1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
26
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
29
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
36
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
43
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
52
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
55
56 NOTE SIDE EFFECTS:
57
58 find_reloads can alter the operands of the instruction it is called on.
59
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
64
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
67
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
71
72 Using a reload register for several reloads in one insn:
73
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
77
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
81
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
85
86 #define REG_OK_STRICT
87
88 /* We do not enable this with CHECKING_P, since it is awfully slow. */
89 #undef DEBUG_RELOAD
90
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "backend.h"
95 #include "target.h"
96 #include "rtl.h"
97 #include "tree.h"
98 #include "df.h"
99 #include "memmodel.h"
100 #include "tm_p.h"
101 #include "optabs.h"
102 #include "regs.h"
103 #include "ira.h"
104 #include "recog.h"
105 #include "rtl-error.h"
106 #include "reload.h"
107 #include "addresses.h"
108 #include "function-abi.h"
109
110 /* True if X is a constant that can be forced into the constant pool.
111 MODE is the mode of the operand, or VOIDmode if not known. */
112 #define CONST_POOL_OK_P(MODE, X) \
113 ((MODE) != VOIDmode \
114 && CONSTANT_P (X) \
115 && GET_CODE (X) != HIGH \
116 && !targetm.cannot_force_const_mem (MODE, X))
117
118 /* True if C is a non-empty register class that has too few registers
119 to be safely used as a reload target class. */
120
121 static inline bool
small_register_class_p(reg_class_t rclass)122 small_register_class_p (reg_class_t rclass)
123 {
124 return (reg_class_size [(int) rclass] == 1
125 || (reg_class_size [(int) rclass] >= 1
126 && targetm.class_likely_spilled_p (rclass)));
127 }
128
129
130 /* All reloads of the current insn are recorded here. See reload.h for
131 comments. */
132 int n_reloads;
133 struct reload rld[MAX_RELOADS];
134
135 /* All the "earlyclobber" operands of the current insn
136 are recorded here. */
137 int n_earlyclobbers;
138 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139
140 int reload_n_operands;
141
142 /* Replacing reloads.
143
144 If `replace_reloads' is nonzero, then as each reload is recorded
145 an entry is made for it in the table `replacements'.
146 Then later `subst_reloads' can look through that table and
147 perform all the replacements needed. */
148
149 /* Nonzero means record the places to replace. */
150 static int replace_reloads;
151
152 /* Each replacement is recorded with a structure like this. */
153 struct replacement
154 {
155 rtx *where; /* Location to store in */
156 int what; /* which reload this is for */
157 machine_mode mode; /* mode it must have */
158 };
159
160 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
161
162 /* Number of replacements currently recorded. */
163 static int n_replacements;
164
165 /* Used to track what is modified by an operand. */
166 struct decomposition
167 {
168 int reg_flag; /* Nonzero if referencing a register. */
169 int safe; /* Nonzero if this can't conflict with anything. */
170 rtx base; /* Base address for MEM. */
171 poly_int64_pod start; /* Starting offset or register number. */
172 poly_int64_pod end; /* Ending offset or register number. */
173 };
174
175 /* Save MEMs needed to copy from one class of registers to another. One MEM
176 is used per mode, but normally only one or two modes are ever used.
177
178 We keep two versions, before and after register elimination. The one
179 after register elimination is record separately for each operand. This
180 is done in case the address is not valid to be sure that we separately
181 reload each. */
182
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
186
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx_insn *this_insn;
190
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
193
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
198
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
204
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
207
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
211
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
217
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
245
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 machine_mode, enum reload_type,
248 enum insn_code *, secondary_reload_info *);
249 static enum reg_class find_valid_class (machine_mode, machine_mode,
250 int, unsigned int);
251 static void push_replacement (rtx *, int, machine_mode);
252 static void dup_replacements (rtx *, rtx *);
253 static void combine_reloads (void);
254 static int find_reusable_reload (rtx *, rtx, enum reg_class,
255 enum reload_type, int, int);
256 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
257 machine_mode, reg_class_t, int, int);
258 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
259 static struct decomposition decompose (rtx);
260 static int immune_p (rtx, rtx, struct decomposition);
261 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
262 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
263 rtx_insn *, int *);
264 static rtx make_memloc (rtx, int);
265 static int maybe_memory_address_addr_space_p (machine_mode, rtx,
266 addr_space_t, rtx *);
267 static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
268 int, enum reload_type, int, rtx_insn *);
269 static rtx subst_reg_equivs (rtx, rtx_insn *);
270 static rtx subst_indexed_address (rtx);
271 static void update_auto_inc_notes (rtx_insn *, int, int);
272 static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
273 enum rtx_code, enum rtx_code, rtx *,
274 int, enum reload_type,int, rtx_insn *);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
279 int, rtx_insn *, int *);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static poly_int64 find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 rtx, rtx *);
285
286 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
287 list yet. */
288
289 static void
push_reg_equiv_alt_mem(int regno,rtx mem)290 push_reg_equiv_alt_mem (int regno, rtx mem)
291 {
292 rtx it;
293
294 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
295 if (rtx_equal_p (XEXP (it, 0), mem))
296 return;
297
298 reg_equiv_alt_mem_list (regno)
299 = alloc_EXPR_LIST (REG_EQUIV, mem,
300 reg_equiv_alt_mem_list (regno));
301 }
302
303 /* Determine if any secondary reloads are needed for loading (if IN_P is
304 nonzero) or storing (if IN_P is zero) X to or from a reload register of
305 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
306 are needed, push them.
307
308 Return the reload number of the secondary reload we made, or -1 if
309 we didn't need one. *PICODE is set to the insn_code to use if we do
310 need a secondary reload. */
311
312 static int
push_secondary_reload(int in_p,rtx x,int opnum,int optional,enum reg_class reload_class,machine_mode reload_mode,enum reload_type type,enum insn_code * picode,secondary_reload_info * prev_sri)313 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
314 enum reg_class reload_class,
315 machine_mode reload_mode, enum reload_type type,
316 enum insn_code *picode, secondary_reload_info *prev_sri)
317 {
318 enum reg_class rclass = NO_REGS;
319 enum reg_class scratch_class;
320 machine_mode mode = reload_mode;
321 enum insn_code icode = CODE_FOR_nothing;
322 enum insn_code t_icode = CODE_FOR_nothing;
323 enum reload_type secondary_type;
324 int s_reload, t_reload = -1;
325 const char *scratch_constraint;
326 secondary_reload_info sri;
327
328 if (type == RELOAD_FOR_INPUT_ADDRESS
329 || type == RELOAD_FOR_OUTPUT_ADDRESS
330 || type == RELOAD_FOR_INPADDR_ADDRESS
331 || type == RELOAD_FOR_OUTADDR_ADDRESS)
332 secondary_type = type;
333 else
334 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
335
336 *picode = CODE_FOR_nothing;
337
338 /* If X is a paradoxical SUBREG, use the inner value to determine both the
339 mode and object being reloaded. */
340 if (paradoxical_subreg_p (x))
341 {
342 x = SUBREG_REG (x);
343 reload_mode = GET_MODE (x);
344 }
345
346 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
347 is still a pseudo-register by now, it *must* have an equivalent MEM
348 but we don't want to assume that), use that equivalent when seeing if
349 a secondary reload is needed since whether or not a reload is needed
350 might be sensitive to the form of the MEM. */
351
352 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
353 && reg_equiv_mem (REGNO (x)))
354 x = reg_equiv_mem (REGNO (x));
355
356 sri.icode = CODE_FOR_nothing;
357 sri.prev_sri = prev_sri;
358 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
359 reload_mode, &sri);
360 icode = (enum insn_code) sri.icode;
361
362 /* If we don't need any secondary registers, done. */
363 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
364 return -1;
365
366 if (rclass != NO_REGS)
367 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
368 reload_mode, type, &t_icode, &sri);
369
370 /* If we will be using an insn, the secondary reload is for a
371 scratch register. */
372
373 if (icode != CODE_FOR_nothing)
374 {
375 /* If IN_P is nonzero, the reload register will be the output in
376 operand 0. If IN_P is zero, the reload register will be the input
377 in operand 1. Outputs should have an initial "=", which we must
378 skip. */
379
380 /* ??? It would be useful to be able to handle only two, or more than
381 three, operands, but for now we can only handle the case of having
382 exactly three: output, input and one temp/scratch. */
383 gcc_assert (insn_data[(int) icode].n_operands == 3);
384
385 /* ??? We currently have no way to represent a reload that needs
386 an icode to reload from an intermediate tertiary reload register.
387 We should probably have a new field in struct reload to tag a
388 chain of scratch operand reloads onto. */
389 gcc_assert (rclass == NO_REGS);
390
391 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
392 gcc_assert (*scratch_constraint == '=');
393 scratch_constraint++;
394 if (*scratch_constraint == '&')
395 scratch_constraint++;
396 scratch_class = (reg_class_for_constraint
397 (lookup_constraint (scratch_constraint)));
398
399 rclass = scratch_class;
400 mode = insn_data[(int) icode].operand[2].mode;
401 }
402
403 /* This case isn't valid, so fail. Reload is allowed to use the same
404 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405 in the case of a secondary register, we actually need two different
406 registers for correct code. We fail here to prevent the possibility of
407 silently generating incorrect code later.
408
409 The convention is that secondary input reloads are valid only if the
410 secondary_class is different from class. If you have such a case, you
411 cannot use secondary reloads, you must work around the problem some
412 other way.
413
414 Allow this when a reload_in/out pattern is being used. I.e. assume
415 that the generated code handles this case. */
416
417 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
418 || t_icode != CODE_FOR_nothing);
419
420 /* See if we can reuse an existing secondary reload. */
421 for (s_reload = 0; s_reload < n_reloads; s_reload++)
422 if (rld[s_reload].secondary_p
423 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
424 || reg_class_subset_p (rld[s_reload].rclass, rclass))
425 && ((in_p && rld[s_reload].inmode == mode)
426 || (! in_p && rld[s_reload].outmode == mode))
427 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
428 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
429 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
430 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
431 && (small_register_class_p (rclass)
432 || targetm.small_register_classes_for_mode_p (VOIDmode))
433 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
434 opnum, rld[s_reload].opnum))
435 {
436 if (in_p)
437 rld[s_reload].inmode = mode;
438 if (! in_p)
439 rld[s_reload].outmode = mode;
440
441 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
442 rld[s_reload].rclass = rclass;
443
444 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
445 rld[s_reload].optional &= optional;
446 rld[s_reload].secondary_p = 1;
447 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
448 opnum, rld[s_reload].opnum))
449 rld[s_reload].when_needed = RELOAD_OTHER;
450
451 break;
452 }
453
454 if (s_reload == n_reloads)
455 {
456 /* If we need a memory location to copy between the two reload regs,
457 set it up now. Note that we do the input case before making
458 the reload and the output case after. This is due to the
459 way reloads are output. */
460
461 if (in_p && icode == CODE_FOR_nothing
462 && targetm.secondary_memory_needed (mode, rclass, reload_class))
463 {
464 get_secondary_mem (x, reload_mode, opnum, type);
465
466 /* We may have just added new reloads. Make sure we add
467 the new reload at the end. */
468 s_reload = n_reloads;
469 }
470
471 /* We need to make a new secondary reload for this register class. */
472 rld[s_reload].in = rld[s_reload].out = 0;
473 rld[s_reload].rclass = rclass;
474
475 rld[s_reload].inmode = in_p ? mode : VOIDmode;
476 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
477 rld[s_reload].reg_rtx = 0;
478 rld[s_reload].optional = optional;
479 rld[s_reload].inc = 0;
480 /* Maybe we could combine these, but it seems too tricky. */
481 rld[s_reload].nocombine = 1;
482 rld[s_reload].in_reg = 0;
483 rld[s_reload].out_reg = 0;
484 rld[s_reload].opnum = opnum;
485 rld[s_reload].when_needed = secondary_type;
486 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
487 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
488 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
489 rld[s_reload].secondary_out_icode
490 = ! in_p ? t_icode : CODE_FOR_nothing;
491 rld[s_reload].secondary_p = 1;
492
493 n_reloads++;
494
495 if (! in_p && icode == CODE_FOR_nothing
496 && targetm.secondary_memory_needed (mode, reload_class, rclass))
497 get_secondary_mem (x, mode, opnum, type);
498 }
499
500 *picode = icode;
501 return s_reload;
502 }
503
504 /* If a secondary reload is needed, return its class. If both an intermediate
505 register and a scratch register is needed, we return the class of the
506 intermediate register. */
507 reg_class_t
secondary_reload_class(bool in_p,reg_class_t rclass,machine_mode mode,rtx x)508 secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
509 rtx x)
510 {
511 enum insn_code icode;
512 secondary_reload_info sri;
513
514 sri.icode = CODE_FOR_nothing;
515 sri.prev_sri = NULL;
516 rclass
517 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
518 icode = (enum insn_code) sri.icode;
519
520 /* If there are no secondary reloads at all, we return NO_REGS.
521 If an intermediate register is needed, we return its class. */
522 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
523 return rclass;
524
525 /* No intermediate register is needed, but we have a special reload
526 pattern, which we assume for now needs a scratch register. */
527 return scratch_reload_class (icode);
528 }
529
530 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
531 three operands, verify that operand 2 is an output operand, and return
532 its register class.
533 ??? We'd like to be able to handle any pattern with at least 2 operands,
534 for zero or more scratch registers, but that needs more infrastructure. */
535 enum reg_class
scratch_reload_class(enum insn_code icode)536 scratch_reload_class (enum insn_code icode)
537 {
538 const char *scratch_constraint;
539 enum reg_class rclass;
540
541 gcc_assert (insn_data[(int) icode].n_operands == 3);
542 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
543 gcc_assert (*scratch_constraint == '=');
544 scratch_constraint++;
545 if (*scratch_constraint == '&')
546 scratch_constraint++;
547 rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
548 gcc_assert (rclass != NO_REGS);
549 return rclass;
550 }
551
552 /* Return a memory location that will be used to copy X in mode MODE.
553 If we haven't already made a location for this mode in this insn,
554 call find_reloads_address on the location being returned. */
555
556 rtx
get_secondary_mem(rtx x ATTRIBUTE_UNUSED,machine_mode mode,int opnum,enum reload_type type)557 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
558 int opnum, enum reload_type type)
559 {
560 rtx loc;
561 int mem_valid;
562
563 /* By default, if MODE is narrower than a word, widen it to a word.
564 This is required because most machines that require these memory
565 locations do not support short load and stores from all registers
566 (e.g., FP registers). */
567
568 mode = targetm.secondary_memory_needed_mode (mode);
569
570 /* If we already have made a MEM for this operand in MODE, return it. */
571 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
572 return secondary_memlocs_elim[(int) mode][opnum];
573
574 /* If this is the first time we've tried to get a MEM for this mode,
575 allocate a new one. `something_changed' in reload will get set
576 by noticing that the frame size has changed. */
577
578 if (secondary_memlocs[(int) mode] == 0)
579 {
580 #ifdef SECONDARY_MEMORY_NEEDED_RTX
581 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
582 #else
583 secondary_memlocs[(int) mode]
584 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
585 #endif
586 }
587
588 /* Get a version of the address doing any eliminations needed. If that
589 didn't give us a new MEM, make a new one if it isn't valid. */
590
591 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
592 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
593 MEM_ADDR_SPACE (loc));
594
595 if (! mem_valid && loc == secondary_memlocs[(int) mode])
596 loc = copy_rtx (loc);
597
598 /* The only time the call below will do anything is if the stack
599 offset is too large. In that case IND_LEVELS doesn't matter, so we
600 can just pass a zero. Adjust the type to be the address of the
601 corresponding object. If the address was valid, save the eliminated
602 address. If it wasn't valid, we need to make a reload each time, so
603 don't save it. */
604
605 if (! mem_valid)
606 {
607 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
608 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
609 : RELOAD_OTHER);
610
611 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
612 opnum, type, 0, 0);
613 }
614
615 secondary_memlocs_elim[(int) mode][opnum] = loc;
616 if (secondary_memlocs_elim_used <= (int)mode)
617 secondary_memlocs_elim_used = (int)mode + 1;
618 return loc;
619 }
620
621 /* Clear any secondary memory locations we've made. */
622
623 void
clear_secondary_mem(void)624 clear_secondary_mem (void)
625 {
626 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
627 }
628
629
630 /* Find the largest class which has at least one register valid in
631 mode INNER, and which for every such register, that register number
632 plus N is also valid in OUTER (if in range) and is cheap to move
633 into REGNO. Such a class must exist. */
634
635 static enum reg_class
find_valid_class(machine_mode outer ATTRIBUTE_UNUSED,machine_mode inner ATTRIBUTE_UNUSED,int n,unsigned int dest_regno ATTRIBUTE_UNUSED)636 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
637 machine_mode inner ATTRIBUTE_UNUSED, int n,
638 unsigned int dest_regno ATTRIBUTE_UNUSED)
639 {
640 int best_cost = -1;
641 int rclass;
642 int regno;
643 enum reg_class best_class = NO_REGS;
644 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
645 unsigned int best_size = 0;
646 int cost;
647
648 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
649 {
650 int bad = 0;
651 int good = 0;
652 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
653 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
654 {
655 if (targetm.hard_regno_mode_ok (regno, inner))
656 {
657 good = 1;
658 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
659 && !targetm.hard_regno_mode_ok (regno + n, outer))
660 bad = 1;
661 }
662 }
663
664 if (bad || !good)
665 continue;
666 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
667
668 if ((reg_class_size[rclass] > best_size
669 && (best_cost < 0 || best_cost >= cost))
670 || best_cost > cost)
671 {
672 best_class = (enum reg_class) rclass;
673 best_size = reg_class_size[rclass];
674 best_cost = register_move_cost (outer, (enum reg_class) rclass,
675 dest_class);
676 }
677 }
678
679 gcc_assert (best_size != 0);
680
681 return best_class;
682 }
683
684 /* We are trying to reload a subreg of something that is not a register.
685 Find the largest class which contains only registers valid in
686 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
687 which we would eventually like to obtain the object. */
688
689 static enum reg_class
find_valid_class_1(machine_mode outer ATTRIBUTE_UNUSED,machine_mode mode ATTRIBUTE_UNUSED,enum reg_class dest_class ATTRIBUTE_UNUSED)690 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
691 machine_mode mode ATTRIBUTE_UNUSED,
692 enum reg_class dest_class ATTRIBUTE_UNUSED)
693 {
694 int best_cost = -1;
695 int rclass;
696 int regno;
697 enum reg_class best_class = NO_REGS;
698 unsigned int best_size = 0;
699 int cost;
700
701 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
702 {
703 unsigned int computed_rclass_size = 0;
704
705 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
706 {
707 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
708 && targetm.hard_regno_mode_ok (regno, mode))
709 computed_rclass_size++;
710 }
711
712 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
713
714 if ((computed_rclass_size > best_size
715 && (best_cost < 0 || best_cost >= cost))
716 || best_cost > cost)
717 {
718 best_class = (enum reg_class) rclass;
719 best_size = computed_rclass_size;
720 best_cost = register_move_cost (outer, (enum reg_class) rclass,
721 dest_class);
722 }
723 }
724
725 gcc_assert (best_size != 0);
726
727 #ifdef LIMIT_RELOAD_CLASS
728 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
729 #endif
730 return best_class;
731 }
732
733 /* Return the number of a previously made reload that can be combined with
734 a new one, or n_reloads if none of the existing reloads can be used.
735 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
736 push_reload, they determine the kind of the new reload that we try to
737 combine. P_IN points to the corresponding value of IN, which can be
738 modified by this function.
739 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
740
741 static int
find_reusable_reload(rtx * p_in,rtx out,enum reg_class rclass,enum reload_type type,int opnum,int dont_share)742 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
743 enum reload_type type, int opnum, int dont_share)
744 {
745 rtx in = *p_in;
746 int i;
747 /* We can't merge two reloads if the output of either one is
748 earlyclobbered. */
749
750 if (earlyclobber_operand_p (out))
751 return n_reloads;
752
753 /* We can use an existing reload if the class is right
754 and at least one of IN and OUT is a match
755 and the other is at worst neutral.
756 (A zero compared against anything is neutral.)
757
758 For targets with small register classes, don't use existing reloads
759 unless they are for the same thing since that can cause us to need
760 more reload registers than we otherwise would. */
761
762 for (i = 0; i < n_reloads; i++)
763 if ((reg_class_subset_p (rclass, rld[i].rclass)
764 || reg_class_subset_p (rld[i].rclass, rclass))
765 /* If the existing reload has a register, it must fit our class. */
766 && (rld[i].reg_rtx == 0
767 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
768 true_regnum (rld[i].reg_rtx)))
769 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
770 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
771 || (out != 0 && MATCHES (rld[i].out, out)
772 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
773 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
774 && (small_register_class_p (rclass)
775 || targetm.small_register_classes_for_mode_p (VOIDmode))
776 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
777 return i;
778
779 /* Reloading a plain reg for input can match a reload to postincrement
780 that reg, since the postincrement's value is the right value.
781 Likewise, it can match a preincrement reload, since we regard
782 the preincrementation as happening before any ref in this insn
783 to that register. */
784 for (i = 0; i < n_reloads; i++)
785 if ((reg_class_subset_p (rclass, rld[i].rclass)
786 || reg_class_subset_p (rld[i].rclass, rclass))
787 /* If the existing reload has a register, it must fit our
788 class. */
789 && (rld[i].reg_rtx == 0
790 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
791 true_regnum (rld[i].reg_rtx)))
792 && out == 0 && rld[i].out == 0 && rld[i].in != 0
793 && ((REG_P (in)
794 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
795 && MATCHES (XEXP (rld[i].in, 0), in))
796 || (REG_P (rld[i].in)
797 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
798 && MATCHES (XEXP (in, 0), rld[i].in)))
799 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
800 && (small_register_class_p (rclass)
801 || targetm.small_register_classes_for_mode_p (VOIDmode))
802 && MERGABLE_RELOADS (type, rld[i].when_needed,
803 opnum, rld[i].opnum))
804 {
805 /* Make sure reload_in ultimately has the increment,
806 not the plain register. */
807 if (REG_P (in))
808 *p_in = rld[i].in;
809 return i;
810 }
811 return n_reloads;
812 }
813
814 /* Return true if:
815
816 (a) (subreg:OUTER_MODE REG ...) represents a word or subword subreg
817 of a multiword value; and
818
819 (b) the number of *words* in REG does not match the number of *registers*
820 in REG. */
821
822 static bool
complex_word_subreg_p(machine_mode outer_mode,rtx reg)823 complex_word_subreg_p (machine_mode outer_mode, rtx reg)
824 {
825 machine_mode inner_mode = GET_MODE (reg);
826 poly_uint64 reg_words = REG_NREGS (reg) * UNITS_PER_WORD;
827 return (known_le (GET_MODE_SIZE (outer_mode), UNITS_PER_WORD)
828 && maybe_gt (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
829 && !known_equal_after_align_up (GET_MODE_SIZE (inner_mode),
830 reg_words, UNITS_PER_WORD));
831 }
832
833 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
834 expression. MODE is the mode that X will be used in. OUTPUT is true if
835 the function is invoked for the output part of an enclosing reload. */
836
837 static bool
reload_inner_reg_of_subreg(rtx x,machine_mode mode,bool output)838 reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
839 {
840 rtx inner;
841 int regno;
842
843 /* Only SUBREGs are problematical. */
844 if (GET_CODE (x) != SUBREG)
845 return false;
846
847 inner = SUBREG_REG (x);
848
849 /* If INNER is a constant or PLUS, then INNER will need reloading. */
850 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
851 return true;
852
853 /* If INNER is not a register, then INNER will not need reloading. */
854 if (!REG_P (inner))
855 return false;
856
857 regno = REGNO (inner);
858
859 /* If INNER is not a hard register, then INNER will not need reloading
860 unless it's a mode dependent memory reference. */
861 if (regno >= FIRST_PSEUDO_REGISTER)
862 return !output
863 && reg_equiv_mem (regno) != 0
864 && mode_dependent_address_p (XEXP (reg_equiv_mem (regno), 0),
865 MEM_ADDR_SPACE (reg_equiv_mem (regno)));
866
867 /* If INNER is not ok for MODE, then INNER will need reloading. */
868 if (!targetm.hard_regno_mode_ok (subreg_regno (x), mode))
869 return true;
870
871 /* If this is for an output, and the outer part is a word or smaller,
872 INNER is larger than a word and the number of registers in INNER is
873 not the same as the number of words in INNER, then INNER will need
874 reloading (with an in-out reload). */
875 return output && complex_word_subreg_p (mode, inner);
876 }
877
878 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
879 requiring an extra reload register. The caller has already found that
880 IN contains some reference to REGNO, so check that we can produce the
881 new value in a single step. E.g. if we have
882 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
883 instruction that adds one to a register, this should succeed.
884 However, if we have something like
885 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
886 needs to be loaded into a register first, we need a separate reload
887 register.
888 Such PLUS reloads are generated by find_reload_address_part.
889 The out-of-range PLUS expressions are usually introduced in the instruction
890 patterns by register elimination and substituting pseudos without a home
891 by their function-invariant equivalences. */
892 static int
can_reload_into(rtx in,int regno,machine_mode mode)893 can_reload_into (rtx in, int regno, machine_mode mode)
894 {
895 rtx dst;
896 rtx_insn *test_insn;
897 int r = 0;
898 struct recog_data_d save_recog_data;
899
900 /* For matching constraints, we often get notional input reloads where
901 we want to use the original register as the reload register. I.e.
902 technically this is a non-optional input-output reload, but IN is
903 already a valid register, and has been chosen as the reload register.
904 Speed this up, since it trivially works. */
905 if (REG_P (in))
906 return 1;
907
908 /* To test MEMs properly, we'd have to take into account all the reloads
909 that are already scheduled, which can become quite complicated.
910 And since we've already handled address reloads for this MEM, it
911 should always succeed anyway. */
912 if (MEM_P (in))
913 return 1;
914
915 /* If we can make a simple SET insn that does the job, everything should
916 be fine. */
917 dst = gen_rtx_REG (mode, regno);
918 test_insn = make_insn_raw (gen_rtx_SET (dst, in));
919 save_recog_data = recog_data;
920 if (recog_memoized (test_insn) >= 0)
921 {
922 extract_insn (test_insn);
923 r = constrain_operands (1, get_enabled_alternatives (test_insn));
924 }
925 recog_data = save_recog_data;
926 return r;
927 }
928
929 /* Record one reload that needs to be performed.
930 IN is an rtx saying where the data are to be found before this instruction.
931 OUT says where they must be stored after the instruction.
932 (IN is zero for data not read, and OUT is zero for data not written.)
933 INLOC and OUTLOC point to the places in the instructions where
934 IN and OUT were found.
935 If IN and OUT are both nonzero, it means the same register must be used
936 to reload both IN and OUT.
937
938 RCLASS is a register class required for the reloaded data.
939 INMODE is the machine mode that the instruction requires
940 for the reg that replaces IN and OUTMODE is likewise for OUT.
941
942 If IN is zero, then OUT's location and mode should be passed as
943 INLOC and INMODE.
944
945 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
946
947 OPTIONAL nonzero means this reload does not need to be performed:
948 it can be discarded if that is more convenient.
949
950 OPNUM and TYPE say what the purpose of this reload is.
951
952 The return value is the reload-number for this reload.
953
954 If both IN and OUT are nonzero, in some rare cases we might
955 want to make two separate reloads. (Actually we never do this now.)
956 Therefore, the reload-number for OUT is stored in
957 output_reloadnum when we return; the return value applies to IN.
958 Usually (presently always), when IN and OUT are nonzero,
959 the two reload-numbers are equal, but the caller should be careful to
960 distinguish them. */
961
962 int
push_reload(rtx in,rtx out,rtx * inloc,rtx * outloc,enum reg_class rclass,machine_mode inmode,machine_mode outmode,int strict_low,int optional,int opnum,enum reload_type type)963 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
964 enum reg_class rclass, machine_mode inmode,
965 machine_mode outmode, int strict_low, int optional,
966 int opnum, enum reload_type type)
967 {
968 int i;
969 int dont_share = 0;
970 int dont_remove_subreg = 0;
971 #ifdef LIMIT_RELOAD_CLASS
972 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
973 #endif
974 int secondary_in_reload = -1, secondary_out_reload = -1;
975 enum insn_code secondary_in_icode = CODE_FOR_nothing;
976 enum insn_code secondary_out_icode = CODE_FOR_nothing;
977 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
978 subreg_in_class = NO_REGS;
979
980 /* INMODE and/or OUTMODE could be VOIDmode if no mode
981 has been specified for the operand. In that case,
982 use the operand's mode as the mode to reload. */
983 if (inmode == VOIDmode && in != 0)
984 inmode = GET_MODE (in);
985 if (outmode == VOIDmode && out != 0)
986 outmode = GET_MODE (out);
987
988 /* If find_reloads and friends until now missed to replace a pseudo
989 with a constant of reg_equiv_constant something went wrong
990 beforehand.
991 Note that it can't simply be done here if we missed it earlier
992 since the constant might need to be pushed into the literal pool
993 and the resulting memref would probably need further
994 reloading. */
995 if (in != 0 && REG_P (in))
996 {
997 int regno = REGNO (in);
998
999 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1000 || reg_renumber[regno] >= 0
1001 || reg_equiv_constant (regno) == NULL_RTX);
1002 }
1003
1004 /* reg_equiv_constant only contains constants which are obviously
1005 not appropriate as destination. So if we would need to replace
1006 the destination pseudo with a constant we are in real
1007 trouble. */
1008 if (out != 0 && REG_P (out))
1009 {
1010 int regno = REGNO (out);
1011
1012 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1013 || reg_renumber[regno] >= 0
1014 || reg_equiv_constant (regno) == NULL_RTX);
1015 }
1016
1017 /* If we have a read-write operand with an address side-effect,
1018 change either IN or OUT so the side-effect happens only once. */
1019 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1020 switch (GET_CODE (XEXP (in, 0)))
1021 {
1022 case POST_INC: case POST_DEC: case POST_MODIFY:
1023 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1024 break;
1025
1026 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1027 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1028 break;
1029
1030 default:
1031 break;
1032 }
1033
1034 /* If we are reloading a (SUBREG constant ...), really reload just the
1035 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1036 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1037 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1038 register is a pseudo, also reload the inside expression.
