,
4586 				     "%<asm%> operand requires "
4587 				     "impossible reload");
4588 		      delete_insn (p);
4589 		    }
4590 	    }
4591 
4592 	  if (num_eliminable && chain->need_elim)
4593 	    update_eliminable_offsets ();
4594 
4595 	  /* Any previously reloaded spilled pseudo reg, stored in this insn,
4596 	     is no longer validly lying around to save a future reload.
4597 	     Note that this does not detect pseudos that were reloaded
4598 	     for this insn in order to be stored in
4599 	     (obeying register constraints).  That is correct; such reload
4600 	     registers ARE still valid.  */
4601 	  forget_marked_reloads (&regs_to_forget);
4602 	  CLEAR_REG_SET (&regs_to_forget);
4603 
4604 	  /* There may have been CLOBBER insns placed after INSN.  So scan
4605 	     between INSN and NEXT and use them to forget old reloads.  */
4606 	  for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4607 	    if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4608 	      note_stores (x, forget_old_reloads_1, NULL);
4609 
4610 #if AUTO_INC_DEC
4611 	  /* Likewise for regs altered by auto-increment in this insn.
4612 	     REG_INC notes have been changed by reloading:
4613 	     find_reloads_address_1 records substitutions for them,
4614 	     which have been performed by subst_reloads above.  */
4615 	  for (i = n_reloads - 1; i >= 0; i--)
4616 	    {
4617 	      rtx in_reg = rld[i].in_reg;
4618 	      if (in_reg)
4619 		{
4620 		  enum rtx_code code = GET_CODE (in_reg);
4621 		  /* PRE_INC / PRE_DEC will have the reload register ending up
4622 		     with the same value as the stack slot, but that doesn't
4623 		     hold true for POST_INC / POST_DEC.  Either we have to
4624 		     convert the memory access to a true POST_INC / POST_DEC,
4625 		     or we can't use the reload register for inheritance.  */
4626 		  if ((code == POST_INC || code == POST_DEC)
4627 		      && TEST_HARD_REG_BIT (reg_reloaded_valid,
4628 					    REGNO (rld[i].reg_rtx))
4629 		      /* Make sure it is the inc/dec pseudo, and not
4630 			 some other (e.g. output operand) pseudo.  */
4631 		      && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4632 			  == REGNO (XEXP (in_reg, 0))))
4633 
4634 		    {
4635 		      rtx reload_reg = rld[i].reg_rtx;
4636 		      machine_mode mode = GET_MODE (reload_reg);
4637 		      int n = 0;
4638 		      rtx_insn *p;
4639 
4640 		      for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4641 			{
4642 			  /* We really want to ignore REG_INC notes here, so
4643 			     use PATTERN (p) as argument to reg_set_p .  */
4644 			  if (reg_set_p (reload_reg, PATTERN (p)))
4645 			    break;
4646 			  n = count_occurrences (PATTERN (p), reload_reg, 0);
4647 			  if (! n)
4648 			    continue;
4649 			  if (n == 1)
4650 			    {
4651 			      rtx replace_reg
4652 				= gen_rtx_fmt_e (code, mode, reload_reg);
4653 
4654 			      validate_replace_rtx_group (reload_reg,
4655 							  replace_reg, p);
4656 			      n = verify_changes (0);
4657 
4658 			      /* We must also verify that the constraints
4659 				 are met after the replacement.  Make sure
4660 				 extract_insn is only called for an insn
4661 				 where the replacements were found to be
4662 				 valid so far. */
4663 			      if (n)
4664 				{
4665 				  extract_insn (p);
4666 				  n = constrain_operands (1,
4667 				    get_enabled_alternatives (p));
4668 				}
4669 
4670 			      /* If the constraints were not met, then
4671 				 undo the replacement, else confirm it.  */
4672 			      if (!n)
4673 				cancel_changes (0);
4674 			      else
4675 				confirm_change_group ();
4676 			    }
4677 			  break;
4678 			}
4679 		      if (n == 1)
4680 			{
4681 			  add_reg_note (p, REG_INC, reload_reg);
4682 			  /* Mark this as having an output reload so that the
4683 			     REG_INC processing code below won't invalidate
4684 			     the reload for inheritance.  */
4685 			  SET_HARD_REG_BIT (reg_is_output_reload,
4686 					    REGNO (reload_reg));
4687 			  SET_REGNO_REG_SET (&reg_has_output_reload,
4688 					     REGNO (XEXP (in_reg, 0)));
4689 			}
4690 		      else
4691 			forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4692 					      NULL);
4693 		    }
4694 		  else if ((code == PRE_INC || code == PRE_DEC)
4695 			   && TEST_HARD_REG_BIT (reg_reloaded_valid,
4696 						 REGNO (rld[i].reg_rtx))
4697 			   /* Make sure it is the inc/dec pseudo, and not
4698 			      some other (e.g. output operand) pseudo.  */
4699 			   && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4700 			       == REGNO (XEXP (in_reg, 0))))
4701 		    {
4702 		      SET_HARD_REG_BIT (reg_is_output_reload,
4703 					REGNO (rld[i].reg_rtx));
4704 		      SET_REGNO_REG_SET (&reg_has_output_reload,
4705 					 REGNO (XEXP (in_reg, 0)));
4706 		    }
4707 		  else if (code == PRE_INC || code == PRE_DEC
4708 			   || code == POST_INC || code == POST_DEC)
4709 		    {
4710 		      int in_regno = REGNO (XEXP (in_reg, 0));
4711 
4712 		      if (reg_last_reload_reg[in_regno] != NULL_RTX)
4713 			{
4714 			  int in_hard_regno;
4715 			  bool forget_p = true;
4716 
4717 			  in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4718 			  if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4719 						 in_hard_regno))
4720 			    {
4721 			      for (rtx_insn *x = (old_prev ?
4722 						  NEXT_INSN (old_prev) : insn);
4723 				   x != old_next;
4724 				   x = NEXT_INSN (x))
4725 				if (x == reg_reloaded_insn[in_hard_regno])
4726 				  {
4727 				    forget_p = false;
4728 				    break;
4729 				  }
4730 			    }
4731 			  /* If for some reasons, we didn't set up
4732 			     reg_last_reload_reg in this insn,
4733 			     invalidate inheritance from previous
4734 			     insns for the incremented/decremented
4735 			     register.  Such registers will be not in
4736 			     reg_has_output_reload.  Invalidate it
4737 			     also if the corresponding element in
4738 			     reg_reloaded_insn is also
4739 			     invalidated.  */
4740 			  if (forget_p)
4741 			    forget_old_reloads_1 (XEXP (in_reg, 0),
4742 						  NULL_RTX, NULL);
4743 			}
4744 		    }
4745 		}
4746 	    }
4747 	  /* If a pseudo that got a hard register is auto-incremented,
4748 	     we must purge records of copying it into pseudos without
4749 	     hard registers.  */
4750 	  for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4751 	    if (REG_NOTE_KIND (x) == REG_INC)
4752 	      {
4753 		/* See if this pseudo reg was reloaded in this insn.
4754 		   If so, its last-reload info is still valid
4755 		   because it is based on this insn's reload.  */
4756 		for (i = 0; i < n_reloads; i++)
4757 		  if (rld[i].out == XEXP (x, 0))
4758 		    break;
4759 
4760 		if (i == n_reloads)
4761 		  forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4762 	      }
4763 #endif
4764 	}
4765       /* A reload reg's contents are unknown after a label.  */
4766       if (LABEL_P (insn))
4767 	CLEAR_HARD_REG_SET (reg_reloaded_valid);
4768 
4769       /* Don't assume a reload reg is still good after a call insn
4770 	 if it is a call-used reg, or if it contains a value that will
4771          be partially clobbered by the call.  */
4772       else if (CALL_P (insn))
4773 	{
4774 	  reg_reloaded_valid
4775 	    &= ~insn_callee_abi (insn).full_and_partial_reg_clobbers ();
4776 
4777 	  /* If this is a call to a setjmp-type function, we must not
4778 	     reuse any reload reg contents across the call; that will
4779 	     just be clobbered by other uses of the register in later
4780 	     code, before the longjmp.  */
4781 	  if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4782 	    CLEAR_HARD_REG_SET (reg_reloaded_valid);
4783 	}
4784     }
4785 
4786   /* Clean up.  */
4787   free (reg_last_reload_reg);
4788   CLEAR_REG_SET (&reg_has_output_reload);
4789 }
4790 
4791 /* Discard all record of any value reloaded from X,
4792    or reloaded in X from someplace else;
4793    unless X is an output reload reg of the current insn.
4794 
4795    X may be a hard reg (the reload reg)
4796    or it may be a pseudo reg that was reloaded from.
4797 
4798    When DATA is non-NULL just mark the registers in regset
4799    to be forgotten later.  */
4800 
4801 static void
forget_old_reloads_1(rtx x,const_rtx,void * data)4802 forget_old_reloads_1 (rtx x, const_rtx, void *data)
4803 {
4804   unsigned int regno;
4805   unsigned int nr;
4806   regset regs = (regset) data;
4807 
4808   /* note_stores does give us subregs of hard regs,
4809      subreg_regno_offset requires a hard reg.  */
4810   while (GET_CODE (x) == SUBREG)
4811     {
4812       /* We ignore the subreg offset when calculating the regno,
4813 	 because we are using the entire underlying hard register
4814 	 below.  */
4815       x = SUBREG_REG (x);
4816     }
4817 
4818   if (!REG_P (x))
4819     return;
4820 
4821   regno = REGNO (x);
4822 
4823   if (regno >= FIRST_PSEUDO_REGISTER)
4824     nr = 1;
4825   else
4826     {
4827       unsigned int i;
4828 
4829       nr = REG_NREGS (x);
4830       /* Storing into a spilled-reg invalidates its contents.
4831 	 This can happen if a block-local pseudo is allocated to that reg
4832 	 and it wasn't spilled because this block's total need is 0.
4833 	 Then some insn might have an optional reload and use this reg.  */
4834       if (!regs)
4835 	for (i = 0; i < nr; i++)
4836 	  /* But don't do this if the reg actually serves as an output
4837 	     reload reg in the current instruction.  */
4838 	  if (n_reloads == 0
4839 	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4840 	    {
4841 	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4842 	      spill_reg_store[regno + i] = 0;
4843 	    }
4844     }
4845 
4846   if (regs)
4847     while (nr-- > 0)
4848       SET_REGNO_REG_SET (regs, regno + nr);
4849   else
4850     {
4851       /* Since value of X has changed,
4852 	 forget any value previously copied from it.  */
4853 
4854       while (nr-- > 0)
4855 	/* But don't forget a copy if this is the output reload
4856 	   that establishes the copy's validity.  */
4857 	if (n_reloads == 0
4858 	    || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4859 	  reg_last_reload_reg[regno + nr] = 0;
4860      }
4861 }
4862 
4863 /* Forget the reloads marked in regset by previous function.  */
4864 static void
forget_marked_reloads(regset regs)4865 forget_marked_reloads (regset regs)
4866 {
4867   unsigned int reg;
4868   reg_set_iterator rsi;
4869   EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4870     {
4871       if (reg < FIRST_PSEUDO_REGISTER
4872 	  /* But don't do this if the reg actually serves as an output
4873 	     reload reg in the current instruction.  */
4874 	  && (n_reloads == 0
4875 	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4876 	  {
4877 	    CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4878 	    spill_reg_store[reg] = 0;
4879 	  }
4880       if (n_reloads == 0
4881 	  || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4882 	reg_last_reload_reg[reg] = 0;
4883     }
4884 }
4885 
4886 /* The following HARD_REG_SETs indicate when each hard register is
4887    used for a reload of various parts of the current insn.  */
4888 
4889 /* If reg is unavailable for all reloads.  */
4890 static HARD_REG_SET reload_reg_unavailable;
4891 /* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
4892 static HARD_REG_SET reload_reg_used;
4893 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
4894 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4895 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I.  */
4896 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4897 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I.  */
4898 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4899 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I.  */
4900 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4901 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I.  */
4902 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4903 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I.  */
4904 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4905 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload.  */
4906 static HARD_REG_SET reload_reg_used_in_op_addr;
4907 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload.  */
4908 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4909 /* If reg is in use for a RELOAD_FOR_INSN reload.  */
4910 static HARD_REG_SET reload_reg_used_in_insn;
4911 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload.  */
4912 static HARD_REG_SET reload_reg_used_in_other_addr;
4913 
4914 /* If reg is in use as a reload reg for any sort of reload.  */
4915 static HARD_REG_SET reload_reg_used_at_all;
4916 
4917 /* If reg is use as an inherited reload.  We just mark the first register
4918    in the group.  */
4919 static HARD_REG_SET reload_reg_used_for_inherit;
4920 
4921 /* Records which hard regs are used in any way, either as explicit use or
4922    by being allocated to a pseudo during any point of the current insn.  */
4923 static HARD_REG_SET reg_used_in_insn;
4924 
4925 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4926    TYPE. MODE is used to indicate how many consecutive regs are
4927    actually used.  */
4928 
4929 static void
mark_reload_reg_in_use(unsigned int regno,int opnum,enum reload_type type,machine_mode mode)4930 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4931 			machine_mode mode)
4932 {
4933   switch (type)
4934     {
4935     case RELOAD_OTHER:
4936       add_to_hard_reg_set (&reload_reg_used, mode, regno);
4937       break;
4938 
4939     case RELOAD_FOR_INPUT_ADDRESS:
4940       add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4941       break;
4942 
4943     case RELOAD_FOR_INPADDR_ADDRESS:
4944       add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4945       break;
4946 
4947     case RELOAD_FOR_OUTPUT_ADDRESS:
4948       add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4949       break;
4950 
4951     case RELOAD_FOR_OUTADDR_ADDRESS:
4952       add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4953       break;
4954 
4955     case RELOAD_FOR_OPERAND_ADDRESS:
4956       add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4957       break;
4958 
4959     case RELOAD_FOR_OPADDR_ADDR:
4960       add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4961       break;
4962 
4963     case RELOAD_FOR_OTHER_ADDRESS:
4964       add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4965       break;
4966 
4967     case RELOAD_FOR_INPUT:
4968       add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4969       break;
4970 
4971     case RELOAD_FOR_OUTPUT:
4972       add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4973       break;
4974 
4975     case RELOAD_FOR_INSN:
4976       add_to_hard_reg_set (&reload_reg_used_in_insn,  mode, regno);
4977       break;
4978     }
4979 
4980   add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
4981 }
4982 
4983 /* Similarly, but show REGNO is no longer in use for a reload.  */
4984 
4985 static void
clear_reload_reg_in_use(unsigned int regno,int opnum,enum reload_type type,machine_mode mode)4986 clear_reload_reg_in_use (unsigned int regno, int opnum,
4987 			 enum reload_type type, machine_mode mode)
4988 {
4989   unsigned int nregs = hard_regno_nregs (regno, mode);
4990   unsigned int start_regno, end_regno, r;
4991   int i;
4992   /* A complication is that for some reload types, inheritance might
4993      allow multiple reloads of the same types to share a reload register.
4994      We set check_opnum if we have to check only reloads with the same
4995      operand number, and check_any if we have to check all reloads.  */
4996   int check_opnum = 0;
4997   int check_any = 0;
4998   HARD_REG_SET *used_in_set;
4999 
5000   switch (type)
5001     {
5002     case RELOAD_OTHER:
5003       used_in_set = &reload_reg_used;
5004       break;
5005 
5006     case RELOAD_FOR_INPUT_ADDRESS:
5007       used_in_set = &reload_reg_used_in_input_addr[opnum];
5008       break;
5009 
5010     case RELOAD_FOR_INPADDR_ADDRESS:
5011       check_opnum = 1;
5012       used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5013       break;
5014 
5015     case RELOAD_FOR_OUTPUT_ADDRESS:
5016       used_in_set = &reload_reg_used_in_output_addr[opnum];
5017       break;
5018 
5019     case RELOAD_FOR_OUTADDR_ADDRESS:
5020       check_opnum = 1;
5021       used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5022       break;
5023 
5024     case RELOAD_FOR_OPERAND_ADDRESS:
5025       used_in_set = &reload_reg_used_in_op_addr;
5026       break;
5027 
5028     case RELOAD_FOR_OPADDR_ADDR:
5029       check_any = 1;
5030       used_in_set = &reload_reg_used_in_op_addr_reload;
5031       break;
5032 
5033     case RELOAD_FOR_OTHER_ADDRESS:
5034       used_in_set = &reload_reg_used_in_other_addr;
5035       check_any = 1;
5036       break;
5037 
5038     case RELOAD_FOR_INPUT:
5039       used_in_set = &reload_reg_used_in_input[opnum];
5040       break;
5041 
5042     case RELOAD_FOR_OUTPUT:
5043       used_in_set = &reload_reg_used_in_output[opnum];
5044       break;
5045 
5046     case RELOAD_FOR_INSN:
5047       used_in_set = &reload_reg_used_in_insn;
5048       break;
5049     default:
5050       gcc_unreachable ();
5051     }
5052   /* We resolve conflicts with remaining reloads of the same type by
5053      excluding the intervals of reload registers by them from the
5054      interval of freed reload registers.  Since we only keep track of
5055      one set of interval bounds, we might have to exclude somewhat
5056      more than what would be necessary if we used a HARD_REG_SET here.
5057      But this should only happen very infrequently, so there should
5058      be no reason to worry about it.  */
5059 
5060   start_regno = regno;
5061   end_regno = regno + nregs;
5062   if (check_opnum || check_any)
5063     {
5064       for (i = n_reloads - 1; i >= 0; i--)
5065 	{
5066 	  if (rld[i].when_needed == type
5067 	      && (check_any || rld[i].opnum == opnum)
5068 	      && rld[i].reg_rtx)
5069 	    {
5070 	      unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5071 	      unsigned int conflict_end
5072 		= end_hard_regno (rld[i].mode, conflict_start);
5073 
5074 	      /* If there is an overlap with the first to-be-freed register,
5075 		 adjust the interval start.  */
5076 	      if (conflict_start <= start_regno && conflict_end > start_regno)
5077 		start_regno = conflict_end;
5078 	      /* Otherwise, if there is a conflict with one of the other
5079 		 to-be-freed registers, adjust the interval end.  */
5080 	      if (conflict_start > start_regno && conflict_start < end_regno)
5081 		end_regno = conflict_start;
5082 	    }
5083 	}
5084     }
5085 
5086   for (r = start_regno; r < end_regno; r++)
5087     CLEAR_HARD_REG_BIT (*used_in_set, r);
5088 }
5089 
5090 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5091    specified by OPNUM and TYPE.  */
5092 
5093 static int
reload_reg_free_p(unsigned int regno,int opnum,enum reload_type type)5094 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5095 {
5096   int i;
5097 
5098   /* In use for a RELOAD_OTHER means it's not available for anything.  */
5099   if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5100       || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5101     return 0;
5102 
5103   switch (type)
5104     {
5105     case RELOAD_OTHER:
5106       /* In use for anything means we can't use it for RELOAD_OTHER.  */
5107       if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5108 	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5109 	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5110 	  || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5111 	return 0;
5112 
5113       for (i = 0; i < reload_n_operands; i++)
5114 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5115 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5116 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5117 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5118 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5119 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5120 	  return 0;
5121 
5122       return 1;
5123 
5124     case RELOAD_FOR_INPUT:
5125       if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5126 	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5127 	return 0;
5128 
5129       if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5130 	return 0;
5131 
5132       /* If it is used for some other input, can't use it.  */
5133       for (i = 0; i < reload_n_operands; i++)
5134 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5135 	  return 0;
5136 
5137       /* If it is used in a later operand's address, can't use it.  */
5138       for (i = opnum + 1; i < reload_n_operands; i++)
5139 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5140 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5141 	  return 0;
5142 
5143       return 1;
5144 
5145     case RELOAD_FOR_INPUT_ADDRESS:
5146       /* Can't use a register if it is used for an input address for this
5147 	 operand or used as an input in an earlier one.  */
5148       if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5149 	  || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5150 	return 0;
5151 
5152       for (i = 0; i < opnum; i++)
5153 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5154 	  return 0;
5155 
5156       return 1;
5157 
5158     case RELOAD_FOR_INPADDR_ADDRESS:
5159       /* Can't use a register if it is used for an input address
5160 	 for this operand or used as an input in an earlier
5161 	 one.  */
5162       if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5163 	return 0;
5164 
5165       for (i = 0; i < opnum; i++)
5166 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5167 	  return 0;
5168 
5169       return 1;
5170 
5171     case RELOAD_FOR_OUTPUT_ADDRESS:
5172       /* Can't use a register if it is used for an output address for this
5173 	 operand or used as an output in this or a later operand.  Note
5174 	 that multiple output operands are emitted in reverse order, so
5175 	 the conflicting ones are those with lower indices.  */
5176       if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5177 	return 0;
5178 
5179       for (i = 0; i <= opnum; i++)
5180 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5181 	  return 0;
5182 
5183       return 1;
5184 
5185     case RELOAD_FOR_OUTADDR_ADDRESS:
5186       /* Can't use a register if it is used for an output address
5187 	 for this operand or used as an output in this or a
5188 	 later operand.  Note that multiple output operands are
5189 	 emitted in reverse order, so the conflicting ones are
5190 	 those with lower indices.  */
5191       if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5192 	return 0;
5193 
5194       for (i = 0; i <= opnum; i++)
5195 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5196 	  return 0;
5197 
5198       return 1;
5199 
5200     case RELOAD_FOR_OPERAND_ADDRESS:
5201       for (i = 0; i < reload_n_operands; i++)
5202 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5203 	  return 0;
5204 
5205       return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5206 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5207 
5208     case RELOAD_FOR_OPADDR_ADDR:
5209       for (i = 0; i < reload_n_operands; i++)
5210 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5211 	  return 0;
5212 
5213       return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5214 
5215     case RELOAD_FOR_OUTPUT:
5216       /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5217 	 outputs, or an operand address for this or an earlier output.
5218 	 Note that multiple output operands are emitted in reverse order,
5219 	 so the conflicting ones are those with higher indices.  */
5220       if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5221 	return 0;
5222 
5223       for (i = 0; i < reload_n_operands; i++)
5224 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5225 	  return 0;
5226 
5227       for (i = opnum; i < reload_n_operands; i++)
5228 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5229 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5230 	  return 0;
5231 
5232       return 1;
5233 
5234     case RELOAD_FOR_INSN:
5235       for (i = 0; i < reload_n_operands; i++)
5236 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5237 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5238 	  return 0;
5239 
5240       return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5241 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5242 
5243     case RELOAD_FOR_OTHER_ADDRESS:
5244       return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5245 
5246     default:
5247       gcc_unreachable ();
5248     }
5249 }
5250 
5251 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5252    the number RELOADNUM, is still available in REGNO at the end of the insn.
5253 
5254    We can assume that the reload reg was already tested for availability
5255    at the time it is needed, and we should not check this again,
5256    in case the reg has already been marked in use.  */
5257 
5258 static int
reload_reg_reaches_end_p(unsigned int regno,int reloadnum)5259 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5260 {
5261   int opnum = rld[reloadnum].opnum;
5262   enum reload_type type = rld[reloadnum].when_needed;
5263   int i;
5264 
5265   /* See if there is a reload with the same type for this operand, using
5266      the same register. This case is not handled by the code below.  */
5267   for (i = reloadnum + 1; i < n_reloads; i++)
5268     {
5269       rtx reg;
5270 
5271       if (rld[i].opnum != opnum || rld[i].when_needed != type)
5272 	continue;
5273       reg = rld[i].reg_rtx;
5274       if (reg == NULL_RTX)
5275 	continue;
5276       if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5277 	return 0;
5278     }
5279 
5280   switch (type)
5281     {
5282     case RELOAD_OTHER:
5283       /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5284 	 its value must reach the end.  */
5285       return 1;
5286 
5287       /* If this use is for part of the insn,
5288 	 its value reaches if no subsequent part uses the same register.
5289 	 Just like the above function, don't try to do this with lots
5290 	 of fallthroughs.  */
5291 
5292     case RELOAD_FOR_OTHER_ADDRESS:
5293       /* Here we check for everything else, since these don't conflict
5294 	 with anything else and everything comes later.  */
5295 
5296       for (i = 0; i < reload_n_operands; i++)
5297 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5298 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5299 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5300 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5301 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5302 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5303 	  return 0;
5304 
5305       return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5306 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5307 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5308 	      && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5309 
5310     case RELOAD_FOR_INPUT_ADDRESS:
5311     case RELOAD_FOR_INPADDR_ADDRESS:
5312       /* Similar, except that we check only for this and subsequent inputs
5313 	 and the address of only subsequent inputs and we do not need
5314 	 to check for RELOAD_OTHER objects since they are known not to
5315 	 conflict.  */
5316 
5317       for (i = opnum; i < reload_n_operands; i++)
5318 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5319 	  return 0;
5320 
5321       /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5322 	 could be killed if the register is also used by reload with type
5323 	 RELOAD_FOR_INPUT_ADDRESS, so check it.  */
5324       if (type == RELOAD_FOR_INPADDR_ADDRESS
5325 	  && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5326 	return 0;
5327 
5328       for (i = opnum + 1; i < reload_n_operands; i++)
5329 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5330 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5331 	  return 0;
5332 
5333       for (i = 0; i < reload_n_operands; i++)
5334 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5335 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5336 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5337 	  return 0;
5338 
5339       if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5340 	return 0;
5341 
5342       return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5343 	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5344 	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5345 
5346     case RELOAD_FOR_INPUT:
5347       /* Similar to input address, except we start at the next operand for
5348 	 both input and input address and we do not check for
5349 	 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5350 	 would conflict.  */
5351 
5352       for (i = opnum + 1; i < reload_n_operands; i++)
5353 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5354 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5355 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5356 	  return 0;
5357 
5358       /* ... fall through ...  */
5359 
5360     case RELOAD_FOR_OPERAND_ADDRESS:
5361       /* Check outputs and their addresses.  */
5362 
5363       for (i = 0; i < reload_n_operands; i++)
5364 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5365 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5366 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5367 	  return 0;
5368 
5369       return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5370 
5371     case RELOAD_FOR_OPADDR_ADDR:
5372       for (i = 0; i < reload_n_operands; i++)
5373 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5374 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5375 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5376 	  return 0;
5377 
5378       return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5379 	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5380 	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5381 
5382     case RELOAD_FOR_INSN:
5383       /* These conflict with other outputs with RELOAD_OTHER.  So
5384 	 we need only check for output addresses.  */
5385 
5386       opnum = reload_n_operands;
5387 
5388       /* fall through */
5389 
5390     case RELOAD_FOR_OUTPUT:
5391     case RELOAD_FOR_OUTPUT_ADDRESS:
5392     case RELOAD_FOR_OUTADDR_ADDRESS:
5393       /* We already know these can't conflict with a later output.  So the
5394 	 only thing to check are later output addresses.
5395 	 Note that multiple output operands are emitted in reverse order,
5396 	 so the conflicting ones are those with lower indices.  */
5397       for (i = 0; i < opnum; i++)
5398 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5399 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5400 	  return 0;
5401 
5402       /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5403 	 could be killed if the register is also used by reload with type
5404 	 RELOAD_FOR_OUTPUT_ADDRESS, so check it.  */
5405       if (type == RELOAD_FOR_OUTADDR_ADDRESS
5406 	  && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5407 	return 0;
5408 
5409       return 1;
5410 
5411     default:
5412       gcc_unreachable ();
5413     }
5414 }
5415 
5416 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5417    every register in REG.  */
5418 
5419 static bool
reload_reg_rtx_reaches_end_p(rtx reg,int reloadnum)5420 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5421 {
5422   unsigned int i;
5423 
5424   for (i = REGNO (reg); i < END_REGNO (reg); i++)
5425     if (!reload_reg_reaches_end_p (i, reloadnum))
5426       return false;
5427   return true;
5428 }
5429 
5430 
5431 /*  Returns whether R1 and R2 are uniquely chained: the value of one
5432     is used by the other, and that value is not used by any other
5433     reload for this insn.  This is used to partially undo the decision
5434     made in find_reloads when in the case of multiple
5435     RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5436     RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5437     reloads.  This code tries to avoid the conflict created by that
5438     change.  It might be cleaner to explicitly keep track of which
5439     RELOAD_FOR_OPADDR_ADDR reload is associated with which
5440     RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5441     this after the fact. */
5442 static bool
reloads_unique_chain_p(int r1,int r2)5443 reloads_unique_chain_p (int r1, int r2)
5444 {
5445   int i;
5446 
5447   /* We only check input reloads.  */
5448   if (! rld[r1].in || ! rld[r2].in)
5449     return false;
5450 
5451   /* Avoid anything with output reloads.  */
5452   if (rld[r1].out || rld[r2].out)
5453     return false;
5454 
5455   /* "chained" means one reload is a component of the other reload,
5456      not the same as the other reload.  */
5457   if (rld[r1].opnum != rld[r2].opnum
5458       || rtx_equal_p (rld[r1].in, rld[r2].in)
5459       || rld[r1].optional || rld[r2].optional
5460       || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5461 	    || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5462     return false;
5463 
5464   /* The following loop assumes that r1 is the reload that feeds r2.  */
5465   if (r1 > r2)
5466     std::swap (r1, r2);
5467 
5468   for (i = 0; i < n_reloads; i ++)
5469     /* Look for input reloads that aren't our two */
5470     if (i != r1 && i != r2 && rld[i].in)
5471       {
5472 	/* If our reload is mentioned at all, it isn't a simple chain.  */
5473 	if (reg_mentioned_p (rld[r1].in, rld[i].in))
5474 	  return false;
5475       }
5476   return true;
5477 }
5478 
5479 /* The recursive function change all occurrences of WHAT in *WHERE
5480    to REPL.  */
5481 static void
substitute(rtx * where,const_rtx what,rtx repl)5482 substitute (rtx *where, const_rtx what, rtx repl)
5483 {
5484   const char *fmt;
5485   int i;
5486   enum rtx_code code;
5487 
5488   if (*where == 0)
5489     return;
5490 
5491   if (*where == what || rtx_equal_p (*where, what))
5492     {
5493       /* Record the location of the changed rtx.  */
5494       substitute_stack.safe_push (where);
5495       *where = repl;
5496       return;
5497     }
5498 
5499   code = GET_CODE (*where);
5500   fmt = GET_RTX_FORMAT (code);
5501   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5502     {
5503       if (fmt[i] == 'E')
5504 	{
5505 	  int j;
5506 
5507 	  for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5508 	    substitute (&XVECEXP (*where, i, j), what, repl);
5509 	}
5510       else if (fmt[i] == 'e')
5511 	substitute (&XEXP (*where, i), what, repl);
5512     }
5513 }
5514 
5515 /* The function returns TRUE if chain of reload R1 and R2 (in any
5516    order) can be evaluated without usage of intermediate register for
5517    the reload containing another reload.  It is important to see
5518    gen_reload to understand what the function is trying to do.  As an
5519    example, let us have reload chain
5520 
5521       r2: const
5522       r1: <something> + const
5523 
5524    and reload R2 got reload reg HR.  The function returns true if
5525    there is a correct insn HR = HR + <something>.  Otherwise,
5526    gen_reload will use intermediate register (and this is the reload
5527    reg for R1) to reload <something>.
5528 
5529    We need this function to find a conflict for chain reloads.  In our
5530    example, if HR = HR + <something> is incorrect insn, then we cannot
5531    use HR as a reload register for R2.  If we do use it then we get a
5532    wrong code:
5533 
5534       HR = const
5535       HR = <something>
5536       HR = HR + HR
5537 
5538 */
5539 static bool
gen_reload_chain_without_interm_reg_p(int r1,int r2)5540 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5541 {
5542   /* Assume other cases in gen_reload are not possible for
5543      chain reloads or do need an intermediate hard registers.  */
5544   bool result = true;
5545   int regno, code;
5546   rtx out, in;
5547   rtx_insn *insn;
5548   rtx_insn *last = get_last_insn ();
5549 
5550   /* Make r2 a component of r1.  */
5551   if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5552     std::swap (r1, r2);
5553 
5554   gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5555   regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5556   gcc_assert (regno >= 0);
5557   out = gen_rtx_REG (rld[r1].mode, regno);
5558   in = rld[r1].in;
5559   substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5560 
5561   /* If IN is a paradoxical SUBREG, remove it and try to put the
5562      opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
5563   strip_paradoxical_subreg (&in, &out);
5564 
5565   if (GET_CODE (in) == PLUS
5566       && (REG_P (XEXP (in, 0))
5567 	  || GET_CODE (XEXP (in, 0)) == SUBREG
5568 	  || MEM_P (XEXP (in, 0)))
5569       && (REG_P (XEXP (in, 1))
5570 	  || GET_CODE (XEXP (in, 1)) == SUBREG
5571 	  || CONSTANT_P (XEXP (in, 1))
5572 	  || MEM_P (XEXP (in, 1))))
5573     {
5574       insn = emit_insn (gen_rtx_SET (out, in));
5575       code = recog_memoized (insn);
5576       result = false;
5577 
5578       if (code >= 0)
5579 	{
5580 	  extract_insn (insn);
5581 	  /* We want constrain operands to treat this insn strictly in
5582 	     its validity determination, i.e., the way it would after
5583 	     reload has completed.  */
5584 	  result = constrain_operands (1, get_enabled_alternatives (insn));
5585 	}
5586 
5587       delete_insns_since (last);
5588     }
5589 
5590   /* Restore the original value at each changed address within R1.  */
5591   while (!substitute_stack.is_empty ())
5592     {
5593       rtx *where = substitute_stack.pop ();
5594       *where = rld[r2].in;
5595     }
5596 
5597   return result;
5598 }
5599 
5600 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5601    Return 0 otherwise.
5602 
5603    This function uses the same algorithm as reload_reg_free_p above.  */
5604 
5605 static int
reloads_conflict(int r1,int r2)5606 reloads_conflict (int r1, int r2)
5607 {
5608   enum reload_type r1_type = rld[r1].when_needed;
5609   enum reload_type r2_type = rld[r2].when_needed;
5610   int r1_opnum = rld[r1].opnum;
5611   int r2_opnum = rld[r2].opnum;
5612 
5613   /* RELOAD_OTHER conflicts with everything.  */
5614   if (r2_type == RELOAD_OTHER)
5615     return 1;
5616 
5617   /* Otherwise, check conflicts differently for each type.  */
5618 
5619   switch (r1_type)
5620     {
5621     case RELOAD_FOR_INPUT:
5622       return (r2_type == RELOAD_FOR_INSN
5623 	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5624 	      || r2_type == RELOAD_FOR_OPADDR_ADDR
5625 	      || r2_type == RELOAD_FOR_INPUT
5626 	      || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5627 		   || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5628 		  && r2_opnum > r1_opnum));
5629 
5630     case RELOAD_FOR_INPUT_ADDRESS:
5631       return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5632 	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5633 
5634     case RELOAD_FOR_INPADDR_ADDRESS:
5635       return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5636 	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5637 
5638     case RELOAD_FOR_OUTPUT_ADDRESS:
5639       return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5640 	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5641 
5642     case RELOAD_FOR_OUTADDR_ADDRESS:
5643       return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5644 	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5645 
5646     case RELOAD_FOR_OPERAND_ADDRESS:
5647       return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5648 	      || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5649 		  && (!reloads_unique_chain_p (r1, r2)
5650 		      || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5651 
5652     case RELOAD_FOR_OPADDR_ADDR:
5653       return (r2_type == RELOAD_FOR_INPUT
5654 	      || r2_type == RELOAD_FOR_OPADDR_ADDR);
5655 
5656     case RELOAD_FOR_OUTPUT:
5657       return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5658 	      || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5659 		   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5660 		  && r2_opnum >= r1_opnum));
5661 
5662     case RELOAD_FOR_INSN:
5663       return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5664 	      || r2_type == RELOAD_FOR_INSN
5665 	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5666 
5667     case RELOAD_FOR_OTHER_ADDRESS:
5668       return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5669 
5670     case RELOAD_OTHER:
5671       return 1;
5672 
5673     default:
5674       gcc_unreachable ();
5675     }
5676 }
5677 
5678 /* Indexed by reload number, 1 if incoming value
5679    inherited from previous insns.  */
5680 static char reload_inherited[MAX_RELOADS];
5681 
5682 /* For an inherited reload, this is the insn the reload was inherited from,
5683    if we know it.  Otherwise, this is 0.  */
5684 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5685 
5686 /* If nonzero, this is a place to get the value of the reload,
5687    rather than using reload_in.  */
5688 static rtx reload_override_in[MAX_RELOADS];
5689 
5690 /* For each reload, the hard register number of the register used,
5691    or -1 if we did not need a register for this reload.  */
5692 static int reload_spill_index[MAX_RELOADS];
5693 
5694 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode.  */
5695 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5696 
5697 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode.  */
5698 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5699 
5700 /* Subroutine of free_for_value_p, used to check a single register.
5701    START_REGNO is the starting regno of the full reload register
5702    (possibly comprising multiple hard registers) that we are considering.  */
5703 
5704 static int
reload_reg_free_for_value_p(int start_regno,int regno,int opnum,enum reload_type type,rtx value,rtx out,int reloadnum,int ignore_address_reloads)5705 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5706 			     enum reload_type type, rtx value, rtx out,
5707 			     int reloadnum, int ignore_address_reloads)
5708 {
5709   int time1;
5710   /* Set if we see an input reload that must not share its reload register
5711      with any new earlyclobber, but might otherwise share the reload
5712      register with an output or input-output reload.  */
5713   int check_earlyclobber = 0;
5714   int i;
5715   int copy = 0;
5716 
5717   if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5718     return 0;
5719 
5720   if (out == const0_rtx)
5721     {
5722       copy = 1;
5723       out = NULL_RTX;
5724     }
5725 
5726   /* We use some pseudo 'time' value to check if the lifetimes of the
5727      new register use would overlap with the one of a previous reload
5728      that is not read-only or uses a different value.
5729      The 'time' used doesn't have to be linear in any shape or form, just
5730      monotonic.
5731      Some reload types use different 'buckets' for each operand.
5732      So there are MAX_RECOG_OPERANDS different time values for each
5733      such reload type.
5734      We compute TIME1 as the time when the register for the prospective
5735      new reload ceases to be live, and TIME2 for each existing
5736      reload as the time when that the reload register of that reload
5737      becomes live.