1039 For machines that extend byte loads, do this for any SUBREG of a pseudo
1040 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1041 M2 is an integral mode that gets extended when loaded.
1042 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1043 where either M1 is not valid for R or M2 is wider than a word but we
1044 only need one register to store an M2-sized quantity in R.
1045 (However, if OUT is nonzero, we need to reload the reg *and*
1046 the subreg, so do nothing here, and let following statement handle it.)
1047
1048 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1049 we can't handle it here because CONST_INT does not indicate a mode.
1050
1051 Similarly, we must reload the inside expression if we have a
1052 STRICT_LOW_PART (presumably, in == out in this case).
1053
1054 Also reload the inner expression if it does not require a secondary
1055 reload but the SUBREG does.
1056
1057 Finally, reload the inner expression if it is a register that is in
1058 the class whose registers cannot be referenced in a different size
1059 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1060 cannot reload just the inside since we might end up with the wrong
1061 register class. But if it is inside a STRICT_LOW_PART, we have
1062 no choice, so we hope we do get the right register class there. */
1063
1064 scalar_int_mode inner_mode;
1065 if (in != 0 && GET_CODE (in) == SUBREG
1066 && (subreg_lowpart_p (in) || strict_low)
1067 && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (in)),
1068 inmode, rclass)
1069 && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (in))]
1070 && (CONSTANT_P (SUBREG_REG (in))
1071 || GET_CODE (SUBREG_REG (in)) == PLUS
1072 || strict_low
1073 || (((REG_P (SUBREG_REG (in))
1074 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1075 || MEM_P (SUBREG_REG (in)))
1076 && (paradoxical_subreg_p (inmode, GET_MODE (SUBREG_REG (in)))
1077 || (known_le (GET_MODE_SIZE (inmode), UNITS_PER_WORD)
1078 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (in)),
1079 &inner_mode)
1080 && GET_MODE_SIZE (inner_mode) <= UNITS_PER_WORD
1081 && paradoxical_subreg_p (inmode, inner_mode)
1082 && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)
1083 || (WORD_REGISTER_OPERATIONS
1084 && partial_subreg_p (inmode, GET_MODE (SUBREG_REG (in)))
1085 && (known_equal_after_align_down
1086 (GET_MODE_SIZE (inmode) - 1,
1087 GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1,
1088 UNITS_PER_WORD)))))
1089 || (REG_P (SUBREG_REG (in))
1090 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1091 /* The case where out is nonzero
1092 is handled differently in the following statement. */
1093 && (out == 0 || subreg_lowpart_p (in))
1094 && (complex_word_subreg_p (inmode, SUBREG_REG (in))
1095 || !targetm.hard_regno_mode_ok (subreg_regno (in), inmode)))
1096 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1097 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1098 SUBREG_REG (in))
1099 == NO_REGS))
1100 || (REG_P (SUBREG_REG (in))
1101 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1102 && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (in)),
1103 GET_MODE (SUBREG_REG (in)), inmode))))
1104 {
1105 #ifdef LIMIT_RELOAD_CLASS
1106 in_subreg_loc = inloc;
1107 #endif
1108 inloc = &SUBREG_REG (in);
1109 in = *inloc;
1110
1111 if (!WORD_REGISTER_OPERATIONS
1112 && LOAD_EXTEND_OP (GET_MODE (in)) == UNKNOWN
1113 && MEM_P (in))
1114 /* This is supposed to happen only for paradoxical subregs made by
1115 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1116 gcc_assert (known_le (GET_MODE_SIZE (GET_MODE (in)),
1117 GET_MODE_SIZE (inmode)));
1118
1119 inmode = GET_MODE (in);
1120 }
1121
1122 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1123 where M1 is not valid for R if it was not handled by the code above.
1124
1125 Similar issue for (SUBREG constant ...) if it was not handled by the
1126 code above. This can happen if SUBREG_BYTE != 0.
1127
1128 However, we must reload the inner reg *as well as* the subreg in
1129 that case. */
1130
1131 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1132 {
1133 if (REG_P (SUBREG_REG (in)) && HARD_REGISTER_P (SUBREG_REG (in)))
1134 subreg_in_class
1135 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1136 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1137 GET_MODE (SUBREG_REG (in)),
1138 SUBREG_BYTE (in),
1139 GET_MODE (in)),
1140 REGNO (SUBREG_REG (in)));
1141 #if 1 // XXXMRG
1142 else if (REG_P (SUBREG_REG (in))
1143 || GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1144 #else
1145 else if (CONSTANT_P (SUBREG_REG (in))
1146 || GET_CODE (SUBREG_REG (in)) == PLUS)
1147 #endif
1148 subreg_in_class = find_valid_class_1 (inmode,
1149 GET_MODE (SUBREG_REG (in)),
1150 rclass);
1151
1152 /* This relies on the fact that emit_reload_insns outputs the
1153 instructions for input reloads of type RELOAD_OTHER in the same
1154 order as the reloads. Thus if the outer reload is also of type
1155 RELOAD_OTHER, we are guaranteed that this inner reload will be
1156 output before the outer reload. */
1157 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1158 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1159 dont_remove_subreg = 1;
1160 }
1161
1162 /* Similarly for paradoxical and problematical SUBREGs on the output.
1163 Note that there is no reason we need worry about the previous value
1164 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1165 entitled to clobber it all (except in the case of a word mode subreg
1166 or of a STRICT_LOW_PART, in that latter case the constraint should
1167 label it input-output.) */
1168 if (out != 0 && GET_CODE (out) == SUBREG
1169 && (subreg_lowpart_p (out) || strict_low)
1170 && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (out)),
1171 outmode, rclass)
1172 && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (out))]
1173 && (CONSTANT_P (SUBREG_REG (out))
1174 || strict_low
1175 || (((REG_P (SUBREG_REG (out))
1176 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1177 || MEM_P (SUBREG_REG (out)))
1178 && (paradoxical_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1179 || (WORD_REGISTER_OPERATIONS
1180 && partial_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1181 && (known_equal_after_align_down
1182 (GET_MODE_SIZE (outmode) - 1,
1183 GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1,
1184 UNITS_PER_WORD)))))
1185 || (REG_P (SUBREG_REG (out))
1186 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1187 /* The case of a word mode subreg
1188 is handled differently in the following statement. */
1189 && ! (known_le (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1190 && maybe_gt (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))),
1191 UNITS_PER_WORD))
1192 && !targetm.hard_regno_mode_ok (subreg_regno (out), outmode))
1193 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1194 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1195 SUBREG_REG (out))
1196 == NO_REGS))
1197 || (REG_P (SUBREG_REG (out))
1198 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1199 && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1200 GET_MODE (SUBREG_REG (out)),
1201 outmode))))
1202 {
1203 #ifdef LIMIT_RELOAD_CLASS
1204 out_subreg_loc = outloc;
1205 #endif
1206 outloc = &SUBREG_REG (out);
1207 out = *outloc;
1208 gcc_assert (WORD_REGISTER_OPERATIONS || !MEM_P (out)
1209 || known_le (GET_MODE_SIZE (GET_MODE (out)),
1210 GET_MODE_SIZE (outmode)));
1211 outmode = GET_MODE (out);
1212 }
1213
1214 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1215 where either M1 is not valid for R or M2 is wider than a word but we
1216 only need one register to store an M2-sized quantity in R.
1217
1218 However, we must reload the inner reg *as well as* the subreg in
1219 that case and the inner reg is an in-out reload. */
1220
1221 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1222 {
1223 enum reg_class in_out_class
1224 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1225 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1226 GET_MODE (SUBREG_REG (out)),
1227 SUBREG_BYTE (out),
1228 GET_MODE (out)),
1229 REGNO (SUBREG_REG (out)));
1230
1231 /* This relies on the fact that emit_reload_insns outputs the
1232 instructions for output reloads of type RELOAD_OTHER in reverse
1233 order of the reloads. Thus if the outer reload is also of type
1234 RELOAD_OTHER, we are guaranteed that this inner reload will be
1235 output after the outer reload. */
1236 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1237 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1238 0, 0, opnum, RELOAD_OTHER);
1239 dont_remove_subreg = 1;
1240 }
1241
1242 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1243 if (in != 0 && out != 0 && MEM_P (out)
1244 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1245 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1246 dont_share = 1;
1247
1248 /* If IN is a SUBREG of a hard register, make a new REG. This
1249 simplifies some of the cases below. */
1250
1251 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1252 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1253 && ! dont_remove_subreg)
1254 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1255
1256 /* Similarly for OUT. */
1257 if (out != 0 && GET_CODE (out) == SUBREG
1258 && REG_P (SUBREG_REG (out))
1259 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1260 && ! dont_remove_subreg)
1261 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1262
1263 /* Narrow down the class of register wanted if that is
1264 desirable on this machine for efficiency. */
1265 {
1266 reg_class_t preferred_class = rclass;
1267
1268 if (in != 0)
1269 preferred_class = targetm.preferred_reload_class (in, rclass);
1270
1271 /* Output reloads may need analogous treatment, different in detail. */
1272 if (out != 0)
1273 preferred_class
1274 = targetm.preferred_output_reload_class (out, preferred_class);
1275
1276 /* Discard what the target said if we cannot do it. */
1277 if (preferred_class != NO_REGS
1278 || (optional && type == RELOAD_FOR_OUTPUT))
1279 rclass = (enum reg_class) preferred_class;
1280 }
1281
1282 /* Make sure we use a class that can handle the actual pseudo
1283 inside any subreg. For example, on the 386, QImode regs
1284 can appear within SImode subregs. Although GENERAL_REGS
1285 can handle SImode, QImode needs a smaller class. */
1286 #ifdef LIMIT_RELOAD_CLASS
1287 if (in_subreg_loc)
1288 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1289 else if (in != 0 && GET_CODE (in) == SUBREG)
1290 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1291
1292 if (out_subreg_loc)
1293 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1294 if (out != 0 && GET_CODE (out) == SUBREG)
1295 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1296 #endif
1297
1298 /* Verify that this class is at least possible for the mode that
1299 is specified. */
1300 if (this_insn_is_asm)
1301 {
1302 machine_mode mode;
1303 if (paradoxical_subreg_p (inmode, outmode))
1304 mode = inmode;
1305 else
1306 mode = outmode;
1307 if (mode == VOIDmode)
1308 {
1309 error_for_asm (this_insn, "cannot reload integer constant "
1310 "operand in %<asm%>");
1311 mode = word_mode;
1312 if (in != 0)
1313 inmode = word_mode;
1314 if (out != 0)
1315 outmode = word_mode;
1316 }
1317 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1318 if (targetm.hard_regno_mode_ok (i, mode)
1319 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1320 break;
1321 if (i == FIRST_PSEUDO_REGISTER)
1322 {
1323 error_for_asm (this_insn, "impossible register constraint "
1324 "in %<asm%>");
1325 /* Avoid further trouble with this insn. */
1326 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1327 /* We used to continue here setting class to ALL_REGS, but it triggers
1328 sanity check on i386 for:
1329 void foo(long double d)
1330 {
1331 asm("" :: "a" (d));
1332 }
1333 Returning zero here ought to be safe as we take care in
1334 find_reloads to not process the reloads when instruction was
1335 replaced by USE. */
1336
1337 return 0;
1338 }
1339 }
1340
1341 /* Optional output reloads are always OK even if we have no register class,
1342 since the function of these reloads is only to have spill_reg_store etc.
1343 set, so that the storing insn can be deleted later. */
1344 gcc_assert (rclass != NO_REGS
1345 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1346
1347 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1348
1349 if (i == n_reloads)
1350 {
1351 /* See if we need a secondary reload register to move between CLASS
1352 and IN or CLASS and OUT. Get the icode and push any required reloads
1353 needed for each of them if so. */
1354
1355 if (in != 0)
1356 secondary_in_reload
1357 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1358 &secondary_in_icode, NULL);
1359 if (out != 0 && GET_CODE (out) != SCRATCH)
1360 secondary_out_reload
1361 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1362 type, &secondary_out_icode, NULL);
1363
1364 /* We found no existing reload suitable for re-use.
1365 So add an additional reload. */
1366
1367 if (subreg_in_class == NO_REGS
1368 && in != 0
1369 && (REG_P (in)
1370 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1371 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1372 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1373 /* If a memory location is needed for the copy, make one. */
1374 if (subreg_in_class != NO_REGS
1375 && targetm.secondary_memory_needed (inmode, subreg_in_class, rclass))
1376 get_secondary_mem (in, inmode, opnum, type);
1377
1378 i = n_reloads;
1379 rld[i].in = in;
1380 rld[i].out = out;
1381 rld[i].rclass = rclass;
1382 rld[i].inmode = inmode;
1383 rld[i].outmode = outmode;
1384 rld[i].reg_rtx = 0;
1385 rld[i].optional = optional;
1386 rld[i].inc = 0;
1387 rld[i].nocombine = 0;
1388 rld[i].in_reg = inloc ? *inloc : 0;
1389 rld[i].out_reg = outloc ? *outloc : 0;
1390 rld[i].opnum = opnum;
1391 rld[i].when_needed = type;
1392 rld[i].secondary_in_reload = secondary_in_reload;
1393 rld[i].secondary_out_reload = secondary_out_reload;
1394 rld[i].secondary_in_icode = secondary_in_icode;
1395 rld[i].secondary_out_icode = secondary_out_icode;
1396 rld[i].secondary_p = 0;
1397
1398 n_reloads++;
1399
1400 if (out != 0
1401 && (REG_P (out)
1402 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1403 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1404 && (targetm.secondary_memory_needed
1405 (outmode, rclass, REGNO_REG_CLASS (reg_or_subregno (out)))))
1406 get_secondary_mem (out, outmode, opnum, type);
1407 }
1408 else
1409 {
1410 /* We are reusing an existing reload,
1411 but we may have additional information for it.
1412 For example, we may now have both IN and OUT
1413 while the old one may have just one of them. */
1414
1415 /* The modes can be different. If they are, we want to reload in
1416 the larger mode, so that the value is valid for both modes. */
1417 if (inmode != VOIDmode
1418 && partial_subreg_p (rld[i].inmode, inmode))
1419 rld[i].inmode = inmode;
1420 if (outmode != VOIDmode
1421 && partial_subreg_p (rld[i].outmode, outmode))
1422 rld[i].outmode = outmode;
1423 if (in != 0)
1424 {
1425 rtx in_reg = inloc ? *inloc : 0;
1426 /* If we merge reloads for two distinct rtl expressions that
1427 are identical in content, there might be duplicate address
1428 reloads. Remove the extra set now, so that if we later find
1429 that we can inherit this reload, we can get rid of the
1430 address reloads altogether.
1431
1432 Do not do this if both reloads are optional since the result
1433 would be an optional reload which could potentially leave
1434 unresolved address replacements.
1435
1436 It is not sufficient to call transfer_replacements since
1437 choose_reload_regs will remove the replacements for address
1438 reloads of inherited reloads which results in the same
1439 problem. */
1440 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1441 && ! (rld[i].optional && optional))
1442 {
1443 /* We must keep the address reload with the lower operand
1444 number alive. */
1445 if (opnum > rld[i].opnum)
1446 {
1447 remove_address_replacements (in);
1448 in = rld[i].in;
1449 in_reg = rld[i].in_reg;
1450 }
1451 else
1452 remove_address_replacements (rld[i].in);
1453 }
1454 /* When emitting reloads we don't necessarily look at the in-
1455 and outmode, but also directly at the operands (in and out).
1456 So we can't simply overwrite them with whatever we have found
1457 for this (to-be-merged) reload, we have to "merge" that too.
1458 Reusing another reload already verified that we deal with the
1459 same operands, just possibly in different modes. So we
1460 overwrite the operands only when the new mode is larger.
1461 See also PR33613. */
1462 if (!rld[i].in
1463 || partial_subreg_p (GET_MODE (rld[i].in), GET_MODE (in)))
1464 rld[i].in = in;
1465 if (!rld[i].in_reg
1466 || (in_reg
1467 && partial_subreg_p (GET_MODE (rld[i].in_reg),
1468 GET_MODE (in_reg))))
1469 rld[i].in_reg = in_reg;
1470 }
1471 if (out != 0)
1472 {
1473 if (!rld[i].out
1474 || (out
1475 && partial_subreg_p (GET_MODE (rld[i].out),
1476 GET_MODE (out))))
1477 rld[i].out = out;
1478 if (outloc
1479 && (!rld[i].out_reg
1480 || partial_subreg_p (GET_MODE (rld[i].out_reg),
1481 GET_MODE (*outloc))))
1482 rld[i].out_reg = *outloc;
1483 }
1484 if (reg_class_subset_p (rclass, rld[i].rclass))
1485 rld[i].rclass = rclass;
1486 rld[i].optional &= optional;
1487 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1488 opnum, rld[i].opnum))
1489 rld[i].when_needed = RELOAD_OTHER;
1490 rld[i].opnum = MIN (rld[i].opnum, opnum);
1491 }
1492
1493 /* If the ostensible rtx being reloaded differs from the rtx found
1494 in the location to substitute, this reload is not safe to combine
1495 because we cannot reliably tell whether it appears in the insn. */
1496
1497 if (in != 0 && in != *inloc)
1498 rld[i].nocombine = 1;
1499
1500 #if 0
1501 /* This was replaced by changes in find_reloads_address_1 and the new
1502 function inc_for_reload, which go with a new meaning of reload_inc. */
1503
1504 /* If this is an IN/OUT reload in an insn that sets the CC,
1505 it must be for an autoincrement. It doesn't work to store
1506 the incremented value after the insn because that would clobber the CC.
1507 So we must do the increment of the value reloaded from,
1508 increment it, store it back, then decrement again. */
1509 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1510 {
1511 out = 0;
1512 rld[i].out = 0;
1513 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1514 /* If we did not find a nonzero amount-to-increment-by,
1515 that contradicts the belief that IN is being incremented
1516 in an address in this insn. */
1517 gcc_assert (rld[i].inc != 0);
1518 }
1519 #endif
1520
1521 /* If we will replace IN and OUT with the reload-reg,
1522 record where they are located so that substitution need
1523 not do a tree walk. */
1524
1525 if (replace_reloads)
1526 {
1527 if (inloc != 0)
1528 {
1529 struct replacement *r = &replacements[n_replacements++];
1530 r->what = i;
1531 r->where = inloc;
1532 r->mode = inmode;
1533 }
1534 if (outloc != 0 && outloc != inloc)
1535 {
1536 struct replacement *r = &replacements[n_replacements++];
1537 r->what = i;
1538 r->where = outloc;
1539 r->mode = outmode;
1540 }
1541 }
1542
1543 /* If this reload is just being introduced and it has both
1544 an incoming quantity and an outgoing quantity that are
1545 supposed to be made to match, see if either one of the two
1546 can serve as the place to reload into.
1547
1548 If one of them is acceptable, set rld[i].reg_rtx
1549 to that one. */
1550
1551 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1552 {
1553 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1554 inmode, outmode,
1555 rld[i].rclass, i,
1556 earlyclobber_operand_p (out));
1557
1558 /* If the outgoing register already contains the same value
1559 as the incoming one, we can dispense with loading it.
1560 The easiest way to tell the caller that is to give a phony
1561 value for the incoming operand (same as outgoing one). */
1562 if (rld[i].reg_rtx == out
1563 && (REG_P (in) || CONSTANT_P (in))
1564 && find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1565 static_reload_reg_p, i, inmode) != 0)
1566 rld[i].in = out;
1567 }
1568
1569 /* If this is an input reload and the operand contains a register that
1570 dies in this insn and is used nowhere else, see if it is the right class
1571 to be used for this reload. Use it if so. (This occurs most commonly
1572 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1573 this if it is also an output reload that mentions the register unless
1574 the output is a SUBREG that clobbers an entire register.
1575
1576 Note that the operand might be one of the spill regs, if it is a
1577 pseudo reg and we are in a block where spilling has not taken place.
1578 But if there is no spilling in this block, that is OK.
1579 An explicitly used hard reg cannot be a spill reg. */
1580
1581 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1582 {
1583 rtx note;
1584 int regno;
1585 machine_mode rel_mode = inmode;
1586
1587 if (out && partial_subreg_p (rel_mode, outmode))
1588 rel_mode = outmode;
1589
1590 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1591 if (REG_NOTE_KIND (note) == REG_DEAD
1592 && REG_P (XEXP (note, 0))
1593 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1594 && reg_mentioned_p (XEXP (note, 0), in)
1595 /* Check that a former pseudo is valid; see find_dummy_reload. */
1596 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1597 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1598 ORIGINAL_REGNO (XEXP (note, 0)))
1599 && REG_NREGS (XEXP (note, 0)) == 1))
1600 && ! refers_to_regno_for_reload_p (regno,
1601 end_hard_regno (rel_mode,
1602 regno),
1603 PATTERN (this_insn), inloc)
1604 && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1605 /* If this is also an output reload, IN cannot be used as
1606 the reload register if it is set in this insn unless IN
1607 is also OUT. */
1608 && (out == 0 || in == out
1609 || ! hard_reg_set_here_p (regno,
1610 end_hard_regno (rel_mode, regno),
1611 PATTERN (this_insn)))
1612 /* ??? Why is this code so different from the previous?
1613 Is there any simple coherent way to describe the two together?
1614 What's going on here. */
1615 && (in != out
1616 || (GET_CODE (in) == SUBREG
1617 && (known_equal_after_align_up
1618 (GET_MODE_SIZE (GET_MODE (in)),
1619 GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))),
1620 UNITS_PER_WORD))))
1621 /* Make sure the operand fits in the reg that dies. */
1622 && known_le (GET_MODE_SIZE (rel_mode),
1623 GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1624 && targetm.hard_regno_mode_ok (regno, inmode)
1625 && targetm.hard_regno_mode_ok (regno, outmode))
1626 {
1627 unsigned int offs;
1628 unsigned int nregs = MAX (hard_regno_nregs (regno, inmode),
1629 hard_regno_nregs (regno, outmode));
1630
1631 for (offs = 0; offs < nregs; offs++)
1632 if (fixed_regs[regno + offs]
1633 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1634 regno + offs))
1635 break;
1636
1637 if (offs == nregs
1638 && (! (refers_to_regno_for_reload_p
1639 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1640 || can_reload_into (in, regno, inmode)))
1641 {
1642 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1643 break;
1644 }
1645 }
1646 }
1647
1648 if (out)
1649 output_reloadnum = i;
1650
1651 return i;
1652 }
1653
1654 /* Record an additional place we must replace a value
1655 for which we have already recorded a reload.
1656 RELOADNUM is the value returned by push_reload
1657 when the reload was recorded.
1658 This is used in insn patterns that use match_dup. */
1659
1660 static void
push_replacement(rtx * loc,int reloadnum,machine_mode mode)1661 push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1662 {
1663 if (replace_reloads)
1664 {
1665 struct replacement *r = &replacements[n_replacements++];
1666 r->what = reloadnum;
1667 r->where = loc;
1668 r->mode = mode;
1669 }
1670 }
1671
1672 /* Duplicate any replacement we have recorded to apply at
1673 location ORIG_LOC to also be performed at DUP_LOC.
1674 This is used in insn patterns that use match_dup. */
1675
1676 static void
dup_replacements(rtx * dup_loc,rtx * orig_loc)1677 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1678 {
1679 int i, n = n_replacements;
1680
1681 for (i = 0; i < n; i++)
1682 {
1683 struct replacement *r = &replacements[i];
1684 if (r->where == orig_loc)
1685 push_replacement (dup_loc, r->what, r->mode);
1686 }
1687 }
1688
1689 /* Transfer all replacements that used to be in reload FROM to be in
1690 reload TO. */
1691
1692 void
transfer_replacements(int to,int from)1693 transfer_replacements (int to, int from)
1694 {
1695 int i;
1696
1697 for (i = 0; i < n_replacements; i++)
1698 if (replacements[i].what == from)
1699 replacements[i].what = to;
1700 }
1701
1702 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1703 or a subpart of it. If we have any replacements registered for IN_RTX,
1704 cancel the reloads that were supposed to load them.
1705 Return nonzero if we canceled any reloads. */
1706 int
remove_address_replacements(rtx in_rtx)1707 remove_address_replacements (rtx in_rtx)
1708 {
1709 int i, j;
1710 char reload_flags[MAX_RELOADS];
1711 int something_changed = 0;
1712
1713 memset (reload_flags, 0, sizeof reload_flags);
1714 for (i = 0, j = 0; i < n_replacements; i++)
1715 {
1716 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1717 reload_flags[replacements[i].what] |= 1;
1718 else
1719 {
1720 replacements[j++] = replacements[i];
1721 reload_flags[replacements[i].what] |= 2;
1722 }
1723 }
1724 /* Note that the following store must be done before the recursive calls. */
1725 n_replacements = j;
1726
1727 for (i = n_reloads - 1; i >= 0; i--)
1728 {
1729 if (reload_flags[i] == 1)
1730 {
1731 deallocate_reload_reg (i);
1732 remove_address_replacements (rld[i].in);
1733 rld[i].in = 0;
1734 something_changed = 1;
1735 }
1736 }
1737 return something_changed;
1738 }
1739
1740 /* If there is only one output reload, and it is not for an earlyclobber
1741 operand, try to combine it with a (logically unrelated) input reload
1742 to reduce the number of reload registers needed.
1743
1744 This is safe if the input reload does not appear in
1745 the value being output-reloaded, because this implies
1746 it is not needed any more once the original insn completes.
1747
1748 If that doesn't work, see we can use any of the registers that
1749 die in this insn as a reload register. We can if it is of the right
1750 class and does not appear in the value being output-reloaded. */
1751
1752 static void
combine_reloads(void)1753 combine_reloads (void)
1754 {
1755 int i, regno;
1756 int output_reload = -1;
1757 int secondary_out = -1;
1758 rtx note;
1759
1760 /* Find the output reload; return unless there is exactly one
1761 and that one is mandatory. */
1762
1763 for (i = 0; i < n_reloads; i++)
1764 if (rld[i].out != 0)
1765 {
1766 if (output_reload >= 0)
1767 return;
1768 output_reload = i;
1769 }
1770
1771 if (output_reload < 0 || rld[output_reload].optional)
1772 return;
1773
1774 /* An input-output reload isn't combinable. */
1775
1776 if (rld[output_reload].in != 0)
1777 return;
1778
1779 /* If this reload is for an earlyclobber operand, we can't do anything. */
1780 if (earlyclobber_operand_p (rld[output_reload].out))
1781 return;
1782
1783 /* If there is a reload for part of the address of this operand, we would
1784 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1785 its life to the point where doing this combine would not lower the
1786 number of spill registers needed. */
1787 for (i = 0; i < n_reloads; i++)
1788 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1789 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1790 && rld[i].opnum == rld[output_reload].opnum)
1791 return;
1792
1793 /* Check each input reload; can we combine it? */
1794
1795 for (i = 0; i < n_reloads; i++)
1796 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1797 /* Life span of this reload must not extend past main insn. */
1798 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1799 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1800 && rld[i].when_needed != RELOAD_OTHER
1801 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1802 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1803 [(int) rld[output_reload].outmode])
1804 && known_eq (rld[i].inc, 0)
1805 && rld[i].reg_rtx == 0
1806 /* Don't combine two reloads with different secondary
1807 memory locations. */
1808 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1809 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1810 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1811 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1812 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1813 ? (rld[i].rclass == rld[output_reload].rclass)
1814 : (reg_class_subset_p (rld[i].rclass,
1815 rld[output_reload].rclass)
1816 || reg_class_subset_p (rld[output_reload].rclass,
1817 rld[i].rclass)))
1818 && (MATCHES (rld[i].in, rld[output_reload].out)
1819 /* Args reversed because the first arg seems to be
1820 the one that we imagine being modified
1821 while the second is the one that might be affected. */
1822 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1823 rld[i].in)
1824 /* However, if the input is a register that appears inside
1825 the output, then we also can't share.
1826 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1827 If the same reload reg is used for both reg 69 and the
1828 result to be stored in memory, then that result
1829 will clobber the address of the memory ref. */
1830 && ! (REG_P (rld[i].in)
1831 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1832 rld[output_reload].out))))
1833 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1834 rld[i].when_needed != RELOAD_FOR_INPUT)
1835 && (reg_class_size[(int) rld[i].rclass]
1836 || targetm.small_register_classes_for_mode_p (VOIDmode))
1837 /* We will allow making things slightly worse by combining an
1838 input and an output, but no worse than that. */
1839 && (rld[i].when_needed == RELOAD_FOR_INPUT
1840 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1841 {
1842 int j;
1843
1844 /* We have found a reload to combine with! */
1845 rld[i].out = rld[output_reload].out;
1846 rld[i].out_reg = rld[output_reload].out_reg;
1847 rld[i].outmode = rld[output_reload].outmode;
1848 /* Mark the old output reload as inoperative. */
1849 rld[output_reload].out = 0;
1850 /* The combined reload is needed for the entire insn. */
1851 rld[i].when_needed = RELOAD_OTHER;
1852 /* If the output reload had a secondary reload, copy it. */
1853 if (rld[output_reload].secondary_out_reload != -1)
1854 {
1855 rld[i].secondary_out_reload
1856 = rld[output_reload].secondary_out_reload;
1857 rld[i].secondary_out_icode
1858 = rld[output_reload].secondary_out_icode;
1859 }
1860
1861 /* Copy any secondary MEM. */
1862 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1863 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1864 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1865 /* If required, minimize the register class. */
1866 if (reg_class_subset_p (rld[output_reload].rclass,
1867 rld[i].rclass))
1868 rld[i].rclass = rld[output_reload].rclass;
1869
1870 /* Transfer all replacements from the old reload to the combined. */
1871 for (j = 0; j < n_replacements; j++)
1872 if (replacements[j].what == output_reload)
1873 replacements[j].what = i;
1874
1875 return;
1876 }
1877
1878 /* If this insn has only one operand that is modified or written (assumed
1879 to be the first), it must be the one corresponding to this reload. It
1880 is safe to use anything that dies in this insn for that output provided
1881 that it does not occur in the output (we already know it isn't an
1882 earlyclobber. If this is an asm insn, give up. */
1883
1884 if (INSN_CODE (this_insn) == -1)
1885 return;
1886
1887 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1888 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1889 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1890 return;
1891
1892 /* See if some hard register that dies in this insn and is not used in
1893 the output is the right class. Only works if the register we pick
1894 up can fully hold our output reload. */
1895 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1896 if (REG_NOTE_KIND (note) == REG_DEAD
1897 && REG_P (XEXP (note, 0))
1898 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1899 rld[output_reload].out)
1900 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1901 && targetm.hard_regno_mode_ok (regno, rld[output_reload].outmode)
1902 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1903 regno)
1904 && (hard_regno_nregs (regno, rld[output_reload].outmode)
1905 <= REG_NREGS (XEXP (note, 0)))
1906 /* Ensure that a secondary or tertiary reload for this output
1907 won't want this register. */
1908 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1909 || (!(TEST_HARD_REG_BIT
1910 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1911 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1912 || !(TEST_HARD_REG_BIT
1913 (reg_class_contents[(int) rld[secondary_out].rclass],
1914 regno)))))
1915 && !fixed_regs[regno]
1916 /* Check that a former pseudo is valid; see find_dummy_reload. */
1917 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1918 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1919 ORIGINAL_REGNO (XEXP (note, 0)))
1920 && REG_NREGS (XEXP (note, 0)) == 1)))
1921 {
1922 rld[output_reload].reg_rtx
1923 = gen_rtx_REG (rld[output_reload].outmode, regno);
1924 return;
1925 }
1926 }
1927
1928 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1929 See if one of IN and OUT is a register that may be used;
1930 this is desirable since a spill-register won't be needed.