5738      Where there is little to be gained by exact lifetime calculations,
5739      we just make conservative assumptions, i.e. a longer lifetime;
5740      this is done in the 'default:' cases.  */
5741   switch (type)
5742     {
5743     case RELOAD_FOR_OTHER_ADDRESS:
5744       /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
5745       time1 = copy ? 0 : 1;
5746       break;
5747     case RELOAD_OTHER:
5748       time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5749       break;
5750       /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5751 	 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
5752 	 respectively, to the time values for these, we get distinct time
5753 	 values.  To get distinct time values for each operand, we have to
5754 	 multiply opnum by at least three.  We round that up to four because
5755 	 multiply by four is often cheaper.  */
5756     case RELOAD_FOR_INPADDR_ADDRESS:
5757       time1 = opnum * 4 + 2;
5758       break;
5759     case RELOAD_FOR_INPUT_ADDRESS:
5760       time1 = opnum * 4 + 3;
5761       break;
5762     case RELOAD_FOR_INPUT:
5763       /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5764 	 executes (inclusive).  */
5765       time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5766       break;
5767     case RELOAD_FOR_OPADDR_ADDR:
5768       /* opnum * 4 + 4
5769 	 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5770       time1 = MAX_RECOG_OPERANDS * 4 + 1;
5771       break;
5772     case RELOAD_FOR_OPERAND_ADDRESS:
5773       /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5774 	 is executed.  */
5775       time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5776       break;
5777     case RELOAD_FOR_OUTADDR_ADDRESS:
5778       time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5779       break;
5780     case RELOAD_FOR_OUTPUT_ADDRESS:
5781       time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5782       break;
5783     default:
5784       time1 = MAX_RECOG_OPERANDS * 5 + 5;
5785     }
5786 
5787   for (i = 0; i < n_reloads; i++)
5788     {
5789       rtx reg = rld[i].reg_rtx;
5790       if (reg && REG_P (reg)
5791 	  && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5792 	  && i != reloadnum)
5793 	{
5794 	  rtx other_input = rld[i].in;
5795 
5796 	  /* If the other reload loads the same input value, that
5797 	     will not cause a conflict only if it's loading it into
5798 	     the same register.  */
5799 	  if (true_regnum (reg) != start_regno)
5800 	    other_input = NULL_RTX;
5801 	  if (! other_input || ! rtx_equal_p (other_input, value)
5802 	      || rld[i].out || out)
5803 	    {
5804 	      int time2;
5805 	      switch (rld[i].when_needed)
5806 		{
5807 		case RELOAD_FOR_OTHER_ADDRESS:
5808 		  time2 = 0;
5809 		  break;
5810 		case RELOAD_FOR_INPADDR_ADDRESS:
5811 		  /* find_reloads makes sure that a
5812 		     RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5813 		     by at most one - the first -
5814 		     RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS .  If the
5815 		     address reload is inherited, the address address reload
5816 		     goes away, so we can ignore this conflict.  */
5817 		  if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5818 		      && ignore_address_reloads
5819 		      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5820 			 Then the address address is still needed to store
5821 			 back the new address.  */
5822 		      && ! rld[reloadnum].out)
5823 		    continue;
5824 		  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5825 		     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5826 		     reloads go away.  */
5827 		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5828 		      && ignore_address_reloads
5829 		      /* Unless we are reloading an auto_inc expression.  */
5830 		      && ! rld[reloadnum].out)
5831 		    continue;
5832 		  time2 = rld[i].opnum * 4 + 2;
5833 		  break;
5834 		case RELOAD_FOR_INPUT_ADDRESS:
5835 		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5836 		      && ignore_address_reloads
5837 		      && ! rld[reloadnum].out)
5838 		    continue;
5839 		  time2 = rld[i].opnum * 4 + 3;
5840 		  break;
5841 		case RELOAD_FOR_INPUT:
5842 		  time2 = rld[i].opnum * 4 + 4;
5843 		  check_earlyclobber = 1;
5844 		  break;
5845 		  /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5846 		     == MAX_RECOG_OPERAND * 4  */
5847 		case RELOAD_FOR_OPADDR_ADDR:
5848 		  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5849 		      && ignore_address_reloads
5850 		      && ! rld[reloadnum].out)
5851 		    continue;
5852 		  time2 = MAX_RECOG_OPERANDS * 4 + 1;
5853 		  break;
5854 		case RELOAD_FOR_OPERAND_ADDRESS:
5855 		  time2 = MAX_RECOG_OPERANDS * 4 + 2;
5856 		  check_earlyclobber = 1;
5857 		  break;
5858 		case RELOAD_FOR_INSN:
5859 		  time2 = MAX_RECOG_OPERANDS * 4 + 3;
5860 		  break;
5861 		case RELOAD_FOR_OUTPUT:
5862 		  /* All RELOAD_FOR_OUTPUT reloads become live just after the
5863 		     instruction is executed.  */
5864 		  time2 = MAX_RECOG_OPERANDS * 4 + 4;
5865 		  break;
5866 		  /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5867 		     the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5868 		     value.  */
5869 		case RELOAD_FOR_OUTADDR_ADDRESS:
5870 		  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5871 		      && ignore_address_reloads
5872 		      && ! rld[reloadnum].out)
5873 		    continue;
5874 		  time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5875 		  break;
5876 		case RELOAD_FOR_OUTPUT_ADDRESS:
5877 		  time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5878 		  break;
5879 		case RELOAD_OTHER:
5880 		  /* If there is no conflict in the input part, handle this
5881 		     like an output reload.  */
5882 		  if (! rld[i].in || rtx_equal_p (other_input, value))
5883 		    {
5884 		      time2 = MAX_RECOG_OPERANDS * 4 + 4;
5885 		      /* Earlyclobbered outputs must conflict with inputs.  */
5886 		      if (earlyclobber_operand_p (rld[i].out))
5887 			time2 = MAX_RECOG_OPERANDS * 4 + 3;
5888 
5889 		      break;
5890 		    }
5891 		  time2 = 1;
5892 		  /* RELOAD_OTHER might be live beyond instruction execution,
5893 		     but this is not obvious when we set time2 = 1.  So check
5894 		     here if there might be a problem with the new reload
5895 		     clobbering the register used by the RELOAD_OTHER.  */
5896 		  if (out)
5897 		    return 0;
5898 		  break;
5899 		default:
5900 		  return 0;
5901 		}
5902 	      if ((time1 >= time2
5903 		   && (! rld[i].in || rld[i].out
5904 		       || ! rtx_equal_p (other_input, value)))
5905 		  || (out && rld[reloadnum].out_reg
5906 		      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5907 		return 0;
5908 	    }
5909 	}
5910     }
5911 
5912   /* Earlyclobbered outputs must conflict with inputs.  */
5913   if (check_earlyclobber && out && earlyclobber_operand_p (out))
5914     return 0;
5915 
5916   return 1;
5917 }
5918 
5919 /* Return 1 if the value in reload reg REGNO, as used by a reload
5920    needed for the part of the insn specified by OPNUM and TYPE,
5921    may be used to load VALUE into it.
5922 
5923    MODE is the mode in which the register is used, this is needed to
5924    determine how many hard regs to test.
5925 
5926    Other read-only reloads with the same value do not conflict
5927    unless OUT is nonzero and these other reloads have to live while
5928    output reloads live.
5929    If OUT is CONST0_RTX, this is a special case: it means that the
5930    test should not be for using register REGNO as reload register, but
5931    for copying from register REGNO into the reload register.
5932 
5933    RELOADNUM is the number of the reload we want to load this value for;
5934    a reload does not conflict with itself.
5935 
5936    When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5937    reloads that load an address for the very reload we are considering.
5938 
5939    The caller has to make sure that there is no conflict with the return
5940    register.  */
5941 
5942 static int
free_for_value_p(int regno,machine_mode mode,int opnum,enum reload_type type,rtx value,rtx out,int reloadnum,int ignore_address_reloads)5943 free_for_value_p (int regno, machine_mode mode, int opnum,
5944 		  enum reload_type type, rtx value, rtx out, int reloadnum,
5945 		  int ignore_address_reloads)
5946 {
5947   int nregs = hard_regno_nregs (regno, mode);
5948   while (nregs-- > 0)
5949     if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5950 				       value, out, reloadnum,
5951 				       ignore_address_reloads))
5952       return 0;
5953   return 1;
5954 }
5955 
5956 /* Return nonzero if the rtx X is invariant over the current function.  */
5957 /* ??? Actually, the places where we use this expect exactly what is
5958    tested here, and not everything that is function invariant.  In
5959    particular, the frame pointer and arg pointer are special cased;
5960    pic_offset_table_rtx is not, and we must not spill these things to
5961    memory.  */
5962 
5963 int
function_invariant_p(const_rtx x)5964 function_invariant_p (const_rtx x)
5965 {
5966   if (CONSTANT_P (x))
5967     return 1;
5968   if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5969     return 1;
5970   if (GET_CODE (x) == PLUS
5971       && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5972       && GET_CODE (XEXP (x, 1)) == CONST_INT)
5973     return 1;
5974   return 0;
5975 }
5976 
5977 /* Determine whether the reload reg X overlaps any rtx'es used for
5978    overriding inheritance.  Return nonzero if so.  */
5979 
5980 static int
conflicts_with_override(rtx x)5981 conflicts_with_override (rtx x)
5982 {
5983   int i;
5984   for (i = 0; i < n_reloads; i++)
5985     if (reload_override_in[i]
5986 	&& reg_overlap_mentioned_p (x, reload_override_in[i]))
5987       return 1;
5988   return 0;
5989 }
5990 
5991 /* Give an error message saying we failed to find a reload for INSN,
5992    and clear out reload R.  */
5993 static void
failed_reload(rtx_insn * insn,int r)5994 failed_reload (rtx_insn *insn, int r)
5995 {
5996   if (asm_noperands (PATTERN (insn)) < 0)
5997     /* It's the compiler's fault.  */
5998     fatal_insn ("could not find a spill register", insn);
5999 
6000   /* It's the user's fault; the operand's mode and constraint
6001      don't match.  Disable this reload so we don't crash in final.  */
6002   error_for_asm (insn,
6003 		 "%<asm%> operand constraint incompatible with operand size");
6004   rld[r].in = 0;
6005   rld[r].out = 0;
6006   rld[r].reg_rtx = 0;
6007   rld[r].optional = 1;
6008   rld[r].secondary_p = 1;
6009 }
6010 
6011 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6012    for reload R.  If it's valid, get an rtx for it.  Return nonzero if
6013    successful.  */
6014 static int
set_reload_reg(int i,int r)6015 set_reload_reg (int i, int r)
6016 {
6017   int regno;
6018   rtx reg = spill_reg_rtx[i];
6019 
6020   if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6021     spill_reg_rtx[i] = reg
6022       = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6023 
6024   regno = true_regnum (reg);
6025 
6026   /* Detect when the reload reg can't hold the reload mode.
6027      This used to be one `if', but Sequent compiler can't handle that.  */
6028   if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6029     {
6030       machine_mode test_mode = VOIDmode;
6031       if (rld[r].in)
6032 	test_mode = GET_MODE (rld[r].in);
6033       /* If rld[r].in has VOIDmode, it means we will load it
6034 	 in whatever mode the reload reg has: to wit, rld[r].mode.
6035 	 We have already tested that for validity.  */
6036       /* Aside from that, we need to test that the expressions
6037 	 to reload from or into have modes which are valid for this
6038 	 reload register.  Otherwise the reload insns would be invalid.  */
6039       if (! (rld[r].in != 0 && test_mode != VOIDmode
6040 	     && !targetm.hard_regno_mode_ok (regno, test_mode)))
6041 	if (! (rld[r].out != 0
6042 	       && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6043 	  {
6044 	    /* The reg is OK.  */
6045 	    last_spill_reg = i;
6046 
6047 	    /* Mark as in use for this insn the reload regs we use
6048 	       for this.  */
6049 	    mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6050 				    rld[r].when_needed, rld[r].mode);
6051 
6052 	    rld[r].reg_rtx = reg;
6053 	    reload_spill_index[r] = spill_regs[i];
6054 	    return 1;
6055 	  }
6056     }
6057   return 0;
6058 }
6059 
6060 /* Find a spill register to use as a reload register for reload R.
6061    LAST_RELOAD is nonzero if this is the last reload for the insn being
6062    processed.
6063 
6064    Set rld[R].reg_rtx to the register allocated.
6065 
6066    We return 1 if successful, or 0 if we couldn't find a spill reg and
6067    we didn't change anything.  */
6068 
6069 static int
allocate_reload_reg(class insn_chain * chain ATTRIBUTE_UNUSED,int r,int last_reload)6070 allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
6071 		     int last_reload)
6072 {
6073   int i, pass, count;
6074 
6075   /* If we put this reload ahead, thinking it is a group,
6076      then insist on finding a group.  Otherwise we can grab a
6077      reg that some other reload needs.
6078      (That can happen when we have a 68000 DATA_OR_FP_REG
6079      which is a group of data regs or one fp reg.)
6080      We need not be so restrictive if there are no more reloads
6081      for this insn.
6082 
6083      ??? Really it would be nicer to have smarter handling
6084      for that kind of reg class, where a problem like this is normal.
6085      Perhaps those classes should be avoided for reloading
6086      by use of more alternatives.  */
6087 
6088   int force_group = rld[r].nregs > 1 && ! last_reload;
6089 
6090   /* If we want a single register and haven't yet found one,
6091      take any reg in the right class and not in use.
6092      If we want a consecutive group, here is where we look for it.
6093 
6094      We use three passes so we can first look for reload regs to
6095      reuse, which are already in use for other reloads in this insn,
6096      and only then use additional registers which are not "bad", then
6097      finally any register.
6098 
6099      I think that maximizing reuse is needed to make sure we don't
6100      run out of reload regs.  Suppose we have three reloads, and
6101      reloads A and B can share regs.  These need two regs.
6102      Suppose A and B are given different regs.
6103      That leaves none for C.  */
6104   for (pass = 0; pass < 3; pass++)
6105     {
6106       /* I is the index in spill_regs.
6107 	 We advance it round-robin between insns to use all spill regs
6108 	 equally, so that inherited reloads have a chance
6109 	 of leapfrogging each other.  */
6110 
6111       i = last_spill_reg;
6112 
6113       for (count = 0; count < n_spills; count++)
6114 	{
6115 	  int rclass = (int) rld[r].rclass;
6116 	  int regnum;
6117 
6118 	  i++;
6119 	  if (i >= n_spills)
6120 	    i -= n_spills;
6121 	  regnum = spill_regs[i];
6122 
6123 	  if ((reload_reg_free_p (regnum, rld[r].opnum,
6124 				  rld[r].when_needed)
6125 	       || (rld[r].in
6126 		   /* We check reload_reg_used to make sure we
6127 		      don't clobber the return register.  */
6128 		   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6129 		   && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6130 					rld[r].when_needed, rld[r].in,
6131 					rld[r].out, r, 1)))
6132 	      && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6133 	      && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6134 	      /* Look first for regs to share, then for unshared.  But
6135 		 don't share regs used for inherited reloads; they are
6136 		 the ones we want to preserve.  */
6137 	      && (pass
6138 		  || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6139 					 regnum)
6140 		      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6141 					      regnum))))
6142 	    {
6143 	      int nr = hard_regno_nregs (regnum, rld[r].mode);
6144 
6145 	      /* During the second pass we want to avoid reload registers
6146 		 which are "bad" for this reload.  */
6147 	      if (pass == 1
6148 		  && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6149 		continue;
6150 
6151 	      /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6152 		 (on 68000) got us two FP regs.  If NR is 1,
6153 		 we would reject both of them.  */
6154 	      if (force_group)
6155 		nr = rld[r].nregs;
6156 	      /* If we need only one reg, we have already won.  */
6157 	      if (nr == 1)
6158 		{
6159 		  /* But reject a single reg if we demand a group.  */
6160 		  if (force_group)
6161 		    continue;
6162 		  break;
6163 		}
6164 	      /* Otherwise check that as many consecutive regs as we need
6165 		 are available here.  */
6166 	      while (nr > 1)
6167 		{
6168 		  int regno = regnum + nr - 1;
6169 		  if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6170 			&& spill_reg_order[regno] >= 0
6171 			&& reload_reg_free_p (regno, rld[r].opnum,
6172 					      rld[r].when_needed)))
6173 		    break;
6174 		  nr--;
6175 		}
6176 	      if (nr == 1)
6177 		break;
6178 	    }
6179 	}
6180 
6181       /* If we found something on the current pass, omit later passes.  */
6182       if (count < n_spills)
6183 	break;
6184     }
6185 
6186   /* We should have found a spill register by now.  */
6187   if (count >= n_spills)
6188     return 0;
6189 
6190   /* I is the index in SPILL_REG_RTX of the reload register we are to
6191      allocate.  Get an rtx for it and find its register number.  */
6192 
6193   return set_reload_reg (i, r);
6194 }
6195 
6196 /* Initialize all the tables needed to allocate reload registers.
6197    CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6198    is the array we use to restore the reg_rtx field for every reload.  */
6199 
6200 static void
choose_reload_regs_init(class insn_chain * chain,rtx * save_reload_reg_rtx)6201 choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
6202 {
6203   int i;
6204 
6205   for (i = 0; i < n_reloads; i++)
6206     rld[i].reg_rtx = save_reload_reg_rtx[i];
6207 
6208   memset (reload_inherited, 0, MAX_RELOADS);
6209   memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6210   memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6211 
6212   CLEAR_HARD_REG_SET (reload_reg_used);
6213   CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6214   CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6215   CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6216   CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6217   CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6218 
6219   CLEAR_HARD_REG_SET (reg_used_in_insn);
6220   {
6221     HARD_REG_SET tmp;
6222     REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6223     reg_used_in_insn |= tmp;
6224     REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6225     reg_used_in_insn |= tmp;
6226     compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6227     compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6228   }
6229 
6230   for (i = 0; i < reload_n_operands; i++)
6231     {
6232       CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6233       CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6234       CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6235       CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6236       CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6237       CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6238     }
6239 
6240   reload_reg_unavailable = ~chain->used_spill_regs;
6241 
6242   CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6243 
6244   for (i = 0; i < n_reloads; i++)
6245     /* If we have already decided to use a certain register,
6246        don't use it in another way.  */
6247     if (rld[i].reg_rtx)
6248       mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6249 			      rld[i].when_needed, rld[i].mode);
6250 }
6251 
6252 /* If X is not a subreg, return it unmodified.  If it is a subreg,
6253    look up whether we made a replacement for the SUBREG_REG.  Return
6254    either the replacement or the SUBREG_REG.  */
6255 
6256 static rtx
replaced_subreg(rtx x)6257 replaced_subreg (rtx x)
6258 {
6259   if (GET_CODE (x) == SUBREG)
6260     return find_replacement (&SUBREG_REG (x));
6261   return x;
6262 }
6263 
6264 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6265    mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6266    SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6267    otherwise it is NULL.  */
6268 
6269 static poly_int64
compute_reload_subreg_offset(machine_mode outermode,rtx subreg,machine_mode innermode)6270 compute_reload_subreg_offset (machine_mode outermode,
6271 			      rtx subreg,
6272 			      machine_mode innermode)
6273 {
6274   poly_int64 outer_offset;
6275   machine_mode middlemode;
6276 
6277   if (!subreg)
6278     return subreg_lowpart_offset (outermode, innermode);
6279 
6280   outer_offset = SUBREG_BYTE (subreg);
6281   middlemode = GET_MODE (SUBREG_REG (subreg));
6282 
6283   /* If SUBREG is paradoxical then return the normal lowpart offset
6284      for OUTERMODE and INNERMODE.  Our caller has already checked
6285      that OUTERMODE fits in INNERMODE.  */
6286   if (paradoxical_subreg_p (outermode, middlemode))
6287     return subreg_lowpart_offset (outermode, innermode);
6288 
6289   /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6290      plus the normal lowpart offset for MIDDLEMODE and INNERMODE.  */
6291   return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6292 }
6293 
6294 /* Assign hard reg targets for the pseudo-registers we must reload
6295    into hard regs for this insn.
6296    Also output the instructions to copy them in and out of the hard regs.
6297 
6298    For machines with register classes, we are responsible for
6299    finding a reload reg in the proper class.  */
6300 
6301 static void
choose_reload_regs(class insn_chain * chain)6302 choose_reload_regs (class insn_chain *chain)
6303 {
6304   rtx_insn *insn = chain->insn;
6305   int i, j;
6306   unsigned int max_group_size = 1;
6307   enum reg_class group_class = NO_REGS;
6308   int pass, win, inheritance;
6309 
6310   rtx save_reload_reg_rtx[MAX_RELOADS];
6311 
6312   /* In order to be certain of getting the registers we need,
6313      we must sort the reloads into order of increasing register class.
6314      Then our grabbing of reload registers will parallel the process
6315      that provided the reload registers.
6316 
6317      Also note whether any of the reloads wants a consecutive group of regs.
6318      If so, record the maximum size of the group desired and what
6319      register class contains all the groups needed by this insn.  */
6320 
6321   for (j = 0; j < n_reloads; j++)
6322     {
6323       reload_order[j] = j;
6324       if (rld[j].reg_rtx != NULL_RTX)
6325 	{
6326 	  gcc_assert (REG_P (rld[j].reg_rtx)
6327 		      && HARD_REGISTER_P (rld[j].reg_rtx));
6328 	  reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6329 	}
6330       else
6331 	reload_spill_index[j] = -1;
6332 
6333       if (rld[j].nregs > 1)
6334 	{
6335 	  max_group_size = MAX (rld[j].nregs, max_group_size);
6336 	  group_class
6337 	    = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6338 	}
6339 
6340       save_reload_reg_rtx[j] = rld[j].reg_rtx;
6341     }
6342 
6343   if (n_reloads > 1)
6344     qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6345 
6346   /* If -O, try first with inheritance, then turning it off.
6347      If not -O, don't do inheritance.
6348      Using inheritance when not optimizing leads to paradoxes
6349      with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6350      because one side of the comparison might be inherited.  */
6351   win = 0;
6352   for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6353     {
6354       choose_reload_regs_init (chain, save_reload_reg_rtx);
6355 
6356       /* Process the reloads in order of preference just found.
6357 	 Beyond this point, subregs can be found in reload_reg_rtx.
6358 
6359 	 This used to look for an existing reloaded home for all of the
6360 	 reloads, and only then perform any new reloads.  But that could lose
6361 	 if the reloads were done out of reg-class order because a later
6362 	 reload with a looser constraint might have an old home in a register
6363 	 needed by an earlier reload with a tighter constraint.
6364 
6365 	 To solve this, we make two passes over the reloads, in the order
6366 	 described above.  In the first pass we try to inherit a reload
6367 	 from a previous insn.  If there is a later reload that needs a
6368 	 class that is a proper subset of the class being processed, we must
6369 	 also allocate a spill register during the first pass.
6370 
6371 	 Then make a second pass over the reloads to allocate any reloads
6372 	 that haven't been given registers yet.  */
6373 
6374       for (j = 0; j < n_reloads; j++)
6375 	{
6376 	  int r = reload_order[j];
6377 	  rtx search_equiv = NULL_RTX;
6378 
6379 	  /* Ignore reloads that got marked inoperative.  */
6380 	  if (rld[r].out == 0 && rld[r].in == 0
6381 	      && ! rld[r].secondary_p)
6382 	    continue;
6383 
6384 	  /* If find_reloads chose to use reload_in or reload_out as a reload
6385 	     register, we don't need to chose one.  Otherwise, try even if it
6386 	     found one since we might save an insn if we find the value lying
6387 	     around.
6388 	     Try also when reload_in is a pseudo without a hard reg.  */
6389 	  if (rld[r].in != 0 && rld[r].reg_rtx != 0
6390 	      && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6391 		  || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6392 		      && !MEM_P (rld[r].in)
6393 		      && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6394 	    continue;
6395 
6396 #if 0 /* No longer needed for correct operation.
6397 	 It might give better code, or might not; worth an experiment?  */
6398 	  /* If this is an optional reload, we can't inherit from earlier insns
6399 	     until we are sure that any non-optional reloads have been allocated.
6400 	     The following code takes advantage of the fact that optional reloads
6401 	     are at the end of reload_order.  */
6402 	  if (rld[r].optional != 0)
6403 	    for (i = 0; i < j; i++)
6404 	      if ((rld[reload_order[i]].out != 0
6405 		   || rld[reload_order[i]].in != 0
6406 		   || rld[reload_order[i]].secondary_p)
6407 		  && ! rld[reload_order[i]].optional
6408 		  && rld[reload_order[i]].reg_rtx == 0)
6409 		allocate_reload_reg (chain, reload_order[i], 0);
6410 #endif
6411 
6412 	  /* First see if this pseudo is already available as reloaded
6413 	     for a previous insn.  We cannot try to inherit for reloads
6414 	     that are smaller than the maximum number of registers needed
6415 	     for groups unless the register we would allocate cannot be used
6416 	     for the groups.
6417 
6418 	     We could check here to see if this is a secondary reload for
6419 	     an object that is already in a register of the desired class.
6420 	     This would avoid the need for the secondary reload register.
6421 	     But this is complex because we can't easily determine what
6422 	     objects might want to be loaded via this reload.  So let a
6423 	     register be allocated here.  In `emit_reload_insns' we suppress
6424 	     one of the loads in the case described above.  */
6425 
6426 	  if (inheritance)
6427 	    {
6428 	      poly_int64 byte = 0;
6429 	      int regno = -1;
6430 	      machine_mode mode = VOIDmode;
6431 	      rtx subreg = NULL_RTX;
6432 
6433 	      if (rld[r].in == 0)
6434 		;
6435 	      else if (REG_P (rld[r].in))
6436 		{
6437 		  regno = REGNO (rld[r].in);
6438 		  mode = GET_MODE (rld[r].in);
6439 		}
6440 	      else if (REG_P (rld[r].in_reg))
6441 		{
6442 		  regno = REGNO (rld[r].in_reg);
6443 		  mode = GET_MODE (rld[r].in_reg);
6444 		}
6445 	      else if (GET_CODE (rld[r].in_reg) == SUBREG
6446 		       && REG_P (SUBREG_REG (rld[r].in_reg)))
6447 		{
6448 		  regno = REGNO (SUBREG_REG (rld[r].in_reg));
6449 		  if (regno < FIRST_PSEUDO_REGISTER)
6450 		    regno = subreg_regno (rld[r].in_reg);
6451 		  else
6452 		    {
6453 		      subreg = rld[r].in_reg;
6454 		      byte = SUBREG_BYTE (subreg);
6455 		    }
6456 		  mode = GET_MODE (rld[r].in_reg);
6457 		}
6458 #if AUTO_INC_DEC
6459 	      else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6460 		       && REG_P (XEXP (rld[r].in_reg, 0)))
6461 		{
6462 		  regno = REGNO (XEXP (rld[r].in_reg, 0));
6463 		  mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6464 		  rld[r].out = rld[r].in;
6465 		}
6466 #endif
6467 #if 0
6468 	      /* This won't work, since REGNO can be a pseudo reg number.
6469 		 Also, it takes much more hair to keep track of all the things
6470 		 that can invalidate an inherited reload of part of a pseudoreg.  */
6471 	      else if (GET_CODE (rld[r].in) == SUBREG
6472 		       && REG_P (SUBREG_REG (rld[r].in)))
6473 		regno = subreg_regno (rld[r].in);
6474 #endif
6475 
6476 	      if (regno >= 0
6477 		  && reg_last_reload_reg[regno] != 0
6478 		  && (known_ge
6479 		      (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6480 		       GET_MODE_SIZE (mode) + byte))
6481 		  /* Verify that the register it's in can be used in
6482 		     mode MODE.  */
6483 		  && (REG_CAN_CHANGE_MODE_P
6484 		      (REGNO (reg_last_reload_reg[regno]),
6485 		       GET_MODE (reg_last_reload_reg[regno]),
6486 		       mode)))
6487 		{
6488 		  enum reg_class rclass = rld[r].rclass, last_class;
6489 		  rtx last_reg = reg_last_reload_reg[regno];
6490 
6491 		  i = REGNO (last_reg);
6492 		  byte = compute_reload_subreg_offset (mode,
6493 						       subreg,
6494 						       GET_MODE (last_reg));
6495 		  i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6496 		  last_class = REGNO_REG_CLASS (i);
6497 
6498 		  if (reg_reloaded_contents[i] == regno
6499 		      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6500 		      && targetm.hard_regno_mode_ok (i, rld[r].mode)
6501 		      && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6502 			  /* Even if we can't use this register as a reload
6503 			     register, we might use it for reload_override_in,
6504 			     if copying it to the desired class is cheap
6505 			     enough.  */
6506 			  || ((register_move_cost (mode, last_class, rclass)
6507 			       < memory_move_cost (mode, rclass, true))
6508 			      && (secondary_reload_class (1, rclass, mode,
6509 							  last_reg)
6510 				  == NO_REGS)
6511 			      && !(targetm.secondary_memory_needed
6512 				   (mode, last_class, rclass))))
6513 		      && (rld[r].nregs == max_group_size
6514 			  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6515 						  i))
6516 		      && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6517 					   rld[r].when_needed, rld[r].in,
6518 					   const0_rtx, r, 1))
6519 		    {
6520 		      /* If a group is needed, verify that all the subsequent
6521 			 registers still have their values intact.  */
6522 		      int nr = hard_regno_nregs (i, rld[r].mode);
6523 		      int k;
6524 
6525 		      for (k = 1; k < nr; k++)
6526 			if (reg_reloaded_contents[i + k] != regno
6527 			    || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6528 			  break;
6529 
6530 		      if (k == nr)
6531 			{
6532 			  int i1;
6533 			  int bad_for_class;
6534 
6535 			  last_reg = (GET_MODE (last_reg) == mode
6536 				      ? last_reg : gen_rtx_REG (mode, i));
6537 
6538 			  bad_for_class = 0;
6539 			  for (k = 0; k < nr; k++)
6540 			    bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6541 								  i+k);
6542 
6543 			  /* We found a register that contains the
6544 			     value we need.  If this register is the
6545 			     same as an `earlyclobber' operand of the
6546 			     current insn, just mark it as a place to
6547 			     reload from since we can't use it as the
6548 			     reload register itself.  */
6549 
6550 			  for (i1 = 0; i1 < n_earlyclobbers; i1++)
6551 			    if (reg_overlap_mentioned_for_reload_p
6552 				(reg_last_reload_reg[regno],
6553 				 reload_earlyclobbers[i1]))
6554 			      break;
6555 
6556 			  if (i1 != n_earlyclobbers
6557 			      || ! (free_for_value_p (i, rld[r].mode,
6558 						      rld[r].opnum,
6559 						      rld[r].when_needed, rld[r].in,
6560 						      rld[r].out, r, 1))
6561 			      /* Don't use it if we'd clobber a pseudo reg.  */
6562 			      || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6563 				  && rld[r].out
6564 				  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6565 			      /* Don't clobber the frame pointer.  */
6566 			      || (i == HARD_FRAME_POINTER_REGNUM
6567 				  && frame_pointer_needed
6568 				  && rld[r].out)
6569 			      /* Don't really use the inherited spill reg
6570 				 if we need it wider than we've got it.  */
6571 			      || paradoxical_subreg_p (rld[r].mode, mode)
6572 			      || bad_for_class
6573 
6574 			      /* If find_reloads chose reload_out as reload
6575 				 register, stay with it - that leaves the
6576 				 inherited register for subsequent reloads.  */
6577 			      || (rld[r].out && rld[r].reg_rtx
6578 				  && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6579 			    {
6580 			      if (! rld[r].optional)
6581 				{
6582 				  reload_override_in[r] = last_reg;
6583 				  reload_inheritance_insn[r]
6584 				    = reg_reloaded_insn[i];
6585 				}
6586 			    }
6587 			  else
6588 			    {
6589 			      int k;
6590 			      /* We can use this as a reload reg.  */
6591 			      /* Mark the register as in use for this part of
6592 				 the insn.  */
6593 			      mark_reload_reg_in_use (i,
6594 						      rld[r].opnum,
6595 						      rld[r].when_needed,
6596 						      rld[r].mode);
6597 			      rld[r].reg_rtx = last_reg;
6598 			      reload_inherited[r] = 1;
6599 			      reload_inheritance_insn[r]
6600 				= reg_reloaded_insn[i];
6601 			      reload_spill_index[r] = i;
6602 			      for (k = 0; k < nr; k++)
6603 				SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6604 						  i + k);
6605 			    }
6606 			}
6607 		    }
6608 		}
6609 	    }
6610 
6611 	  /* Here's another way to see if the value is already lying around.  */
6612 	  if (inheritance
6613 	      && rld[r].in != 0
6614 	      && ! reload_inherited[r]
6615 	      && rld[r].out == 0
6616 	      && (CONSTANT_P (rld[r].in)
6617 		  || GET_CODE (rld[r].in) == PLUS
6618 		  || REG_P (rld[r].in)
6619 		  || MEM_P (rld[r].in))
6620 	      && (rld[r].nregs == max_group_size
6621 		  || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6622 	    search_equiv = rld[r].in;
6623 
6624 	  if (search_equiv)
6625 	    {
6626 	      rtx equiv
6627 		= find_equiv_reg (search_equiv, insn, rld[r].rclass,
6628 				  -1, NULL, 0, rld[r].mode);
6629 	      int regno = 0;
6630 
6631 	      if (equiv != 0)
6632 		{
6633 		  if (REG_P (equiv))
6634 		    regno = REGNO (equiv);
6635 		  else
6636 		    {
6637 		      /* This must be a SUBREG of a hard register.
6638 			 Make a new REG since this might be used in an
6639 			 address and not all machines support SUBREGs
6640 			 there.  */
6641 		      gcc_assert (GET_CODE (equiv) == SUBREG);
6642 		      regno = subreg_regno (equiv);
6643 		      equiv = gen_rtx_REG (rld[r].mode, regno);
6644 		      /* If we choose EQUIV as the reload register, but the
6645 			 loop below decides to cancel the inheritance, we'll
6646 			 end up reloading EQUIV in rld[r].mode, not the mode
6647 			 it had originally.  That isn't safe when EQUIV isn't
6648 			 available as a spill register since its value might
6649 			 still be live at this point.  */
6650 		      for (i = regno; i < regno + (int) rld[r].nregs; i++)
6651 			if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6652 			  equiv = 0;
6653 		    }
6654 		}
6655 
6656 	      /* If we found a spill reg, reject it unless it is free
6657 		 and of the desired class.  */
6658 	      if (equiv != 0)
6659 		{
6660 		  int regs_used = 0;
6661 		  int bad_for_class = 0;
6662 		  int max_regno = regno + rld[r].nregs;
6663 
6664 		  for (i = regno; i < max_regno; i++)
6665 		    {
6666 		      regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6667 						      i);
6668 		      bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6669 							   i);
6670 		    }
6671 
6672 		  if ((regs_used
6673 		       && ! free_for_value_p (regno, rld[r].mode,
6674 					      rld[r].opnum, rld[r].when_needed,
6675 					      rld[r].in, rld[r].out, r, 1))
6676 		      || bad_for_class)
6677 		    equiv = 0;
6678 		}
6679 
6680 	      if (equiv != 0
6681 		  && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6682 		equiv = 0;
6683 
6684 	      /* We found a register that contains the value we need.
6685 		 If this register is the same as an `earlyclobber' operand
6686 		 of the current insn, just mark it as a place to reload from
6687 		 since we can't use it as the reload register itself.  */
6688 
6689 	      if (equiv != 0)
6690 		for (i = 0; i < n_earlyclobbers; i++)
6691 		  if (reg_overlap_mentioned_for_reload_p (equiv,
6692 							  reload_earlyclobbers[i]))
6693 		    {
6694 		      if (! rld[r].optional)
6695 			reload_override_in[r] = equiv;
6696 		      equiv = 0;
6697 		      break;
6698 		    }
6699 
6700 	      /* If the equiv register we have found is explicitly clobbered
6701 		 in the current insn, it depends on the reload type if we
6702 		 can use it, use it for reload_override_in, or not at all.
6703 		 In particular, we then can't use EQUIV for a
6704 		 RELOAD_FOR_OUTPUT_ADDRESS reload.  */
6705 
6706 	      if (equiv != 0)
6707 		{
6708 		  if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6709 		    switch (rld[r].when_needed)
6710 		      {
6711 		      case RELOAD_FOR_OTHER_ADDRESS:
6712 		      case RELOAD_FOR_INPADDR_ADDRESS:
6713 		      case RELOAD_FOR_INPUT_ADDRESS:
6714 		      case RELOAD_FOR_OPADDR_ADDR:
6715 			break;
6716 		      case RELOAD_OTHER:
6717 		      case RELOAD_FOR_INPUT:
6718 		      case RELOAD_FOR_OPERAND_ADDRESS:
6719 			if (! rld[r].optional)
6720 			  reload_override_in[r] = equiv;
6721 			/* Fall through.  */
6722 		      default:
6723 			equiv = 0;
6724 			break;
6725 		      }
6726 		  else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6727 		    switch (rld[r].when_needed)
6728 		      {
6729 		      case RELOAD_FOR_OTHER_ADDRESS:
6730 		      case RELOAD_FOR_INPADDR_ADDRESS:
6731 		      case RELOAD_FOR_INPUT_ADDRESS:
6732 		      case RELOAD_FOR_OPADDR_ADDR:
6733 		      case RELOAD_FOR_OPERAND_ADDRESS:
6734 		      case RELOAD_FOR_INPUT:
6735 			break;
6736 		      case RELOAD_OTHER:
6737 			if (! rld[r].optional)
6738 			  reload_override_in[r] = equiv;
6739 			/* Fall through.  */
6740 		      default:
6741 			equiv = 0;
6742 			break;
6743 		      }
6744 		}
6745 
6746 	      /* If we found an equivalent reg, say no code need be generated
6747 		 to load it, and use it as our reload reg.  */
6748 	      if (equiv != 0
6749 		  && (regno != HARD_FRAME_POINTER_REGNUM
6750 		      || !frame_pointer_needed))
6751 		{
6752 		  int nr = hard_regno_nregs (regno, rld[r].mode);
6753 		  int k;
6754 		  rld[r].reg_rtx = equiv;
6755 		  reload_spill_index[r] = regno;
6756 		  reload_inherited[r] = 1;
6757 
6758 		  /* If reg_reloaded_valid is not set for this register,
6759 		     there might be a stale spill_reg_store lying around.
6760 		     We must clear it, since otherwise emit_reload_insns
6761 		     might delete the store.  */
6762 		  if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6763 		    spill_reg_store[regno] = NULL;
6764 		  /* If any of the hard registers in EQUIV are spill
6765 		     registers, mark them as in use for this insn.  */
6766 		  for (k = 0; k < nr; k++)
6767 		    {
6768 		      i = spill_reg_order[regno + k];
6769 		      if (i >= 0)
6770 			{
6771 			  mark_reload_reg_in_use (regno, rld[r].opnum,
6772 						  rld[r].when_needed,
6773 						  rld[r].mode);
6774 			  SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6775 					    regno + k);
6776 			}
6777 		    }
6778 		}
6779 	    }
6780 
6781 	  /* If we found a register to use already, or if this is an optional
6782 	     reload, we are done.  */
6783 	  if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6784 	    continue;
6785 
6786 #if 0
6787 	  /* No longer needed for correct operation.  Might or might
6788 	     not give better code on the average.  Want to experiment?  */
6789 
6790 	  /* See if there is a later reload that has a class different from our
6791 	     class that intersects our class or that requires less register
6792 	     than our reload.  If so, we must allocate a register to this
6793 	     reload now, since that reload might inherit a previous reload
6794 	     and take the only available register in our class.  Don't do this
6795 	     for optional reloads since they will force all previous reloads
6796 	     to be allocated.  Also don't do this for reloads that have been
6797 	     turned off.  */
6798 
6799 	  for (i = j + 1; i < n_reloads; i++)
6800 	    {
6801 	      int s = reload_order[i];
6802 
6803 	      if ((rld[s].in == 0 && rld[s].out == 0
6804 		   && ! rld[s].secondary_p)
6805 		  || rld[s].optional)
6806 		continue;
6807 
6808 	      if ((rld[s].rclass != rld[r].rclass
6809 		   && reg_classes_intersect_p (rld[r].rclass,
6810 					       rld[s].rclass))
6811 		  || rld[s].nregs < rld[r].nregs)
6812 		break;
6813 	    }
6814 
6815 	  if (i == n_reloads)
6816 	    continue;
6817 
6818 	  allocate_reload_reg (chain, r, j == n_reloads - 1);
6819 #endif
6820 	}
6821 
6822       /* Now allocate reload registers for anything non-optional that
6823 	 didn't get one yet.  */
6824       for (j = 0; j < n_reloads; j++)
6825 	{
6826 	  int r = reload_order[j];
6827 
6828 	  /* Ignore reloads that got marked inoperative.  */
6829 	  if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6830 	    continue;
6831 
6832 	  /* Skip reloads that already have a register allocated or are
6833 	     optional.  */
6834 	  if (rld[r].reg_rtx != 0 || rld[r].optional)
6835 	    continue;
6836 
6837 	  if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6838 	    break;
6839 	}
6840 
6841       /* If that loop got all the way, we have won.  */
6842       if (j == n_reloads)
6843 	{
6844 	  win = 1;
6845 	  break;
6846 	}
6847 
6848       /* Loop around and try without any inheritance.  */
6849     }
6850 
6851   if (! win)
6852     {
6853       /* First undo everything done by the failed attempt
6854 	 to allocate with inheritance.  */
6855       choose_reload_regs_init (chain, save_reload_reg_rtx);
6856 
6857       /* Some sanity tests to verify that the reloads found in the first
6858 	 pass are identical to the ones we have now.  */
6859       gcc_assert (chain->n_reloads == n_reloads);
6860 
6861       for (i = 0; i < n_reloads; i++)
6862 	{
6863 	  if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6864 	    continue;
6865 	  gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6866 	  for (j = 0; j < n_spills; j++)
6867 	    if (spill_regs[j] == chain->rld[i].regno)
6868 	      if (! set_reload_reg (j, i))
6869 		failed_reload (chain->insn, i);
6870 	}
6871     }
6872 
6873   /* If we thought we could inherit a reload, because it seemed that
6874      nothing else wanted the same reload register earlier in the insn,
6875      verify that assumption, now that all reloads have been assigned.
6876      Likewise for reloads where reload_override_in has been set.  */
6877 
6878   /* If doing expensive optimizations, do one preliminary pass that doesn't
6879      cancel any inheritance, but removes reloads that have been needed only
6880      for reloads that we know can be inherited.  */
6881   for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6882     {
6883       for (j = 0; j < n_reloads; j++)
6884 	{
6885 	  int r = reload_order[j];
6886 	  rtx check_reg;
6887 	  rtx tem;
6888 	  if (reload_inherited[r] && rld[r].reg_rtx)
6889 	    check_reg = rld[r].reg_rtx;
6890 	  else if (reload_override_in[r]
6891 		   && (REG_P (reload_override_in[r])
6892 		       || GET_CODE (reload_override_in[r]) == SUBREG))
6893 	    check_reg = reload_override_in[r];
6894 	  else
6895 	    continue;
6896 	  if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6897 				  rld[r].opnum, rld[r].when_needed, rld[r].in,
6898 				  (reload_inherited[r]
6899 				   ? rld[r].out : const0_rtx),
6900 				  r, 1))
6901 	    {
6902 	      if (pass)
6903 		continue;
6904 	      reload_inherited[r] = 0;
6905 	      reload_override_in[r] = 0;
6906 	    }
6907 	  /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6908 	     reload_override_in, then we do not need its related
6909 	     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6910 	     likewise for other reload types.
6911 	     We handle this by removing a reload when its only replacement
6912 	     is mentioned in reload_in of the reload we are going to inherit.
6913 	     A special case are auto_inc expressions; even if the input is
6914 	     inherited, we still need the address for the output.  We can
6915 	     recognize them because they have RELOAD_OUT set to RELOAD_IN.