1931 If so, return the register rtx that proves acceptable.
1932
1933 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1934 RCLASS is the register class required for the reload.
1935
1936 If FOR_REAL is >= 0, it is the number of the reload,
1937 and in some cases when it can be discovered that OUT doesn't need
1938 to be computed, clear out rld[FOR_REAL].out.
1939
1940 If FOR_REAL is -1, this should not be done, because this call
1941 is just to see if a register can be found, not to find and install it.
1942
1943 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1944 puts an additional constraint on being able to use IN for OUT since
1945 IN must not appear elsewhere in the insn (it is assumed that IN itself
1946 is safe from the earlyclobber). */
1947
1948 static rtx
find_dummy_reload(rtx real_in,rtx real_out,rtx * inloc,rtx * outloc,machine_mode inmode,machine_mode outmode,reg_class_t rclass,int for_real,int earlyclobber)1949 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1950 machine_mode inmode, machine_mode outmode,
1951 reg_class_t rclass, int for_real, int earlyclobber)
1952 {
1953 rtx in = real_in;
1954 rtx out = real_out;
1955 int in_offset = 0;
1956 int out_offset = 0;
1957 rtx value = 0;
1958
1959 /* If operands exceed a word, we can't use either of them
1960 unless they have the same size. */
1961 if (maybe_ne (GET_MODE_SIZE (outmode), GET_MODE_SIZE (inmode))
1962 && (maybe_gt (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1963 || maybe_gt (GET_MODE_SIZE (inmode), UNITS_PER_WORD)))
1964 return 0;
1965
1966 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1967 respectively refers to a hard register. */
1968
1969 /* Find the inside of any subregs. */
1970 while (GET_CODE (out) == SUBREG)
1971 {
1972 if (REG_P (SUBREG_REG (out))
1973 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1974 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1975 GET_MODE (SUBREG_REG (out)),
1976 SUBREG_BYTE (out),
1977 GET_MODE (out));
1978 out = SUBREG_REG (out);
1979 }
1980 while (GET_CODE (in) == SUBREG)
1981 {
1982 if (REG_P (SUBREG_REG (in))
1983 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1984 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1985 GET_MODE (SUBREG_REG (in)),
1986 SUBREG_BYTE (in),
1987 GET_MODE (in));
1988 in = SUBREG_REG (in);
1989 }
1990
1991 /* Narrow down the reg class, the same way push_reload will;
1992 otherwise we might find a dummy now, but push_reload won't. */
1993 {
1994 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1995 if (preferred_class != NO_REGS)
1996 rclass = (enum reg_class) preferred_class;
1997 }
1998
1999 /* See if OUT will do. */
2000 if (REG_P (out)
2001 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2002 {
2003 unsigned int regno = REGNO (out) + out_offset;
2004 unsigned int nwords = hard_regno_nregs (regno, outmode);
2005 rtx saved_rtx;
2006
2007 /* When we consider whether the insn uses OUT,
2008 ignore references within IN. They don't prevent us
2009 from copying IN into OUT, because those refs would
2010 move into the insn that reloads IN.
2011
2012 However, we only ignore IN in its role as this reload.
2013 If the insn uses IN elsewhere and it contains OUT,
2014 that counts. We can't be sure it's the "same" operand
2015 so it might not go through this reload.
2016
2017 We also need to avoid using OUT if it, or part of it, is a
2018 fixed register. Modifying such registers, even transiently,
2019 may have undefined effects on the machine, such as modifying
2020 the stack pointer. */
2021 saved_rtx = *inloc;
2022 *inloc = const0_rtx;
2023
2024 if (regno < FIRST_PSEUDO_REGISTER
2025 && targetm.hard_regno_mode_ok (regno, outmode)
2026 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2027 PATTERN (this_insn), outloc))
2028 {
2029 unsigned int i;
2030
2031 for (i = 0; i < nwords; i++)
2032 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2033 regno + i)
2034 || fixed_regs[regno + i])
2035 break;
2036
2037 if (i == nwords)
2038 {
2039 if (REG_P (real_out))
2040 value = real_out;
2041 else
2042 value = gen_rtx_REG (outmode, regno);
2043 }
2044 }
2045
2046 *inloc = saved_rtx;
2047 }
2048
2049 /* Consider using IN if OUT was not acceptable
2050 or if OUT dies in this insn (like the quotient in a divmod insn).
2051 We can't use IN unless it is dies in this insn,
2052 which means we must know accurately which hard regs are live.
2053 Also, the result can't go in IN if IN is used within OUT,
2054 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2055 if (hard_regs_live_known
2056 && REG_P (in)
2057 && REGNO (in) < FIRST_PSEUDO_REGISTER
2058 && (value == 0
2059 || find_reg_note (this_insn, REG_UNUSED, real_out))
2060 && find_reg_note (this_insn, REG_DEAD, real_in)
2061 && !fixed_regs[REGNO (in)]
2062 && targetm.hard_regno_mode_ok (REGNO (in),
2063 /* The only case where out and real_out
2064 might have different modes is where
2065 real_out is a subreg, and in that
2066 case, out has a real mode. */
2067 (GET_MODE (out) != VOIDmode
2068 ? GET_MODE (out) : outmode))
2069 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2070 /* However only do this if we can be sure that this input
2071 operand doesn't correspond with an uninitialized pseudo.
2072 global can assign some hardreg to it that is the same as
2073 the one assigned to a different, also live pseudo (as it
2074 can ignore the conflict). We must never introduce writes
2075 to such hardregs, as they would clobber the other live
2076 pseudo. See PR 20973. */
2077 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2078 ORIGINAL_REGNO (in))
2079 /* Similarly, only do this if we can be sure that the death
2080 note is still valid. global can assign some hardreg to
2081 the pseudo referenced in the note and simultaneously a
2082 subword of this hardreg to a different, also live pseudo,
2083 because only another subword of the hardreg is actually
2084 used in the insn. This cannot happen if the pseudo has
2085 been assigned exactly one hardreg. See PR 33732. */
2086 && REG_NREGS (in) == 1)))
2087 {
2088 unsigned int regno = REGNO (in) + in_offset;
2089 unsigned int nwords = hard_regno_nregs (regno, inmode);
2090
2091 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2092 && ! hard_reg_set_here_p (regno, regno + nwords,
2093 PATTERN (this_insn))
2094 && (! earlyclobber
2095 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2096 PATTERN (this_insn), inloc)))
2097 {
2098 unsigned int i;
2099
2100 for (i = 0; i < nwords; i++)
2101 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2102 regno + i))
2103 break;
2104
2105 if (i == nwords)
2106 {
2107 /* If we were going to use OUT as the reload reg
2108 and changed our mind, it means OUT is a dummy that
2109 dies here. So don't bother copying value to it. */
2110 if (for_real >= 0 && value == real_out)
2111 rld[for_real].out = 0;
2112 if (REG_P (real_in))
2113 value = real_in;
2114 else
2115 value = gen_rtx_REG (inmode, regno);
2116 }
2117 }
2118 }
2119
2120 return value;
2121 }
2122
2123 /* This page contains subroutines used mainly for determining
2124 whether the IN or an OUT of a reload can serve as the
2125 reload register. */
2126
2127 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2128
2129 int
earlyclobber_operand_p(rtx x)2130 earlyclobber_operand_p (rtx x)
2131 {
2132 int i;
2133
2134 for (i = 0; i < n_earlyclobbers; i++)
2135 if (reload_earlyclobbers[i] == x)
2136 return 1;
2137
2138 return 0;
2139 }
2140
2141 /* Return 1 if expression X alters a hard reg in the range
2142 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2143 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2144 X should be the body of an instruction. */
2145
2146 static int
hard_reg_set_here_p(unsigned int beg_regno,unsigned int end_regno,rtx x)2147 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2148 {
2149 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2150 {
2151 rtx op0 = SET_DEST (x);
2152
2153 while (GET_CODE (op0) == SUBREG)
2154 op0 = SUBREG_REG (op0);
2155 if (REG_P (op0))
2156 {
2157 unsigned int r = REGNO (op0);
2158
2159 /* See if this reg overlaps range under consideration. */
2160 if (r < end_regno
2161 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2162 return 1;
2163 }
2164 }
2165 else if (GET_CODE (x) == PARALLEL)
2166 {
2167 int i = XVECLEN (x, 0) - 1;
2168
2169 for (; i >= 0; i--)
2170 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2171 return 1;
2172 }
2173
2174 return 0;
2175 }
2176
2177 /* Return 1 if ADDR is a valid memory address for mode MODE
2178 in address space AS, and check that each pseudo reg has the
2179 proper kind of hard reg. */
2180
2181 int
strict_memory_address_addr_space_p(machine_mode mode ATTRIBUTE_UNUSED,rtx addr,addr_space_t as)2182 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2183 rtx addr, addr_space_t as)
2184 {
2185 #ifdef GO_IF_LEGITIMATE_ADDRESS
2186 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2187 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2188 return 0;
2189
2190 win:
2191 return 1;
2192 #else
2193 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2194 #endif
2195 }
2196
2197 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2198 if they are the same hard reg, and has special hacks for
2199 autoincrement and autodecrement.
2200 This is specifically intended for find_reloads to use
2201 in determining whether two operands match.
2202 X is the operand whose number is the lower of the two.
2203
2204 The value is 2 if Y contains a pre-increment that matches
2205 a non-incrementing address in X. */
2206
2207 /* ??? To be completely correct, we should arrange to pass
2208 for X the output operand and for Y the input operand.
2209 For now, we assume that the output operand has the lower number
2210 because that is natural in (SET output (... input ...)). */
2211
2212 int
operands_match_p(rtx x,rtx y)2213 operands_match_p (rtx x, rtx y)
2214 {
2215 int i;
2216 RTX_CODE code = GET_CODE (x);
2217 const char *fmt;
2218 int success_2;
2219
2220 if (x == y)
2221 return 1;
2222 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2223 && (REG_P (y) || (GET_CODE (y) == SUBREG
2224 && REG_P (SUBREG_REG (y)))))
2225 {
2226 int j;
2227
2228 if (code == SUBREG)
2229 {
2230 i = REGNO (SUBREG_REG (x));
2231 if (i >= FIRST_PSEUDO_REGISTER)
2232 goto slow;
2233 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2234 GET_MODE (SUBREG_REG (x)),
2235 SUBREG_BYTE (x),
2236 GET_MODE (x));
2237 }
2238 else
2239 i = REGNO (x);
2240
2241 if (GET_CODE (y) == SUBREG)
2242 {
2243 j = REGNO (SUBREG_REG (y));
2244 if (j >= FIRST_PSEUDO_REGISTER)
2245 goto slow;
2246 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2247 GET_MODE (SUBREG_REG (y)),
2248 SUBREG_BYTE (y),
2249 GET_MODE (y));
2250 }
2251 else
2252 j = REGNO (y);
2253
2254 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2255 multiple hard register group of scalar integer registers, so that
2256 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2257 register. */
2258 scalar_int_mode xmode;
2259 if (REG_WORDS_BIG_ENDIAN
2260 && is_a <scalar_int_mode> (GET_MODE (x), &xmode)
2261 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD
2262 && i < FIRST_PSEUDO_REGISTER)
2263 i += hard_regno_nregs (i, xmode) - 1;
2264 scalar_int_mode ymode;
2265 if (REG_WORDS_BIG_ENDIAN
2266 && is_a <scalar_int_mode> (GET_MODE (y), &ymode)
2267 && GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2268 && j < FIRST_PSEUDO_REGISTER)
2269 j += hard_regno_nregs (j, ymode) - 1;
2270
2271 return i == j;
2272 }
2273 /* If two operands must match, because they are really a single
2274 operand of an assembler insn, then two postincrements are invalid
2275 because the assembler insn would increment only once.
2276 On the other hand, a postincrement matches ordinary indexing
2277 if the postincrement is the output operand. */
2278 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2279 return operands_match_p (XEXP (x, 0), y);
2280 /* Two preincrements are invalid
2281 because the assembler insn would increment only once.
2282 On the other hand, a preincrement matches ordinary indexing
2283 if the preincrement is the input operand.
2284 In this case, return 2, since some callers need to do special
2285 things when this happens. */
2286 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2287 || GET_CODE (y) == PRE_MODIFY)
2288 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2289
2290 slow:
2291
2292 /* Now we have disposed of all the cases in which different rtx codes
2293 can match. */
2294 if (code != GET_CODE (y))
2295 return 0;
2296
2297 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2298 if (GET_MODE (x) != GET_MODE (y))
2299 return 0;
2300
2301 /* MEMs referring to different address space are not equivalent. */
2302 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2303 return 0;
2304
2305 switch (code)
2306 {
2307 CASE_CONST_UNIQUE:
2308 return 0;
2309
2310 case CONST_VECTOR:
2311 if (!same_vector_encodings_p (x, y))
2312 return false;
2313 break;
2314
2315 case LABEL_REF:
2316 return label_ref_label (x) == label_ref_label (y);
2317 case SYMBOL_REF:
2318 return XSTR (x, 0) == XSTR (y, 0);
2319
2320 default:
2321 break;
2322 }
2323
2324 /* Compare the elements. If any pair of corresponding elements
2325 fail to match, return 0 for the whole things. */
2326
2327 success_2 = 0;
2328 fmt = GET_RTX_FORMAT (code);
2329 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2330 {
2331 int val, j;
2332 switch (fmt[i])
2333 {
2334 case 'w':
2335 if (XWINT (x, i) != XWINT (y, i))
2336 return 0;
2337 break;
2338
2339 case 'i':
2340 if (XINT (x, i) != XINT (y, i))
2341 return 0;
2342 break;
2343
2344 case 'p':
2345 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2346 return 0;
2347 break;
2348
2349 case 'e':
2350 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2351 if (val == 0)
2352 return 0;
2353 /* If any subexpression returns 2,
2354 we should return 2 if we are successful. */
2355 if (val == 2)
2356 success_2 = 1;
2357 break;
2358
2359 case '0':
2360 break;
2361
2362 case 'E':
2363 if (XVECLEN (x, i) != XVECLEN (y, i))
2364 return 0;
2365 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2366 {
2367 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2368 if (val == 0)
2369 return 0;
2370 if (val == 2)
2371 success_2 = 1;
2372 }
2373 break;
2374
2375 /* It is believed that rtx's at this level will never
2376 contain anything but integers and other rtx's,
2377 except for within LABEL_REFs and SYMBOL_REFs. */
2378 default:
2379 gcc_unreachable ();
2380 }
2381 }
2382 return 1 + success_2;
2383 }
2384
2385 /* Describe the range of registers or memory referenced by X.
2386 If X is a register, set REG_FLAG and put the first register
2387 number into START and the last plus one into END.
2388 If X is a memory reference, put a base address into BASE
2389 and a range of integer offsets into START and END.
2390 If X is pushing on the stack, we can assume it causes no trouble,
2391 so we set the SAFE field. */
2392
2393 static struct decomposition
decompose(rtx x)2394 decompose (rtx x)
2395 {
2396 struct decomposition val;
2397 int all_const = 0, regno;
2398
2399 memset (&val, 0, sizeof (val));
2400
2401 switch (GET_CODE (x))
2402 {
2403 case MEM:
2404 {
2405 rtx base = NULL_RTX, offset = 0;
2406 rtx addr = XEXP (x, 0);
2407
2408 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2409 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2410 {
2411 val.base = XEXP (addr, 0);
2412 val.start = -GET_MODE_SIZE (GET_MODE (x));
2413 val.end = GET_MODE_SIZE (GET_MODE (x));
2414 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2415 return val;
2416 }
2417
2418 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2419 {
2420 if (GET_CODE (XEXP (addr, 1)) == PLUS
2421 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2422 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2423 {
2424 val.base = XEXP (addr, 0);
2425 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2426 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2427 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2428 return val;
2429 }
2430 }
2431
2432 if (GET_CODE (addr) == CONST)
2433 {
2434 addr = XEXP (addr, 0);
2435 all_const = 1;
2436 }
2437 if (GET_CODE (addr) == PLUS)
2438 {
2439 if (CONSTANT_P (XEXP (addr, 0)))
2440 {
2441 base = XEXP (addr, 1);
2442 offset = XEXP (addr, 0);
2443 }
2444 else if (CONSTANT_P (XEXP (addr, 1)))
2445 {
2446 base = XEXP (addr, 0);
2447 offset = XEXP (addr, 1);
2448 }
2449 }
2450
2451 if (offset == 0)
2452 {
2453 base = addr;
2454 offset = const0_rtx;
2455 }
2456 if (GET_CODE (offset) == CONST)
2457 offset = XEXP (offset, 0);
2458 if (GET_CODE (offset) == PLUS)
2459 {
2460 if (CONST_INT_P (XEXP (offset, 0)))
2461 {
2462 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2463 offset = XEXP (offset, 0);
2464 }
2465 else if (CONST_INT_P (XEXP (offset, 1)))
2466 {
2467 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2468 offset = XEXP (offset, 1);
2469 }
2470 else
2471 {
2472 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2473 offset = const0_rtx;
2474 }
2475 }
2476 else if (!CONST_INT_P (offset))
2477 {
2478 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2479 offset = const0_rtx;
2480 }
2481
2482 if (all_const && GET_CODE (base) == PLUS)
2483 base = gen_rtx_CONST (GET_MODE (base), base);
2484
2485 gcc_assert (CONST_INT_P (offset));
2486
2487 val.start = INTVAL (offset);
2488 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2489 val.base = base;
2490 }
2491 break;
2492
2493 case REG:
2494 val.reg_flag = 1;
2495 regno = true_regnum (x);
2496 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2497 {
2498 /* A pseudo with no hard reg. */
2499 val.start = REGNO (x);
2500 val.end = val.start + 1;
2501 }
2502 else
2503 {
2504 /* A hard reg. */
2505 val.start = regno;
2506 val.end = end_hard_regno (GET_MODE (x), regno);
2507 }
2508 break;
2509
2510 case SUBREG:
2511 if (!REG_P (SUBREG_REG (x)))
2512 /* This could be more precise, but it's good enough. */
2513 return decompose (SUBREG_REG (x));
2514 regno = true_regnum (x);
2515 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2516 return decompose (SUBREG_REG (x));
2517
2518 /* A hard reg. */
2519 val.reg_flag = 1;
2520 val.start = regno;
2521 val.end = regno + subreg_nregs (x);
2522 break;
2523
2524 case SCRATCH:
2525 /* This hasn't been assigned yet, so it can't conflict yet. */
2526 val.safe = 1;
2527 break;
2528
2529 default:
2530 gcc_assert (CONSTANT_P (x));
2531 val.safe = 1;
2532 break;
2533 }
2534 return val;
2535 }
2536
2537 /* Return 1 if altering Y will not modify the value of X.
2538 Y is also described by YDATA, which should be decompose (Y). */
2539
2540 static int
immune_p(rtx x,rtx y,struct decomposition ydata)2541 immune_p (rtx x, rtx y, struct decomposition ydata)
2542 {
2543 struct decomposition xdata;
2544
2545 if (ydata.reg_flag)
2546 /* In this case the decomposition structure contains register
2547 numbers rather than byte offsets. */
2548 return !refers_to_regno_for_reload_p (ydata.start.to_constant (),
2549 ydata.end.to_constant (),
2550 x, (rtx *) 0);
2551 if (ydata.safe)
2552 return 1;
2553
2554 gcc_assert (MEM_P (y));
2555 /* If Y is memory and X is not, Y can't affect X. */
2556 if (!MEM_P (x))
2557 return 1;
2558
2559 xdata = decompose (x);
2560
2561 if (! rtx_equal_p (xdata.base, ydata.base))
2562 {
2563 /* If bases are distinct symbolic constants, there is no overlap. */
2564 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2565 return 1;
2566 /* Constants and stack slots never overlap. */
2567 if (CONSTANT_P (xdata.base)
2568 && (ydata.base == frame_pointer_rtx
2569 || ydata.base == hard_frame_pointer_rtx
2570 || ydata.base == stack_pointer_rtx))
2571 return 1;
2572 if (CONSTANT_P (ydata.base)
2573 && (xdata.base == frame_pointer_rtx
2574 || xdata.base == hard_frame_pointer_rtx
2575 || xdata.base == stack_pointer_rtx))
2576 return 1;
2577 /* If either base is variable, we don't know anything. */
2578 return 0;
2579 }
2580
2581 return known_ge (xdata.start, ydata.end) || known_ge (ydata.start, xdata.end);
2582 }
2583
2584 /* Similar, but calls decompose. */
2585
2586 int
safe_from_earlyclobber(rtx op,rtx clobber)2587 safe_from_earlyclobber (rtx op, rtx clobber)
2588 {
2589 struct decomposition early_data;
2590
2591 early_data = decompose (clobber);
2592 return immune_p (op, clobber, early_data);
2593 }
2594
2595 /* Main entry point of this file: search the body of INSN
2596 for values that need reloading and record them with push_reload.
2597 REPLACE nonzero means record also where the values occur
2598 so that subst_reloads can be used.
2599
2600 IND_LEVELS says how many levels of indirection are supported by this
2601 machine; a value of zero means that a memory reference is not a valid
2602 memory address.
2603
2604 LIVE_KNOWN says we have valid information about which hard
2605 regs are live at each point in the program; this is true when
2606 we are called from global_alloc but false when stupid register
2607 allocation has been done.
2608
2609 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2610 which is nonnegative if the reg has been commandeered for reloading into.
2611 It is copied into STATIC_RELOAD_REG_P and referenced from there
2612 by various subroutines.
2613
2614 Return TRUE if some operands need to be changed, because of swapping
2615 commutative operands, reg_equiv_address substitution, or whatever. */
2616
2617 int
find_reloads(rtx_insn * insn,int replace,int ind_levels,int live_known,short * reload_reg_p)2618 find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2619 short *reload_reg_p)
2620 {
2621 int insn_code_number;
2622 int i, j;
2623 int noperands;
2624 /* These start out as the constraints for the insn
2625 and they are chewed up as we consider alternatives. */
2626 const char *constraints[MAX_RECOG_OPERANDS];
2627 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2628 a register. */
2629 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2630 char pref_or_nothing[MAX_RECOG_OPERANDS];
2631 /* Nonzero for a MEM operand whose entire address needs a reload.
2632 May be -1 to indicate the entire address may or may not need a reload. */
2633 int address_reloaded[MAX_RECOG_OPERANDS];
2634 /* Nonzero for an address operand that needs to be completely reloaded.
2635 May be -1 to indicate the entire operand may or may not need a reload. */
2636 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2637 /* Value of enum reload_type to use for operand. */
2638 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2639 /* Value of enum reload_type to use within address of operand. */
2640 enum reload_type address_type[MAX_RECOG_OPERANDS];
2641 /* Save the usage of each operand. */
2642 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2643 int no_input_reloads = 0, no_output_reloads = 0;
2644 int n_alternatives;
2645 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2646 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2647 char this_alternative_win[MAX_RECOG_OPERANDS];
2648 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2649 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2650 int this_alternative_matches[MAX_RECOG_OPERANDS];
2651 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2652 int this_alternative_number;
2653 int goal_alternative_number = 0;
2654 int operand_reloadnum[MAX_RECOG_OPERANDS];
2655 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2656 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2657 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2658 char goal_alternative_win[MAX_RECOG_OPERANDS];
2659 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2660 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2661 int goal_alternative_swapped;
2662 int best;
2663 int commutative;
2664 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2665 rtx substed_operand[MAX_RECOG_OPERANDS];
2666 rtx body = PATTERN (insn);
2667 rtx set = single_set (insn);
2668 int goal_earlyclobber = 0, this_earlyclobber;
2669 machine_mode operand_mode[MAX_RECOG_OPERANDS];
2670 int retval = 0;
2671
2672 this_insn = insn;
2673 n_reloads = 0;
2674 n_replacements = 0;
2675 n_earlyclobbers = 0;
2676 replace_reloads = replace;
2677 hard_regs_live_known = live_known;
2678 static_reload_reg_p = reload_reg_p;
2679
2680 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2681 neither are insns that SET cc0. Insns that use CC0 are not allowed
2682 to have any input reloads. */
2683 if (JUMP_P (insn) || CALL_P (insn))
2684 no_output_reloads = 1;
2685
2686 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
2687 no_input_reloads = 1;
2688 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (insn)))
2689 no_output_reloads = 1;
2690
2691 /* The eliminated forms of any secondary memory locations are per-insn, so
2692 clear them out here. */
2693
2694 if (secondary_memlocs_elim_used)
2695 {
2696 memset (secondary_memlocs_elim, 0,
2697 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2698 secondary_memlocs_elim_used = 0;
2699 }
2700
2701 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2702 is cheap to move between them. If it is not, there may not be an insn
2703 to do the copy, so we may need a reload. */
2704 if (GET_CODE (body) == SET
2705 && REG_P (SET_DEST (body))
2706 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2707 && REG_P (SET_SRC (body))
2708 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2709 && register_move_cost (GET_MODE (SET_SRC (body)),
2710 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2711 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2712 return 0;
2713
2714 extract_insn (insn);
2715
2716 noperands = reload_n_operands = recog_data.n_operands;
2717 n_alternatives = recog_data.n_alternatives;
2718
2719 /* Just return "no reloads" if insn has no operands with constraints. */
2720 if (noperands == 0 || n_alternatives == 0)
2721 return 0;
2722
2723 insn_code_number = INSN_CODE (insn);
2724 this_insn_is_asm = insn_code_number < 0;
2725
2726 memcpy (operand_mode, recog_data.operand_mode,
2727 noperands * sizeof (machine_mode));
2728 memcpy (constraints, recog_data.constraints,
2729 noperands * sizeof (const char *));
2730
2731 commutative = -1;
2732
2733 /* If we will need to know, later, whether some pair of operands
2734 are the same, we must compare them now and save the result.
2735 Reloading the base and index registers will clobber them
2736 and afterward they will fail to match. */
2737
2738 for (i = 0; i < noperands; i++)
2739 {
2740 const char *p;
2741 int c;
2742 char *end;
2743
2744 substed_operand[i] = recog_data.operand[i];
2745 p = constraints[i];
2746
2747 modified[i] = RELOAD_READ;
2748
2749 /* Scan this operand's constraint to see if it is an output operand,
2750 an in-out operand, is commutative, or should match another. */
2751
2752 while ((c = *p))
2753 {
2754 p += CONSTRAINT_LEN (c, p);
2755 switch (c)
2756 {
2757 case '=':
2758 modified[i] = RELOAD_WRITE;
2759 break;
2760 case '+':
2761 modified[i] = RELOAD_READ_WRITE;
2762 break;
2763 case '%':
2764 {
2765 /* The last operand should not be marked commutative. */
2766 gcc_assert (i != noperands - 1);
2767
2768 /* We currently only support one commutative pair of
2769 operands. Some existing asm code currently uses more
2770 than one pair. Previously, that would usually work,
2771 but sometimes it would crash the compiler. We
2772 continue supporting that case as well as we can by
2773 silently ignoring all but the first pair. In the
2774 future we may handle it correctly. */
2775 if (commutative < 0)
2776 commutative = i;
2777 else
2778 gcc_assert (this_insn_is_asm);
2779 }
2780 break;
2781 /* Use of ISDIGIT is tempting here, but it may get expensive because
2782 of locale support we don't want. */
2783 case '0': case '1': case '2': case '3': case '4':
2784 case '5': case '6': case '7': case '8': case '9':
2785 {
2786 c = strtoul (p - 1, &end, 10);
2787 p = end;
2788
2789 operands_match[c][i]
2790 = operands_match_p (recog_data.operand[c],
2791 recog_data.operand[i]);
2792
2793 /* An operand may not match itself. */
2794 gcc_assert (c != i);
2795
2796 /* If C can be commuted with C+1, and C might need to match I,
2797 then C+1 might also need to match I. */
2798 if (commutative >= 0)
2799 {
2800 if (c == commutative || c == commutative + 1)
2801 {
2802 int other = c + (c == commutative ? 1 : -1);
2803 operands_match[other][i]
2804 = operands_match_p (recog_data.operand[other],
2805 recog_data.operand[i]);
2806 }
2807 if (i == commutative || i == commutative + 1)
2808 {
2809 int other = i + (i == commutative ? 1 : -1);
2810 operands_match[c][other]
2811 = operands_match_p (recog_data.operand[c],
2812 recog_data.operand[other]);
2813 }
2814 /* Note that C is supposed to be less than I.
2815 No need to consider altering both C and I because in
2816 that case we would alter one into the other. */
2817 }
2818 }
2819 }
2820 }
2821 }
2822
2823 /* Examine each operand that is a memory reference or memory address
2824 and reload parts of the addresses into index registers.
2825 Also here any references to pseudo regs that didn't get hard regs
2826 but are equivalent to constants get replaced in the insn itself
2827 with those constants. Nobody will ever see them again.
2828
2829 Finally, set up the preferred classes of each operand. */
2830
2831 for (i = 0; i < noperands; i++)
2832 {
2833 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2834
2835 address_reloaded[i] = 0;
2836 address_operand_reloaded[i] = 0;
2837 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2838 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2839 : RELOAD_OTHER);
2840 address_type[i]
2841 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2842 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2843 : RELOAD_OTHER);
2844
2845 if (*constraints[i] == 0)
2846 /* Ignore things like match_operator operands. */
2847 ;
2848 else if (insn_extra_address_constraint
2849 (lookup_constraint (constraints[i])))
2850 {
2851 address_operand_reloaded[i]
2852 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2853 recog_data.operand[i],
2854 recog_data.operand_loc[i],
2855 i, operand_type[i], ind_levels, insn);
2856
2857 /* If we now have a simple operand where we used to have a
2858 PLUS or MULT, re-recognize and try again. */
2859 if ((OBJECT_P (*recog_data.operand_loc[i])
2860 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2861 && (GET_CODE (recog_data.operand[i]) == MULT
2862 || GET_CODE (recog_data.operand[i]) == PLUS))
2863 {
2864 INSN_CODE (insn) = -1;
2865 retval = find_reloads (insn, replace, ind_levels, live_known,
2866 reload_reg_p);
2867 return retval;
2868 }
2869
2870 recog_data.operand[i] = *recog_data.operand_loc[i];
2871 substed_operand[i] = recog_data.operand[i];
2872
2873 /* Address operands are reloaded in their existing mode,
2874 no matter what is specified in the machine description. */
2875 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2876
2877 /* If the address is a single CONST_INT pick address mode
2878 instead otherwise we will later not know in which mode
2879 the reload should be performed. */
2880 if (operand_mode[i] == VOIDmode)
2881 operand_mode[i] = Pmode;
2882
2883 }
2884 else if (code == MEM)
2885 {
2886 address_reloaded[i]
2887 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2888 recog_data.operand_loc[i],
2889 XEXP (recog_data.operand[i], 0),
2890 &XEXP (recog_data.operand[i], 0),
2891 i, address_type[i], ind_levels, insn);
2892 recog_data.operand[i] = *recog_data.operand_loc[i];
2893 substed_operand[i] = recog_data.operand[i];
2894 }
2895 else if (code == SUBREG)
2896 {
2897 rtx reg = SUBREG_REG (recog_data.operand[i]);
2898 rtx op
2899 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2900 ind_levels,
2901 set != 0
2902 && &SET_DEST (set) == recog_data.operand_loc[i],
2903 insn,
2904 &address_reloaded[i]);
2905
2906 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2907 that didn't get a hard register, emit a USE with a REG_EQUAL
2908 note in front so that we might inherit a previous, possibly
2909 wider reload. */
2910
2911 if (replace
2912 && MEM_P (op)
2913 && REG_P (reg)
2914 && known_ge (GET_MODE_SIZE (GET_MODE (reg)),
2915 GET_MODE_SIZE (GET_MODE (op)))
2916 && reg_equiv_constant (REGNO (reg)) == 0)
2917 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2918 insn),
2919 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2920
2921 substed_operand[i] = recog_data.operand[i] = op;
2922 }
2923 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2924 /* We can get a PLUS as an "operand" as a result of register
2925 elimination. See eliminate_regs and gen_reload. We handle
2926 a unary operator by reloading the operand. */
2927 substed_operand[i] = recog_data.operand[i]
2928 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2929 ind_levels, 0, insn,
2930 &address_reloaded[i]);
2931 else if (code == REG)
2932 {
2933 /* This is equivalent to calling find_reloads_toplev.
2934 The code is duplicated for speed.
2935 When we find a pseudo always equivalent to a constant,
2936 we replace it by the constant. We must be sure, however,
2937 that we don't try to replace it in the insn in which it
2938 is being set. */
2939 int regno = REGNO (recog_data.operand[i]);
2940 if (reg_equiv_constant (regno) != 0
2941 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2942 {
2943 /* Record the existing mode so that the check if constants are
2944 allowed will work when operand_mode isn't specified. */
2945
2946 if (operand_mode[i] == VOIDmode)
2947 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2948
2949 substed_operand[i] = recog_data.operand[i]
2950 = reg_equiv_constant (regno);
2951 }
2952 if (reg_equiv_memory_loc (regno) != 0
2953 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2954 /* We need not give a valid is_set_dest argument since the case
2955 of a constant equivalence was checked above. */
2956 substed_operand[i] = recog_data.operand[i]
2957 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2958 ind_levels, 0, insn,
2959 &address_reloaded[i]);
2960 }
2961 /* If the operand is still a register (we didn't replace it with an
2962 equivalent), get the preferred class to reload it into. */
2963 code = GET_CODE (recog_data.operand[i]);
2964 preferred_class[i]
2965 = ((code == REG && REGNO (recog_data.operand[i])
2966 >= FIRST_PSEUDO_REGISTER)
2967 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2968 : NO_REGS);
2969 pref_or_nothing[i]
2970 = (code == REG
2971 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2972 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2973 }
2974
2975 /* If this is simply a copy from operand 1 to operand 0, merge the
2976 preferred classes for the operands. */
2977 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2978 && recog_data.operand[1] == SET_SRC (set))
2979 {
2980 preferred_class[0] = preferred_class[1]
2981 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2982 pref_or_nothing[0] |= pref_or_nothing[1];
2983 pref_or_nothing[1] |= pref_or_nothing[0];
2984 }
2985
2986 /* Now see what we need for pseudo-regs that didn't get hard regs
2987 or got the wrong kind of hard reg. For this, we must consider
2988 all the operands together against the register constraints. */
2989
2990 best = MAX_RECOG_OPERANDS * 2 + 600;
2991
2992 goal_alternative_swapped = 0;
2993
2994 /* The constraints are made of several alternatives.
2995 Each operand's constraint looks like foo,bar,... with commas
2996 separating the alternatives. The first alternatives for all
2997 operands go together, the second alternatives go together, etc.
2998
2999 First loop over alternatives. */
3000
3001 alternative_mask enabled = get_enabled_alternatives (insn);
3002 for (this_alternative_number = 0;
3003 this_alternative_number < n_alternatives;
3004 this_alternative_number++)
3005 {
3006 int swapped;
3007
3008 if (!TEST_BIT (enabled, this_alternative_number))
3009 {
3010 int i;
3011
3012 for (i = 0; i < recog_data.n_operands; i++)
3013 constraints[i] = skip_alternative (constraints[i]);
3014
3015 continue;
3016 }
3017
3018 /* If insn is commutative (it's safe to exchange a certain pair
3019 of operands) then we need to try each alternative twice, the
3020 second time matching those two operands as if we had
3021 exchanged them. To do this, really exchange them in
3022 operands. */
3023 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3024 {
3025 /* Loop over operands for one constraint alternative. */
3026 /* LOSERS counts those that don't fit this alternative
3027 and would require loading. */
3028 int losers = 0;
3029 /* BAD is set to 1 if it some operand can't fit this alternative
3030 even after reloading. */
3031 int bad = 0;
3032 /* REJECT is a count of how undesirable this alternative says it is
3033 if any reloading is required. If the alternative matches exactly
3034 then REJECT is ignored, but otherwise it gets this much
3035 counted against it in addition to the reloading needed. Each
3036 ? counts three times here since we want the disparaging caused by
3037 a bad register class to only count 1/3 as much. */
3038 int reject = 0;
3039
3040 if (swapped)
3041 {
3042 recog_data.operand[commutative] = substed_operand[commutative + 1];
3043 recog_data.operand[commutative + 1] = substed_operand[commutative];
3044 /* Swap the duplicates too. */
3045 for (i = 0; i < recog_data.n_dups; i++)
3046 if (recog_data.dup_num[i] == commutative
3047 || recog_data.dup_num[i] == commutative + 1)
3048 *recog_data.dup_loc[i]
3049 = recog_data.operand[(int) recog_data.dup_num[i]];
3050
3051 std::swap (preferred_class[commutative],
3052 preferred_class[commutative + 1]);
3053 std::swap (pref_or_nothing[commutative],
3054 pref_or_nothing[commutative + 1]);
3055 std::swap (address_reloaded[commutative],
3056 address_reloaded[commutative + 1]);
3057 }
3058
3059 this_earlyclobber = 0;
3060
3061 for (i = 0; i < noperands; i++)
3062 {
3063 const char *p = constraints[i];
3064 char *end;
3065 int len;
3066 int win = 0;
3067 int did_match = 0;
3068 /* 0 => this operand can be reloaded somehow for this alternative. */
3069 int badop = 1;
3070 /* 0 => this operand can be reloaded if the alternative allows regs. */
3071 int winreg = 0;
3072 int c;
3073 int m;
3074 rtx operand = recog_data.operand[i];
3075 int offset = 0;
3076 /* Nonzero means this is a MEM that must be reloaded into a reg
3077 regardless of what the constraint says. */
3078 int force_reload = 0;
3079 int offmemok = 0;
3080 /* Nonzero if a constant forced into memory would be OK for this
3081 operand. */
3082 int constmemok = 0;
3083 int earlyclobber = 0;
3084 enum constraint_num cn;
3085 enum reg_class cl;
3086
3087 /* If the predicate accepts a unary operator, it means that
3088 we need to reload the operand, but do not do this for
3089 match_operator and friends. */
3090 if (UNARY_P (operand) && *p != 0)
3091 operand = XEXP (operand, 0);
3092
3093 /* If the operand is a SUBREG, extract
3094 the REG or MEM (or maybe even a constant) within.
3095 (Constants can occur as a result of reg_equiv_constant.) */
3096
3097 while (GET_CODE (operand) == SUBREG)
3098 {
3099 /* Offset only matters when operand is a REG and
3100 it is a hard reg. This is because it is passed
3101 to reg_fits_class_p if it is a REG and all pseudos
3102 return 0 from that function. */
3103 if (REG_P (SUBREG_REG (operand))
3104 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3105 {
3106 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3107 GET_MODE (SUBREG_REG (operand)),
3108 SUBREG_BYTE (operand),
3109 GET_MODE (operand)) < 0)
3110 force_reload = 1;
3111 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3112 GET_MODE (SUBREG_REG (operand)),
3113 SUBREG_BYTE (operand),
3114 GET_MODE (operand));
3115 }
3116 operand = SUBREG_REG (operand);
3117 /* Force reload if this is a constant or PLUS or if there may
3118 be a problem accessing OPERAND in the outer mode. */
3119 scalar_int_mode inner_mode;
3120 if (CONSTANT_P (operand)
3121 || GET_CODE (operand) == PLUS
3122 /* We must force a reload of paradoxical SUBREGs
3123 of a MEM because the alignment of the inner value
3124 may not be enough to do the outer reference. On
3125 big-endian machines, it may also reference outside
3126 the object.
3127
3128 On machines that extend byte operations and we have a
3129 SUBREG where both the inner and outer modes are no wider
3130 than a word and the inner mode is narrower, is integral,
3131 and gets extended when loaded from memory, combine.c has
3132 made assumptions about the behavior of the machine in such
3133 register access. If the data is, in fact, in memory we
3134 must always load using the size assumed to be in the
3135 register and let the insn do the different-sized
3136 accesses.
3137
3138 This is doubly true if WORD_REGISTER_OPERATIONS. In
3139 this case eliminate_regs has left non-paradoxical
3140 subregs for push_reload to see. Make sure it does
3141 by forcing the reload.
3142
3143 ??? When is it right at this stage to have a subreg
3144 of a mem that is _not_ to be handled specially? IMO
3145 those should have been reduced to just a mem. */
3146 || ((MEM_P (operand)
3147 || (REG_P (operand)
3148 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3149 && (WORD_REGISTER_OPERATIONS
3150 || (((maybe_lt
3151 (GET_MODE_BITSIZE (GET_MODE (operand)),
3152 BIGGEST_ALIGNMENT))
3153 && (paradoxical_subreg_p
3154 (operand_mode[i], GET_MODE (operand)))))
3155 || BYTES_BIG_ENDIAN
3156 || (known_le (GET_MODE_SIZE (operand_mode[i]),
3157 UNITS_PER_WORD)
3158 && (is_a <scalar_int_mode>
3159 (GET_MODE (operand), &inner_mode))
3160 && (GET_MODE_SIZE (inner_mode)
3161 <= UNITS_PER_WORD)
3162 && paradoxical_subreg_p (operand_mode[i],
3163 inner_mode)
3164 && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)))
3165 )
3166 force_reload = 1;
3167 }
3168
3169 this_alternative[i] = NO_REGS;
3170 this_alternative_win[i] = 0;
3171 this_alternative_match_win[i] = 0;
3172 this_alternative_offmemok[i] = 0;
3173 this_alternative_earlyclobber[i] = 0;
3174 this_alternative_matches[i] = -1;
3175
3176 /* An empty constraint or empty alternative
3177 allows anything which matched the pattern. */
3178 if (*p == 0 || *p == ',')
3179 win = 1, badop = 0;
3180
3181 /* Scan this alternative's specs for this operand;
3182 set WIN if the operand fits any letter in this alternative.
3183 Otherwise, clear BADOP if this operand could
3184 fit some letter after reloads,
3185 or set WINREG if this operand could fit after reloads
3186 provided the constraint allows some registers. */
3187
3188 do
3189 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3190 {
3191 case '\0':
3192 len = 0;
3193 break;
3194 case ',':
3195 c = '\0';
3196 break;
3197
3198 case '?':
3199 reject += 6;
3200 break;
3201
3202 case '!':
3203 reject = 600;
3204 break;
3205
3206 case '#':
3207 /* Ignore rest of this alternative as far as
3208 reloading is concerned. */
3209 do
3210 p++;
3211 while (*p && *p != ',');
3212 len = 0;
3213 break;
3214
3215 case '0': case '1': case '2': case '3': case '4':
3216 case '5': case '6': case '7': case '8': case '9':
3217 m = strtoul (p, &end, 10);
3218 p = end;
3219 len = 0;
3220
3221 this_alternative_matches[i] = m;
3222 /* We are supposed to match a previous operand.
3223 If we do, we win if that one did.
3224 If we do not, count both of the operands as losers.
3225 (This is too conservative, since most of the time
3226 only a single reload insn will be needed to make
3227 the two operands win. As a result, this alternative
3228 may be rejected when it is actually desirable.) */
3229 if ((swapped && (m != commutative || i != commutative + 1))
3230 /* If we are matching as if two operands were swapped,
3231 also pretend that operands_match had been computed
3232 with swapped.
3233 But if I is the second of those and C is the first,
3234 don't exchange them, because operands_match is valid
3235 only on one side of its diagonal. */
3236 ? (operands_match
3237 [(m == commutative || m == commutative + 1)
3238 ? 2 * commutative + 1 - m : m]
3239 [(i == commutative || i == commutative + 1)
3240 ? 2 * commutative + 1 - i : i])
3241 : operands_match[m][i])
3242 {
3243 /* If we are matching a non-offsettable address where an
3244 offsettable address was expected, then we must reject
3245 this combination, because we can't reload it. */
3246 if (this_alternative_offmemok[m]
3247 && MEM_P (recog_data.operand[m])
3248 && this_alternative[m] == NO_REGS
3249 && ! this_alternative_win[m])
3250 bad = 1;
3251
3252 did_match = this_alternative_win[m];
3253 }
3254 else
3255 {
3256 /* Operands don't match. */
3257 rtx value;
3258 int loc1, loc2;
3259 /* Retroactively mark the operand we had to match
3260 as a loser, if it wasn't already. */
3261 if (this_alternative_win[m])
3262 losers++;
3263 this_alternative_win[m] = 0;
3264 if (this_alternative[m] == NO_REGS)
3265 bad = 1;
3266 /* But count the pair only once in the total badness of
3267 this alternative, if the pair can be a dummy reload.
3268 The pointers in operand_loc are not swapped; swap
3269 them by hand if necessary. */
3270 if (swapped && i == commutative)
3271 loc1 = commutative + 1;
3272 else if (swapped && i == commutative + 1)
3273 loc1 = commutative;
3274 else
3275 loc1 = i;
3276 if (swapped && m == commutative)
3277 loc2 = commutative + 1;
3278 else if (swapped && m == commutative + 1)
3279 loc2 = commutative;
3280 else
3281 loc2 = m;
3282 value
3283 = find_dummy_reload (recog_data.operand[i],
3284 recog_data.operand[m],
3285 recog_data.operand_loc[loc1],
3286 recog_data.operand_loc[loc2],
3287 operand_mode[i], operand_mode[m],
3288 this_alternative[m], -1,
3289 this_alternative_earlyclobber[m]);
3290
3291 if (value != 0)
3292 losers--;
3293 }
3294 /* This can be fixed with reloads if the operand
3295 we are supposed to match can be fixed with reloads. */
3296 badop = 0;
3297 this_alternative[i] = this_alternative[m];
3298
3299 /* If we have to reload this operand and some previous
3300 operand also had to match the same thing as this
3301 operand, we don't know how to do that. So reject this
3302 alternative. */
3303 if (! did_match || force_reload)
3304 for (j = 0; j < i; j++)
3305 if (this_alternative_matches[j]
3306 == this_alternative_matches[i])
3307 {
3308 badop = 1;
3309 break;
3310 }
3311 break;
3312
3313 case 'p':
3314 /* All necessary reloads for an address_operand
3315 were handled in find_reloads_address. */
3316 this_alternative[i]
3317 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3318 ADDRESS, SCRATCH);
3319 win = 1;
3320 badop = 0;
3321 break;
3322
3323 case TARGET_MEM_CONSTRAINT:
3324 if (force_reload)
3325 break;
3326 if (MEM_P (operand)
3327 || (REG_P (operand)
3328 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3329 && reg_renumber[REGNO (operand)] < 0))
3330 win = 1;
3331 if (CONST_POOL_OK_P (operand_mode[i], operand))
3332 badop = 0;
3333 constmemok = 1;
3334 break;
3335
3336 case '<':
3337 if (MEM_P (operand)
3338 && ! address_reloaded[i]
3339 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3340 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3341 win = 1;
3342 break;
3343
3344 case '>':
3345 if (MEM_P (operand)
3346 && ! address_reloaded[i]
3347 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3348 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3349 win = 1;
3350 break;
3351
3352 /* Memory operand whose address is not offsettable. */
3353 case 'V':
3354 if (force_reload)
3355 break;
3356 if (MEM_P (operand)
3357 && ! (ind_levels ? offsettable_memref_p (operand)
3358 : offsettable_nonstrict_memref_p (operand))
3359 /* Certain mem addresses will become offsettable
3360 after they themselves are reloaded. This is important;
3361 we don't want our own handling of unoffsettables
3362 to override the handling of reg_equiv_address. */
3363 && !(REG_P (XEXP (operand, 0))
3364 && (ind_levels == 0
3365 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3366 win = 1;
3367 break;
3368
3369 /* Memory operand whose address is offsettable. */
3370 case 'o':
3371 if (force_reload)
3372 break;
3373 if ((MEM_P (operand)
3374 /* If IND_LEVELS, find_reloads_address won't reload a
3375 pseudo that didn't get a hard reg, so we have to
3376 reject that case. */
3377 && ((ind_levels ? offsettable_memref_p (operand)
3378 : offsettable_nonstrict_memref_p (operand))
3379 /* A reloaded address is offsettable because it is now
3380 just a simple register indirect. */
3381 || address_reloaded[i] == 1))
3382 || (REG_P (operand)
3383 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3384 && reg_renumber[REGNO (operand)] < 0
3385 /* If reg_equiv_address is nonzero, we will be
3386 loading it into a register; hence it will be
3387 offsettable, but we cannot say that reg_equiv_mem
3388 is offsettable without checking. */
3389 && ((reg_equiv_mem (REGNO (operand)) != 0
3390 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3391 || (reg_equiv_address (REGNO (operand)) != 0))))
3392 win = 1;
3393 if (CONST_POOL_OK_P (operand_mode[i], operand)
3394 || MEM_P (operand))
3395 badop = 0;
3396 constmemok = 1;
3397 offmemok = 1;
3398 break;
3399
3400 case '&':
3401 /* Output operand that is stored before the need for the
3402 input operands (and their index registers) is over. */
3403 earlyclobber = 1, this_earlyclobber = 1;
3404 break;
3405
3406 case 'X':
3407 force_reload = 0;
3408 win = 1;
3409 break;
3410
3411 case 'g':
3412 if (! force_reload
3413 /* A PLUS is never a valid operand, but reload can make
3414 it from a register when eliminating registers. */
3415 && GET_CODE (operand) != PLUS
3416 /* A SCRATCH is not a valid operand. */
3417 && GET_CODE (operand) != SCRATCH
3418 && (! CONSTANT_P (operand)
3419 || ! flag_pic
3420 || LEGITIMATE_PIC_OPERAND_P (operand))
3421 && (GENERAL_REGS == ALL_REGS
3422 || !REG_P (operand)
3423 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3424 && reg_renumber[REGNO (operand)] < 0)))
3425 win = 1;
3426 cl = GENERAL_REGS;
3427 goto reg;
3428
3429 default:
3430 cn = lookup_constraint (p);
3431 switch (get_constraint_type (cn))
3432 {
3433 case CT_REGISTER:
3434 cl = reg_class_for_constraint (cn);
3435 if (cl != NO_REGS)
3436 goto reg;
3437 break;
3438
3439 case CT_CONST_INT:
3440 if (CONST_INT_P (operand)
3441 && (insn_const_int_ok_for_constraint
3442 (INTVAL (operand), cn)))
3443 win = true;
3444 break;
3445
3446 case CT_MEMORY:
3447 if (force_reload)
3448 break;
3449 if (constraint_satisfied_p (operand, cn))
3450 win = 1;
3451 /* If the address was already reloaded,
3452 we win as well. */
3453 else if (MEM_P (operand) && address_reloaded[i] == 1)
3454 win = 1;
3455 /* Likewise if the address will be reloaded because
3456 reg_equiv_address is nonzero. For reg_equiv_mem
3457 we have to check. */
3458 else if (REG_P (operand)
3459 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3460 && reg_renumber[REGNO (operand)] < 0
3461 && ((reg_equiv_mem (REGNO (operand)) != 0
3462 && (constraint_satisfied_p
3463 (reg_equiv_mem (REGNO (operand)),
3464 cn)))
3465 || (reg_equiv_address (REGNO (operand))
3466 != 0)))
3467 win = 1;
3468
3469 /* If we didn't already win, we can reload
3470 constants via force_const_mem, and other
3471 MEMs by reloading the address like for 'o'. */
3472 if (CONST_POOL_OK_P (operand_mode[i], operand)
3473 || MEM_P (operand))
3474 badop = 0;
3475 constmemok = 1;
3476 offmemok = 1;
3477 break;
3478
3479 case CT_SPECIAL_MEMORY:
3480 if (force_reload)
3481 break;
3482 if (constraint_satisfied_p (operand, cn))
3483 win = 1;
3484 /* Likewise if the address will be reloaded because
3485 reg_equiv_address is nonzero. For reg_equiv_mem
3486 we have to check. */
3487 else if (REG_P (operand)
3488 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3489 && reg_renumber[REGNO (operand)] < 0
3490 && reg_equiv_mem (REGNO (operand)) != 0
3491 && (constraint_satisfied_p
3492 (reg_equiv_mem (REGNO (operand)), cn)))
3493 win = 1;
3494 break;
3495
3496 case CT_ADDRESS:
3497 if (constraint_satisfied_p (operand, cn))
3498 win = 1;
3499
3500 /* If we didn't already win, we can reload
3501 the address into a base register. */
3502 this_alternative[i]
3503 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3504 ADDRESS, SCRATCH);
3505 badop = 0;
3506 break;
3507
3508 case CT_FIXED_FORM:
3509 if (constraint_satisfied_p (operand, cn))
3510 win = 1;
3511 break;
3512 }
3513 break;
3514
3515 reg:
3516 this_alternative[i]
3517 = reg_class_subunion[this_alternative[i]][cl];
3518 if (GET_MODE (operand) == BLKmode)
3519 break;
3520 winreg = 1;
3521 if (REG_P (operand)
3522 && reg_fits_class_p (operand, this_alternative[i],
3523 offset, GET_MODE (recog_data.operand[i])))
3524 win = 1;
3525 break;
3526 }
3527 while ((p += len), c);
3528
3529 if (swapped == (commutative >= 0 ? 1 : 0))
3530 constraints[i] = p;
3531
3532 /* If this operand could be handled with a reg,
3533 and some reg is allowed, then this operand can be handled. */
3534 if (winreg && this_alternative[i] != NO_REGS
3535 && (win || !class_only_fixed_regs[this_alternative[i]]))
3536 badop = 0;
3537
3538 /* Record which operands fit this alternative. */
3539 this_alternative_earlyclobber[i] = earlyclobber;
3540 if (win && ! force_reload)
3541 this_alternative_win[i] = 1;
3542 else if (did_match && ! force_reload)
3543 this_alternative_match_win[i] = 1;
3544 else
3545 {
3546 int const_to_mem = 0;
3547
3548 this_alternative_offmemok[i] = offmemok;
3549 losers++;
3550 if (badop)
3551 bad = 1;
3552 /* Alternative loses if it has no regs for a reg operand. */
3553 if (REG_P (operand)
3554 && this_alternative[i] == NO_REGS
3555 && this_alternative_matches[i] < 0)
3556 bad = 1;
3557
3558 /* If this is a constant that is reloaded into the desired
3559 class by copying it to memory first, count that as another
3560 reload. This is consistent with other code and is
3561 required to avoid choosing another alternative when
3562 the constant is moved into memory by this function on
3563 an early reload pass. Note that the test here is
3564 precisely the same as in the code below that calls
3565 force_const_mem. */
3566 if (CONST_POOL_OK_P (operand_mode[i], operand)
3567 && ((targetm.preferred_reload_class (operand,
3568 this_alternative[i])
3569 == NO_REGS)
3570 || no_input_reloads))
3571 {
3572 const_to_mem = 1;
3573 if (this_alternative[i] != NO_REGS)
3574 losers++;
3575 }
3576
3577 /* Alternative loses if it requires a type of reload not
3578 permitted for this insn. We can always reload SCRATCH
3579 and objects with a REG_UNUSED note. */
3580 if (GET_CODE (operand) != SCRATCH
3581 && modified[i] != RELOAD_READ && no_output_reloads
3582 && ! find_reg_note (insn, REG_UNUSED, operand))
3583 bad = 1;
3584 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3585 && ! const_to_mem)
3586 bad = 1;
3587
3588 /* If we can't reload this value at all, reject this
3589 alternative. Note that we could also lose due to
3590 LIMIT_RELOAD_CLASS, but we don't check that
3591 here. */
3592
3593 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3594 {
3595 if (targetm.preferred_reload_class (operand,
3596 this_alternative[i])
3597 == NO_REGS)
3598 reject = 600;
3599
3600 if (operand_type[i] == RELOAD_FOR_OUTPUT
3601 && (targetm.preferred_output_reload_class (operand,
3602 this_alternative[i])
3603 == NO_REGS))
3604 reject = 600;
3605 }
3606
3607 /* We prefer to reload pseudos over reloading other things,
3608 since such reloads may be able to be eliminated later.
3609 If we are reloading a SCRATCH, we won't be generating any
3610 insns, just using a register, so it is also preferred.
3611 So bump REJECT in other cases. Don't do this in the
3612 case where we are forcing a constant into memory and
3613 it will then win since we don't want to have a different
3614 alternative match then. */
3615 if (! (REG_P (operand)
3616 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3617 && GET_CODE (operand) != SCRATCH
3618 && ! (const_to_mem && constmemok))
3619 reject += 2;
3620
3621 /* Input reloads can be inherited more often than output
3622 reloads can be removed, so penalize output reloads. */
3623 if (operand_type[i] != RELOAD_FOR_INPUT
3624 && GET_CODE (operand) != SCRATCH)
3625 reject++;
3626 }
3627
3628 /* If this operand is a pseudo register that didn't get
3629 a hard reg and this alternative accepts some
3630 register, see if the class that we want is a subset
3631 of the preferred class for this register. If not,
3632 but it intersects that class, use the preferred class
3633 instead. If it does not intersect the preferred
3634 class, show that usage of this alternative should be
3635 discouraged; it will be discouraged more still if the
3636 register is `preferred or nothing'. We do this
3637 because it increases the chance of reusing our spill
3638 register in a later insn and avoiding a pair of
3639 memory stores and loads.
3640
3641 Don't bother with this if this alternative will
3642 accept this operand.
3643
3644 Don't do this for a multiword operand, since it is
3645 only a small win and has the risk of requiring more
3646 spill registers, which could cause a large loss.