6916 	     If we succeeded removing some reload and we are doing a preliminary
6917 	     pass just to remove such reloads, make another pass, since the
6918 	     removal of one reload might allow us to inherit another one.  */
6919 	  else if (rld[r].in
6920 		   && rld[r].out != rld[r].in
6921 		   && remove_address_replacements (rld[r].in))
6922 	    {
6923 	      if (pass)
6924 	        pass = 2;
6925 	    }
6926 	  /* If we needed a memory location for the reload, we also have to
6927 	     remove its related reloads.  */
6928 	  else if (rld[r].in
6929 		   && rld[r].out != rld[r].in
6930 		   && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6931 		   && REGNO (tem) < FIRST_PSEUDO_REGISTER
6932 		   && (targetm.secondary_memory_needed
6933 		       (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6934 			rld[r].rclass))
6935 		   && remove_address_replacements
6936 		      (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6937 					  rld[r].when_needed)))
6938 	    {
6939 	      if (pass)
6940 	        pass = 2;
6941 	    }
6942 	}
6943     }
6944 
6945   /* Now that reload_override_in is known valid,
6946      actually override reload_in.  */
6947   for (j = 0; j < n_reloads; j++)
6948     if (reload_override_in[j])
6949       rld[j].in = reload_override_in[j];
6950 
6951   /* If this reload won't be done because it has been canceled or is
6952      optional and not inherited, clear reload_reg_rtx so other
6953      routines (such as subst_reloads) don't get confused.  */
6954   for (j = 0; j < n_reloads; j++)
6955     if (rld[j].reg_rtx != 0
6956 	&& ((rld[j].optional && ! reload_inherited[j])
6957 	    || (rld[j].in == 0 && rld[j].out == 0
6958 		&& ! rld[j].secondary_p)))
6959       {
6960 	int regno = true_regnum (rld[j].reg_rtx);
6961 
6962 	if (spill_reg_order[regno] >= 0)
6963 	  clear_reload_reg_in_use (regno, rld[j].opnum,
6964 				   rld[j].when_needed, rld[j].mode);
6965 	rld[j].reg_rtx = 0;
6966 	reload_spill_index[j] = -1;
6967       }
6968 
6969   /* Record which pseudos and which spill regs have output reloads.  */
6970   for (j = 0; j < n_reloads; j++)
6971     {
6972       int r = reload_order[j];
6973 
6974       i = reload_spill_index[r];
6975 
6976       /* I is nonneg if this reload uses a register.
6977 	 If rld[r].reg_rtx is 0, this is an optional reload
6978 	 that we opted to ignore.  */
6979       if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6980 	  && rld[r].reg_rtx != 0)
6981 	{
6982 	  int nregno = REGNO (rld[r].out_reg);
6983 	  int nr = 1;
6984 
6985 	  if (nregno < FIRST_PSEUDO_REGISTER)
6986 	    nr = hard_regno_nregs (nregno, rld[r].mode);
6987 
6988 	  while (--nr >= 0)
6989 	    SET_REGNO_REG_SET (&reg_has_output_reload,
6990 			       nregno + nr);
6991 
6992 	  if (i >= 0)
6993 	    add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
6994 
6995 	  gcc_assert (rld[r].when_needed == RELOAD_OTHER
6996 		      || rld[r].when_needed == RELOAD_FOR_OUTPUT
6997 		      || rld[r].when_needed == RELOAD_FOR_INSN);
6998 	}
6999     }
7000 }
7001 
7002 /* Deallocate the reload register for reload R.  This is called from
7003    remove_address_replacements.  */
7004 
7005 void
deallocate_reload_reg(int r)7006 deallocate_reload_reg (int r)
7007 {
7008   int regno;
7009 
7010   if (! rld[r].reg_rtx)
7011     return;
7012   regno = true_regnum (rld[r].reg_rtx);
7013   rld[r].reg_rtx = 0;
7014   if (spill_reg_order[regno] >= 0)
7015     clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7016 			     rld[r].mode);
7017   reload_spill_index[r] = -1;
7018 }
7019 
7020 /* These arrays are filled by emit_reload_insns and its subroutines.  */
7021 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7022 static rtx_insn *other_input_address_reload_insns = 0;
7023 static rtx_insn *other_input_reload_insns = 0;
7024 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7025 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7026 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7027 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7028 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7029 static rtx_insn *operand_reload_insns = 0;
7030 static rtx_insn *other_operand_reload_insns = 0;
7031 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7032 
7033 /* Values to be put in spill_reg_store are put here first.  Instructions
7034    must only be placed here if the associated reload register reaches
7035    the end of the instruction's reload sequence.  */
7036 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7037 static HARD_REG_SET reg_reloaded_died;
7038 
7039 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7040    of class NEW_CLASS with mode NEW_MODE.  Or alternatively, if alt_reload_reg
7041    is nonzero, if that is suitable.  On success, change *RELOAD_REG to the
7042    adjusted register, and return true.  Otherwise, return false.  */
7043 static bool
reload_adjust_reg_for_temp(rtx * reload_reg,rtx alt_reload_reg,enum reg_class new_class,machine_mode new_mode)7044 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7045 			    enum reg_class new_class,
7046 			    machine_mode new_mode)
7047 
7048 {
7049   rtx reg;
7050 
7051   for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7052     {
7053       unsigned regno = REGNO (reg);
7054 
7055       if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7056 	continue;
7057       if (GET_MODE (reg) != new_mode)
7058 	{
7059 	  if (!targetm.hard_regno_mode_ok (regno, new_mode))
7060 	    continue;
7061 	  if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7062 	    continue;
7063 	  reg = reload_adjust_reg_for_mode (reg, new_mode);
7064 	}
7065       *reload_reg = reg;
7066       return true;
7067     }
7068   return false;
7069 }
7070 
7071 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7072    pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7073    nonzero, if that is suitable.  On success, change *RELOAD_REG to the
7074    adjusted register, and return true.  Otherwise, return false.  */
7075 static bool
reload_adjust_reg_for_icode(rtx * reload_reg,rtx alt_reload_reg,enum insn_code icode)7076 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7077 			     enum insn_code icode)
7078 
7079 {
7080   enum reg_class new_class = scratch_reload_class (icode);
7081   machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7082 
7083   return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7084 				     new_class, new_mode);
7085 }
7086 
7087 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7088    has the number J.  OLD contains the value to be used as input.  */
7089 
7090 static void
emit_input_reload_insns(class insn_chain * chain,struct reload * rl,rtx old,int j)7091 emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
7092 			 rtx old, int j)
7093 {
7094   rtx_insn *insn = chain->insn;
7095   rtx reloadreg;
7096   rtx oldequiv_reg = 0;
7097   rtx oldequiv = 0;
7098   int special = 0;
7099   machine_mode mode;
7100   rtx_insn **where;
7101 
7102   /* delete_output_reload is only invoked properly if old contains
7103      the original pseudo register.  Since this is replaced with a
7104      hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7105      find the pseudo in RELOAD_IN_REG.  This is also used to
7106      determine whether a secondary reload is needed.  */
7107   if (reload_override_in[j]
7108       && (REG_P (rl->in_reg)
7109 	  || (GET_CODE (rl->in_reg) == SUBREG
7110 	      && REG_P (SUBREG_REG (rl->in_reg)))))
7111     {
7112       oldequiv = old;
7113       old = rl->in_reg;
7114     }
7115   if (oldequiv == 0)
7116     oldequiv = old;
7117   else if (REG_P (oldequiv))
7118     oldequiv_reg = oldequiv;
7119   else if (GET_CODE (oldequiv) == SUBREG)
7120     oldequiv_reg = SUBREG_REG (oldequiv);
7121 
7122   reloadreg = reload_reg_rtx_for_input[j];
7123   mode = GET_MODE (reloadreg);
7124 
7125   /* If we are reloading from a register that was recently stored in
7126      with an output-reload, see if we can prove there was
7127      actually no need to store the old value in it.  */
7128 
7129   if (optimize && REG_P (oldequiv)
7130       && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7131       && spill_reg_store[REGNO (oldequiv)]
7132       && REG_P (old)
7133       && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7134 	  || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7135 			  rl->out_reg)))
7136     delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7137 
7138   /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7139      OLDEQUIV.  */
7140 
7141   while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7142     oldequiv = SUBREG_REG (oldequiv);
7143   if (GET_MODE (oldequiv) != VOIDmode
7144       && mode != GET_MODE (oldequiv))
7145     oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7146 
7147   /* Switch to the right place to emit the reload insns.  */
7148   switch (rl->when_needed)
7149     {
7150     case RELOAD_OTHER:
7151       where = &other_input_reload_insns;
7152       break;
7153     case RELOAD_FOR_INPUT:
7154       where = &input_reload_insns[rl->opnum];
7155       break;
7156     case RELOAD_FOR_INPUT_ADDRESS:
7157       where = &input_address_reload_insns[rl->opnum];
7158       break;
7159     case RELOAD_FOR_INPADDR_ADDRESS:
7160       where = &inpaddr_address_reload_insns[rl->opnum];
7161       break;
7162     case RELOAD_FOR_OUTPUT_ADDRESS:
7163       where = &output_address_reload_insns[rl->opnum];
7164       break;
7165     case RELOAD_FOR_OUTADDR_ADDRESS:
7166       where = &outaddr_address_reload_insns[rl->opnum];
7167       break;
7168     case RELOAD_FOR_OPERAND_ADDRESS:
7169       where = &operand_reload_insns;
7170       break;
7171     case RELOAD_FOR_OPADDR_ADDR:
7172       where = &other_operand_reload_insns;
7173       break;
7174     case RELOAD_FOR_OTHER_ADDRESS:
7175       where = &other_input_address_reload_insns;
7176       break;
7177     default:
7178       gcc_unreachable ();
7179     }
7180 
7181   push_to_sequence (*where);
7182 
7183   /* Auto-increment addresses must be reloaded in a special way.  */
7184   if (rl->out && ! rl->out_reg)
7185     {
7186       /* We are not going to bother supporting the case where a
7187 	 incremented register can't be copied directly from
7188 	 OLDEQUIV since this seems highly unlikely.  */
7189       gcc_assert (rl->secondary_in_reload < 0);
7190 
7191       if (reload_inherited[j])
7192 	oldequiv = reloadreg;
7193 
7194       old = XEXP (rl->in_reg, 0);
7195 
7196       /* Prevent normal processing of this reload.  */
7197       special = 1;
7198       /* Output a special code sequence for this case.  */
7199       inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7200     }
7201 
7202   /* If we are reloading a pseudo-register that was set by the previous
7203      insn, see if we can get rid of that pseudo-register entirely
7204      by redirecting the previous insn into our reload register.  */
7205 
7206   else if (optimize && REG_P (old)
7207 	   && REGNO (old) >= FIRST_PSEUDO_REGISTER
7208 	   && dead_or_set_p (insn, old)
7209 	   /* This is unsafe if some other reload
7210 	      uses the same reg first.  */
7211 	   && ! conflicts_with_override (reloadreg)
7212 	   && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7213 				rl->when_needed, old, rl->out, j, 0))
7214     {
7215       rtx_insn *temp = PREV_INSN (insn);
7216       while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7217 	temp = PREV_INSN (temp);
7218       if (temp
7219 	  && NONJUMP_INSN_P (temp)
7220 	  && GET_CODE (PATTERN (temp)) == SET
7221 	  && SET_DEST (PATTERN (temp)) == old
7222 	  /* Make sure we can access insn_operand_constraint.  */
7223 	  && asm_noperands (PATTERN (temp)) < 0
7224 	  /* This is unsafe if operand occurs more than once in current
7225 	     insn.  Perhaps some occurrences aren't reloaded.  */
7226 	  && count_occurrences (PATTERN (insn), old, 0) == 1)
7227 	{
7228 	  rtx old = SET_DEST (PATTERN (temp));
7229 	  /* Store into the reload register instead of the pseudo.  */
7230 	  SET_DEST (PATTERN (temp)) = reloadreg;
7231 
7232 	  /* Verify that resulting insn is valid.
7233 
7234 	     Note that we have replaced the destination of TEMP with
7235 	     RELOADREG.  If TEMP references RELOADREG within an
7236 	     autoincrement addressing mode, then the resulting insn
7237 	     is ill-formed and we must reject this optimization.  */
7238 	  extract_insn (temp);
7239 	  if (constrain_operands (1, get_enabled_alternatives (temp))
7240 	      && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7241 	    {
7242 	      /* If the previous insn is an output reload, the source is
7243 		 a reload register, and its spill_reg_store entry will
7244 		 contain the previous destination.  This is now
7245 		 invalid.  */
7246 	      if (REG_P (SET_SRC (PATTERN (temp)))
7247 		  && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7248 		{
7249 		  spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7250 		  spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7251 		}
7252 
7253 	      /* If these are the only uses of the pseudo reg,
7254 		 pretend for GDB it lives in the reload reg we used.  */
7255 	      if (REG_N_DEATHS (REGNO (old)) == 1
7256 		  && REG_N_SETS (REGNO (old)) == 1)
7257 		{
7258 		  reg_renumber[REGNO (old)] = REGNO (reloadreg);
7259 		  if (ira_conflicts_p)
7260 		    /* Inform IRA about the change.  */
7261 		    ira_mark_allocation_change (REGNO (old));
7262 		  alter_reg (REGNO (old), -1, false);
7263 		}
7264 	      special = 1;
7265 
7266 	      /* Adjust any debug insns between temp and insn.  */
7267 	      while ((temp = NEXT_INSN (temp)) != insn)
7268 		if (DEBUG_BIND_INSN_P (temp))
7269 		  INSN_VAR_LOCATION_LOC (temp)
7270 		    = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7271 					    old, reloadreg);
7272 		else
7273 		  gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7274 	    }
7275 	  else
7276 	    {
7277 	      SET_DEST (PATTERN (temp)) = old;
7278 	    }
7279 	}
7280     }
7281 
7282   /* We can't do that, so output an insn to load RELOADREG.  */
7283 
7284   /* If we have a secondary reload, pick up the secondary register
7285      and icode, if any.  If OLDEQUIV and OLD are different or
7286      if this is an in-out reload, recompute whether or not we
7287      still need a secondary register and what the icode should
7288      be.  If we still need a secondary register and the class or
7289      icode is different, go back to reloading from OLD if using
7290      OLDEQUIV means that we got the wrong type of register.  We
7291      cannot have different class or icode due to an in-out reload
7292      because we don't make such reloads when both the input and
7293      output need secondary reload registers.  */
7294 
7295   if (! special && rl->secondary_in_reload >= 0)
7296     {
7297       rtx second_reload_reg = 0;
7298       rtx third_reload_reg = 0;
7299       int secondary_reload = rl->secondary_in_reload;
7300       rtx real_oldequiv = oldequiv;
7301       rtx real_old = old;
7302       rtx tmp;
7303       enum insn_code icode;
7304       enum insn_code tertiary_icode = CODE_FOR_nothing;
7305 
7306       /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7307 	 and similarly for OLD.
7308 	 See comments in get_secondary_reload in reload.c.  */
7309       /* If it is a pseudo that cannot be replaced with its
7310 	 equivalent MEM, we must fall back to reload_in, which
7311 	 will have all the necessary substitutions registered.
7312 	 Likewise for a pseudo that can't be replaced with its
7313 	 equivalent constant.
7314 
7315 	 Take extra care for subregs of such pseudos.  Note that
7316 	 we cannot use reg_equiv_mem in this case because it is
7317 	 not in the right mode.  */
7318 
7319       tmp = oldequiv;
7320       if (GET_CODE (tmp) == SUBREG)
7321 	tmp = SUBREG_REG (tmp);
7322       if (REG_P (tmp)
7323 	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7324 	  && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7325 	      || reg_equiv_constant (REGNO (tmp)) != 0))
7326 	{
7327 	  if (! reg_equiv_mem (REGNO (tmp))
7328 	      || num_not_at_initial_offset
7329 	      || GET_CODE (oldequiv) == SUBREG)
7330 	    real_oldequiv = rl->in;
7331 	  else
7332 	    real_oldequiv = reg_equiv_mem (REGNO (tmp));
7333 	}
7334 
7335       tmp = old;
7336       if (GET_CODE (tmp) == SUBREG)
7337 	tmp = SUBREG_REG (tmp);
7338       if (REG_P (tmp)
7339 	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7340 	  && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7341 	      || reg_equiv_constant (REGNO (tmp)) != 0))
7342 	{
7343 	  if (! reg_equiv_mem (REGNO (tmp))
7344 	      || num_not_at_initial_offset
7345 	      || GET_CODE (old) == SUBREG)
7346 	    real_old = rl->in;
7347 	  else
7348 	    real_old = reg_equiv_mem (REGNO (tmp));
7349 	}
7350 
7351       second_reload_reg = rld[secondary_reload].reg_rtx;
7352       if (rld[secondary_reload].secondary_in_reload >= 0)
7353 	{
7354 	  int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7355 
7356 	  third_reload_reg = rld[tertiary_reload].reg_rtx;
7357 	  tertiary_icode = rld[secondary_reload].secondary_in_icode;
7358 	  /* We'd have to add more code for quartary reloads.  */
7359 	  gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7360 	}
7361       icode = rl->secondary_in_icode;
7362 
7363       if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7364 	  || (rl->in != 0 && rl->out != 0))
7365 	{
7366 	  secondary_reload_info sri, sri2;
7367 	  enum reg_class new_class, new_t_class;
7368 
7369 	  sri.icode = CODE_FOR_nothing;
7370 	  sri.prev_sri = NULL;
7371 	  new_class
7372 	    = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7373 							 rl->rclass, mode,
7374 							 &sri);
7375 
7376 	  if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7377 	    second_reload_reg = 0;
7378 	  else if (new_class == NO_REGS)
7379 	    {
7380 	      if (reload_adjust_reg_for_icode (&second_reload_reg,
7381 					       third_reload_reg,
7382 					       (enum insn_code) sri.icode))
7383 		{
7384 		  icode = (enum insn_code) sri.icode;
7385 		  third_reload_reg = 0;
7386 		}
7387 	      else
7388 		{
7389 		  oldequiv = old;
7390 		  real_oldequiv = real_old;
7391 		}
7392 	    }
7393 	  else if (sri.icode != CODE_FOR_nothing)
7394 	    /* We currently lack a way to express this in reloads.  */
7395 	    gcc_unreachable ();
7396 	  else
7397 	    {
7398 	      sri2.icode = CODE_FOR_nothing;
7399 	      sri2.prev_sri = &sri;
7400 	      new_t_class
7401 		= (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7402 							     new_class, mode,
7403 							     &sri);
7404 	      if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7405 		{
7406 		  if (reload_adjust_reg_for_temp (&second_reload_reg,
7407 						  third_reload_reg,
7408 						  new_class, mode))
7409 		    {
7410 		      third_reload_reg = 0;
7411 		      tertiary_icode = (enum insn_code) sri2.icode;
7412 		    }
7413 		  else
7414 		    {
7415 		      oldequiv = old;
7416 		      real_oldequiv = real_old;
7417 		    }
7418 		}
7419 	      else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7420 		{
7421 		  rtx intermediate = second_reload_reg;
7422 
7423 		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
7424 						  new_class, mode)
7425 		      && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7426 						      ((enum insn_code)
7427 						       sri2.icode)))
7428 		    {
7429 		      second_reload_reg = intermediate;
7430 		      tertiary_icode = (enum insn_code) sri2.icode;
7431 		    }
7432 		  else
7433 		    {
7434 		      oldequiv = old;
7435 		      real_oldequiv = real_old;
7436 		    }
7437 		}
7438 	      else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7439 		{
7440 		  rtx intermediate = second_reload_reg;
7441 
7442 		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
7443 						  new_class, mode)
7444 		      && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7445 						      new_t_class, mode))
7446 		    {
7447 		      second_reload_reg = intermediate;
7448 		      tertiary_icode = (enum insn_code) sri2.icode;
7449 		    }
7450 		  else
7451 		    {
7452 		      oldequiv = old;
7453 		      real_oldequiv = real_old;
7454 		    }
7455 		}
7456 	      else
7457 		{
7458 		  /* This could be handled more intelligently too.  */
7459 		  oldequiv = old;
7460 		  real_oldequiv = real_old;
7461 		}
7462 	    }
7463 	}
7464 
7465       /* If we still need a secondary reload register, check
7466 	 to see if it is being used as a scratch or intermediate
7467 	 register and generate code appropriately.  If we need
7468 	 a scratch register, use REAL_OLDEQUIV since the form of
7469 	 the insn may depend on the actual address if it is
7470 	 a MEM.  */
7471 
7472       if (second_reload_reg)
7473 	{
7474 	  if (icode != CODE_FOR_nothing)
7475 	    {
7476 	      /* We'd have to add extra code to handle this case.  */
7477 	      gcc_assert (!third_reload_reg);
7478 
7479 	      emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7480 					  second_reload_reg));
7481 	      special = 1;
7482 	    }
7483 	  else
7484 	    {
7485 	      /* See if we need a scratch register to load the
7486 		 intermediate register (a tertiary reload).  */
7487 	      if (tertiary_icode != CODE_FOR_nothing)
7488 		{
7489 		  emit_insn ((GEN_FCN (tertiary_icode)
7490 			      (second_reload_reg, real_oldequiv,
7491 			       third_reload_reg)));
7492 		}
7493 	      else if (third_reload_reg)
7494 		{
7495 		  gen_reload (third_reload_reg, real_oldequiv,
7496 			      rl->opnum,
7497 			      rl->when_needed);
7498 		  gen_reload (second_reload_reg, third_reload_reg,
7499 			      rl->opnum,
7500 			      rl->when_needed);
7501 		}
7502 	      else
7503 		gen_reload (second_reload_reg, real_oldequiv,
7504 			    rl->opnum,
7505 			    rl->when_needed);
7506 
7507 	      oldequiv = second_reload_reg;
7508 	    }
7509 	}
7510     }
7511 
7512   if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7513     {
7514       rtx real_oldequiv = oldequiv;
7515 
7516       if ((REG_P (oldequiv)
7517 	   && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7518 	   && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7519 	       || reg_equiv_constant (REGNO (oldequiv)) != 0))
7520 	  || (GET_CODE (oldequiv) == SUBREG
7521 	      && REG_P (SUBREG_REG (oldequiv))
7522 	      && (REGNO (SUBREG_REG (oldequiv))
7523 		  >= FIRST_PSEUDO_REGISTER)
7524 	      && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7525 		  || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7526 	  || (CONSTANT_P (oldequiv)
7527 	      && (targetm.preferred_reload_class (oldequiv,
7528 						  REGNO_REG_CLASS (REGNO (reloadreg)))
7529 		  == NO_REGS)))
7530 	real_oldequiv = rl->in;
7531       gen_reload (reloadreg, real_oldequiv, rl->opnum,
7532 		  rl->when_needed);
7533     }
7534 
7535   if (cfun->can_throw_non_call_exceptions)
7536     copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7537 
7538   /* End this sequence.  */
7539   *where = get_insns ();
7540   end_sequence ();
7541 
7542   /* Update reload_override_in so that delete_address_reloads_1
7543      can see the actual register usage.  */
7544   if (oldequiv_reg)
7545     reload_override_in[j] = oldequiv;
7546 }
7547 
7548 /* Generate insns to for the output reload RL, which is for the insn described
7549    by CHAIN and has the number J.  */
7550 static void
emit_output_reload_insns(class insn_chain * chain,struct reload * rl,int j)7551 emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
7552 			  int j)
7553 {
7554   rtx reloadreg;
7555   rtx_insn *insn = chain->insn;
7556   int special = 0;
7557   rtx old = rl->out;
7558   machine_mode mode;
7559   rtx_insn *p;
7560   rtx rl_reg_rtx;
7561 
7562   if (rl->when_needed == RELOAD_OTHER)
7563     start_sequence ();
7564   else
7565     push_to_sequence (output_reload_insns[rl->opnum]);
7566 
7567   rl_reg_rtx = reload_reg_rtx_for_output[j];
7568   mode = GET_MODE (rl_reg_rtx);
7569 
7570   reloadreg = rl_reg_rtx;
7571 
7572   /* If we need two reload regs, set RELOADREG to the intermediate
7573      one, since it will be stored into OLD.  We might need a secondary
7574      register only for an input reload, so check again here.  */
7575 
7576   if (rl->secondary_out_reload >= 0)
7577     {
7578       rtx real_old = old;
7579       int secondary_reload = rl->secondary_out_reload;
7580       int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7581 
7582       if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7583 	  && reg_equiv_mem (REGNO (old)) != 0)
7584 	real_old = reg_equiv_mem (REGNO (old));
7585 
7586       if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7587 	{
7588 	  rtx second_reloadreg = reloadreg;
7589 	  reloadreg = rld[secondary_reload].reg_rtx;
7590 
7591 	  /* See if RELOADREG is to be used as a scratch register
7592 	     or as an intermediate register.  */
7593 	  if (rl->secondary_out_icode != CODE_FOR_nothing)
7594 	    {
7595 	      /* We'd have to add extra code to handle this case.  */
7596 	      gcc_assert (tertiary_reload < 0);
7597 
7598 	      emit_insn ((GEN_FCN (rl->secondary_out_icode)
7599 			  (real_old, second_reloadreg, reloadreg)));
7600 	      special = 1;
7601 	    }
7602 	  else
7603 	    {
7604 	      /* See if we need both a scratch and intermediate reload
7605 		 register.  */
7606 
7607 	      enum insn_code tertiary_icode
7608 		= rld[secondary_reload].secondary_out_icode;
7609 
7610 	      /* We'd have to add more code for quartary reloads.  */
7611 	      gcc_assert (tertiary_reload < 0
7612 			  || rld[tertiary_reload].secondary_out_reload < 0);
7613 
7614 	      if (GET_MODE (reloadreg) != mode)
7615 		reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7616 
7617 	      if (tertiary_icode != CODE_FOR_nothing)
7618 		{
7619 		  rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7620 
7621 		  /* Copy primary reload reg to secondary reload reg.