3647
3648 Don't do this if the preferred class has only one
3649 register because we might otherwise exhaust the
3650 class. */
3651
3652 if (! win && ! did_match
3653 && this_alternative[i] != NO_REGS
3654 && known_le (GET_MODE_SIZE (operand_mode[i]), UNITS_PER_WORD)
3655 && reg_class_size [(int) preferred_class[i]] > 0
3656 && ! small_register_class_p (preferred_class[i]))
3657 {
3658 if (! reg_class_subset_p (this_alternative[i],
3659 preferred_class[i]))
3660 {
3661 /* Since we don't have a way of forming the intersection,
3662 we just do something special if the preferred class
3663 is a subset of the class we have; that's the most
3664 common case anyway. */
3665 if (reg_class_subset_p (preferred_class[i],
3666 this_alternative[i]))
3667 this_alternative[i] = preferred_class[i];
3668 else
3669 reject += (2 + 2 * pref_or_nothing[i]);
3670 }
3671 }
3672 }
3673
3674 /* Now see if any output operands that are marked "earlyclobber"
3675 in this alternative conflict with any input operands
3676 or any memory addresses. */
3677
3678 for (i = 0; i < noperands; i++)
3679 if (this_alternative_earlyclobber[i]
3680 && (this_alternative_win[i] || this_alternative_match_win[i]))
3681 {
3682 struct decomposition early_data;
3683
3684 early_data = decompose (recog_data.operand[i]);
3685
3686 gcc_assert (modified[i] != RELOAD_READ);
3687
3688 if (this_alternative[i] == NO_REGS)
3689 {
3690 this_alternative_earlyclobber[i] = 0;
3691 gcc_assert (this_insn_is_asm);
3692 error_for_asm (this_insn,
3693 "%<&%> constraint used with no register class");
3694 }
3695
3696 for (j = 0; j < noperands; j++)
3697 /* Is this an input operand or a memory ref? */
3698 if ((MEM_P (recog_data.operand[j])
3699 || modified[j] != RELOAD_WRITE)
3700 && j != i
3701 /* Ignore things like match_operator operands. */
3702 && !recog_data.is_operator[j]
3703 /* Don't count an input operand that is constrained to match
3704 the early clobber operand. */
3705 && ! (this_alternative_matches[j] == i
3706 && rtx_equal_p (recog_data.operand[i],
3707 recog_data.operand[j]))
3708 /* Is it altered by storing the earlyclobber operand? */
3709 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3710 early_data))
3711 {
3712 /* If the output is in a non-empty few-regs class,
3713 it's costly to reload it, so reload the input instead. */
3714 if (small_register_class_p (this_alternative[i])
3715 && (REG_P (recog_data.operand[j])
3716 || GET_CODE (recog_data.operand[j]) == SUBREG))
3717 {
3718 losers++;
3719 this_alternative_win[j] = 0;
3720 this_alternative_match_win[j] = 0;
3721 }
3722 else
3723 break;
3724 }
3725 /* If an earlyclobber operand conflicts with something,
3726 it must be reloaded, so request this and count the cost. */
3727 if (j != noperands)
3728 {
3729 losers++;
3730 this_alternative_win[i] = 0;
3731 this_alternative_match_win[j] = 0;
3732 for (j = 0; j < noperands; j++)
3733 if (this_alternative_matches[j] == i
3734 && this_alternative_match_win[j])
3735 {
3736 this_alternative_win[j] = 0;
3737 this_alternative_match_win[j] = 0;
3738 losers++;
3739 }
3740 }
3741 }
3742
3743 /* If one alternative accepts all the operands, no reload required,
3744 choose that alternative; don't consider the remaining ones. */
3745 if (losers == 0)
3746 {
3747 /* Unswap these so that they are never swapped at `finish'. */
3748 if (swapped)
3749 {
3750 recog_data.operand[commutative] = substed_operand[commutative];
3751 recog_data.operand[commutative + 1]
3752 = substed_operand[commutative + 1];
3753 }
3754 for (i = 0; i < noperands; i++)
3755 {
3756 goal_alternative_win[i] = this_alternative_win[i];
3757 goal_alternative_match_win[i] = this_alternative_match_win[i];
3758 goal_alternative[i] = this_alternative[i];
3759 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3760 goal_alternative_matches[i] = this_alternative_matches[i];
3761 goal_alternative_earlyclobber[i]
3762 = this_alternative_earlyclobber[i];
3763 }
3764 goal_alternative_number = this_alternative_number;
3765 goal_alternative_swapped = swapped;
3766 goal_earlyclobber = this_earlyclobber;
3767 goto finish;
3768 }
3769
3770 /* REJECT, set by the ! and ? constraint characters and when a register
3771 would be reloaded into a non-preferred class, discourages the use of
3772 this alternative for a reload goal. REJECT is incremented by six
3773 for each ? and two for each non-preferred class. */
3774 losers = losers * 6 + reject;
3775
3776 /* If this alternative can be made to work by reloading,
3777 and it needs less reloading than the others checked so far,
3778 record it as the chosen goal for reloading. */
3779 if (! bad)
3780 {
3781 if (best > losers)
3782 {
3783 for (i = 0; i < noperands; i++)
3784 {
3785 goal_alternative[i] = this_alternative[i];
3786 goal_alternative_win[i] = this_alternative_win[i];
3787 goal_alternative_match_win[i]
3788 = this_alternative_match_win[i];
3789 goal_alternative_offmemok[i]
3790 = this_alternative_offmemok[i];
3791 goal_alternative_matches[i] = this_alternative_matches[i];
3792 goal_alternative_earlyclobber[i]
3793 = this_alternative_earlyclobber[i];
3794 }
3795 goal_alternative_swapped = swapped;
3796 best = losers;
3797 goal_alternative_number = this_alternative_number;
3798 goal_earlyclobber = this_earlyclobber;
3799 }
3800 }
3801
3802 if (swapped)
3803 {
3804 /* If the commutative operands have been swapped, swap
3805 them back in order to check the next alternative. */
3806 recog_data.operand[commutative] = substed_operand[commutative];
3807 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3808 /* Unswap the duplicates too. */
3809 for (i = 0; i < recog_data.n_dups; i++)
3810 if (recog_data.dup_num[i] == commutative
3811 || recog_data.dup_num[i] == commutative + 1)
3812 *recog_data.dup_loc[i]
3813 = recog_data.operand[(int) recog_data.dup_num[i]];
3814
3815 /* Unswap the operand related information as well. */
3816 std::swap (preferred_class[commutative],
3817 preferred_class[commutative + 1]);
3818 std::swap (pref_or_nothing[commutative],
3819 pref_or_nothing[commutative + 1]);
3820 std::swap (address_reloaded[commutative],
3821 address_reloaded[commutative + 1]);
3822 }
3823 }
3824 }
3825
3826 /* The operands don't meet the constraints.
3827 goal_alternative describes the alternative
3828 that we could reach by reloading the fewest operands.
3829 Reload so as to fit it. */
3830
3831 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3832 {
3833 /* No alternative works with reloads?? */
3834 if (insn_code_number >= 0)
3835 fatal_insn ("unable to generate reloads for:", insn);
3836 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3837 /* Avoid further trouble with this insn. */
3838 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3839 n_reloads = 0;
3840 return 0;
3841 }
3842
3843 /* Jump to `finish' from above if all operands are valid already.
3844 In that case, goal_alternative_win is all 1. */
3845 finish:
3846
3847 /* Right now, for any pair of operands I and J that are required to match,
3848 with I < J,
3849 goal_alternative_matches[J] is I.
3850 Set up goal_alternative_matched as the inverse function:
3851 goal_alternative_matched[I] = J. */
3852
3853 for (i = 0; i < noperands; i++)
3854 goal_alternative_matched[i] = -1;
3855
3856 for (i = 0; i < noperands; i++)
3857 if (! goal_alternative_win[i]
3858 && goal_alternative_matches[i] >= 0)
3859 goal_alternative_matched[goal_alternative_matches[i]] = i;
3860
3861 for (i = 0; i < noperands; i++)
3862 goal_alternative_win[i] |= goal_alternative_match_win[i];
3863
3864 /* If the best alternative is with operands 1 and 2 swapped,
3865 consider them swapped before reporting the reloads. Update the
3866 operand numbers of any reloads already pushed. */
3867
3868 if (goal_alternative_swapped)
3869 {
3870 std::swap (substed_operand[commutative],
3871 substed_operand[commutative + 1]);
3872 std::swap (recog_data.operand[commutative],
3873 recog_data.operand[commutative + 1]);
3874 std::swap (*recog_data.operand_loc[commutative],
3875 *recog_data.operand_loc[commutative + 1]);
3876
3877 for (i = 0; i < recog_data.n_dups; i++)
3878 if (recog_data.dup_num[i] == commutative
3879 || recog_data.dup_num[i] == commutative + 1)
3880 *recog_data.dup_loc[i]
3881 = recog_data.operand[(int) recog_data.dup_num[i]];
3882
3883 for (i = 0; i < n_reloads; i++)
3884 {
3885 if (rld[i].opnum == commutative)
3886 rld[i].opnum = commutative + 1;
3887 else if (rld[i].opnum == commutative + 1)
3888 rld[i].opnum = commutative;
3889 }
3890 }
3891
3892 for (i = 0; i < noperands; i++)
3893 {
3894 operand_reloadnum[i] = -1;
3895
3896 /* If this is an earlyclobber operand, we need to widen the scope.
3897 The reload must remain valid from the start of the insn being
3898 reloaded until after the operand is stored into its destination.
3899 We approximate this with RELOAD_OTHER even though we know that we
3900 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3901
3902 One special case that is worth checking is when we have an
3903 output that is earlyclobber but isn't used past the insn (typically
3904 a SCRATCH). In this case, we only need have the reload live
3905 through the insn itself, but not for any of our input or output
3906 reloads.
3907 But we must not accidentally narrow the scope of an existing
3908 RELOAD_OTHER reload - leave these alone.
3909
3910 In any case, anything needed to address this operand can remain
3911 however they were previously categorized. */
3912
3913 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3914 operand_type[i]
3915 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3916 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3917 }
3918
3919 /* Any constants that aren't allowed and can't be reloaded
3920 into registers are here changed into memory references. */
3921 for (i = 0; i < noperands; i++)
3922 if (! goal_alternative_win[i])
3923 {
3924 rtx op = recog_data.operand[i];
3925 rtx subreg = NULL_RTX;
3926 rtx plus = NULL_RTX;
3927 machine_mode mode = operand_mode[i];
3928
3929 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3930 push_reload so we have to let them pass here. */
3931 if (GET_CODE (op) == SUBREG)
3932 {
3933 subreg = op;
3934 op = SUBREG_REG (op);
3935 mode = GET_MODE (op);
3936 }
3937
3938 if (GET_CODE (op) == PLUS)
3939 {
3940 plus = op;
3941 op = XEXP (op, 1);
3942 }
3943
3944 if (CONST_POOL_OK_P (mode, op)
3945 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3946 == NO_REGS)
3947 || no_input_reloads))
3948 {
3949 int this_address_reloaded;
3950 rtx tem = force_const_mem (mode, op);
3951
3952 /* If we stripped a SUBREG or a PLUS above add it back. */
3953 if (plus != NULL_RTX)
3954 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3955
3956 if (subreg != NULL_RTX)
3957 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3958
3959 this_address_reloaded = 0;
3960 substed_operand[i] = recog_data.operand[i]
3961 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3962 0, insn, &this_address_reloaded);
3963
3964 /* If the alternative accepts constant pool refs directly
3965 there will be no reload needed at all. */
3966 if (plus == NULL_RTX
3967 && subreg == NULL_RTX
3968 && alternative_allows_const_pool_ref (this_address_reloaded != 1
3969 ? substed_operand[i]
3970 : NULL,
3971 recog_data.constraints[i],
3972 goal_alternative_number))
3973 goal_alternative_win[i] = 1;
3974 }
3975 }
3976
3977 /* Record the values of the earlyclobber operands for the caller. */
3978 if (goal_earlyclobber)
3979 for (i = 0; i < noperands; i++)
3980 if (goal_alternative_earlyclobber[i])
3981 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3982
3983 /* Now record reloads for all the operands that need them. */
3984 for (i = 0; i < noperands; i++)
3985 if (! goal_alternative_win[i])
3986 {
3987 /* Operands that match previous ones have already been handled. */
3988 if (goal_alternative_matches[i] >= 0)
3989 ;
3990 /* Handle an operand with a nonoffsettable address
3991 appearing where an offsettable address will do
3992 by reloading the address into a base register.
3993
3994 ??? We can also do this when the operand is a register and
3995 reg_equiv_mem is not offsettable, but this is a bit tricky,
3996 so we don't bother with it. It may not be worth doing. */
3997 else if (goal_alternative_matched[i] == -1
3998 && goal_alternative_offmemok[i]
3999 && MEM_P (recog_data.operand[i]))
4000 {
4001 /* If the address to be reloaded is a VOIDmode constant,
4002 use the default address mode as mode of the reload register,
4003 as would have been done by find_reloads_address. */
4004 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4005 machine_mode address_mode;
4006
4007 address_mode = get_address_mode (recog_data.operand[i]);
4008 operand_reloadnum[i]
4009 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4010 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4011 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4012 address_mode,
4013 VOIDmode, 0, 0, i, RELOAD_OTHER);
4014 rld[operand_reloadnum[i]].inc
4015 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4016
4017 /* If this operand is an output, we will have made any
4018 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4019 now we are treating part of the operand as an input, so
4020 we must change these to RELOAD_FOR_OTHER_ADDRESS. */
4021
4022 if (modified[i] == RELOAD_WRITE)
4023 {
4024 for (j = 0; j < n_reloads; j++)
4025 {
4026 if (rld[j].opnum == i)
4027 {
4028 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4029 rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4030 else if (rld[j].when_needed
4031 == RELOAD_FOR_OUTADDR_ADDRESS)
4032 rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4033 }
4034 }
4035 }
4036 }
4037 else if (goal_alternative_matched[i] == -1)
4038 {
4039 operand_reloadnum[i]
4040 = push_reload ((modified[i] != RELOAD_WRITE
4041 ? recog_data.operand[i] : 0),
4042 (modified[i] != RELOAD_READ
4043 ? recog_data.operand[i] : 0),
4044 (modified[i] != RELOAD_WRITE
4045 ? recog_data.operand_loc[i] : 0),
4046 (modified[i] != RELOAD_READ
4047 ? recog_data.operand_loc[i] : 0),
4048 (enum reg_class) goal_alternative[i],
4049 (modified[i] == RELOAD_WRITE
4050 ? VOIDmode : operand_mode[i]),
4051 (modified[i] == RELOAD_READ
4052 ? VOIDmode : operand_mode[i]),
4053 (insn_code_number < 0 ? 0
4054 : insn_data[insn_code_number].operand[i].strict_low),
4055 0, i, operand_type[i]);
4056 }
4057 /* In a matching pair of operands, one must be input only
4058 and the other must be output only.
4059 Pass the input operand as IN and the other as OUT. */
4060 else if (modified[i] == RELOAD_READ
4061 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4062 {
4063 operand_reloadnum[i]
4064 = push_reload (recog_data.operand[i],
4065 recog_data.operand[goal_alternative_matched[i]],
4066 recog_data.operand_loc[i],
4067 recog_data.operand_loc[goal_alternative_matched[i]],
4068 (enum reg_class) goal_alternative[i],
4069 operand_mode[i],
4070 operand_mode[goal_alternative_matched[i]],
4071 0, 0, i, RELOAD_OTHER);
4072 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4073 }
4074 else if (modified[i] == RELOAD_WRITE
4075 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4076 {
4077 operand_reloadnum[goal_alternative_matched[i]]
4078 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4079 recog_data.operand[i],
4080 recog_data.operand_loc[goal_alternative_matched[i]],
4081 recog_data.operand_loc[i],
4082 (enum reg_class) goal_alternative[i],
4083 operand_mode[goal_alternative_matched[i]],
4084 operand_mode[i],
4085 0, 0, i, RELOAD_OTHER);
4086 operand_reloadnum[i] = output_reloadnum;
4087 }
4088 else
4089 {
4090 gcc_assert (insn_code_number < 0);
4091 error_for_asm (insn, "inconsistent operand constraints "
4092 "in an %<asm%>");
4093 /* Avoid further trouble with this insn. */
4094 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4095 n_reloads = 0;
4096 return 0;
4097 }
4098 }
4099 else if (goal_alternative_matched[i] < 0
4100 && goal_alternative_matches[i] < 0
4101 && address_operand_reloaded[i] != 1
4102 && optimize)
4103 {
4104 /* For each non-matching operand that's a MEM or a pseudo-register
4105 that didn't get a hard register, make an optional reload.
4106 This may get done even if the insn needs no reloads otherwise. */
4107
4108 rtx operand = recog_data.operand[i];
4109
4110 while (GET_CODE (operand) == SUBREG)
4111 operand = SUBREG_REG (operand);
4112 if ((MEM_P (operand)
4113 || (REG_P (operand)
4114 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4115 /* If this is only for an output, the optional reload would not
4116 actually cause us to use a register now, just note that
4117 something is stored here. */
4118 && (goal_alternative[i] != NO_REGS
4119 || modified[i] == RELOAD_WRITE)
4120 && ! no_input_reloads
4121 /* An optional output reload might allow to delete INSN later.
4122 We mustn't make in-out reloads on insns that are not permitted
4123 output reloads.
4124 If this is an asm, we can't delete it; we must not even call
4125 push_reload for an optional output reload in this case,
4126 because we can't be sure that the constraint allows a register,
4127 and push_reload verifies the constraints for asms. */
4128 && (modified[i] == RELOAD_READ
4129 || (! no_output_reloads && ! this_insn_is_asm)))
4130 operand_reloadnum[i]
4131 = push_reload ((modified[i] != RELOAD_WRITE
4132 ? recog_data.operand[i] : 0),
4133 (modified[i] != RELOAD_READ
4134 ? recog_data.operand[i] : 0),
4135 (modified[i] != RELOAD_WRITE
4136 ? recog_data.operand_loc[i] : 0),
4137 (modified[i] != RELOAD_READ
4138 ? recog_data.operand_loc[i] : 0),
4139 (enum reg_class) goal_alternative[i],
4140 (modified[i] == RELOAD_WRITE
4141 ? VOIDmode : operand_mode[i]),
4142 (modified[i] == RELOAD_READ
4143 ? VOIDmode : operand_mode[i]),
4144 (insn_code_number < 0 ? 0
4145 : insn_data[insn_code_number].operand[i].strict_low),
4146 1, i, operand_type[i]);
4147 /* If a memory reference remains (either as a MEM or a pseudo that
4148 did not get a hard register), yet we can't make an optional
4149 reload, check if this is actually a pseudo register reference;
4150 we then need to emit a USE and/or a CLOBBER so that reload
4151 inheritance will do the right thing. */
4152 else if (replace
4153 && (MEM_P (operand)
4154 || (REG_P (operand)
4155 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4156 && reg_renumber [REGNO (operand)] < 0)))
4157 {
4158 operand = *recog_data.operand_loc[i];
4159
4160 while (GET_CODE (operand) == SUBREG)
4161 operand = SUBREG_REG (operand);
4162 if (REG_P (operand))
4163 {
4164 if (modified[i] != RELOAD_WRITE)
4165 /* We mark the USE with QImode so that we recognize
4166 it as one that can be safely deleted at the end
4167 of reload. */
4168 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4169 insn), QImode);
4170 if (modified[i] != RELOAD_READ)
4171 emit_insn_after (gen_clobber (operand), insn);
4172 }
4173 }
4174 }
4175 else if (goal_alternative_matches[i] >= 0
4176 && goal_alternative_win[goal_alternative_matches[i]]
4177 && modified[i] == RELOAD_READ
4178 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4179 && ! no_input_reloads && ! no_output_reloads
4180 && optimize)
4181 {
4182 /* Similarly, make an optional reload for a pair of matching
4183 objects that are in MEM or a pseudo that didn't get a hard reg. */
4184
4185 rtx operand = recog_data.operand[i];
4186
4187 while (GET_CODE (operand) == SUBREG)
4188 operand = SUBREG_REG (operand);
4189 if ((MEM_P (operand)
4190 || (REG_P (operand)
4191 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4192 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4193 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4194 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4195 recog_data.operand[i],
4196 recog_data.operand_loc[goal_alternative_matches[i]],
4197 recog_data.operand_loc[i],
4198 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4199 operand_mode[goal_alternative_matches[i]],
4200 operand_mode[i],
4201 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4202 }
4203
4204 /* Perform whatever substitutions on the operands we are supposed
4205 to make due to commutativity or replacement of registers
4206 with equivalent constants or memory slots. */
4207
4208 for (i = 0; i < noperands; i++)
4209 {
4210 /* We only do this on the last pass through reload, because it is
4211 possible for some data (like reg_equiv_address) to be changed during
4212 later passes. Moreover, we lose the opportunity to get a useful
4213 reload_{in,out}_reg when we do these replacements. */
4214
4215 if (replace)
4216 {
4217 rtx substitution = substed_operand[i];
4218
4219 *recog_data.operand_loc[i] = substitution;
4220
4221 /* If we're replacing an operand with a LABEL_REF, we need to
4222 make sure that there's a REG_LABEL_OPERAND note attached to
4223 this instruction. */
4224 if (GET_CODE (substitution) == LABEL_REF
4225 && !find_reg_note (insn, REG_LABEL_OPERAND,
4226 label_ref_label (substitution))
4227 /* For a JUMP_P, if it was a branch target it must have
4228 already been recorded as such. */
4229 && (!JUMP_P (insn)
4230 || !label_is_jump_target_p (label_ref_label (substitution),
4231 insn)))
4232 {
4233 add_reg_note (insn, REG_LABEL_OPERAND,
4234 label_ref_label (substitution));
4235 if (LABEL_P (label_ref_label (substitution)))
4236 ++LABEL_NUSES (label_ref_label (substitution));
4237 }
4238
4239 }
4240 else
4241 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4242 }
4243
4244 /* If this insn pattern contains any MATCH_DUP's, make sure that
4245 they will be substituted if the operands they match are substituted.
4246 Also do now any substitutions we already did on the operands.
4247
4248 Don't do this if we aren't making replacements because we might be
4249 propagating things allocated by frame pointer elimination into places
4250 it doesn't expect. */
4251
4252 if (insn_code_number >= 0 && replace)
4253 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4254 {
4255 int opno = recog_data.dup_num[i];
4256 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4257 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4258 }
4259
4260 #if 0
4261 /* This loses because reloading of prior insns can invalidate the equivalence
4262 (or at least find_equiv_reg isn't smart enough to find it any more),
4263 causing this insn to need more reload regs than it needed before.
4264 It may be too late to make the reload regs available.
4265 Now this optimization is done safely in choose_reload_regs. */
4266
4267 /* For each reload of a reg into some other class of reg,
4268 search for an existing equivalent reg (same value now) in the right class.
4269 We can use it as long as we don't need to change its contents. */
4270 for (i = 0; i < n_reloads; i++)
4271 if (rld[i].reg_rtx == 0
4272 && rld[i].in != 0
4273 && REG_P (rld[i].in)
4274 && rld[i].out == 0)
4275 {
4276 rld[i].reg_rtx
4277 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4278 static_reload_reg_p, 0, rld[i].inmode);
4279 /* Prevent generation of insn to load the value
4280 because the one we found already has the value. */
4281 if (rld[i].reg_rtx)
4282 rld[i].in = rld[i].reg_rtx;
4283 }
4284 #endif
4285
4286 /* If we detected error and replaced asm instruction by USE, forget about the
4287 reloads. */
4288 if (GET_CODE (PATTERN (insn)) == USE
4289 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4290 n_reloads = 0;
4291
4292 /* Perhaps an output reload can be combined with another
4293 to reduce needs by one. */
4294 if (!goal_earlyclobber)
4295 combine_reloads ();
4296
4297 /* If we have a pair of reloads for parts of an address, they are reloading
4298 the same object, the operands themselves were not reloaded, and they
4299 are for two operands that are supposed to match, merge the reloads and
4300 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4301
4302 for (i = 0; i < n_reloads; i++)
4303 {
4304 int k;
4305
4306 for (j = i + 1; j < n_reloads; j++)
4307 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4308 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4309 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4310 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4311 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4312 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4313 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4314 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4315 && rtx_equal_p (rld[i].in, rld[j].in)
4316 && (operand_reloadnum[rld[i].opnum] < 0
4317 || rld[operand_reloadnum[rld[i].opnum]].optional)
4318 && (operand_reloadnum[rld[j].opnum] < 0
4319 || rld[operand_reloadnum[rld[j].opnum]].optional)
4320 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4321 || (goal_alternative_matches[rld[j].opnum]
4322 == rld[i].opnum)))
4323 {
4324 for (k = 0; k < n_replacements; k++)
4325 if (replacements[k].what == j)
4326 replacements[k].what = i;
4327
4328 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4329 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4330 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4331 else
4332 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4333 rld[j].in = 0;
4334 }
4335 }
4336
4337 /* Scan all the reloads and update their type.
4338 If a reload is for the address of an operand and we didn't reload
4339 that operand, change the type. Similarly, change the operand number
4340 of a reload when two operands match. If a reload is optional, treat it
4341 as though the operand isn't reloaded.
4342
4343 ??? This latter case is somewhat odd because if we do the optional
4344 reload, it means the object is hanging around. Thus we need only
4345 do the address reload if the optional reload was NOT done.
4346
4347 Change secondary reloads to be the address type of their operand, not
4348 the normal type.
4349
4350 If an operand's reload is now RELOAD_OTHER, change any
4351 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4352 RELOAD_FOR_OTHER_ADDRESS. */
4353
4354 for (i = 0; i < n_reloads; i++)
4355 {
4356 if (rld[i].secondary_p
4357 && rld[i].when_needed == operand_type[rld[i].opnum])
4358 rld[i].when_needed = address_type[rld[i].opnum];
4359
4360 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4361 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4362 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4363 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4364 && (operand_reloadnum[rld[i].opnum] < 0
4365 || rld[operand_reloadnum[rld[i].opnum]].optional))
4366 {
4367 /* If we have a secondary reload to go along with this reload,
4368 change its type to RELOAD_FOR_OPADDR_ADDR. */
4369
4370 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4371 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4372 && rld[i].secondary_in_reload != -1)
4373 {
4374 int secondary_in_reload = rld[i].secondary_in_reload;
4375
4376 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4377
4378 /* If there's a tertiary reload we have to change it also. */
4379 if (secondary_in_reload > 0
4380 && rld[secondary_in_reload].secondary_in_reload != -1)
4381 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4382 = RELOAD_FOR_OPADDR_ADDR;
4383 }
4384
4385 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4386 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4387 && rld[i].secondary_out_reload != -1)
4388 {
4389 int secondary_out_reload = rld[i].secondary_out_reload;
4390
4391 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4392
4393 /* If there's a tertiary reload we have to change it also. */
4394 if (secondary_out_reload
4395 && rld[secondary_out_reload].secondary_out_reload != -1)
4396 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4397 = RELOAD_FOR_OPADDR_ADDR;
4398 }
4399
4400 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4401 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4402 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4403 else
4404 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4405 }
4406
4407 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4408 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4409 && operand_reloadnum[rld[i].opnum] >= 0
4410 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4411 == RELOAD_OTHER))
4412 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4413
4414 if (goal_alternative_matches[rld[i].opnum] >= 0)
4415 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4416 }
4417
4418 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4419 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4420 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4421
4422 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4423 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4424 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4425 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4426 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4427 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4428 This is complicated by the fact that a single operand can have more
4429 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4430 choose_reload_regs without affecting code quality, and cases that
4431 actually fail are extremely rare, so it turns out to be better to fix
4432 the problem here by not generating cases that choose_reload_regs will
4433 fail for. */
4434 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4435 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4436 a single operand.
4437 We can reduce the register pressure by exploiting that a
4438 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4439 does not conflict with any of them, if it is only used for the first of
4440 the RELOAD_FOR_X_ADDRESS reloads. */
4441 {
4442 int first_op_addr_num = -2;
4443 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4444 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4445 int need_change = 0;
4446 /* We use last_op_addr_reload and the contents of the above arrays
4447 first as flags - -2 means no instance encountered, -1 means exactly
4448 one instance encountered.
4449 If more than one instance has been encountered, we store the reload
4450 number of the first reload of the kind in question; reload numbers
4451 are known to be non-negative. */
4452 for (i = 0; i < noperands; i++)
4453 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4454 for (i = n_reloads - 1; i >= 0; i--)
4455 {
4456 switch (rld[i].when_needed)
4457 {
4458 case RELOAD_FOR_OPERAND_ADDRESS:
4459 if (++first_op_addr_num >= 0)
4460 {
4461 first_op_addr_num = i;
4462 need_change = 1;
4463 }
4464 break;
4465 case RELOAD_FOR_INPUT_ADDRESS:
4466 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4467 {
4468 first_inpaddr_num[rld[i].opnum] = i;
4469 need_change = 1;
4470 }
4471 break;
4472 case RELOAD_FOR_OUTPUT_ADDRESS:
4473 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4474 {
4475 first_outpaddr_num[rld[i].opnum] = i;
4476 need_change = 1;
4477 }
4478 break;
4479 default:
4480 break;
4481 }
4482 }
4483
4484 if (need_change)
4485 {
4486 for (i = 0; i < n_reloads; i++)
4487 {
4488 int first_num;
4489 enum reload_type type;
4490
4491 switch (rld[i].when_needed)
4492 {
4493 case RELOAD_FOR_OPADDR_ADDR:
4494 first_num = first_op_addr_num;
4495 type = RELOAD_FOR_OPERAND_ADDRESS;
4496 break;
4497 case RELOAD_FOR_INPADDR_ADDRESS:
4498 first_num = first_inpaddr_num[rld[i].opnum];
4499 type = RELOAD_FOR_INPUT_ADDRESS;
4500 break;
4501 case RELOAD_FOR_OUTADDR_ADDRESS:
4502 first_num = first_outpaddr_num[rld[i].opnum];
4503 type = RELOAD_FOR_OUTPUT_ADDRESS;
4504 break;
4505 default:
4506 continue;
4507 }
4508 if (first_num < 0)
4509 continue;
4510 else if (i > first_num)
4511 rld[i].when_needed = type;
4512 else
4513 {
4514 /* Check if the only TYPE reload that uses reload I is
4515 reload FIRST_NUM. */
4516 for (j = n_reloads - 1; j > first_num; j--)
4517 {
4518 if (rld[j].when_needed == type
4519 && (rld[i].secondary_p
4520 ? rld[j].secondary_in_reload == i
4521 : reg_mentioned_p (rld[i].in, rld[j].in)))
4522 {
4523 rld[i].when_needed = type;
4524 break;
4525 }
4526 }
4527 }
4528 }
4529 }
4530 }
4531
4532 #if NB_FIX_VAX_BACKEND
4533 /*
4534 * Scan the reloads again looking for a case where there is
4535 * precisely one RELOAD_FOR_OPERAND_ADDRESS reload and one
4536 * RELOAD_FOR_OPADDR_ADDR reload BUT they are for different
4537 * operands. choose_reload_regs assumes that the
4538 * RELOAD_FOR_OPADDR_ADDR and RELOAD_FOR_OPERAND_ADDRESS reloads are
4539 * a pair operating on the same operand and will choose the same
4540 * register for both, which is not what is wanted.