7622 		     (Note that these have been swapped above, then
7623 		     secondary reload reg to OLD using our insn.)  */
7624 
7625 		  /* If REAL_OLD is a paradoxical SUBREG, remove it
7626 		     and try to put the opposite SUBREG on
7627 		     RELOADREG.  */
7628 		  strip_paradoxical_subreg (&real_old, &reloadreg);
7629 
7630 		  gen_reload (reloadreg, second_reloadreg,
7631 			      rl->opnum, rl->when_needed);
7632 		  emit_insn ((GEN_FCN (tertiary_icode)
7633 			      (real_old, reloadreg, third_reloadreg)));
7634 		  special = 1;
7635 		}
7636 
7637 	      else
7638 		{
7639 		  /* Copy between the reload regs here and then to
7640 		     OUT later.  */
7641 
7642 		  gen_reload (reloadreg, second_reloadreg,
7643 			      rl->opnum, rl->when_needed);
7644 		  if (tertiary_reload >= 0)
7645 		    {
7646 		      rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7647 
7648 		      gen_reload (third_reloadreg, reloadreg,
7649 				  rl->opnum, rl->when_needed);
7650 		      reloadreg = third_reloadreg;
7651 		    }
7652 		}
7653 	    }
7654 	}
7655     }
7656 
7657   /* Output the last reload insn.  */
7658   if (! special)
7659     {
7660       rtx set;
7661 
7662       /* Don't output the last reload if OLD is not the dest of
7663 	 INSN and is in the src and is clobbered by INSN.  */
7664       if (! flag_expensive_optimizations
7665 	  || !REG_P (old)
7666 	  || !(set = single_set (insn))
7667 	  || rtx_equal_p (old, SET_DEST (set))
7668 	  || !reg_mentioned_p (old, SET_SRC (set))
7669 	  || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7670 	       && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7671 	gen_reload (old, reloadreg, rl->opnum,
7672 		    rl->when_needed);
7673     }
7674 
7675   /* Look at all insns we emitted, just to be safe.  */
7676   for (p = get_insns (); p; p = NEXT_INSN (p))
7677     if (INSN_P (p))
7678       {
7679 	rtx pat = PATTERN (p);
7680 
7681 	/* If this output reload doesn't come from a spill reg,
7682 	   clear any memory of reloaded copies of the pseudo reg.
7683 	   If this output reload comes from a spill reg,
7684 	   reg_has_output_reload will make this do nothing.  */
7685 	note_stores (p, forget_old_reloads_1, NULL);
7686 
7687 	if (reg_mentioned_p (rl_reg_rtx, pat))
7688 	  {
7689 	    rtx set = single_set (insn);
7690 	    if (reload_spill_index[j] < 0
7691 		&& set
7692 		&& SET_SRC (set) == rl_reg_rtx)
7693 	      {
7694 		int src = REGNO (SET_SRC (set));
7695 
7696 		reload_spill_index[j] = src;
7697 		SET_HARD_REG_BIT (reg_is_output_reload, src);
7698 		if (find_regno_note (insn, REG_DEAD, src))
7699 		  SET_HARD_REG_BIT (reg_reloaded_died, src);
7700 	      }
7701 	    if (HARD_REGISTER_P (rl_reg_rtx))
7702 	      {
7703 		int s = rl->secondary_out_reload;
7704 		set = single_set (p);
7705 		/* If this reload copies only to the secondary reload
7706 		   register, the secondary reload does the actual
7707 		   store.  */
7708 		if (s >= 0 && set == NULL_RTX)
7709 		  /* We can't tell what function the secondary reload
7710 		     has and where the actual store to the pseudo is
7711 		     made; leave new_spill_reg_store alone.  */
7712 		  ;
7713 		else if (s >= 0
7714 			 && SET_SRC (set) == rl_reg_rtx
7715 			 && SET_DEST (set) == rld[s].reg_rtx)
7716 		  {
7717 		    /* Usually the next instruction will be the
7718 		       secondary reload insn;  if we can confirm
7719 		       that it is, setting new_spill_reg_store to
7720 		       that insn will allow an extra optimization.  */
7721 		    rtx s_reg = rld[s].reg_rtx;
7722 		    rtx_insn *next = NEXT_INSN (p);
7723 		    rld[s].out = rl->out;
7724 		    rld[s].out_reg = rl->out_reg;
7725 		    set = single_set (next);
7726 		    if (set && SET_SRC (set) == s_reg
7727 			&& reload_reg_rtx_reaches_end_p (s_reg, s))
7728 		      {
7729 			SET_HARD_REG_BIT (reg_is_output_reload,
7730 					  REGNO (s_reg));
7731 			new_spill_reg_store[REGNO (s_reg)] = next;
7732 		      }
7733 		  }
7734 		else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7735 		  new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7736 	      }
7737 	  }
7738       }
7739 
7740   if (rl->when_needed == RELOAD_OTHER)
7741     {
7742       emit_insn (other_output_reload_insns[rl->opnum]);
7743       other_output_reload_insns[rl->opnum] = get_insns ();
7744     }
7745   else
7746     output_reload_insns[rl->opnum] = get_insns ();
7747 
7748   if (cfun->can_throw_non_call_exceptions)
7749     copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7750 
7751   end_sequence ();
7752 }
7753 
7754 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7755    and has the number J.  */
7756 static void
do_input_reload(class insn_chain * chain,struct reload * rl,int j)7757 do_input_reload (class insn_chain *chain, struct reload *rl, int j)
7758 {
7759   rtx_insn *insn = chain->insn;
7760   rtx old = (rl->in && MEM_P (rl->in)
7761 	     ? rl->in_reg : rl->in);
7762   rtx reg_rtx = rl->reg_rtx;
7763 
7764   if (old && reg_rtx)
7765     {
7766       machine_mode mode;
7767 
7768       /* Determine the mode to reload in.
7769 	 This is very tricky because we have three to choose from.
7770 	 There is the mode the insn operand wants (rl->inmode).
7771 	 There is the mode of the reload register RELOADREG.
7772 	 There is the intrinsic mode of the operand, which we could find
7773 	 by stripping some SUBREGs.
7774 	 It turns out that RELOADREG's mode is irrelevant:
7775 	 we can change that arbitrarily.
7776 
7777 	 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7778 	 then the reload reg may not support QImode moves, so use SImode.
7779 	 If foo is in memory due to spilling a pseudo reg, this is safe,
7780 	 because the QImode value is in the least significant part of a
7781 	 slot big enough for a SImode.  If foo is some other sort of
7782 	 memory reference, then it is impossible to reload this case,
7783 	 so previous passes had better make sure this never happens.
7784 
7785 	 Then consider a one-word union which has SImode and one of its
7786 	 members is a float, being fetched as (SUBREG:SF union:SI).
7787 	 We must fetch that as SFmode because we could be loading into
7788 	 a float-only register.  In this case OLD's mode is correct.
7789 
7790 	 Consider an immediate integer: it has VOIDmode.  Here we need
7791 	 to get a mode from something else.
7792 
7793 	 In some cases, there is a fourth mode, the operand's
7794 	 containing mode.  If the insn specifies a containing mode for
7795 	 this operand, it overrides all others.
7796 
7797 	 I am not sure whether the algorithm here is always right,
7798 	 but it does the right things in those cases.  */
7799 
7800       mode = GET_MODE (old);
7801       if (mode == VOIDmode)
7802 	mode = rl->inmode;
7803 
7804       /* We cannot use gen_lowpart_common since it can do the wrong thing
7805 	 when REG_RTX has a multi-word mode.  Note that REG_RTX must
7806 	 always be a REG here.  */
7807       if (GET_MODE (reg_rtx) != mode)
7808 	reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7809     }
7810   reload_reg_rtx_for_input[j] = reg_rtx;
7811 
7812   if (old != 0
7813       /* AUTO_INC reloads need to be handled even if inherited.  We got an
7814 	 AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
7815       && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7816       && ! rtx_equal_p (reg_rtx, old)
7817       && reg_rtx != 0)
7818     emit_input_reload_insns (chain, rld + j, old, j);
7819 
7820   /* When inheriting a wider reload, we have a MEM in rl->in,
7821      e.g. inheriting a SImode output reload for
7822      (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
7823   if (optimize && reload_inherited[j] && rl->in
7824       && MEM_P (rl->in)
7825       && MEM_P (rl->in_reg)
7826       && reload_spill_index[j] >= 0
7827       && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7828     rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7829 
7830   /* If we are reloading a register that was recently stored in with an
7831      output-reload, see if we can prove there was
7832      actually no need to store the old value in it.  */
7833 
7834   if (optimize
7835       && (reload_inherited[j] || reload_override_in[j])
7836       && reg_rtx
7837       && REG_P (reg_rtx)
7838       && spill_reg_store[REGNO (reg_rtx)] != 0
7839 #if 0
7840       /* There doesn't seem to be any reason to restrict this to pseudos
7841 	 and doing so loses in the case where we are copying from a
7842 	 register of the wrong class.  */
7843       && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7844 #endif
7845       /* The insn might have already some references to stackslots
7846 	 replaced by MEMs, while reload_out_reg still names the
7847 	 original pseudo.  */
7848       && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7849 	  || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7850     delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7851 }
7852 
7853 /* Do output reloading for reload RL, which is for the insn described by
7854    CHAIN and has the number J.
7855    ??? At some point we need to support handling output reloads of
7856    JUMP_INSNs or insns that set cc0.  */
7857 static void
do_output_reload(class insn_chain * chain,struct reload * rl,int j)7858 do_output_reload (class insn_chain *chain, struct reload *rl, int j)
7859 {
7860   rtx note, old;
7861   rtx_insn *insn = chain->insn;
7862   /* If this is an output reload that stores something that is
7863      not loaded in this same reload, see if we can eliminate a previous
7864      store.  */
7865   rtx pseudo = rl->out_reg;
7866   rtx reg_rtx = rl->reg_rtx;
7867 
7868   if (rl->out && reg_rtx)
7869     {
7870       machine_mode mode;
7871 
7872       /* Determine the mode to reload in.
7873 	 See comments above (for input reloading).  */
7874       mode = GET_MODE (rl->out);
7875       if (mode == VOIDmode)
7876 	{
7877 	  /* VOIDmode should never happen for an output.  */
7878 	  if (asm_noperands (PATTERN (insn)) < 0)
7879 	    /* It's the compiler's fault.  */
7880 	    fatal_insn ("VOIDmode on an output", insn);
7881 	  error_for_asm (insn, "output operand is constant in %<asm%>");
7882 	  /* Prevent crash--use something we know is valid.  */
7883 	  mode = word_mode;
7884 	  rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7885 	}
7886       if (GET_MODE (reg_rtx) != mode)
7887 	reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7888     }
7889   reload_reg_rtx_for_output[j] = reg_rtx;
7890 
7891   if (pseudo
7892       && optimize
7893       && REG_P (pseudo)
7894       && ! rtx_equal_p (rl->in_reg, pseudo)
7895       && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7896       && reg_last_reload_reg[REGNO (pseudo)])
7897     {
7898       int pseudo_no = REGNO (pseudo);
7899       int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7900 
7901       /* We don't need to test full validity of last_regno for
7902 	 inherit here; we only want to know if the store actually
7903 	 matches the pseudo.  */
7904       if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7905 	  && reg_reloaded_contents[last_regno] == pseudo_no
7906 	  && spill_reg_store[last_regno]
7907 	  && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7908 	delete_output_reload (insn, j, last_regno, reg_rtx);
7909     }
7910 
7911   old = rl->out_reg;
7912   if (old == 0
7913       || reg_rtx == 0
7914       || rtx_equal_p (old, reg_rtx))
7915     return;
7916 
7917   /* An output operand that dies right away does need a reload,
7918      but need not be copied from it.  Show the new location in the
7919      REG_UNUSED note.  */
7920   if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7921       && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7922     {
7923       XEXP (note, 0) = reg_rtx;
7924       return;
7925     }
7926   /* Likewise for a SUBREG of an operand that dies.  */
7927   else if (GET_CODE (old) == SUBREG
7928 	   && REG_P (SUBREG_REG (old))
7929 	   && (note = find_reg_note (insn, REG_UNUSED,
7930 				     SUBREG_REG (old))) != 0)
7931     {
7932       XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7933       return;
7934     }
7935   else if (GET_CODE (old) == SCRATCH)
7936     /* If we aren't optimizing, there won't be a REG_UNUSED note,
7937        but we don't want to make an output reload.  */
7938     return;
7939 
7940   /* If is a JUMP_INSN, we can't support output reloads yet.  */
7941   gcc_assert (NONJUMP_INSN_P (insn));
7942 
7943   emit_output_reload_insns (chain, rld + j, j);
7944 }
7945 
7946 /* A reload copies values of MODE from register SRC to register DEST.
7947    Return true if it can be treated for inheritance purposes like a
7948    group of reloads, each one reloading a single hard register.  The
7949    caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7950    occupy the same number of hard registers.  */
7951 
7952 static bool
inherit_piecemeal_p(int dest ATTRIBUTE_UNUSED,int src ATTRIBUTE_UNUSED,machine_mode mode ATTRIBUTE_UNUSED)7953 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7954 		     int src ATTRIBUTE_UNUSED,
7955 		     machine_mode mode ATTRIBUTE_UNUSED)
7956 {
7957   return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7958 	  && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7959 }
7960 
7961 /* Output insns to reload values in and out of the chosen reload regs.  */
7962 
7963 static void
emit_reload_insns(class insn_chain * chain)7964 emit_reload_insns (class insn_chain *chain)
7965 {
7966   rtx_insn *insn = chain->insn;
7967 
7968   int j;
7969 
7970   CLEAR_HARD_REG_SET (reg_reloaded_died);
7971 
7972   for (j = 0; j < reload_n_operands; j++)
7973     input_reload_insns[j] = input_address_reload_insns[j]
7974       = inpaddr_address_reload_insns[j]
7975       = output_reload_insns[j] = output_address_reload_insns[j]
7976       = outaddr_address_reload_insns[j]
7977       = other_output_reload_insns[j] = 0;
7978   other_input_address_reload_insns = 0;
7979   other_input_reload_insns = 0;
7980   operand_reload_insns = 0;
7981   other_operand_reload_insns = 0;
7982 
7983   /* Dump reloads into the dump file.  */
7984   if (dump_file)
7985     {
7986       fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7987       debug_reload_to_stream (dump_file);
7988     }
7989 
7990   for (j = 0; j < n_reloads; j++)
7991     if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7992       {
7993 	unsigned int i;
7994 
7995 	for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7996 	  new_spill_reg_store[i] = 0;
7997       }
7998 
7999   /* Now output the instructions to copy the data into and out of the
8000      reload registers.  Do these in the order that the reloads were reported,
8001      since reloads of base and index registers precede reloads of operands
8002      and the operands may need the base and index registers reloaded.  */
8003 
8004   for (j = 0; j < n_reloads; j++)
8005     {
8006       do_input_reload (chain, rld + j, j);
8007       do_output_reload (chain, rld + j, j);
8008     }
8009 
8010   /* Now write all the insns we made for reloads in the order expected by
8011      the allocation functions.  Prior to the insn being reloaded, we write
8012      the following reloads:
8013 
8014      RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8015 
8016      RELOAD_OTHER reloads.
8017 
8018      For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8019      by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8020      RELOAD_FOR_INPUT reload for the operand.