4541 */
4542 {
4543 int n_operand_address_reloads = 0,
4544 n_opaddr_addr_reloads = 0;
4545 int reloadnum_for_operand_address_reload = -1,
4546 reloadnum_for_opaddr_addr_reload = -1;
4547
4548 for (i = 0; i < n_reloads; i++)
4549 {
4550 switch (rld[i].when_needed)
4551 {
4552 case RELOAD_FOR_OPADDR_ADDR:
4553 n_opaddr_addr_reloads++;
4554 reloadnum_for_opaddr_addr_reload = i;
4555 break;
4556 case RELOAD_FOR_OPERAND_ADDRESS:
4557 n_operand_address_reloads++;
4558 reloadnum_for_operand_address_reload = i;
4559 break;
4560 default:
4561 break;
4562 }
4563 }
4564
4565 if (n_operand_address_reloads == 1
4566 && n_opaddr_addr_reloads == 1
4567 && rld[reloadnum_for_opaddr_addr_reload].opnum
4568 != rld[reloadnum_for_operand_address_reload].opnum)
4569 {
4570 rld[reloadnum_for_opaddr_addr_reload].when_needed
4571 = RELOAD_FOR_OPERAND_ADDRESS;
4572 }
4573 }
4574 #endif
4575
4576 /* See if we have any reloads that are now allowed to be merged
4577 because we've changed when the reload is needed to
4578 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4579 check for the most common cases. */
4580
4581 for (i = 0; i < n_reloads; i++)
4582 if (rld[i].in != 0 && rld[i].out == 0
4583 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4584 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4585 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4586 for (j = 0; j < n_reloads; j++)
4587 if (i != j && rld[j].in != 0 && rld[j].out == 0
4588 && rld[j].when_needed == rld[i].when_needed
4589 && MATCHES (rld[i].in, rld[j].in)
4590 && rld[i].rclass == rld[j].rclass
4591 && !rld[i].nocombine && !rld[j].nocombine
4592 && rld[i].reg_rtx == rld[j].reg_rtx)
4593 {
4594 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4595 transfer_replacements (i, j);
4596 rld[j].in = 0;
4597 }
4598
4599 /* If we made any reloads for addresses, see if they violate a
4600 "no input reloads" requirement for this insn. But loads that we
4601 do after the insn (such as for output addresses) are fine. */
4602 if (HAVE_cc0 && no_input_reloads)
4603 for (i = 0; i < n_reloads; i++)
4604 gcc_assert (rld[i].in == 0
4605 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4606 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4607
4608 /* Compute reload_mode and reload_nregs. */
4609 for (i = 0; i < n_reloads; i++)
4610 {
4611 rld[i].mode = rld[i].inmode;
4612 if (rld[i].mode == VOIDmode
4613 || partial_subreg_p (rld[i].mode, rld[i].outmode))
4614 rld[i].mode = rld[i].outmode;
4615
4616 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4617 }
4618
4619 /* Special case a simple move with an input reload and a
4620 destination of a hard reg, if the hard reg is ok, use it. */
4621 for (i = 0; i < n_reloads; i++)
4622 if (rld[i].when_needed == RELOAD_FOR_INPUT
4623 && GET_CODE (PATTERN (insn)) == SET
4624 && REG_P (SET_DEST (PATTERN (insn)))
4625 && (SET_SRC (PATTERN (insn)) == rld[i].in
4626 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4627 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4628 {
4629 rtx dest = SET_DEST (PATTERN (insn));
4630 unsigned int regno = REGNO (dest);
4631
4632 if (regno < FIRST_PSEUDO_REGISTER
4633 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4634 && targetm.hard_regno_mode_ok (regno, rld[i].mode))
4635 {
4636 int nr = hard_regno_nregs (regno, rld[i].mode);
4637 int ok = 1, nri;
4638
4639 for (nri = 1; nri < nr; nri ++)
4640 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4641 {
4642 ok = 0;
4643 break;
4644 }
4645
4646 if (ok)
4647 rld[i].reg_rtx = dest;
4648 }
4649 }
4650
4651 return retval;
4652 }
4653
4654 /* Return true if alternative number ALTNUM in constraint-string
4655 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4656 MEM gives the reference if its address hasn't been fully reloaded,
4657 otherwise it is NULL. */
4658
4659 static bool
alternative_allows_const_pool_ref(rtx mem ATTRIBUTE_UNUSED,const char * constraint,int altnum)4660 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4661 const char *constraint, int altnum)
4662 {
4663 int c;
4664
4665 /* Skip alternatives before the one requested. */
4666 while (altnum > 0)
4667 {
4668 while (*constraint++ != ',')
4669 ;
4670 altnum--;
4671 }
4672 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4673 If one of them is present, this alternative accepts the result of
4674 passing a constant-pool reference through find_reloads_toplev.
4675
4676 The same is true of extra memory constraints if the address
4677 was reloaded into a register. However, the target may elect
4678 to disallow the original constant address, forcing it to be
4679 reloaded into a register instead. */
4680 for (; (c = *constraint) && c != ',' && c != '#';
4681 constraint += CONSTRAINT_LEN (c, constraint))
4682 {
4683 enum constraint_num cn = lookup_constraint (constraint);
4684 if (insn_extra_memory_constraint (cn)
4685 && (mem == NULL || constraint_satisfied_p (mem, cn)))
4686 return true;
4687 }
4688 return false;
4689 }
4690
4691 /* Scan X for memory references and scan the addresses for reloading.
4692 Also checks for references to "constant" regs that we want to eliminate
4693 and replaces them with the values they stand for.
4694 We may alter X destructively if it contains a reference to such.
4695 If X is just a constant reg, we return the equivalent value
4696 instead of X.
4697
4698 IND_LEVELS says how many levels of indirect addressing this machine
4699 supports.
4700
4701 OPNUM and TYPE identify the purpose of the reload.
4702
4703 IS_SET_DEST is true if X is the destination of a SET, which is not
4704 appropriate to be replaced by a constant.
4705
4706 INSN, if nonzero, is the insn in which we do the reload. It is used
4707 to determine if we may generate output reloads, and where to put USEs
4708 for pseudos that we have to replace with stack slots.
4709
4710 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4711 result of find_reloads_address. */
4712
4713 static rtx
find_reloads_toplev(rtx x,int opnum,enum reload_type type,int ind_levels,int is_set_dest,rtx_insn * insn,int * address_reloaded)4714 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4715 int ind_levels, int is_set_dest, rtx_insn *insn,
4716 int *address_reloaded)
4717 {
4718 RTX_CODE code = GET_CODE (x);
4719
4720 const char *fmt = GET_RTX_FORMAT (code);
4721 int i;
4722 int copied;
4723
4724 if (code == REG)
4725 {
4726 /* This code is duplicated for speed in find_reloads. */
4727 int regno = REGNO (x);
4728 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4729 x = reg_equiv_constant (regno);
4730 #if 0
4731 /* This creates (subreg (mem...)) which would cause an unnecessary
4732 reload of the mem. */
4733 else if (reg_equiv_mem (regno) != 0)
4734 x = reg_equiv_mem (regno);
4735 #endif
4736 else if (reg_equiv_memory_loc (regno)
4737 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4738 {
4739 rtx mem = make_memloc (x, regno);
4740 if (reg_equiv_address (regno)
4741 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4742 {
4743 /* If this is not a toplevel operand, find_reloads doesn't see
4744 this substitution. We have to emit a USE of the pseudo so
4745 that delete_output_reload can see it. */
4746 if (replace_reloads && recog_data.operand[opnum] != x)
4747 /* We mark the USE with QImode so that we recognize it
4748 as one that can be safely deleted at the end of
4749 reload. */
4750 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4751 QImode);
4752 x = mem;
4753 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4754 opnum, type, ind_levels, insn);
4755 if (!rtx_equal_p (x, mem))
4756 push_reg_equiv_alt_mem (regno, x);
4757 if (address_reloaded)
4758 *address_reloaded = i;
4759 }
4760 }
4761 return x;
4762 }
4763 if (code == MEM)
4764 {
4765 rtx tem = x;
4766
4767 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4768 opnum, type, ind_levels, insn);
4769 if (address_reloaded)
4770 *address_reloaded = i;
4771
4772 return tem;
4773 }
4774
4775 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4776 {
4777 /* Check for SUBREG containing a REG that's equivalent to a
4778 constant. If the constant has a known value, truncate it
4779 right now. Similarly if we are extracting a single-word of a
4780 multi-word constant. If the constant is symbolic, allow it
4781 to be substituted normally. push_reload will strip the
4782 subreg later. The constant must not be VOIDmode, because we
4783 will lose the mode of the register (this should never happen
4784 because one of the cases above should handle it). */
4785
4786 int regno = REGNO (SUBREG_REG (x));
4787 rtx tem;
4788
4789 if (regno >= FIRST_PSEUDO_REGISTER
4790 && reg_renumber[regno] < 0
4791 && reg_equiv_constant (regno) != 0)
4792 {
4793 tem =
4794 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4795 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4796 gcc_assert (tem);
4797 if (CONSTANT_P (tem)
4798 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4799 {
4800 tem = force_const_mem (GET_MODE (x), tem);
4801 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4802 &XEXP (tem, 0), opnum, type,
4803 ind_levels, insn);
4804 if (address_reloaded)
4805 *address_reloaded = i;
4806 }
4807 return tem;
4808 }
4809
4810 /* If the subreg contains a reg that will be converted to a mem,
4811 attempt to convert the whole subreg to a (narrower or wider)
4812 memory reference instead. If this succeeds, we're done --
4813 otherwise fall through to check whether the inner reg still
4814 needs address reloads anyway. */
4815
4816 if (regno >= FIRST_PSEUDO_REGISTER
4817 && reg_equiv_memory_loc (regno) != 0)
4818 {
4819 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4820 insn, address_reloaded);
4821 if (tem)
4822 return tem;
4823 }
4824 }
4825
4826 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4827 {
4828 if (fmt[i] == 'e')
4829 {
4830 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4831 ind_levels, is_set_dest, insn,
4832 address_reloaded);
4833 /* If we have replaced a reg with it's equivalent memory loc -
4834 that can still be handled here e.g. if it's in a paradoxical
4835 subreg - we must make the change in a copy, rather than using
4836 a destructive change. This way, find_reloads can still elect
4837 not to do the change. */
4838 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4839 {
4840 x = shallow_copy_rtx (x);
4841 copied = 1;
4842 }
4843 XEXP (x, i) = new_part;
4844 }
4845 }
4846 return x;
4847 }
4848
4849 /* Return a mem ref for the memory equivalent of reg REGNO.
4850 This mem ref is not shared with anything. */
4851
4852 static rtx
make_memloc(rtx ad,int regno)4853 make_memloc (rtx ad, int regno)
4854 {
4855 /* We must rerun eliminate_regs, in case the elimination
4856 offsets have changed. */
4857 rtx tem
4858 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4859 0);
4860
4861 /* If TEM might contain a pseudo, we must copy it to avoid
4862 modifying it when we do the substitution for the reload. */
4863 if (rtx_varies_p (tem, 0))
4864 tem = copy_rtx (tem);
4865
4866 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4867 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4868
4869 /* Copy the result if it's still the same as the equivalence, to avoid
4870 modifying it when we do the substitution for the reload. */
4871 if (tem == reg_equiv_memory_loc (regno))
4872 tem = copy_rtx (tem);
4873 return tem;
4874 }
4875
4876 /* Returns true if AD could be turned into a valid memory reference
4877 to mode MODE in address space AS by reloading the part pointed to
4878 by PART into a register. */
4879
4880 static int
maybe_memory_address_addr_space_p(machine_mode mode,rtx ad,addr_space_t as,rtx * part)4881 maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4882 addr_space_t as, rtx *part)
4883 {
4884 int retv;
4885 rtx tem = *part;
4886 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4887
4888 *part = reg;
4889 retv = memory_address_addr_space_p (mode, ad, as);
4890 *part = tem;
4891
4892 return retv;
4893 }
4894
4895 /* Record all reloads needed for handling memory address AD
4896 which appears in *LOC in a memory reference to mode MODE
4897 which itself is found in location *MEMREFLOC.
4898 Note that we take shortcuts assuming that no multi-reg machine mode
4899 occurs as part of an address.
4900
4901 OPNUM and TYPE specify the purpose of this reload.
4902
4903 IND_LEVELS says how many levels of indirect addressing this machine
4904 supports.
4905
4906 INSN, if nonzero, is the insn in which we do the reload. It is used
4907 to determine if we may generate output reloads, and where to put USEs
4908 for pseudos that we have to replace with stack slots.
4909
4910 Value is one if this address is reloaded or replaced as a whole; it is
4911 zero if the top level of this address was not reloaded or replaced, and
4912 it is -1 if it may or may not have been reloaded or replaced.
4913
4914 Note that there is no verification that the address will be valid after
4915 this routine does its work. Instead, we rely on the fact that the address
4916 was valid when reload started. So we need only undo things that reload
4917 could have broken. These are wrong register types, pseudos not allocated
4918 to a hard register, and frame pointer elimination. */
4919
4920 static int
find_reloads_address(machine_mode mode,rtx * memrefloc,rtx ad,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx_insn * insn)4921 find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4922 rtx *loc, int opnum, enum reload_type type,
4923 int ind_levels, rtx_insn *insn)
4924 {
4925 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4926 : ADDR_SPACE_GENERIC;
4927 int regno;
4928 int removed_and = 0;
4929 int op_index;
4930 rtx tem;
4931
4932 /* If the address is a register, see if it is a legitimate address and
4933 reload if not. We first handle the cases where we need not reload
4934 or where we must reload in a non-standard way. */
4935
4936 if (REG_P (ad))
4937 {
4938 regno = REGNO (ad);
4939
4940 if (reg_equiv_constant (regno) != 0)
4941 {
4942 find_reloads_address_part (reg_equiv_constant (regno), loc,
4943 base_reg_class (mode, as, MEM, SCRATCH),
4944 GET_MODE (ad), opnum, type, ind_levels);
4945 return 1;
4946 }
4947
4948 tem = reg_equiv_memory_loc (regno);
4949 if (tem != 0)
4950 {
4951 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4952 {
4953 tem = make_memloc (ad, regno);
4954 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4955 XEXP (tem, 0),
4956 MEM_ADDR_SPACE (tem)))
4957 {
4958 rtx orig = tem;
4959
4960 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4961 &XEXP (tem, 0), opnum,
4962 ADDR_TYPE (type), ind_levels, insn);
4963 if (!rtx_equal_p (tem, orig))
4964 push_reg_equiv_alt_mem (regno, tem);
4965 }
4966 /* We can avoid a reload if the register's equivalent memory
4967 expression is valid as an indirect memory address.
4968 But not all addresses are valid in a mem used as an indirect
4969 address: only reg or reg+constant. */
4970
4971 if (ind_levels > 0
4972 && strict_memory_address_addr_space_p (mode, tem, as)
4973 && (REG_P (XEXP (tem, 0))
4974 || (GET_CODE (XEXP (tem, 0)) == PLUS
4975 && REG_P (XEXP (XEXP (tem, 0), 0))
4976 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4977 {
4978 /* TEM is not the same as what we'll be replacing the
4979 pseudo with after reload, put a USE in front of INSN
4980 in the final reload pass. */
4981 if (replace_reloads
4982 && num_not_at_initial_offset
4983 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4984 {
4985 *loc = tem;
4986 /* We mark the USE with QImode so that we
4987 recognize it as one that can be safely
4988 deleted at the end of reload. */
4989 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4990 insn), QImode);
4991
4992 /* This doesn't really count as replacing the address
4993 as a whole, since it is still a memory access. */
4994 }
4995 return 0;
4996 }
4997 ad = tem;
4998 }
4999 }
5000
5001 /* The only remaining case where we can avoid a reload is if this is a
5002 hard register that is valid as a base register and which is not the
5003 subject of a CLOBBER in this insn. */
5004
5005 else if (regno < FIRST_PSEUDO_REGISTER
5006 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
5007 && ! regno_clobbered_p (regno, this_insn, mode, 0))
5008 return 0;
5009
5010 /* If we do not have one of the cases above, we must do the reload. */
5011 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
5012 base_reg_class (mode, as, MEM, SCRATCH),
5013 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5014 return 1;
5015 }
5016
5017 if (strict_memory_address_addr_space_p (mode, ad, as))
5018 {
5019 /* The address appears valid, so reloads are not needed.
5020 But the address may contain an eliminable register.
5021 This can happen because a machine with indirect addressing
5022 may consider a pseudo register by itself a valid address even when
5023 it has failed to get a hard reg.
5024 So do a tree-walk to find and eliminate all such regs. */
5025
5026 /* But first quickly dispose of a common case. */
5027 if (GET_CODE (ad) == PLUS
5028 && CONST_INT_P (XEXP (ad, 1))
5029 && REG_P (XEXP (ad, 0))
5030 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5031 return 0;
5032
5033 subst_reg_equivs_changed = 0;
5034 *loc = subst_reg_equivs (ad, insn);
5035
5036 if (! subst_reg_equivs_changed)
5037 return 0;
5038
5039 /* Check result for validity after substitution. */
5040 if (strict_memory_address_addr_space_p (mode, ad, as))
5041 return 0;
5042 }
5043
5044 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5045 do
5046 {
5047 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5048 {
5049 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5050 ind_levels, win);
5051 }
5052 break;
5053 win:
5054 *memrefloc = copy_rtx (*memrefloc);
5055 XEXP (*memrefloc, 0) = ad;
5056 move_replacements (&ad, &XEXP (*memrefloc, 0));
5057 return -1;
5058 }
5059 while (0);
5060 #endif
5061
5062 /* The address is not valid. We have to figure out why. First see if
5063 we have an outer AND and remove it if so. Then analyze what's inside. */
5064
5065 if (GET_CODE (ad) == AND)
5066 {
5067 removed_and = 1;
5068 loc = &XEXP (ad, 0);
5069 ad = *loc;
5070 }
5071
5072 /* One possibility for why the address is invalid is that it is itself
5073 a MEM. This can happen when the frame pointer is being eliminated, a
5074 pseudo is not allocated to a hard register, and the offset between the
5075 frame and stack pointers is not its initial value. In that case the
5076 pseudo will have been replaced by a MEM referring to the
5077 stack pointer. */
5078 if (MEM_P (ad))
5079 {
5080 /* First ensure that the address in this MEM is valid. Then, unless
5081 indirect addresses are valid, reload the MEM into a register. */
5082 tem = ad;
5083 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5084 opnum, ADDR_TYPE (type),
5085 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5086
5087 /* If tem was changed, then we must create a new memory reference to
5088 hold it and store it back into memrefloc. */
5089 if (tem != ad && memrefloc)
5090 {
5091 *memrefloc = copy_rtx (*memrefloc);
5092 copy_replacements (tem, XEXP (*memrefloc, 0));
5093 loc = &XEXP (*memrefloc, 0);
5094 if (removed_and)
5095 loc = &XEXP (*loc, 0);
5096 }
5097
5098 /* Check similar cases as for indirect addresses as above except
5099 that we can allow pseudos and a MEM since they should have been
5100 taken care of above. */
5101
5102 if (ind_levels == 0
5103 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5104 || MEM_P (XEXP (tem, 0))
5105 || ! (REG_P (XEXP (tem, 0))
5106 || (GET_CODE (XEXP (tem, 0)) == PLUS
5107 && REG_P (XEXP (XEXP (tem, 0), 0))
5108 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5109 {
5110 /* Must use TEM here, not AD, since it is the one that will
5111 have any subexpressions reloaded, if needed. */
5112 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5113 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5114 VOIDmode, 0,
5115 0, opnum, type);
5116 return ! removed_and;
5117 }
5118 else
5119 return 0;
5120 }
5121
5122 /* If we have address of a stack slot but it's not valid because the
5123 displacement is too large, compute the sum in a register.
5124 Handle all base registers here, not just fp/ap/sp, because on some
5125 targets (namely SH) we can also get too large displacements from
5126 big-endian corrections. */
5127 else if (GET_CODE (ad) == PLUS
5128 && REG_P (XEXP (ad, 0))
5129 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5130 && CONST_INT_P (XEXP (ad, 1))
5131 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5132 CONST_INT)
5133 /* Similarly, if we were to reload the base register and the
5134 mem+offset address is still invalid, then we want to reload
5135 the whole address, not just the base register. */
5136 || ! maybe_memory_address_addr_space_p
5137 (mode, ad, as, &(XEXP (ad, 0)))))
5138
5139 {
5140 /* Unshare the MEM rtx so we can safely alter it. */
5141 if (memrefloc)
5142 {
5143 *memrefloc = copy_rtx (*memrefloc);
5144 loc = &XEXP (*memrefloc, 0);
5145 if (removed_and)
5146 loc = &XEXP (*loc, 0);
5147 }
5148
5149 if (double_reg_address_ok[mode]
5150 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5151 PLUS, CONST_INT))
5152 {
5153 /* Unshare the sum as well. */
5154 *loc = ad = copy_rtx (ad);
5155
5156 /* Reload the displacement into an index reg.
5157 We assume the frame pointer or arg pointer is a base reg. */
5158 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5159 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5160 type, ind_levels);
5161 return 0;
5162 }
5163 else
5164 {
5165 /* If the sum of two regs is not necessarily valid,
5166 reload the sum into a base reg.
5167 That will at least work. */
5168 find_reloads_address_part (ad, loc,
5169 base_reg_class (mode, as, MEM, SCRATCH),
5170 GET_MODE (ad), opnum, type, ind_levels);
5171 }
5172 return ! removed_and;
5173 }
5174
5175 /* If we have an indexed stack slot, there are three possible reasons why
5176 it might be invalid: The index might need to be reloaded, the address
5177 might have been made by frame pointer elimination and hence have a
5178 constant out of range, or both reasons might apply.
5179
5180 We can easily check for an index needing reload, but even if that is the
5181 case, we might also have an invalid constant. To avoid making the
5182 conservative assumption and requiring two reloads, we see if this address
5183 is valid when not interpreted strictly. If it is, the only problem is
5184 that the index needs a reload and find_reloads_address_1 will take care
5185 of it.
5186
5187 Handle all base registers here, not just fp/ap/sp, because on some
5188 targets (namely SPARC) we can also get invalid addresses from preventive
5189 subreg big-endian corrections made by find_reloads_toplev. We
5190 can also get expressions involving LO_SUM (rather than PLUS) from
5191 find_reloads_subreg_address.
5192
5193 If we decide to do something, it must be that `double_reg_address_ok'
5194 is true. We generate a reload of the base register + constant and
5195 rework the sum so that the reload register will be added to the index.
5196 This is safe because we know the address isn't shared.
5197
5198 We check for the base register as both the first and second operand of
5199 the innermost PLUS and/or LO_SUM. */
5200
5201 for (op_index = 0; op_index < 2; ++op_index)
5202 {
5203 rtx operand, addend;
5204 enum rtx_code inner_code;
5205
5206 if (GET_CODE (ad) != PLUS)
5207 continue;
5208
5209 inner_code = GET_CODE (XEXP (ad, 0));
5210 if (!(GET_CODE (ad) == PLUS
5211 && CONST_INT_P (XEXP (ad, 1))
5212 && (inner_code == PLUS || inner_code == LO_SUM)))
5213 continue;
5214
5215 operand = XEXP (XEXP (ad, 0), op_index);
5216 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5217 continue;
5218
5219 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5220
5221 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5222 GET_CODE (addend))
5223 || operand == frame_pointer_rtx
5224 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
5225 && operand == hard_frame_pointer_rtx)
5226 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5227 && operand == arg_pointer_rtx)
5228 || operand == stack_pointer_rtx)
5229 && ! maybe_memory_address_addr_space_p
5230 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5231 {
5232 rtx offset_reg;
5233 enum reg_class cls;
5234
5235 offset_reg = plus_constant (GET_MODE (ad), operand,
5236 INTVAL (XEXP (ad, 1)));
5237
5238 /* Form the adjusted address. */
5239 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5240 ad = gen_rtx_PLUS (GET_MODE (ad),
5241 op_index == 0 ? offset_reg : addend,
5242 op_index == 0 ? addend : offset_reg);
5243 else
5244 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5245 op_index == 0 ? offset_reg : addend,
5246 op_index == 0 ? addend : offset_reg);
5247 *loc = ad;
5248
5249 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5250 find_reloads_address_part (XEXP (ad, op_index),
5251 &XEXP (ad, op_index), cls,
5252 GET_MODE (ad), opnum, type, ind_levels);
5253 find_reloads_address_1 (mode, as,
5254 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5255 GET_CODE (XEXP (ad, op_index)),
5256 &XEXP (ad, 1 - op_index), opnum,
5257 type, 0, insn);
5258
5259 return 0;
5260 }
5261 }
5262
5263 /* See if address becomes valid when an eliminable register
5264 in a sum is replaced. */
5265
5266 tem = ad;
5267 if (GET_CODE (ad) == PLUS)
5268 tem = subst_indexed_address (ad);
5269 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5270 {
5271 /* Ok, we win that way. Replace any additional eliminable
5272 registers. */
5273
5274 subst_reg_equivs_changed = 0;
5275 tem = subst_reg_equivs (tem, insn);
5276
5277 /* Make sure that didn't make the address invalid again. */
5278
5279 if (! subst_reg_equivs_changed
5280 || strict_memory_address_addr_space_p (mode, tem, as))
5281 {
5282 *loc = tem;
5283 return 0;
5284 }
5285 }
5286
5287 /* If constants aren't valid addresses, reload the constant address
5288 into a register. */
5289 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5290 {
5291 machine_mode address_mode = GET_MODE (ad);
5292 if (address_mode == VOIDmode)
5293 address_mode = targetm.addr_space.address_mode (as);
5294
5295 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5296 Unshare it so we can safely alter it. */
5297 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5298 && CONSTANT_POOL_ADDRESS_P (ad))
5299 {
5300 *memrefloc = copy_rtx (*memrefloc);
5301 loc = &XEXP (*memrefloc, 0);
5302 if (removed_and)
5303 loc = &XEXP (*loc, 0);
5304 }
5305
5306 find_reloads_address_part (ad, loc,
5307 base_reg_class (mode, as, MEM, SCRATCH),
5308 address_mode, opnum, type, ind_levels);
5309 return ! removed_and;
5310 }
5311
5312 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5313 opnum, type, ind_levels, insn);
5314 }
5315
5316 /* Find all pseudo regs appearing in AD
5317 that are eliminable in favor of equivalent values
5318 and do not have hard regs; replace them by their equivalents.
5319 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5320 front of it for pseudos that we have to replace with stack slots. */
5321
5322 static rtx
subst_reg_equivs(rtx ad,rtx_insn * insn)5323 subst_reg_equivs (rtx ad, rtx_insn *insn)
5324 {
5325 RTX_CODE code = GET_CODE (ad);
5326 int i;
5327 const char *fmt;
5328
5329 switch (code)
5330 {
5331 case HIGH:
5332 case CONST:
5333 CASE_CONST_ANY:
5334 case SYMBOL_REF:
5335 case LABEL_REF:
5336 case PC:
5337 case CC0:
5338 return ad;
5339
5340 case REG:
5341 {
5342 int regno = REGNO (ad);
5343
5344 if (reg_equiv_constant (regno) != 0)
5345 {
5346 subst_reg_equivs_changed = 1;
5347 return reg_equiv_constant (regno);
5348 }
5349 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5350 {
5351 rtx mem = make_memloc (ad, regno);
5352 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5353 {
5354 subst_reg_equivs_changed = 1;
5355 /* We mark the USE with QImode so that we recognize it
5356 as one that can be safely deleted at the end of
5357 reload. */
5358 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5359 QImode);
5360 return mem;
5361 }
5362 }
5363 }
5364 return ad;
5365
5366 case PLUS:
5367 /* Quickly dispose of a common case. */
5368 if (XEXP (ad, 0) == frame_pointer_rtx
5369 && CONST_INT_P (XEXP (ad, 1)))
5370 return ad;
5371 break;
5372
5373 default:
5374 break;
5375 }
5376
5377 fmt = GET_RTX_FORMAT (code);
5378 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5379 if (fmt[i] == 'e')
5380 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5381 return ad;
5382 }
5383
5384 /* Compute the sum of X and Y, making canonicalizations assumed in an
5385 address, namely: sum constant integers, surround the sum of two
5386 constants with a CONST, put the constant as the second operand, and
5387 group the constant on the outermost sum.
5388
5389 This routine assumes both inputs are already in canonical form. */
5390
5391 rtx
form_sum(machine_mode mode,rtx x,rtx y)5392 form_sum (machine_mode mode, rtx x, rtx y)
5393 {
5394 rtx tem;
5395
5396 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5397 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5398
5399 if (CONST_INT_P (x))
5400 return plus_constant (mode, y, INTVAL (x));
5401 else if (CONST_INT_P (y))
5402 return plus_constant (mode, x, INTVAL (y));
5403 else if (CONSTANT_P (x))
5404 tem = x, x = y, y = tem;
5405
5406 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5407 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5408
5409 /* Note that if the operands of Y are specified in the opposite
5410 order in the recursive calls below, infinite recursion will occur. */
5411 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5412 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5413
5414 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5415 constant will have been placed second. */
5416 if (CONSTANT_P (x) && CONSTANT_P (y))
5417 {
5418 if (GET_CODE (x) == CONST)
5419 x = XEXP (x, 0);
5420 if (GET_CODE (y) == CONST)
5421 y = XEXP (y, 0);
5422
5423 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5424 }
5425
5426 return gen_rtx_PLUS (mode, x, y);
5427 }
5428
5429 /* If ADDR is a sum containing a pseudo register that should be
5430 replaced with a constant (from reg_equiv_constant),
5431 return the result of doing so, and also apply the associative
5432 law so that the result is more likely to be a valid address.
5433 (But it is not guaranteed to be one.)
5434
5435 Note that at most one register is replaced, even if more are
5436 replaceable. Also, we try to put the result into a canonical form
5437 so it is more likely to be a valid address.