8021 
8022      RELOAD_FOR_OPADDR_ADDRS reloads.
8023 
8024      RELOAD_FOR_OPERAND_ADDRESS reloads.
8025 
8026      After the insn being reloaded, we write the following:
8027 
8028      For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8029      by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8030      RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8031      reloads for the operand.  The RELOAD_OTHER output reloads are
8032      output in descending order by reload number.  */
8033 
8034   emit_insn_before (other_input_address_reload_insns, insn);
8035   emit_insn_before (other_input_reload_insns, insn);
8036 
8037   for (j = 0; j < reload_n_operands; j++)
8038     {
8039       emit_insn_before (inpaddr_address_reload_insns[j], insn);
8040       emit_insn_before (input_address_reload_insns[j], insn);
8041       emit_insn_before (input_reload_insns[j], insn);
8042     }
8043 
8044   emit_insn_before (other_operand_reload_insns, insn);
8045   emit_insn_before (operand_reload_insns, insn);
8046 
8047   for (j = 0; j < reload_n_operands; j++)
8048     {
8049       rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8050       x = emit_insn_after (output_address_reload_insns[j], x);
8051       x = emit_insn_after (output_reload_insns[j], x);
8052       emit_insn_after (other_output_reload_insns[j], x);
8053     }
8054 
8055   /* For all the spill regs newly reloaded in this instruction,
8056      record what they were reloaded from, so subsequent instructions
8057      can inherit the reloads.
8058 
8059      Update spill_reg_store for the reloads of this insn.
8060      Copy the elements that were updated in the loop above.  */
8061 
8062   for (j = 0; j < n_reloads; j++)
8063     {
8064       int r = reload_order[j];
8065       int i = reload_spill_index[r];
8066 
8067       /* If this is a non-inherited input reload from a pseudo, we must
8068 	 clear any memory of a previous store to the same pseudo.  Only do
8069 	 something if there will not be an output reload for the pseudo
8070 	 being reloaded.  */
8071       if (rld[r].in_reg != 0
8072 	  && ! (reload_inherited[r] || reload_override_in[r]))
8073 	{
8074 	  rtx reg = rld[r].in_reg;
8075 
8076 	  if (GET_CODE (reg) == SUBREG)
8077 	    reg = SUBREG_REG (reg);
8078 
8079 	  if (REG_P (reg)
8080 	      && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8081 	      && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8082 	    {
8083 	      int nregno = REGNO (reg);
8084 
8085 	      if (reg_last_reload_reg[nregno])
8086 		{
8087 		  int last_regno = REGNO (reg_last_reload_reg[nregno]);
8088 
8089 		  if (reg_reloaded_contents[last_regno] == nregno)
8090 		    spill_reg_store[last_regno] = 0;
8091 		}
8092 	    }
8093 	}
8094 
8095       /* I is nonneg if this reload used a register.
8096 	 If rld[r].reg_rtx is 0, this is an optional reload
8097 	 that we opted to ignore.  */
8098 
8099       if (i >= 0 && rld[r].reg_rtx != 0)
8100 	{
8101 	  int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8102 	  int k;
8103 
8104 	  /* For a multi register reload, we need to check if all or part
8105 	     of the value lives to the end.  */
8106 	  for (k = 0; k < nr; k++)
8107 	    if (reload_reg_reaches_end_p (i + k, r))
8108 	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8109 
8110 	  /* Maybe the spill reg contains a copy of reload_out.  */
8111 	  if (rld[r].out != 0
8112 	      && (REG_P (rld[r].out)
8113 		  || (rld[r].out_reg
8114 		      ? REG_P (rld[r].out_reg)
8115 		      /* The reload value is an auto-modification of
8116 			 some kind.  For PRE_INC, POST_INC, PRE_DEC
8117 			 and POST_DEC, we record an equivalence
8118 			 between the reload register and the operand
8119 			 on the optimistic assumption that we can make
8120 			 the equivalence hold.  reload_as_needed must
8121 			 then either make it hold or invalidate the
8122 			 equivalence.
8123 
8124 			 PRE_MODIFY and POST_MODIFY addresses are reloaded
8125 			 somewhat differently, and allowing them here leads
8126 			 to problems.  */
8127 		      : (GET_CODE (rld[r].out) != POST_MODIFY
8128 			 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8129 	    {
8130 	      rtx reg;
8131 
8132 	      reg = reload_reg_rtx_for_output[r];
8133 	      if (reload_reg_rtx_reaches_end_p (reg, r))
8134 		{
8135 		  machine_mode mode = GET_MODE (reg);
8136 		  int regno = REGNO (reg);
8137 		  int nregs = REG_NREGS (reg);
8138 		  rtx out = (REG_P (rld[r].out)
8139 			     ? rld[r].out
8140 			     : rld[r].out_reg
8141 			     ? rld[r].out_reg
8142 /* AUTO_INC */		     : XEXP (rld[r].in_reg, 0));
8143 		  int out_regno = REGNO (out);
8144 		  int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8145 				   : hard_regno_nregs (out_regno, mode));
8146 		  bool piecemeal;
8147 
8148 		  spill_reg_store[regno] = new_spill_reg_store[regno];
8149 		  spill_reg_stored_to[regno] = out;
8150 		  reg_last_reload_reg[out_regno] = reg;
8151 
8152 		  piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8153 			       && nregs == out_nregs
8154 			       && inherit_piecemeal_p (out_regno, regno, mode));
8155 
8156 		  /* If OUT_REGNO is a hard register, it may occupy more than
8157 		     one register.  If it does, say what is in the
8158 		     rest of the registers assuming that both registers
8159 		     agree on how many words the object takes.  If not,
8160 		     invalidate the subsequent registers.  */
8161 
8162 		  if (HARD_REGISTER_NUM_P (out_regno))
8163 		    for (k = 1; k < out_nregs; k++)
8164 		      reg_last_reload_reg[out_regno + k]
8165 			= (piecemeal ? regno_reg_rtx[regno + k] : 0);
8166 
8167 		  /* Now do the inverse operation.  */
8168 		  for (k = 0; k < nregs; k++)
8169 		    {
8170 		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8171 		      reg_reloaded_contents[regno + k]
8172 			= (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8173 			   ? out_regno
8174 			   : out_regno + k);
8175 		      reg_reloaded_insn[regno + k] = insn;
8176 		      SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8177 		    }
8178 		}
8179 	    }
8180 	  /* Maybe the spill reg contains a copy of reload_in.  Only do
8181 	     something if there will not be an output reload for
8182 	     the register being reloaded.  */
8183 	  else if (rld[r].out_reg == 0
8184 		   && rld[r].in != 0
8185 		   && ((REG_P (rld[r].in)
8186 			&& !HARD_REGISTER_P (rld[r].in)
8187 			&& !REGNO_REG_SET_P (&reg_has_output_reload,
8188 					     REGNO (rld[r].in)))
8189 		       || (REG_P (rld[r].in_reg)
8190 			   && !REGNO_REG_SET_P (&reg_has_output_reload,
8191 						REGNO (rld[r].in_reg))))
8192 		   && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8193 	    {
8194 	      rtx reg;
8195 
8196 	      reg = reload_reg_rtx_for_input[r];
8197 	      if (reload_reg_rtx_reaches_end_p (reg, r))
8198 		{
8199 		  machine_mode mode;
8200 		  int regno;
8201 		  int nregs;
8202 		  int in_regno;
8203 		  int in_nregs;
8204 		  rtx in;
8205 		  bool piecemeal;
8206 
8207 		  mode = GET_MODE (reg);
8208 		  regno = REGNO (reg);
8209 		  nregs = REG_NREGS (reg);
8210 		  if (REG_P (rld[r].in)
8211 		      && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8212 		    in = rld[r].in;
8213 		  else if (REG_P (rld[r].in_reg))
8214 		    in = rld[r].in_reg;
8215 		  else
8216 		    in = XEXP (rld[r].in_reg, 0);
8217 		  in_regno = REGNO (in);
8218 
8219 		  in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8220 			      : hard_regno_nregs (in_regno, mode));
8221 
8222 		  reg_last_reload_reg[in_regno] = reg;
8223 
8224 		  piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8225 			       && nregs == in_nregs
8226 			       && inherit_piecemeal_p (regno, in_regno, mode));
8227 
8228 		  if (HARD_REGISTER_NUM_P (in_regno))
8229 		    for (k = 1; k < in_nregs; k++)
8230 		      reg_last_reload_reg[in_regno + k]
8231 			= (piecemeal ? regno_reg_rtx[regno + k] : 0);
8232 
8233 		  /* Unless we inherited this reload, show we haven't
8234 		     recently done a store.
8235 		     Previous stores of inherited auto_inc expressions
8236 		     also have to be discarded.  */
8237 		  if (! reload_inherited[r]
8238 		      || (rld[r].out && ! rld[r].out_reg))
8239 		    spill_reg_store[regno] = 0;
8240 
8241 		  for (k = 0; k < nregs; k++)
8242 		    {
8243 		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8244 		      reg_reloaded_contents[regno + k]
8245 			= (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8246 			   ? in_regno
8247 			   : in_regno + k);
8248 		      reg_reloaded_insn[regno + k] = insn;
8249 		      SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8250 		    }
8251 		}
8252 	    }
8253 	}
8254 
8255       /* The following if-statement was #if 0'd in 1.34 (or before...).
8256 	 It's reenabled in 1.35 because supposedly nothing else
8257 	 deals with this problem.  */
8258 
8259       /* If a register gets output-reloaded from a non-spill register,
8260 	 that invalidates any previous reloaded copy of it.
8261 	 But forget_old_reloads_1 won't get to see it, because
8262 	 it thinks only about the original insn.  So invalidate it here.
8263 	 Also do the same thing for RELOAD_OTHER constraints where the
8264 	 output is discarded.  */
8265       if (i < 0
8266 	  && ((rld[r].out != 0
8267 	       && (REG_P (rld[r].out)
8268 		   || (MEM_P (rld[r].out)
8269 		       && REG_P (rld[r].out_reg))))
8270 	      || (rld[r].out == 0 && rld[r].out_reg
8271 		  && REG_P (rld[r].out_reg))))
8272 	{
8273 	  rtx out = ((rld[r].out && REG_P (rld[r].out))
8274 		     ? rld[r].out : rld[r].out_reg);
8275 	  int out_regno = REGNO (out);
8276 	  machine_mode mode = GET_MODE (out);
8277 
8278 	  /* REG_RTX is now set or clobbered by the main instruction.
8279 	     As the comment above explains, forget_old_reloads_1 only
8280 	     sees the original instruction, and there is no guarantee
8281 	     that the original instruction also clobbered REG_RTX.
8282 	     For example, if find_reloads sees that the input side of
8283 	     a matched operand pair dies in this instruction, it may
8284 	     use the input register as the reload register.
8285 
8286 	     Calling forget_old_reloads_1 is a waste of effort if
8287 	     REG_RTX is also the output register.
8288 
8289 	     If we know that REG_RTX holds the value of a pseudo
8290 	     register, the code after the call will record that fact.  */
8291 	  if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8292 	    forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8293 
8294 	  if (!HARD_REGISTER_NUM_P (out_regno))
8295 	    {
8296 	      rtx src_reg;
8297 	      rtx_insn *store_insn = NULL;
8298 
8299 	      reg_last_reload_reg[out_regno] = 0;
8300 
8301 	      /* If we can find a hard register that is stored, record
8302 		 the storing insn so that we may delete this insn with
8303 		 delete_output_reload.  */
8304 	      src_reg = reload_reg_rtx_for_output[r];
8305 
8306 	      if (src_reg)
8307 		{
8308 		  if (reload_reg_rtx_reaches_end_p (src_reg, r))
8309 		    store_insn = new_spill_reg_store[REGNO (src_reg)];
8310 		  else
8311 		    src_reg = NULL_RTX;
8312 		}
8313 	      else
8314 		{
8315 		  /* If this is an optional reload, try to find the
8316 		     source reg from an input reload.  */
8317 		  rtx set = single_set (insn);
8318 		  if (set && SET_DEST (set) == rld[r].out)
8319 		    {
8320 		      int k;
8321 
8322 		      src_reg = SET_SRC (set);
8323 		      store_insn = insn;
8324 		      for (k = 0; k < n_reloads; k++)
8325 			{
8326 			  if (rld[k].in == src_reg)
8327 			    {
8328 			      src_reg = reload_reg_rtx_for_input[k];
8329 			      break;
8330 			    }
8331 			}
8332 		    }
8333 		}
8334 	      if (src_reg && REG_P (src_reg)
8335 		  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8336 		{
8337 		  int src_regno, src_nregs, k;
8338 		  rtx note;
8339 
8340 		  gcc_assert (GET_MODE (src_reg) == mode);
8341 		  src_regno = REGNO (src_reg);
8342 		  src_nregs = hard_regno_nregs (src_regno, mode);
8343 		  /* The place where to find a death note varies with
8344 		     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
8345 		     necessarily checked exactly in the code that moves
8346 		     notes, so just check both locations.  */
8347 		  note = find_regno_note (insn, REG_DEAD, src_regno);
8348 		  if (! note && store_insn)
8349 		    note = find_regno_note (store_insn, REG_DEAD, src_regno);
8350 		  for (k = 0; k < src_nregs; k++)
8351 		    {
8352 		      spill_reg_store[src_regno + k] = store_insn;
8353 		      spill_reg_stored_to[src_regno + k] = out;
8354 		      reg_reloaded_contents[src_regno + k] = out_regno;
8355 		      reg_reloaded_insn[src_regno + k] = store_insn;
8356 		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8357 		      SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8358 		      SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8359 		      if (note)
8360 			SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8361 		      else
8362 			CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8363 		    }
8364 		  reg_last_reload_reg[out_regno] = src_reg;
8365 		  /* We have to set reg_has_output_reload here, or else
8366 		     forget_old_reloads_1 will clear reg_last_reload_reg
8367 		     right away.  */
8368 		  SET_REGNO_REG_SET (&reg_has_output_reload,
8369 				     out_regno);
8370 		}
8371 	    }
8372 	  else
8373 	    {
8374 	      int k, out_nregs = hard_regno_nregs (out_regno, mode);
8375 
8376 	      for (k = 0; k < out_nregs; k++)
8377 		reg_last_reload_reg[out_regno + k] = 0;
8378 	    }
8379 	}
8380 
8381 #ifdef NB_FIX_VAX_BACKEND
8382 #if AUTO_INC_DEC
8383       /* Where an output register might be reloaded, and it is a
8384 	 memory reference, and the address is auto-incremented, any
8385 	 previously reloaded copy of the address must be
8386 	 invalidated. */
8387       if (i < 0
8388 	  && rld[r].out != 0
8389 	  && MEM_P (rld[r].out))
8390 	{
8391 	  rtx out = XEXP (rld[r].out, 0); /* address expression */
8392 	  enum rtx_code code = GET_CODE (out);
8393 
8394 	  if (code != POST_INC && code != POST_DEC
8395 	      && code != PRE_INC && code != PRE_DEC)
8396 	    {
8397 	      /* do nothing */
8398 	    }
8399 	  else
8400 	    {
8401 	      int out_regno = REGNO (XEXP (out, 0));
8402 	      machine_mode mode = GET_MODE (XEXP (out, 0));
8403 
8404 	      /* for the moment, handle only the case where out_regno
8405 		 is a hardware register */
8406 
8407 	      if (HARD_REGISTER_NUM_P (out_regno))
8408 		{
8409 		  int k, out_nregs = hard_regno_nregs (out_regno, mode);
8410 
8411 		  for (k = 0; k < out_nregs; k++)
8412 		    reg_last_reload_reg[out_regno + k] = 0;
8413 		}
8414 	    }
8415 	}
8416 #endif /* AUTO_INC_DEC */
8417 #endif
8418     }
8419   reg_reloaded_dead |= reg_reloaded_died;
8420 }
8421 
8422 /* Go through the motions to emit INSN and test if it is strictly valid.
8423    Return the emitted insn if valid, else return NULL.  */
8424 
8425 static rtx_insn *
emit_insn_if_valid_for_reload(rtx pat)8426 emit_insn_if_valid_for_reload (rtx pat)
8427 {
8428   rtx_insn *last = get_last_insn ();
8429   int code;
8430 
8431   rtx_insn *insn = emit_insn (pat);
8432   code = recog_memoized (insn);
8433 
8434   if (code >= 0)
8435     {
8436       extract_insn (insn);
8437       /* We want constrain operands to treat this insn strictly in its
8438 	 validity determination, i.e., the way it would after reload has
8439 	 completed.  */
8440       if (constrain_operands (1, get_enabled_alternatives (insn)))
8441 	return insn;
8442     }
8443 
8444   delete_insns_since (last);
8445   return NULL;
8446 }
8447 
8448 /* Emit code to perform a reload from IN (which may be a reload register) to
8449    OUT (which may also be a reload register).  IN or OUT is from operand
8450    OPNUM with reload type TYPE.
8451 
8452    Returns first insn emitted.  */
8453 
8454 static rtx_insn *
gen_reload(rtx out,rtx in,int opnum,enum reload_type type)8455 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8456 {
8457   rtx_insn *last = get_last_insn ();
8458   rtx_insn *tem;
8459   rtx tem1, tem2;
8460 
8461   /* If IN is a paradoxical SUBREG, remove it and try to put the
8462      opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
8463   if (!strip_paradoxical_subreg (&in, &out))
8464     strip_paradoxical_subreg (&out, &in);
8465 
8466   /* How to do this reload can get quite tricky.  Normally, we are being
8467      asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8468      register that didn't get a hard register.  In that case we can just
8469      call emit_move_insn.
8470 
8471      We can also be asked to reload a PLUS that adds a register or a MEM to
8472      another register, constant or MEM.  This can occur during frame pointer
8473      elimination and while reloading addresses.  This case is handled by
8474      trying to emit a single insn to perform the add.  If it is not valid,
8475      we use a two insn sequence.
8476 
8477      Or we can be asked to reload an unary operand that was a fragment of
8478      an addressing mode, into a register.  If it isn't recognized as-is,
8479      we try making the unop operand and the reload-register the same:
8480      (set reg:X (unop:X expr:Y))
8481      -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8482 
8483      Finally, we could be called to handle an 'o' constraint by putting
8484      an address into a register.  In that case, we first try to do this
8485      with a named pattern of "reload_load_address".  If no such pattern
8486      exists, we just emit a SET insn and hope for the best (it will normally
8487      be valid on machines that use 'o').
8488 
8489      This entire process is made complex because reload will never
8490      process the insns we generate here and so we must ensure that
8491      they will fit their constraints and also by the fact that parts of
8492      IN might be being reloaded separately and replaced with spill registers.
8493      Because of this, we are, in some sense, just guessing the right approach
8494      here.  The one listed above seems to work.
8495 
8496      ??? At some point, this whole thing needs to be rethought.  */
8497 
8498   if (GET_CODE (in) == PLUS
8499       && (REG_P (XEXP (in, 0))
8500 	  || GET_CODE (XEXP (in, 0)) == SUBREG
8501 	  || MEM_P (XEXP (in, 0)))
8502       && (REG_P (XEXP (in, 1))
8503 	  || GET_CODE (XEXP (in, 1)) == SUBREG
8504 	  || CONSTANT_P (XEXP (in, 1))
8505 	  || MEM_P (XEXP (in, 1))))
8506     {
8507       /* We need to compute the sum of a register or a MEM and another
8508 	 register, constant, or MEM, and put it into the reload
8509 	 register.  The best possible way of doing this is if the machine
8510 	 has a three-operand ADD insn that accepts the required operands.
8511 
8512 	 The simplest approach is to try to generate such an insn and see if it
8513 	 is recognized and matches its constraints.  If so, it can be used.
8514 
8515 	 It might be better not to actually emit the insn unless it is valid,
8516 	 but we need to pass the insn as an operand to `recog' and
8517 	 `extract_insn' and it is simpler to emit and then delete the insn if
8518 	 not valid than to dummy things up.  */
8519 
8520       rtx op0, op1, tem;
8521       rtx_insn *insn;
8522       enum insn_code code;
8523 
8524       op0 = find_replacement (&XEXP (in, 0));
8525       op1 = find_replacement (&XEXP (in, 1));
8526 
8527       /* Since constraint checking is strict, commutativity won't be
8528 	 checked, so we need to do that here to avoid spurious failure
8529 	 if the add instruction is two-address and the second operand
8530 	 of the add is the same as the reload reg, which is frequently
8531 	 the case.  If the insn would be A = B + A, rearrange it so
8532 	 it will be A = A + B as constrain_operands expects.  */
8533 
8534       if (REG_P (XEXP (in, 1))
8535 	  && REGNO (out) == REGNO (XEXP (in, 1)))
8536 	tem = op0, op0 = op1, op1 = tem;
8537 
8538       if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8539 	in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8540 
8541       insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8542       if (insn)
8543 	return insn;
8544 
8545       /* If that failed, we must use a conservative two-insn sequence.
8546 
8547 	 Use a move to copy one operand into the reload register.  Prefer
8548 	 to reload a constant, MEM or pseudo since the move patterns can
8549 	 handle an arbitrary operand.  If OP1 is not a constant, MEM or
8550 	 pseudo and OP1 is not a valid operand for an add instruction, then
8551 	 reload OP1.
8552 
8553 	 After reloading one of the operands into the reload register, add
8554 	 the reload register to the output register.
8555 
8556 	 If there is another way to do this for a specific machine, a
8557 	 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8558 	 we emit below.  */
8559 
8560       code = optab_handler (add_optab, GET_MODE (out));
8561 
8562       if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8563 	  || (REG_P (op1)
8564 	      && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8565 	  || (code != CODE_FOR_nothing
8566 	      && !insn_operand_matches (code, 2, op1)))
8567 	tem = op0, op0 = op1, op1 = tem;
8568 
8569       gen_reload (out, op0, opnum, type);
8570 
8571       /* If OP0 and OP1 are the same, we can use OUT for OP1.
8572 	 This fixes a problem on the 32K where the stack pointer cannot
8573 	 be used as an operand of an add insn.  */
8574 
8575       if (rtx_equal_p (op0, op1))
8576 	op1 = out;
8577 
8578       insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8579       if (insn)
8580 	{
8581 	  /* Add a REG_EQUIV note so that find_equiv_reg can find it.  */
8582 	  set_dst_reg_note (insn, REG_EQUIV, in, out);
8583 	  return insn;
8584 	}
8585 
8586       /* If that failed, copy the address register to the reload register.
8587 	 Then add the constant to the reload register.  */
8588 
8589       gcc_assert (!reg_overlap_mentioned_p (out, op0));
8590       gen_reload (out, op1, opnum, type);
8591       insn = emit_insn (gen_add2_insn (out, op0));
8592       set_dst_reg_note (insn, REG_EQUIV, in, out);
8593     }
8594 
8595   /* If we need a memory location to do the move, do it that way.  */
8596   else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8597 	    (REG_P (tem1) && REG_P (tem2)))
8598 	   && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8599 	   && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8600 	   && targetm.secondary_memory_needed (GET_MODE (out),
8601 					       REGNO_REG_CLASS (REGNO (tem1)),
8602 					       REGNO_REG_CLASS (REGNO (tem2))))
8603     {
8604       /* Get the memory to use and rewrite both registers to its mode.  */
8605       rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8606 
8607       if (GET_MODE (loc) != GET_MODE (out))
8608 	out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8609 
8610       if (GET_MODE (loc) != GET_MODE (in))
8611 	in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8612 
8613       gen_reload (loc, in, opnum, type);
8614       gen_reload (out, loc, opnum, type);
8615     }
8616   else if (REG_P (out) && UNARY_P (in))
8617     {
8618       rtx op1;
8619       rtx out_moded;
8620       rtx_insn *set;
8621 
8622       op1 = find_replacement (&XEXP (in, 0));
8623       if (op1 != XEXP (in, 0))
8624 	in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8625 
8626       /* First, try a plain SET.  */
8627       set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8628       if (set)
8629 	return set;
8630 
8631       /* If that failed, move the inner operand to the reload
8632 	 register, and try the same unop with the inner expression
8633 	 replaced with the reload register.  */
8634 
8635       if (GET_MODE (op1) != GET_MODE (out))
8636 	out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8637       else
8638 	out_moded = out;
8639 
8640       gen_reload (out_moded, op1, opnum, type);
8641 
8642       rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8643 						  out_moded));
8644       rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8645       if (insn)
8646 	{
8647 	  set_unique_reg_note (insn, REG_EQUIV, in);
8648 	  return insn;
8649 	}
8650 
8651       fatal_insn ("failure trying to reload:", set);
8652     }
8653   /* If IN is a simple operand, use gen_move_insn.  */
8654   else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8655     {
8656       tem = emit_insn (gen_move_insn (out, in));
8657       /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note.  */
8658       mark_jump_label (in, tem, 0);
8659     }
8660 
8661   else if (targetm.have_reload_load_address ())
8662     emit_insn (targetm.gen_reload_load_address (out, in));
8663 
8664   /* Otherwise, just write (set OUT IN) and hope for the best.  */
8665   else
8666     emit_insn (gen_rtx_SET (out, in));
8667 
8668   /* Return the first insn emitted.
8669      We cannot just return get_last_insn, because there may have
8670      been multiple instructions emitted.  Also note that gen_move_insn may
8671      emit more than one insn itself, so we cannot assume that there is one
8672      insn emitted per emit_insn_before call.  */
8673 
8674   return last ? NEXT_INSN (last) : get_insns ();
8675 }
8676 
8677 /* Delete a previously made output-reload whose result we now believe
8678    is not needed.  First we double-check.
8679 
8680    INSN is the insn now being processed.
8681    LAST_RELOAD_REG is the hard register number for which we want to delete
8682    the last output reload.
8683    J is the reload-number that originally used REG.  The caller has made
8684    certain that reload J doesn't use REG any longer for input.
8685    NEW_RELOAD_REG is reload register that reload J is using for REG.  */
8686 
8687 static void
delete_output_reload(rtx_insn * insn,int j,int last_reload_reg,rtx new_reload_reg)8688 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8689 		      rtx new_reload_reg)
8690 {
8691   rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8692   rtx reg = spill_reg_stored_to[last_reload_reg];
8693   int k;
8694   int n_occurrences;
8695   int n_inherited = 0;
8696   rtx substed;
8697   unsigned regno;
8698   int nregs;
8699 
8700   /* It is possible that this reload has been only used to set another reload
8701      we eliminated earlier and thus deleted this instruction too.  */
8702   if (output_reload_insn->deleted ())
8703     return;
8704 
8705   /* Get the raw pseudo-register referred to.  */
8706 
8707   while (GET_CODE (reg) == SUBREG)
8708     reg = SUBREG_REG (reg);
8709   substed = reg_equiv_memory_loc (REGNO (reg));
8710 
8711   /* This is unsafe if the operand occurs more often in the current
8712      insn than it is inherited.  */
8713   for (k = n_reloads - 1; k >= 0; k--)
8714     {
8715       rtx reg2 = rld[k].in;
8716       if (! reg2)
8717 	continue;
8718       if (MEM_P (reg2) || reload_override_in[k])
8719 	reg2 = rld[k].in_reg;
8720 
8721       if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8722 	reg2 = XEXP (rld[k].in_reg, 0);
8723 
8724       while (GET_CODE (reg2) == SUBREG)
8725 	reg2 = SUBREG_REG (reg2);
8726       if (rtx_equal_p (reg2, reg))
8727 	{
8728 	  if (reload_inherited[k] || reload_override_in[k] || k == j)
8729 	    n_inherited++;
8730 	  else
8731 	    return;
8732 	}
8733     }
8734   n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8735   if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8736     n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8737 					reg, 0);
8738   if (substed)
8739     n_occurrences += count_occurrences (PATTERN (insn),
8740 					eliminate_regs (substed, VOIDmode,
8741 							NULL_RTX), 0);
8742   for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8743     {
8744       gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8745       n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8746     }
8747   if (n_occurrences > n_inherited)
8748     return;
8749 
8750   regno = REGNO (reg);
8751   nregs = REG_NREGS (reg);
8752 
8753   /* If the pseudo-reg we are reloading is no longer referenced
8754      anywhere between the store into it and here,
8755      and we're within the same basic block, then the value can only
8756      pass through the reload reg and end up here.
8757      Otherwise, give up--return.  */
8758   for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8759        i1 != insn; i1 = NEXT_INSN (i1))
8760     {
8761       if (NOTE_INSN_BASIC_BLOCK_P (i1))
8762 	return;
8763       if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8764 	  && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8765 	{
8766 	  /* If this is USE in front of INSN, we only have to check that
8767 	     there are no more references than accounted for by inheritance.  */
8768 	  while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8769 	    {
8770 	      n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8771 	      i1 = NEXT_INSN (i1);
8772 	    }
8773 	  if (n_occurrences <= n_inherited && i1 == insn)
8774 	    break;
8775 	  return;
8776 	}
8777     }
8778 
8779   /* We will be deleting the insn.  Remove the spill reg information.  */
8780   for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8781     {
8782       spill_reg_store[last_reload_reg + k] = 0;
8783       spill_reg_stored_to[last_reload_reg + k] = 0;
8784     }
8785 
8786   /* The caller has already checked that REG dies or is set in INSN.
8787      It has also checked that we are optimizing, and thus some
8788      inaccuracies in the debugging information are acceptable.
8789      So we could just delete output_reload_insn.  But in some cases
8790      we can improve the debugging information without sacrificing
8791      optimization - maybe even improving the code: See if the pseudo
8792      reg has been completely replaced with reload regs.  If so, delete
8793      the store insn and forget we had a stack slot for the pseudo.  */
8794   if (rld[j].out != rld[j].in
8795       && REG_N_DEATHS (REGNO (reg)) == 1
8796       && REG_N_SETS (REGNO (reg)) == 1
8797       && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8798       && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8799     {
8800       rtx_insn *i2;
8801 
8802       /* We know that it was used only between here and the beginning of
8803 	 the current basic block.  (We also know that the last use before
8804 	 INSN was the output reload we are thinking of deleting, but never
8805 	 mind that.)  Search that range; see if any ref remains.  */
8806       for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8807 	{
8808 	  rtx set = single_set (i2);
8809 
8810 	  /* Uses which just store in the pseudo don't count,
8811 	     since if they are the only uses, they are dead.  */
8812 	  if (set != 0 && SET_DEST (set) == reg)
8813 	    continue;
8814 	  if (LABEL_P (i2) || JUMP_P (i2))
8815 	    break;
8816 	  if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8817 	      && reg_mentioned_p (reg, PATTERN (i2)))
8818 	    {
8819 	      /* Some other ref remains; just delete the output reload we
8820 		 know to be dead.  */
8821 	      delete_address_reloads (output_reload_insn, insn);
8822 	      delete_insn (output_reload_insn);
8823 	      return;
8824 	    }
8825 	}
8826 
8827       /* Delete the now-dead stores into this pseudo.  Note that this
8828 	 loop also takes care of deleting output_reload_insn.  */
8829       for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8830 	{
8831 	  rtx set = single_set (i2);
8832 
8833 	  if (set != 0 && SET_DEST (set) == reg)
8834 	    {
8835 	      delete_address_reloads (i2, insn);
8836 	      delete_insn (i2);
8837 	    }
8838 	  if (LABEL_P (i2) || JUMP_P (i2))
8839 	    break;
8840 	}
8841 
8842       /* For the debugging info, say the pseudo lives in this reload reg.  */
8843       reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8844       if (ira_conflicts_p)
8845 	/* Inform IRA about the change.  */
8846 	ira_mark_allocation_change (REGNO (reg));
8847       alter_reg (REGNO (reg), -1, false);
8848     }
8849   else
8850     {
8851       delete_address_reloads (output_reload_insn, insn);
8852       delete_insn (output_reload_insn);
8853     }
8854 }
8855 
8856 /* We are going to delete DEAD_INSN.  Recursively delete loads of
8857    reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8858    CURRENT_INSN is being reloaded, so we have to check its reloads too.  */
8859 static void
delete_address_reloads(rtx_insn * dead_insn,rtx_insn * current_insn)8860 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8861 {
8862   rtx set = single_set (dead_insn);
8863   rtx set2, dst;
8864   rtx_insn *prev, *next;
8865   if (set)
8866     {
8867       rtx dst = SET_DEST (set);
8868       if (MEM_P (dst))
8869 	delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8870     }
8871   /* If we deleted the store from a reloaded post_{in,de}c expression,
8872      we can delete the matching adds.  */
8873   prev = PREV_INSN (dead_insn);
8874   next = NEXT_INSN (dead_insn);
8875   if (! prev || ! next)
8876     return;
8877   set = single_set (next);
8878   set2 = single_set (prev);
8879   if (! set || ! set2
8880       || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8881       || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8882       || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8883     return;
8884   dst = SET_DEST (set);
8885   if (! rtx_equal_p (dst, SET_DEST (set2))
8886       || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8887       || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8888       || (INTVAL (XEXP (SET_SRC (set), 1))
8889 	  != -INTVAL (XEXP (SET_SRC (set2), 1))))
8890     return;
8891   delete_related_insns (prev);
8892   delete_related_insns (next);
8893 }
8894 
8895 /* Subfunction of delete_address_reloads: process registers found in X.  */
8896 static void
delete_address_reloads_1(rtx_insn * dead_insn,rtx x,rtx_insn * current_insn)8897 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8898 {
8899   rtx_insn *prev, *i2;
8900   rtx set, dst;
8901   int i, j;
8902   enum rtx_code code = GET_CODE (x);
8903 
8904   if (code != REG)
8905     {
8906       const char *fmt = GET_RTX_FORMAT (code);
8907       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8908 	{
8909 	  if (fmt[i] == 'e')
8910 	    delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8911 	  else if (fmt[i] == 'E')
8912 	    {
8913 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8914 		delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8915 					  current_insn);
8916 	    }
8917 	}
8918       return;
8919     }
8920 
8921   if (spill_reg_order[REGNO (x)] < 0)
8922     return;
8923 
8924   /* Scan backwards for the insn that sets x.  This might be a way back due
8925      to inheritance.  */
8926   for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8927     {
8928       code = GET_CODE (prev);
8929       if (code == CODE_LABEL || code == JUMP_INSN)
8930 	return;
8931       if (!INSN_P (prev))
8932 	continue;
8933       if (reg_set_p (x, PATTERN (prev)))
8934 	break;
8935       if (reg_referenced_p (x, PATTERN (prev)))
8936 	return;
8937     }
8938   if (! prev || INSN_UID (prev) < reload_first_uid)
8939     return;
8940   /* Check that PREV only sets the reload register.  */
8941   set = single_set (prev);
8942   if (! set)
8943     return;
8944   dst = SET_DEST (set);
8945   if (!REG_P (dst)
8946       || ! rtx_equal_p (dst, x))
8947     return;
8948   if (! reg_set_p (dst, PATTERN (dead_insn)))
8949     {
8950       /* Check if DST was used in a later insn -
8951 	 it might have been inherited.  */
8952       for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8953 	{
8954 	  if (LABEL_P (i2))
8955 	    break;
8956 	  if (! INSN_P (i2))
8957 	    continue;
8958 	  if (reg_referenced_p (dst, PATTERN (i2)))
8959 	    {
8960 	      /* If there is a reference to the register in the current insn,
8961 		 it might be loaded in a non-inherited reload.  If no other
8962 		 reload uses it, that means the register is set before
8963 		 referenced.  */
8964 	      if (i2 == current_insn)
8965 		{
8966 		  for (j = n_reloads - 1; j >= 0; j--)
8967 		    if ((rld[j].reg_rtx == dst && reload_inherited[j])
8968 			|| reload_override_in[j] == dst)
8969 		      return;
8970 		  for (j = n_reloads - 1; j >= 0; j--)
8971 		    if (rld[j].in && rld[j].reg_rtx == dst)
8972 		      break;
8973 		  if (j >= 0)
8974 		    break;
8975 		}
8976 	      return;
8977 	    }
8978 	  if (JUMP_P (i2))
8979 	    break;
8980 	  /* If DST is still live at CURRENT_INSN, check if it is used for
8981 	     any reload.  Note that even if CURRENT_INSN sets DST, we still
8982 	     have to check the reloads.  */
8983 	  if (i2 == current_insn)
8984 	    {
8985 	      for (j = n_reloads - 1; j >= 0; j--)
8986 		if ((rld[j].reg_rtx == dst && reload_inherited[j])
8987 		    || reload_override_in[j] == dst)
8988 		  return;
8989 	      /* ??? We can't finish the loop here, because dst might be
8990 		 allocated to a pseudo in this block if no reload in this
8991 		 block needs any of the classes containing DST - see
8992 		 spill_hard_reg.  There is no easy way to tell this, so we
8993 		 have to scan till the end of the basic block.  */
8994 	    }
8995 	  if (reg_set_p (dst, PATTERN (i2)))
8996 	    break;
8997 	}
8998     }
8999   delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9000   reg_reloaded_contents[REGNO (dst)] = -1;
9001   delete_insn (prev);
9002 }
9003 
9004 /* Output reload-insns to reload VALUE into RELOADREG.
9005    VALUE is an autoincrement or autodecrement RTX whose operand
9006    is a register or memory location;
9007    so reloading involves incrementing that location.
9008    IN is either identical to VALUE, or some cheaper place to reload from.
9009 
9010    INC_AMOUNT is the number to increment or decrement by (always positive).
9011    This cannot be deduced from VALUE.  */
9012 
9013 static void
inc_for_reload(rtx reloadreg,rtx in,rtx value,poly_int64 inc_amount)9014 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
9015 {
9016   /* REG or MEM to be copied and incremented.  */
9017   rtx incloc = find_replacement (&XEXP (value, 0));
9018   /* Nonzero if increment after copying.  */
9019   int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9020 	      || GET_CODE (value) == POST_MODIFY);
9021   rtx_insn *last;
9022   rtx inc;
9023   rtx_insn *add_insn;
9024   int code;
9025   rtx real_in = in == value ? incloc : in;
9026 
9027   /* No hard register is equivalent to this register after
9028      inc/dec operation.  If REG_LAST_RELOAD_REG were nonzero,
9029      we could inc/dec that register as well (maybe even using it for
9030      the source), but I'm not sure it's worth worrying about.  */
9031   if (REG_P (incloc))
9032     reg_last_reload_reg[REGNO (incloc)] = 0;
9033 
9034   if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9035     {
9036       gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9037       inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9038     }
9039   else
9040     {
9041       if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9042 	inc_amount = -inc_amount;
9043 
9044       inc = gen_int_mode (inc_amount, Pmode);
9045     }
9046 
9047   /* If this is post-increment, first copy the location to the reload reg.  */
9048   if (post && real_in != reloadreg)
9049     emit_insn (gen_move_insn (reloadreg, real_in));
9050 
9051   if (in == value)
9052     {
9053       /* See if we can directly increment INCLOC.  Use a method similar to
9054 	 that in gen_reload.  */
9055 
9056       last = get_last_insn ();
9057       add_insn = emit_insn (gen_rtx_SET (incloc,
9058 					 gen_rtx_PLUS (GET_MODE (incloc),
9059 						       incloc, inc)));
9060 
9061       code = recog_memoized (add_insn);
9062       if (code >= 0)
9063 	{
9064 	  extract_insn (add_insn);
9065 	  if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9066 	    {
9067 	      /* If this is a pre-increment and we have incremented the value
9068 		 where it lives, copy the incremented value to RELOADREG to
9069 		 be used as an address.  */
9070 
9071 	      if (! post)
9072 		emit_insn (gen_move_insn (reloadreg, incloc));
9073 	      return;
9074 	    }
9075 	}
9076       delete_insns_since (last);
9077     }
9078 
9079   /* If couldn't do the increment directly, must increment in RELOADREG.
9080      The way we do this depends on whether this is pre- or post-increment.
9081      For pre-increment, copy INCLOC to the reload register, increment it
9082      there, then save back.  */
9083 
9084   if (! post)
9085     {
9086       if (in != reloadreg)
9087 	emit_insn (gen_move_insn (reloadreg, real_in));
9088       emit_insn (gen_add2_insn (reloadreg, inc));
9089       emit_insn (gen_move_insn (incloc, reloadreg));
9090     }
9091   else
9092     {
9093       /* Postincrement.
9094 	 Because this might be a jump insn or a compare, and because RELOADREG
9095 	 may not be available after the insn in an input reload, we must do
9096 	 the incrementation before the insn being reloaded for.
9097 
9098 	 We have already copied IN to RELOADREG.  Increment the copy in
9099 	 RELOADREG, save that back, then decrement RELOADREG so it has
9100 	 the original value.  */
9101 
9102       emit_insn (gen_add2_insn (reloadreg, inc));
9103       emit_insn (gen_move_insn (incloc, reloadreg));
9104       if (CONST_INT_P (inc))
9105 	emit_insn (gen_add2_insn (reloadreg,
9106 				  gen_int_mode (-INTVAL (inc),
9107 						GET_MODE (reloadreg))));
9108       else
9109 	emit_insn (gen_sub2_insn (reloadreg, inc));
9110     }
9111 }
9112 
9113 static void
add_auto_inc_notes(rtx_insn * insn,rtx x)9114 add_auto_inc_notes (rtx_insn *insn, rtx x)
9115 {
9116   enum rtx_code code = GET_CODE (x);
9117   const char *fmt;
9118   int i, j;
9119 
9120   if (code == MEM && auto_inc_p (XEXP (x, 0)))
9121     {
9122       add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9123       return;
9124     }
9125 
9126   /* Scan all the operand sub-expressions.  */
9127   fmt = GET_RTX_FORMAT (code);
9128   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9129     {
9130       if (fmt[i] == 'e')
9131 	add_auto_inc_notes (insn, XEXP (x, i));
9132       else if (fmt[i] == 'E')
9133 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9134 	  add_auto_inc_notes (insn, XVECEXP (x, i, j));
9135     }
9136 }
9137