5438
5439 In all other cases, return ADDR. */
5440
5441 static rtx
subst_indexed_address(rtx addr)5442 subst_indexed_address (rtx addr)
5443 {
5444 rtx op0 = 0, op1 = 0, op2 = 0;
5445 rtx tem;
5446 int regno;
5447
5448 if (GET_CODE (addr) == PLUS)
5449 {
5450 /* Try to find a register to replace. */
5451 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5452 if (REG_P (op0)
5453 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5454 && reg_renumber[regno] < 0
5455 && reg_equiv_constant (regno) != 0)
5456 op0 = reg_equiv_constant (regno);
5457 else if (REG_P (op1)
5458 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5459 && reg_renumber[regno] < 0
5460 && reg_equiv_constant (regno) != 0)
5461 op1 = reg_equiv_constant (regno);
5462 else if (GET_CODE (op0) == PLUS
5463 && (tem = subst_indexed_address (op0)) != op0)
5464 op0 = tem;
5465 else if (GET_CODE (op1) == PLUS
5466 && (tem = subst_indexed_address (op1)) != op1)
5467 op1 = tem;
5468 else
5469 return addr;
5470
5471 /* Pick out up to three things to add. */
5472 if (GET_CODE (op1) == PLUS)
5473 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5474 else if (GET_CODE (op0) == PLUS)
5475 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5476
5477 /* Compute the sum. */
5478 if (op2 != 0)
5479 op1 = form_sum (GET_MODE (addr), op1, op2);
5480 if (op1 != 0)
5481 op0 = form_sum (GET_MODE (addr), op0, op1);
5482
5483 return op0;
5484 }
5485 return addr;
5486 }
5487
5488 /* Update the REG_INC notes for an insn. It updates all REG_INC
5489 notes for the instruction which refer to REGNO the to refer
5490 to the reload number.
5491
5492 INSN is the insn for which any REG_INC notes need updating.
5493
5494 REGNO is the register number which has been reloaded.
5495
5496 RELOADNUM is the reload number. */
5497
5498 static void
update_auto_inc_notes(rtx_insn * insn ATTRIBUTE_UNUSED,int regno ATTRIBUTE_UNUSED,int reloadnum ATTRIBUTE_UNUSED)5499 update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5500 int reloadnum ATTRIBUTE_UNUSED)
5501 {
5502 if (!AUTO_INC_DEC)
5503 return;
5504
5505 for (rtx link = REG_NOTES (insn); link; link = XEXP (link, 1))
5506 if (REG_NOTE_KIND (link) == REG_INC
5507 && (int) REGNO (XEXP (link, 0)) == regno)
5508 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5509 }
5510
5511 /* Record the pseudo registers we must reload into hard registers in a
5512 subexpression of a would-be memory address, X referring to a value
5513 in mode MODE. (This function is not called if the address we find
5514 is strictly valid.)
5515
5516 CONTEXT = 1 means we are considering regs as index regs,
5517 = 0 means we are considering them as base regs.
5518 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5519 or an autoinc code.
5520 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5521 is the code of the index part of the address. Otherwise, pass SCRATCH
5522 for this argument.
5523 OPNUM and TYPE specify the purpose of any reloads made.
5524
5525 IND_LEVELS says how many levels of indirect addressing are
5526 supported at this point in the address.
5527
5528 INSN, if nonzero, is the insn in which we do the reload. It is used
5529 to determine if we may generate output reloads.
5530
5531 We return nonzero if X, as a whole, is reloaded or replaced. */
5532
5533 /* Note that we take shortcuts assuming that no multi-reg machine mode
5534 occurs as part of an address.
5535 Also, this is not fully machine-customizable; it works for machines
5536 such as VAXen and 68000's and 32000's, but other possible machines
5537 could have addressing modes that this does not handle right.
5538 If you add push_reload calls here, you need to make sure gen_reload
5539 handles those cases gracefully. */
5540
5541 static int
find_reloads_address_1(machine_mode mode,addr_space_t as,rtx x,int context,enum rtx_code outer_code,enum rtx_code index_code,rtx * loc,int opnum,enum reload_type type,int ind_levels,rtx_insn * insn)5542 find_reloads_address_1 (machine_mode mode, addr_space_t as,
5543 rtx x, int context,
5544 enum rtx_code outer_code, enum rtx_code index_code,
5545 rtx *loc, int opnum, enum reload_type type,
5546 int ind_levels, rtx_insn *insn)
5547 {
5548 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5549 ((CONTEXT) == 0 \
5550 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5551 : REGNO_OK_FOR_INDEX_P (REGNO))
5552
5553 enum reg_class context_reg_class;
5554 RTX_CODE code = GET_CODE (x);
5555 bool reloaded_inner_of_autoinc = false;
5556
5557 if (context == 1)
5558 context_reg_class = INDEX_REG_CLASS;
5559 else
5560 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5561
5562 switch (code)
5563 {
5564 case PLUS:
5565 {
5566 rtx orig_op0 = XEXP (x, 0);
5567 rtx orig_op1 = XEXP (x, 1);
5568 RTX_CODE code0 = GET_CODE (orig_op0);
5569 RTX_CODE code1 = GET_CODE (orig_op1);
5570 rtx op0 = orig_op0;
5571 rtx op1 = orig_op1;
5572
5573 if (GET_CODE (op0) == SUBREG)
5574 {
5575 op0 = SUBREG_REG (op0);
5576 code0 = GET_CODE (op0);
5577 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5578 op0 = gen_rtx_REG (word_mode,
5579 (REGNO (op0) +
5580 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5581 GET_MODE (SUBREG_REG (orig_op0)),
5582 SUBREG_BYTE (orig_op0),
5583 GET_MODE (orig_op0))));
5584 }
5585
5586 if (GET_CODE (op1) == SUBREG)
5587 {
5588 op1 = SUBREG_REG (op1);
5589 code1 = GET_CODE (op1);
5590 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5591 /* ??? Why is this given op1's mode and above for
5592 ??? op0 SUBREGs we use word_mode? */
5593 op1 = gen_rtx_REG (GET_MODE (op1),
5594 (REGNO (op1) +
5595 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5596 GET_MODE (SUBREG_REG (orig_op1)),
5597 SUBREG_BYTE (orig_op1),
5598 GET_MODE (orig_op1))));
5599 }
5600 /* Plus in the index register may be created only as a result of
5601 register rematerialization for expression like &localvar*4. Reload it.
5602 It may be possible to combine the displacement on the outer level,
5603 but it is probably not worthwhile to do so. */
5604 if (context == 1)
5605 {
5606 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5607 opnum, ADDR_TYPE (type), ind_levels, insn);
5608 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5609 context_reg_class,
5610 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5611 return 1;
5612 }
5613
5614 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5615 || code0 == ZERO_EXTEND || code1 == MEM)
5616 {
5617 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5618 &XEXP (x, 0), opnum, type, ind_levels,
5619 insn);
5620 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5621 &XEXP (x, 1), opnum, type, ind_levels,
5622 insn);
5623 }
5624
5625 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5626 || code1 == ZERO_EXTEND || code0 == MEM)
5627 {
5628 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5629 &XEXP (x, 0), opnum, type, ind_levels,
5630 insn);
5631 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5632 &XEXP (x, 1), opnum, type, ind_levels,
5633 insn);
5634 }
5635
5636 else if (code0 == CONST_INT || code0 == CONST
5637 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5638 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5639 &XEXP (x, 1), opnum, type, ind_levels,
5640 insn);
5641
5642 else if (code1 == CONST_INT || code1 == CONST
5643 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5644 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5645 &XEXP (x, 0), opnum, type, ind_levels,
5646 insn);
5647
5648 else if (code0 == REG && code1 == REG)
5649 {
5650 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5651 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5652 return 0;
5653 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5654 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5655 return 0;
5656 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5657 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5658 &XEXP (x, 1), opnum, type, ind_levels,
5659 insn);
5660 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5661 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5662 &XEXP (x, 0), opnum, type, ind_levels,
5663 insn);
5664 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5665 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5666 &XEXP (x, 0), opnum, type, ind_levels,
5667 insn);
5668 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5669 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5670 &XEXP (x, 1), opnum, type, ind_levels,
5671 insn);
5672 else
5673 {
5674 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5675 &XEXP (x, 0), opnum, type, ind_levels,
5676 insn);
5677 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5678 &XEXP (x, 1), opnum, type, ind_levels,
5679 insn);
5680 }
5681 }
5682
5683 else if (code0 == REG)
5684 {
5685 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5686 &XEXP (x, 0), opnum, type, ind_levels,
5687 insn);
5688 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5689 &XEXP (x, 1), opnum, type, ind_levels,
5690 insn);
5691 }
5692
5693 else if (code1 == REG)
5694 {
5695 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5696 &XEXP (x, 1), opnum, type, ind_levels,
5697 insn);
5698 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5699 &XEXP (x, 0), opnum, type, ind_levels,
5700 insn);
5701 }
5702 }
5703
5704 return 0;
5705
5706 case POST_MODIFY:
5707 case PRE_MODIFY:
5708 {
5709 rtx op0 = XEXP (x, 0);
5710 rtx op1 = XEXP (x, 1);
5711 enum rtx_code index_code;
5712 int regno;
5713 int reloadnum;
5714
5715 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5716 return 0;
5717
5718 /* Currently, we only support {PRE,POST}_MODIFY constructs
5719 where a base register is {inc,dec}remented by the contents
5720 of another register or by a constant value. Thus, these
5721 operands must match. */
5722 gcc_assert (op0 == XEXP (op1, 0));
5723
5724 /* Require index register (or constant). Let's just handle the
5725 register case in the meantime... If the target allows
5726 auto-modify by a constant then we could try replacing a pseudo
5727 register with its equivalent constant where applicable.
5728
5729 We also handle the case where the register was eliminated
5730 resulting in a PLUS subexpression.
5731
5732 If we later decide to reload the whole PRE_MODIFY or
5733 POST_MODIFY, inc_for_reload might clobber the reload register
5734 before reading the index. The index register might therefore
5735 need to live longer than a TYPE reload normally would, so be
5736 conservative and class it as RELOAD_OTHER. */
5737 if ((REG_P (XEXP (op1, 1))
5738 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5739 || GET_CODE (XEXP (op1, 1)) == PLUS)
5740 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5741 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5742 ind_levels, insn);
5743
5744 gcc_assert (REG_P (XEXP (op1, 0)));
5745
5746 regno = REGNO (XEXP (op1, 0));
5747 index_code = GET_CODE (XEXP (op1, 1));
5748
5749 /* A register that is incremented cannot be constant! */
5750 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5751 || reg_equiv_constant (regno) == 0);
5752
5753 /* Handle a register that is equivalent to a memory location
5754 which cannot be addressed directly. */
5755 if (reg_equiv_memory_loc (regno) != 0
5756 && (reg_equiv_address (regno) != 0
5757 || num_not_at_initial_offset))
5758 {
5759 rtx tem = make_memloc (XEXP (x, 0), regno);
5760
5761 if (reg_equiv_address (regno)
5762 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5763 {
5764 rtx orig = tem;
5765
5766 /* First reload the memory location's address.
5767 We can't use ADDR_TYPE (type) here, because we need to
5768 write back the value after reading it, hence we actually
5769 need two registers. */
5770 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5771 &XEXP (tem, 0), opnum,
5772 RELOAD_OTHER,
5773 ind_levels, insn);
5774
5775 if (!rtx_equal_p (tem, orig))
5776 push_reg_equiv_alt_mem (regno, tem);
5777
5778 /* Then reload the memory location into a base
5779 register. */
5780 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5781 &XEXP (op1, 0),
5782 base_reg_class (mode, as,
5783 code, index_code),
5784 GET_MODE (x), GET_MODE (x), 0,
5785 0, opnum, RELOAD_OTHER);
5786
5787 update_auto_inc_notes (this_insn, regno, reloadnum);
5788 return 0;
5789 }
5790 }
5791
5792 if (reg_renumber[regno] >= 0)
5793 regno = reg_renumber[regno];
5794
5795 /* We require a base register here... */
5796 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5797 {
5798 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5799 &XEXP (op1, 0), &XEXP (x, 0),
5800 base_reg_class (mode, as,
5801 code, index_code),
5802 GET_MODE (x), GET_MODE (x), 0, 0,
5803 opnum, RELOAD_OTHER);
5804
5805 update_auto_inc_notes (this_insn, regno, reloadnum);
5806 return 0;
5807 }
5808 }
5809 return 0;
5810
5811 case POST_INC:
5812 case POST_DEC:
5813 case PRE_INC:
5814 case PRE_DEC:
5815 if (REG_P (XEXP (x, 0)))
5816 {
5817 int regno = REGNO (XEXP (x, 0));
5818 int value = 0;
5819 rtx x_orig = x;
5820
5821 /* A register that is incremented cannot be constant! */
5822 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5823 || reg_equiv_constant (regno) == 0);
5824
5825 /* Handle a register that is equivalent to a memory location
5826 which cannot be addressed directly. */
5827 if (reg_equiv_memory_loc (regno) != 0
5828 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5829 {
5830 rtx tem = make_memloc (XEXP (x, 0), regno);
5831 if (reg_equiv_address (regno)
5832 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5833 {
5834 rtx orig = tem;
5835
5836 /* First reload the memory location's address.
5837 We can't use ADDR_TYPE (type) here, because we need to
5838 write back the value after reading it, hence we actually
5839 need two registers. */
5840 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5841 &XEXP (tem, 0), opnum, type,
5842 ind_levels, insn);
5843 reloaded_inner_of_autoinc = true;
5844 if (!rtx_equal_p (tem, orig))
5845 push_reg_equiv_alt_mem (regno, tem);
5846 /* Put this inside a new increment-expression. */
5847 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5848 /* Proceed to reload that, as if it contained a register. */
5849 }
5850 }
5851
5852 /* If we have a hard register that is ok in this incdec context,
5853 don't make a reload. If the register isn't nice enough for
5854 autoincdec, we can reload it. But, if an autoincrement of a
5855 register that we here verified as playing nice, still outside
5856 isn't "valid", it must be that no autoincrement is "valid".
5857 If that is true and something made an autoincrement anyway,
5858 this must be a special context where one is allowed.
5859 (For example, a "push" instruction.)
5860 We can't improve this address, so leave it alone. */
5861
5862 /* Otherwise, reload the autoincrement into a suitable hard reg
5863 and record how much to increment by. */
5864
5865 if (reg_renumber[regno] >= 0)
5866 regno = reg_renumber[regno];
5867 if (regno >= FIRST_PSEUDO_REGISTER
5868 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5869 index_code))
5870 {
5871 int reloadnum;
5872
5873 /* If we can output the register afterwards, do so, this
5874 saves the extra update.
5875 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5876 CALL_INSN - and it does not set CC0.
5877 But don't do this if we cannot directly address the
5878 memory location, since this will make it harder to
5879 reuse address reloads, and increases register pressure.
5880 Also don't do this if we can probably update x directly. */
5881 rtx equiv = (MEM_P (XEXP (x, 0))
5882 ? XEXP (x, 0)
5883 : reg_equiv_mem (regno));
5884 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5885 if (insn && NONJUMP_INSN_P (insn)
5886 #if HAVE_cc0
5887 && ! sets_cc0_p (PATTERN (insn))
5888 #endif
5889 && (regno < FIRST_PSEUDO_REGISTER
5890 || (equiv
5891 && memory_operand (equiv, GET_MODE (equiv))
5892 && ! (icode != CODE_FOR_nothing
5893 && insn_operand_matches (icode, 0, equiv)
5894 && insn_operand_matches (icode, 1, equiv))))
5895 /* Using RELOAD_OTHER means we emit this and the reload we
5896 made earlier in the wrong order. */
5897 && !reloaded_inner_of_autoinc)
5898 {
5899 /* We use the original pseudo for loc, so that
5900 emit_reload_insns() knows which pseudo this
5901 reload refers to and updates the pseudo rtx, not
5902 its equivalent memory location, as well as the
5903 corresponding entry in reg_last_reload_reg. */
5904 loc = &XEXP (x_orig, 0);
5905 x = XEXP (x, 0);
5906 reloadnum
5907 = push_reload (x, x, loc, loc,
5908 context_reg_class,
5909 GET_MODE (x), GET_MODE (x), 0, 0,
5910 opnum, RELOAD_OTHER);
5911 }
5912 else
5913 {
5914 reloadnum
5915 = push_reload (x, x, loc, (rtx*) 0,
5916 context_reg_class,
5917 GET_MODE (x), GET_MODE (x), 0, 0,
5918 opnum, type);
5919 rld[reloadnum].inc
5920 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5921
5922 value = 1;
5923 }
5924
5925 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5926 reloadnum);
5927 }
5928 return value;
5929 }
5930 return 0;
5931
5932 case TRUNCATE:
5933 case SIGN_EXTEND:
5934 case ZERO_EXTEND:
5935 /* Look for parts to reload in the inner expression and reload them
5936 too, in addition to this operation. Reloading all inner parts in
5937 addition to this one shouldn't be necessary, but at this point,
5938 we don't know if we can possibly omit any part that *can* be
5939 reloaded. Targets that are better off reloading just either part
5940 (or perhaps even a different part of an outer expression), should
5941 define LEGITIMIZE_RELOAD_ADDRESS. */
5942 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5943 context, code, SCRATCH, &XEXP (x, 0), opnum,
5944 type, ind_levels, insn);
5945 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5946 context_reg_class,
5947 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5948 return 1;
5949
5950 case MEM:
5951 /* This is probably the result of a substitution, by eliminate_regs, of
5952 an equivalent address for a pseudo that was not allocated to a hard
5953 register. Verify that the specified address is valid and reload it
5954 into a register.
5955
5956 Since we know we are going to reload this item, don't decrement for
5957 the indirection level.
5958
5959 Note that this is actually conservative: it would be slightly more
5960 efficient to use the value of SPILL_INDIRECT_LEVELS from
5961 reload1.c here. */
5962
5963 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5964 opnum, ADDR_TYPE (type), ind_levels, insn);
5965 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5966 context_reg_class,
5967 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5968 return 1;
5969
5970 case REG:
5971 {
5972 int regno = REGNO (x);
5973
5974 if (reg_equiv_constant (regno) != 0)
5975 {
5976 find_reloads_address_part (reg_equiv_constant (regno), loc,
5977 context_reg_class,
5978 GET_MODE (x), opnum, type, ind_levels);
5979 return 1;
5980 }
5981
5982 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5983 that feeds this insn. */
5984 if (reg_equiv_mem (regno) != 0)
5985 {
5986 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5987 context_reg_class,
5988 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5989 return 1;
5990 }
5991 #endif
5992
5993 if (reg_equiv_memory_loc (regno)
5994 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5995 {
5996 rtx tem = make_memloc (x, regno);
5997 if (reg_equiv_address (regno) != 0
5998 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5999 {
6000 x = tem;
6001 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
6002 &XEXP (x, 0), opnum, ADDR_TYPE (type),
6003 ind_levels, insn);
6004 if (!rtx_equal_p (x, tem))
6005 push_reg_equiv_alt_mem (regno, x);
6006 }
6007 }
6008
6009 if (reg_renumber[regno] >= 0)
6010 regno = reg_renumber[regno];
6011
6012 if (regno >= FIRST_PSEUDO_REGISTER
6013 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6014 index_code))
6015 {
6016 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6017 context_reg_class,
6018 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6019 return 1;
6020 }
6021
6022 /* If a register appearing in an address is the subject of a CLOBBER
6023 in this insn, reload it into some other register to be safe.
6024 The CLOBBER is supposed to make the register unavailable
6025 from before this insn to after it. */
6026 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6027 {
6028 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6029 context_reg_class,
6030 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6031 return 1;
6032 }
6033 }
6034 return 0;
6035
6036 case SUBREG:
6037 if (REG_P (SUBREG_REG (x)))
6038 {
6039 /* If this is a SUBREG of a hard register and the resulting register
6040 is of the wrong class, reload the whole SUBREG. This avoids
6041 needless copies if SUBREG_REG is multi-word. */
6042 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6043 {
6044 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6045
6046 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6047 index_code))
6048 {
6049 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6050 context_reg_class,
6051 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6052 return 1;
6053 }
6054 }
6055 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6056 is larger than the class size, then reload the whole SUBREG. */
6057 else
6058 {
6059 enum reg_class rclass = context_reg_class;
6060 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6061 > reg_class_size[(int) rclass])
6062 {
6063 /* If the inner register will be replaced by a memory
6064 reference, we can do this only if we can replace the
6065 whole subreg by a (narrower) memory reference. If
6066 this is not possible, fall through and reload just
6067 the inner register (including address reloads). */
6068 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6069 {
6070 rtx tem = find_reloads_subreg_address (x, opnum,
6071 ADDR_TYPE (type),
6072 ind_levels, insn,
6073 NULL);
6074 if (tem)
6075 {
6076 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6077 GET_MODE (tem), VOIDmode, 0, 0,
6078 opnum, type);
6079 return 1;
6080 }
6081 }
6082 else
6083 {
6084 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6085 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6086 return 1;
6087 }
6088 }
6089 }
6090 }
6091 break;
6092
6093 default:
6094 break;
6095 }
6096
6097 {
6098 const char *fmt = GET_RTX_FORMAT (code);
6099 int i;
6100
6101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6102 {
6103 if (fmt[i] == 'e')
6104 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6105 we get here. */
6106 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6107 code, SCRATCH, &XEXP (x, i),
6108 opnum, type, ind_levels, insn);
6109 }
6110 }
6111
6112 #undef REG_OK_FOR_CONTEXT
6113 return 0;
6114 }
6115
6116 /* X, which is found at *LOC, is a part of an address that needs to be
6117 reloaded into a register of class RCLASS. If X is a constant, or if
6118 X is a PLUS that contains a constant, check that the constant is a
6119 legitimate operand and that we are supposed to be able to load
6120 it into the register.
6121
6122 If not, force the constant into memory and reload the MEM instead.
6123
6124 MODE is the mode to use, in case X is an integer constant.
6125
6126 OPNUM and TYPE describe the purpose of any reloads made.
6127
6128 IND_LEVELS says how many levels of indirect addressing this machine
6129 supports. */
6130
6131 static void
find_reloads_address_part(rtx x,rtx * loc,enum reg_class rclass,machine_mode mode,int opnum,enum reload_type type,int ind_levels)6132 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6133 machine_mode mode, int opnum,
6134 enum reload_type type, int ind_levels)
6135 {
6136 if (CONSTANT_P (x)
6137 && (!targetm.legitimate_constant_p (mode, x)
6138 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6139 {
6140 x = force_const_mem (mode, x);
6141 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6142 opnum, type, ind_levels, 0);
6143 }
6144
6145 else if (GET_CODE (x) == PLUS
6146 && CONSTANT_P (XEXP (x, 1))
6147 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6148 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6149 == NO_REGS))
6150 {
6151 rtx tem;
6152
6153 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6154 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6155 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6156 opnum, type, ind_levels, 0);
6157 }
6158
6159 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6160 mode, VOIDmode, 0, 0, opnum, type);
6161 }
6162
6163 /* X, a subreg of a pseudo, is a part of an address that needs to be
6164 reloaded, and the pseusdo is equivalent to a memory location.
6165
6166 Attempt to replace the whole subreg by a (possibly narrower or wider)
6167 memory reference. If this is possible, return this new memory
6168 reference, and push all required address reloads. Otherwise,
6169 return NULL.
6170
6171 OPNUM and TYPE identify the purpose of the reload.
6172
6173 IND_LEVELS says how many levels of indirect addressing are
6174 supported at this point in the address.
6175
6176 INSN, if nonzero, is the insn in which we do the reload. It is used
6177 to determine where to put USEs for pseudos that we have to replace with
6178 stack slots. */
6179
6180 static rtx
find_reloads_subreg_address(rtx x,int opnum,enum reload_type type,int ind_levels,rtx_insn * insn,int * address_reloaded)6181 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6182 int ind_levels, rtx_insn *insn,
6183 int *address_reloaded)
6184 {
6185 machine_mode outer_mode = GET_MODE (x);
6186 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6187 int regno = REGNO (SUBREG_REG (x));
6188 int reloaded = 0;
6189 rtx tem, orig;
6190 poly_int64 offset;
6191
6192 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6193
6194 /* We cannot replace the subreg with a modified memory reference if:
6195
6196 - we have a paradoxical subreg that implicitly acts as a zero or
6197 sign extension operation due to LOAD_EXTEND_OP;
6198
6199 - we have a subreg that is implicitly supposed to act on the full
6200 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6201
6202 - the address of the equivalent memory location is mode-dependent; or
6203
6204 - we have a paradoxical subreg and the resulting memory is not
6205 sufficiently aligned to allow access in the wider mode.
6206
6207 In addition, we choose not to perform the replacement for *any*
6208 paradoxical subreg, even if it were possible in principle. This
6209 is to avoid generating wider memory references than necessary.
6210
6211 This corresponds to how previous versions of reload used to handle
6212 paradoxical subregs where no address reload was required. */
6213
6214 if (paradoxical_subreg_p (x))
6215 return NULL;
6216
6217 if (WORD_REGISTER_OPERATIONS
6218 && partial_subreg_p (outer_mode, inner_mode)
6219 && known_equal_after_align_down (GET_MODE_SIZE (outer_mode) - 1,
6220 GET_MODE_SIZE (inner_mode) - 1,
6221 UNITS_PER_WORD))
6222 return NULL;
6223
6224 /* Since we don't attempt to handle paradoxical subregs, we can just
6225 call into simplify_subreg, which will handle all remaining checks
6226 for us. */
6227 orig = make_memloc (SUBREG_REG (x), regno);
6228 offset = SUBREG_BYTE (x);
6229 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6230 if (!tem || !MEM_P (tem))
6231 return NULL;
6232
6233 /* Now push all required address reloads, if any. */
6234 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6235 XEXP (tem, 0), &XEXP (tem, 0),
6236 opnum, type, ind_levels, insn);
6237 /* ??? Do we need to handle nonzero offsets somehow? */
6238 if (known_eq (offset, 0) && !rtx_equal_p (tem, orig))
6239 push_reg_equiv_alt_mem (regno, tem);
6240
6241 /* For some processors an address may be valid in the original mode but
6242 not in a smaller mode. For example, ARM accepts a scaled index register
6243 in SImode but not in HImode. Note that this is only a problem if the
6244 address in reg_equiv_mem is already invalid in the new mode; other
6245 cases would be fixed by find_reloads_address as usual.
6246
6247 ??? We attempt to handle such cases here by doing an additional reload
6248 of the full address after the usual processing by find_reloads_address.
6249 Note that this may not work in the general case, but it seems to cover
6250 the cases where this situation currently occurs. A more general fix
6251 might be to reload the *value* instead of the address, but this would
6252 not be expected by the callers of this routine as-is.
6253
6254 If find_reloads_address already completed replaced the address, there
6255 is nothing further to do. */
6256 if (reloaded == 0
6257 && reg_equiv_mem (regno) != 0
6258 && !strict_memory_address_addr_space_p
6259 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6260 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6261 {
6262 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6263 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6264 MEM, SCRATCH),
6265 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6266 reloaded = 1;
6267 }
6268
6269 /* If this is not a toplevel operand, find_reloads doesn't see this
6270 substitution. We have to emit a USE of the pseudo so that
6271 delete_output_reload can see it. */
6272 if (replace_reloads && recog_data.operand[opnum] != x)
6273 /* We mark the USE with QImode so that we recognize it as one that
6274 can be safely deleted at the end of reload. */
6275 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6276 QImode);
6277
6278 if (address_reloaded)
6279 *address_reloaded = reloaded;
6280
6281 return tem;
6282 }
6283
6284 /* Substitute into the current INSN the registers into which we have reloaded
6285 the things that need reloading. The array `replacements'
6286 contains the locations of all pointers that must be changed
6287 and says what to replace them with.
6288
6289 Return the rtx that X translates into; usually X, but modified. */
6290
6291 void
subst_reloads(rtx_insn * insn)6292 subst_reloads (rtx_insn *insn)
6293 {
6294 int i;
6295
6296 for (i = 0; i < n_replacements; i++)
6297 {
6298 struct replacement *r = &replacements[i];
6299 rtx reloadreg = rld[r->what].reg_rtx;
6300 if (reloadreg)
6301 {
6302 #ifdef DEBUG_RELOAD
6303 /* This checking takes a very long time on some platforms
6304 causing the gcc.c-torture/compile/limits-fnargs.c test
6305 to time out during testing. See PR 31850.
6306
6307 Internal consistency test. Check that we don't modify
6308 anything in the equivalence arrays. Whenever something from
6309 those arrays needs to be reloaded, it must be unshared before
6310 being substituted into; the equivalence must not be modified.
6311 Otherwise, if the equivalence is used after that, it will
6312 have been modified, and the thing substituted (probably a
6313 register) is likely overwritten and not a usable equivalence. */
6314 int check_regno;
6315
6316 for (check_regno = 0; check_regno < max_regno; check_regno++)
6317 {
6318 #define CHECK_MODF(ARRAY) \
6319 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6320 || !loc_mentioned_in_p (r->where, \
6321 (*reg_equivs)[check_regno].ARRAY))
6322
6323 CHECK_MODF (constant);
6324 CHECK_MODF (memory_loc);
6325 CHECK_MODF (address);
6326 CHECK_MODF (mem);
6327 #undef CHECK_MODF
6328 }
6329 #endif /* DEBUG_RELOAD */
6330
6331 /* If we're replacing a LABEL_REF with a register, there must
6332 already be an indication (to e.g. flow) which label this
6333 register refers to. */
6334 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6335 || !JUMP_P (insn)
6336 || find_reg_note (insn,
6337 REG_LABEL_OPERAND,
6338 XEXP (*r->where, 0))
6339 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6340
6341 /* Encapsulate RELOADREG so its machine mode matches what
6342 used to be there. Note that gen_lowpart_common will
6343 do the wrong thing if RELOADREG is multi-word. RELOADREG
6344 will always be a REG here. */
6345 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6346 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6347
6348 *r->where = reloadreg;
6349 }
6350 /* If reload got no reg and isn't optional, something's wrong. */
6351 else
6352 gcc_assert (rld[r->what].optional);
6353 }
6354 }
6355
6356 /* Make a copy of any replacements being done into X and move those
6357 copies to locations in Y, a copy of X. */
6358
6359 void
copy_replacements(rtx x,rtx y)6360 copy_replacements (rtx x, rtx y)
6361 {
6362 copy_replacements_1 (&x, &y, n_replacements);
6363 }
6364
6365 static void
copy_replacements_1(rtx * px,rtx * py,int orig_replacements)6366 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6367 {
6368 int i, j;
6369 rtx x, y;
6370 struct replacement *r;
6371 enum rtx_code code;
6372 const char *fmt;
6373
6374 for (j = 0; j < orig_replacements; j++)
6375 if (replacements[j].where == px)
6376 {
6377 r = &replacements[n_replacements++];
6378 r->where = py;
6379 r->what = replacements[j].what;
6380 r->mode = replacements[j].mode;
6381 }
6382
6383 x = *px;
6384 y = *py;
6385 code = GET_CODE (x);
6386 fmt = GET_RTX_FORMAT (code);
6387
6388 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6389 {
6390 if (fmt[i] == 'e')
6391 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6392 else if (fmt[i] == 'E')
6393 for (j = XVECLEN (x, i); --j >= 0; )
6394 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6395 orig_replacements);
6396 }
6397 }
6398
6399 /* Change any replacements being done to *X to be done to *Y. */
6400
6401 void
move_replacements(rtx * x,rtx * y)6402 move_replacements (rtx *x, rtx *y)
6403 {
6404 int i;
6405
6406 for (i = 0; i < n_replacements; i++)
6407 if (replacements[i].where == x)
6408 replacements[i].where = y;
6409 }
6410
6411 /* If LOC was scheduled to be replaced by something, return the replacement.
6412 Otherwise, return *LOC. */
6413
6414 rtx
find_replacement(rtx * loc)6415 find_replacement (rtx *loc)
6416 {
6417 struct replacement *r;
6418
6419 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6420 {
6421 rtx reloadreg = rld[r->what].reg_rtx;
6422
6423 if (reloadreg && r->where == loc)
6424 {
6425 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6426 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6427
6428 return reloadreg;
6429 }
6430 else if (reloadreg && GET_CODE (*loc) == SUBREG
6431 && r->where == &SUBREG_REG (*loc))
6432 {
6433 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6434 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6435
6436 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6437 GET_MODE (SUBREG_REG (*loc)),
6438 SUBREG_BYTE (*loc));
6439 }
6440 }
6441
6442 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6443 what's inside and make a new rtl if so. */
6444 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6445 || GET_CODE (*loc) == MULT)
6446 {
6447 rtx x = find_replacement (&XEXP (*loc, 0));
6448 rtx y = find_replacement (&XEXP (*loc, 1));
6449
6450 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6451 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6452 }
6453
6454 return *loc;
6455 }
6456
6457 /* Return nonzero if register in range [REGNO, ENDREGNO)
6458 appears either explicitly or implicitly in X
6459 other than being stored into (except for earlyclobber operands).
6460
6461 References contained within the substructure at LOC do not count.
6462 LOC may be zero, meaning don't ignore anything.
6463
6464 This is similar to refers_to_regno_p in rtlanal.c except that we
6465 look at equivalences for pseudos that didn't get hard registers. */
6466
6467 static int
refers_to_regno_for_reload_p(unsigned int regno,unsigned int endregno,rtx x,rtx * loc)6468 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6469 rtx x, rtx *loc)
6470 {
6471 int i;
6472 unsigned int r;
6473 RTX_CODE code;
6474 const char *fmt;
6475
6476 if (x == 0)
6477 return 0;
6478
6479 repeat:
6480 code = GET_CODE (x);
6481
6482 switch (code)
6483 {
6484 case REG:
6485 r = REGNO (x);
6486
6487 /* If this is a pseudo, a hard register must not have been allocated.
6488 X must therefore either be a constant or be in memory. */
6489 if (r >= FIRST_PSEUDO_REGISTER)
6490 {
6491 if (reg_equiv_memory_loc (r))
6492 return refers_to_regno_for_reload_p (regno, endregno,
6493 reg_equiv_memory_loc (r),
6494 (rtx*) 0);
6495
6496 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6497 return 0;
6498 }
6499
6500 return endregno > r && regno < END_REGNO (x);
6501
6502 case SUBREG:
6503 /* If this is a SUBREG of a hard reg, we can see exactly which
6504 registers are being modified. Otherwise, handle normally. */
6505 if (REG_P (SUBREG_REG (x))
6506 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6507 {
6508 unsigned int inner_regno = subreg_regno (x);
6509 unsigned int inner_endregno
6510 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6511 ? subreg_nregs (x) : 1);
6512
6513 return endregno > inner_regno && regno < inner_endregno;
6514 }
6515 break;
6516
6517 case CLOBBER:
6518 case SET:
6519 if (&SET_DEST (x) != loc
6520 /* Note setting a SUBREG counts as referring to the REG it is in for
6521 a pseudo but not for hard registers since we can
6522 treat each word individually. */
6523 && ((GET_CODE (SET_DEST (x)) == SUBREG
6524 && loc != &SUBREG_REG (SET_DEST (x))
6525 && REG_P (SUBREG_REG (SET_DEST (x)))
6526 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6527 && refers_to_regno_for_reload_p (regno, endregno,
6528 SUBREG_REG (SET_DEST (x)),
6529 loc))
6530 /* If the output is an earlyclobber operand, this is
6531 a conflict. */
6532 || ((!REG_P (SET_DEST (x))
6533 || earlyclobber_operand_p (SET_DEST (x)))
6534 && refers_to_regno_for_reload_p (regno, endregno,
6535 SET_DEST (x), loc))))
6536 return 1;
6537
6538 if (code == CLOBBER || loc == &SET_SRC (x))
6539 return 0;
6540 x = SET_SRC (x);
6541 goto repeat;
6542
6543 default:
6544 break;
6545 }
6546
6547 /* X does not match, so try its subexpressions. */
6548
6549 fmt = GET_RTX_FORMAT (code);
6550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6551 {
6552 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6553 {
6554 if (i == 0)
6555 {
6556 x = XEXP (x, 0);
6557 goto repeat;
6558 }
6559 else
6560 if (refers_to_regno_for_reload_p (regno, endregno,
6561 XEXP (x, i), loc))
6562 return 1;
6563 }
6564 else if (fmt[i] == 'E')
6565 {
6566 int j;
6567 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6568 if (loc != &XVECEXP (x, i, j)
6569 && refers_to_regno_for_reload_p (regno, endregno,
6570 XVECEXP (x, i, j), loc))
6571 return 1;
6572 }
6573 }
6574 return 0;
6575 }
6576
6577 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6578 we check if any register number in X conflicts with the relevant register
6579 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6580 contains a MEM (we don't bother checking for memory addresses that can't
6581 conflict because we expect this to be a rare case.
6582
6583 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6584 that we look at equivalences for pseudos that didn't get hard registers. */
6585
6586 int
reg_overlap_mentioned_for_reload_p(rtx x,rtx in)6587 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6588 {
6589 int regno, endregno;
6590
6591 /* Overly conservative. */
6592 if (GET_CODE (x) == STRICT_LOW_PART
6593 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6594 x = XEXP (x, 0);
6595
6596 /* If either argument is a constant, then modifying X cannot affect IN. */
6597 if (CONSTANT_P (x) || CONSTANT_P (in))
6598 return 0;
6599 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6600 return refers_to_mem_for_reload_p (in);
6601 else if (GET_CODE (x) == SUBREG)
6602 {
6603 regno = REGNO (SUBREG_REG (x));
6604 if (regno < FIRST_PSEUDO_REGISTER)
6605 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6606 GET_MODE (SUBREG_REG (x)),
6607 SUBREG_BYTE (x),
6608 GET_MODE (x));
6609 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6610 ? subreg_nregs (x) : 1);
6611
6612 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6613 }
6614 else if (REG_P (x))
6615 {
6616 regno = REGNO (x);
6617
6618 /* If this is a pseudo, it must not have been assigned a hard register.
6619 Therefore, it must either be in memory or be a constant. */
6620
6621 if (regno >= FIRST_PSEUDO_REGISTER)
6622 {
6623 if (reg_equiv_memory_loc (regno))
6624 return refers_to_mem_for_reload_p (in);
6625 gcc_assert (reg_equiv_constant (regno));
6626 return 0;
6627 }
6628
6629 endregno = END_REGNO (x);
6630
6631 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6632 }
6633 else if (MEM_P (x))
6634 return refers_to_mem_for_reload_p (in);
6635 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6636 || GET_CODE (x) == CC0)
6637 return reg_mentioned_p (x, in);
6638 else
6639 {
6640 gcc_assert (GET_CODE (x) == PLUS);
6641
6642 /* We actually want to know if X is mentioned somewhere inside IN.
6643 We must not say that (plus (sp) (const_int 124)) is in
6644 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6645 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6646 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6647 while (MEM_P (in))
6648 in = XEXP (in, 0);
6649 if (REG_P (in))
6650 return 0;
6651 else if (GET_CODE (in) == PLUS)
6652 return (rtx_equal_p (x, in)
6653 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6654 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6655 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6656 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6657 }
6658
6659 gcc_unreachable ();
6660 }
6661
6662 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6663 registers. */
6664
6665 static int
refers_to_mem_for_reload_p(rtx x)6666 refers_to_mem_for_reload_p (rtx x)
6667 {
6668 const char *fmt;
6669 int i;
6670
6671 if (MEM_P (x))
6672 return 1;
6673
6674 if (REG_P (x))
6675 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6676 && reg_equiv_memory_loc (REGNO (x)));
6677
6678 fmt = GET_RTX_FORMAT (GET_CODE (x));
6679 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6680 if (fmt[i] == 'e'
6681 && (MEM_P (XEXP (x, i))
6682 || refers_to_mem_for_reload_p (XEXP (x, i))))
6683 return 1;
6684
6685 return 0;
6686 }
6687
6688 /* Check the insns before INSN to see if there is a suitable register
6689 containing the same value as GOAL.
6690 If OTHER is -1, look for a register in class RCLASS.
6691 Otherwise, just see if register number OTHER shares GOAL's value.
6692
6693 Return an rtx for the register found, or zero if none is found.
6694
6695 If RELOAD_REG_P is (short *)1,
6696 we reject any hard reg that appears in reload_reg_rtx
6697 because such a hard reg is also needed coming into this insn.
6698
6699 If RELOAD_REG_P is any other nonzero value,
6700 it is a vector indexed by hard reg number
6701 and we reject any hard reg whose element in the vector is nonnegative
6702 as well as any that appears in reload_reg_rtx.
6703
6704 If GOAL is zero, then GOALREG is a register number; we look
6705 for an equivalent for that register.
6706
6707 MODE is the machine mode of the value we want an equivalence for.
6708 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6709
6710 This function is used by jump.c as well as in the reload pass.
6711
6712 If GOAL is the sum of the stack pointer and a constant, we treat it
6713 as if it were a constant except that sp is required to be unchanging. */
6714
6715 rtx
find_equiv_reg(rtx goal,rtx_insn * insn,enum reg_class rclass,int other,short * reload_reg_p,int goalreg,machine_mode mode)6716 find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6717 short *reload_reg_p, int goalreg, machine_mode mode)
6718 {
6719 rtx_insn *p = insn;
6720 rtx goaltry, valtry, value;
6721 rtx_insn *where;
6722 rtx pat;
6723 int regno = -1;
6724 int valueno;
6725 int goal_mem = 0;
6726 int goal_const = 0;
6727 int goal_mem_addr_varies = 0;
6728 int need_stable_sp = 0;
6729 int nregs;
6730 int valuenregs;
6731 int num = 0;
6732
6733 if (goal == 0)
6734 regno = goalreg;
6735 else if (REG_P (goal))
6736 regno = REGNO (goal);
6737 else if (MEM_P (goal))
6738 {
6739 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6740 if (MEM_VOLATILE_P (goal))
6741 return 0;
6742 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6743 return 0;
6744 /* An address with side effects must be reexecuted. */
6745 switch (code)
6746 {
6747 case POST_INC:
6748 case PRE_INC:
6749 case POST_DEC:
6750 case PRE_DEC:
6751 case POST_MODIFY:
6752 case PRE_MODIFY:
6753 return 0;
6754 default:
6755 break;
6756 }
6757 goal_mem = 1;
6758 }
6759 else if (CONSTANT_P (goal))
6760 goal_const = 1;
6761 else if (GET_CODE (goal) == PLUS
6762 && XEXP (goal, 0) == stack_pointer_rtx
6763 && CONSTANT_P (XEXP (goal, 1)))
6764 goal_const = need_stable_sp = 1;
6765 else if (GET_CODE (goal) == PLUS
6766 && XEXP (goal, 0) == frame_pointer_rtx
6767 && CONSTANT_P (XEXP (goal, 1)))
6768 goal_const = 1;
6769 else
6770 return 0;
6771
6772 num = 0;
6773 /* Scan insns back from INSN, looking for one that copies
6774 a value into or out of GOAL.
6775 Stop and give up if we reach a label. */
6776
6777 while (1)
6778 {
6779 p = PREV_INSN (p);
6780 if (p && DEBUG_INSN_P (p))
6781 continue;
6782 num++;
6783 if (p == 0 || LABEL_P (p)
6784 || num > param_max_reload_search_insns)
6785 return 0;
6786
6787 /* Don't reuse register contents from before a setjmp-type
6788 function call; on the second return (from the longjmp) it
6789 might have been clobbered by a later reuse. It doesn't
6790 seem worthwhile to actually go and see if it is actually
6791 reused even if that information would be readily available;
6792 just don't reuse it across the setjmp call. */
6793 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6794 return 0;
6795
6796 if (NONJUMP_INSN_P (p)
6797 /* If we don't want spill regs ... */
6798 && (! (reload_reg_p != 0
6799 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6800 /* ... then ignore insns introduced by reload; they aren't
6801 useful and can cause results in reload_as_needed to be
6802 different from what they were when calculating the need for
6803 spills. If we notice an input-reload insn here, we will
6804 reject it below, but it might hide a usable equivalent.
6805 That makes bad code. It may even fail: perhaps no reg was
6806 spilled for this insn because it was assumed we would find
6807 that equivalent. */
6808 || INSN_UID (p) < reload_first_uid))
6809 {
6810 rtx tem;
6811 pat = single_set (p);
6812
6813 /* First check for something that sets some reg equal to GOAL. */
6814 if (pat != 0
6815 && ((regno >= 0
6816 && true_regnum (SET_SRC (pat)) == regno
6817 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6818 ||
6819 (regno >= 0
6820 && true_regnum (SET_DEST (pat)) == regno
6821 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6822 ||
6823 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6824 /* When looking for stack pointer + const,
6825 make sure we don't use a stack adjust. */
6826 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6827 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6828 || (goal_mem
6829 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6830 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6831 || (goal_mem
6832 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6833 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6834 /* If we are looking for a constant,
6835 and something equivalent to that constant was copied
6836 into a reg, we can use that reg. */
6837 || (goal_const && REG_NOTES (p) != 0
6838 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6839 && ((rtx_equal_p (XEXP (tem, 0), goal)
6840 && (valueno
6841 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6842 || (REG_P (SET_DEST (pat))
6843 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6844 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6845 && CONST_INT_P (goal)
6846 && (goaltry = operand_subword (XEXP (tem, 0), 0,
6847 0, VOIDmode)) != 0
6848 && rtx_equal_p (goal, goaltry)
6849 && (valtry
6850 = operand_subword (SET_DEST (pat), 0, 0,
6851 VOIDmode))
6852 && (valueno = true_regnum (valtry)) >= 0)))
6853 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6854 NULL_RTX))
6855 && REG_P (SET_DEST (pat))
6856 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6857 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6858 && CONST_INT_P (goal)
6859 && (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6860 VOIDmode)) != 0
6861 && rtx_equal_p (goal, goaltry)
6862 && (valtry
6863 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6864 && (valueno = true_regnum (valtry)) >= 0)))
6865 {
6866 if (other >= 0)
6867 {
6868 if (valueno != other)
6869 continue;
6870 }
6871 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6872 continue;
6873 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6874 mode, valueno))
6875 continue;
6876 value = valtry;
6877 where = p;
6878 break;
6879 }
6880 }
6881 }
6882
6883 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6884 (or copying VALUE into GOAL, if GOAL is also a register).
6885 Now verify that VALUE is really valid. */
6886
6887 /* VALUENO is the register number of VALUE; a hard register. */
6888
6889 /* Don't try to re-use something that is killed in this insn. We want
6890 to be able to trust REG_UNUSED notes. */
6891 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6892 return 0;
6893
6894 /* If we propose to get the value from the stack pointer or if GOAL is
6895 a MEM based on the stack pointer, we need a stable SP. */
6896 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6897 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6898 goal)))
6899 need_stable_sp = 1;
6900
6901 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6902 if (GET_MODE (value) != mode)
6903 return 0;
6904
6905 /* Reject VALUE if it was loaded from GOAL
6906 and is also a register that appears in the address of GOAL. */
6907
6908 if (goal_mem && value == SET_DEST (single_set (where))
6909 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6910 goal, (rtx*) 0))
6911 return 0;
6912
6913 /* Reject registers that overlap GOAL. */
6914
6915 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6916 nregs = hard_regno_nregs (regno, mode);
6917 else
6918 nregs = 1;
6919 valuenregs = hard_regno_nregs (valueno, mode);
6920
6921 if (!goal_mem && !goal_const
6922 && regno + nregs > valueno && regno < valueno + valuenregs)
6923 return 0;
6924
6925 /* Reject VALUE if it is one of the regs reserved for reloads.
6926 Reload1 knows how to reuse them anyway, and it would get
6927 confused if we allocated one without its knowledge.
6928 (Now that insns introduced by reload are ignored above,
6929 this case shouldn't happen, but I'm not positive.) */
6930
6931 if (reload_reg_p != 0 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6932 {
6933 int i;
6934 for (i = 0; i < valuenregs; ++i)
6935 if (reload_reg_p[valueno + i] >= 0)
6936 return 0;
6937 }
6938
6939 /* Reject VALUE if it is a register being used for an input reload
6940 even if it is not one of those reserved. */
6941
6942 if (reload_reg_p != 0)
6943 {
6944 int i;
6945 for (i = 0; i < n_reloads; i++)
6946 if (rld[i].reg_rtx != 0
6947 && rld[i].in
6948 && (int) REGNO (rld[i].reg_rtx) < valueno + valuenregs
6949 && (int) END_REGNO (rld[i].reg_rtx) > valueno)
6950 return 0;
6951 }
6952
6953 if (goal_mem)
6954 /* We must treat frame pointer as varying here,
6955 since it can vary--in a nonlocal goto as generated by expand_goto. */
6956 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6957
6958 /* Now verify that the values of GOAL and VALUE remain unaltered
6959 until INSN is reached. */
6960
6961 p = insn;
6962 while (1)
6963 {
6964 p = PREV_INSN (p);
6965 if (p == where)
6966 return value;
6967
6968 /* Don't trust the conversion past a function call
6969 if either of the two is in a call-clobbered register, or memory. */
6970 if (CALL_P (p))
6971 {
6972 if (goal_mem || need_stable_sp)
6973 return 0;
6974
6975 function_abi callee_abi = insn_callee_abi (p);
6976 if (regno >= 0
6977 && regno < FIRST_PSEUDO_REGISTER
6978 && callee_abi.clobbers_reg_p (mode, regno))
6979 return 0;
6980
6981 if (valueno >= 0
6982 && valueno < FIRST_PSEUDO_REGISTER
6983 && callee_abi.clobbers_reg_p (mode, valueno))
6984 return 0;
6985 }
6986
6987 if (INSN_P (p))
6988 {
6989 pat = PATTERN (p);
6990
6991 /* Watch out for unspec_volatile, and volatile asms. */
6992 if (volatile_insn_p (pat))
6993 return 0;
6994
6995 /* If this insn P stores in either GOAL or VALUE, return 0.
6996 If GOAL is a memory ref and this insn writes memory, return 0.
6997 If GOAL is a memory ref and its address is not constant,
6998 and this insn P changes a register used in GOAL, return 0. */
6999
7000 if (GET_CODE (pat) == COND_EXEC)
7001 pat = COND_EXEC_CODE (pat);
7002 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7003 {
7004 rtx dest = SET_DEST (pat);
7005 while (GET_CODE (dest) == SUBREG
7006 || GET_CODE (dest) == ZERO_EXTRACT
7007 || GET_CODE (dest) == STRICT_LOW_PART)
7008 dest = XEXP (dest, 0);
7009 if (REG_P (dest))
7010 {
7011 int xregno = REGNO (dest);
7012 int end_xregno = END_REGNO (dest);
7013 if (xregno < regno + nregs && end_xregno > regno)
7014 return 0;
7015 if (xregno < valueno + valuenregs
7016 && end_xregno > valueno)
7017 return 0;
7018 if (goal_mem_addr_varies
7019 && reg_overlap_mentioned_for_reload_p (dest, goal))
7020 return 0;
7021 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7022 return 0;
7023 }
7024 else if (goal_mem && MEM_P (dest)
7025 && ! push_operand (dest, GET_MODE (dest)))
7026 return 0;
7027 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7028 && reg_equiv_memory_loc (regno) != 0)
7029 return 0;
7030 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7031 return 0;
7032 }
7033 else if (GET_CODE (pat) == PARALLEL)
7034 {
7035 int i;
7036 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7037 {
7038 rtx v1 = XVECEXP (pat, 0, i);
7039 if (GET_CODE (v1) == COND_EXEC)
7040 v1 = COND_EXEC_CODE (v1);
7041 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7042 {
7043 rtx dest = SET_DEST (v1);
7044 while (GET_CODE (dest) == SUBREG
7045 || GET_CODE (dest) == ZERO_EXTRACT
7046 || GET_CODE (dest) == STRICT_LOW_PART)
7047 dest = XEXP (dest, 0);
7048 if (REG_P (dest))
7049 {
7050 int xregno = REGNO (dest);
7051 int end_xregno = END_REGNO (dest);
7052 if (xregno < regno + nregs
7053 && end_xregno > regno)
7054 return 0;
7055 if (xregno < valueno + valuenregs
7056 && end_xregno > valueno)
7057 return 0;
7058 if (goal_mem_addr_varies
7059 && reg_overlap_mentioned_for_reload_p (dest,
7060 goal))
7061 return 0;
7062 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7063 return 0;
7064 }
7065 else if (goal_mem && MEM_P (dest)
7066 && ! push_operand (dest, GET_MODE (dest)))
7067 return 0;
7068 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7069 && reg_equiv_memory_loc (regno) != 0)
7070 return 0;
7071 else if (need_stable_sp
7072 && push_operand (dest, GET_MODE (dest)))
7073 return 0;
7074 }
7075 }
7076 }
7077
7078 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7079 {
7080 rtx link;
7081
7082 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7083 link = XEXP (link, 1))
7084 {
7085 pat = XEXP (link, 0);
7086 if (GET_CODE (pat) == CLOBBER)
7087 {
7088 rtx dest = SET_DEST (pat);
7089
7090 if (REG_P (dest))
7091 {
7092 int xregno = REGNO (dest);
7093 int end_xregno = END_REGNO (dest);
7094
7095 if (xregno < regno + nregs
7096 && end_xregno > regno)
7097 return 0;
7098 else if (xregno < valueno + valuenregs
7099 && end_xregno > valueno)
7100 return 0;
7101 else if (goal_mem_addr_varies
7102 && reg_overlap_mentioned_for_reload_p (dest,
7103 goal))
7104 return 0;
7105 }
7106
7107 else if (goal_mem && MEM_P (dest)
7108 && ! push_operand (dest, GET_MODE (dest)))
7109 return 0;
7110 else if (need_stable_sp
7111 && push_operand (dest, GET_MODE (dest)))
7112 return 0;
7113 }
7114 }
7115 }
7116
7117 #if AUTO_INC_DEC
7118 /* If this insn auto-increments or auto-decrements
7119 either regno or valueno, return 0 now.
7120 If GOAL is a memory ref and its address is not constant,
7121 and this insn P increments a register used in GOAL, return 0. */
7122 {
7123 rtx link;
7124
7125 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7126 if (REG_NOTE_KIND (link) == REG_INC
7127 && REG_P (XEXP (link, 0)))
7128 {
7129 int incno = REGNO (XEXP (link, 0));
7130 if (incno < regno + nregs && incno >= regno)
7131 return 0;
7132 if (incno < valueno + valuenregs && incno >= valueno)
7133 return 0;
7134 if (goal_mem_addr_varies
7135 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7136 goal))
7137 return 0;
7138 }
7139 }
7140 #endif
7141 }
7142 }
7143 }
7144
7145 /* Find a place where INCED appears in an increment or decrement operator
7146 within X, and return the amount INCED is incremented or decremented by.
7147 The value is always positive. */
7148
7149 static poly_int64
find_inc_amount(rtx x,rtx inced)7150 find_inc_amount (rtx x, rtx inced)
7151 {
7152 enum rtx_code code = GET_CODE (x);
7153 const char *fmt;
7154 int i;
7155
7156 if (code == MEM)
7157 {
7158 rtx addr = XEXP (x, 0);
7159 if ((GET_CODE (addr) == PRE_DEC
7160 || GET_CODE (addr) == POST_DEC
7161 || GET_CODE (addr) == PRE_INC
7162 || GET_CODE (addr) == POST_INC)
7163 && XEXP (addr, 0) == inced)
7164 return GET_MODE_SIZE (GET_MODE (x));
7165 else if ((GET_CODE (addr) == PRE_MODIFY
7166 || GET_CODE (addr) == POST_MODIFY)
7167 && GET_CODE (XEXP (addr, 1)) == PLUS
7168 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7169 && XEXP (addr, 0) == inced
7170 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7171 {
7172 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7173 return i < 0 ? -i : i;
7174 }
7175 }
7176
7177 fmt = GET_RTX_FORMAT (code);
7178 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7179 {
7180 if (fmt[i] == 'e')
7181 {
7182 poly_int64 tem = find_inc_amount (XEXP (x, i), inced);
7183 if (maybe_ne (tem, 0))
7184 return tem;
7185 }
7186 if (fmt[i] == 'E')
7187 {
7188 int j;
7189 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7190 {
7191 poly_int64 tem = find_inc_amount (XVECEXP (x, i, j), inced);
7192 if (maybe_ne (tem, 0))
7193 return tem;
7194 }
7195 }
7196 }
7197
7198 return 0;
7199 }
7200
7201 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7202 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7203
7204 static int
reg_inc_found_and_valid_p(unsigned int regno,unsigned int endregno,rtx insn)7205 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7206 rtx insn)
7207 {
7208 rtx link;
7209
7210 if (!AUTO_INC_DEC)
7211 return 0;
7212
7213 gcc_assert (insn);
7214
7215 if (! INSN_P (insn))
7216 return 0;
7217
7218 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7219 if (REG_NOTE_KIND (link) == REG_INC)
7220 {
7221 unsigned int test = (int) REGNO (XEXP (link, 0));
7222 if (test >= regno && test < endregno)
7223 return 1;
7224 }
7225 return 0;
7226 }
7227
7228 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7229 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7230 REG_INC. REGNO must refer to a hard register. */
7231
7232 int
regno_clobbered_p(unsigned int regno,rtx_insn * insn,machine_mode mode,int sets)7233 regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7234 int sets)
7235 {
7236 /* regno must be a hard register. */
7237 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7238
7239 unsigned int endregno = end_hard_regno (mode, regno);
7240
7241 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7242 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7243 && REG_P (XEXP (PATTERN (insn), 0)))
7244 {
7245 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7246
7247 return test >= regno && test < endregno;
7248 }
7249
7250 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7251 return 1;
7252
7253 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7254 {
7255 int i = XVECLEN (PATTERN (insn), 0) - 1;
7256
7257 for (; i >= 0; i--)
7258 {
7259 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7260 if ((GET_CODE (elt) == CLOBBER
7261 || (sets == 1 && GET_CODE (elt) == SET))
7262 && REG_P (XEXP (elt, 0)))
7263 {
7264 unsigned int test = REGNO (XEXP (elt, 0));
7265
7266 if (test >= regno && test < endregno)
7267 return 1;
7268 }
7269 if (sets == 2
7270 && reg_inc_found_and_valid_p (regno, endregno, elt))
7271 return 1;
7272 }
7273 }
7274
7275 return 0;
7276 }
7277
7278 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7279 rtx
reload_adjust_reg_for_mode(rtx reloadreg,machine_mode mode)7280 reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7281 {
7282 int regno;
7283
7284 if (GET_MODE (reloadreg) == mode)
7285 return reloadreg;
7286
7287 regno = REGNO (reloadreg);
7288
7289 if (REG_WORDS_BIG_ENDIAN)
7290 regno += ((int) REG_NREGS (reloadreg)
7291 - (int) hard_regno_nregs (regno, mode));
7292
7293 return gen_rtx_REG (mode, regno);
7294 }
7295
7296 static const char *const reload_when_needed_name[] =
7297 {
7298 "RELOAD_FOR_INPUT",
7299 "RELOAD_FOR_OUTPUT",
7300 "RELOAD_FOR_INSN",
7301 "RELOAD_FOR_INPUT_ADDRESS",
7302 "RELOAD_FOR_INPADDR_ADDRESS",
7303 "RELOAD_FOR_OUTPUT_ADDRESS",
7304 "RELOAD_FOR_OUTADDR_ADDRESS",
7305 "RELOAD_FOR_OPERAND_ADDRESS",
7306 "RELOAD_FOR_OPADDR_ADDR",
7307 "RELOAD_OTHER",
7308 "RELOAD_FOR_OTHER_ADDRESS"
7309 };
7310
7311 /* These functions are used to print the variables set by 'find_reloads' */
7312
7313 DEBUG_FUNCTION void
debug_reload_to_stream(FILE * f)7314 debug_reload_to_stream (FILE *f)
7315 {
7316 int r;
7317 const char *prefix;
7318
7319 if (! f)
7320 f = stderr;
7321 for (r = 0; r < n_reloads; r++)
7322 {
7323 fprintf (f, "Reload %d: ", r);
7324
7325 if (rld[r].in != 0)
7326 {
7327 fprintf (f, "reload_in (%s) = ",
7328 GET_MODE_NAME (rld[r].inmode));
7329 print_inline_rtx (f, rld[r].in, 24);
7330 fprintf (f, "\n\t");
7331 }
7332
7333 if (rld[r].out != 0)
7334 {
7335 fprintf (f, "reload_out (%s) = ",
7336 GET_MODE_NAME (rld[r].outmode));
7337 print_inline_rtx (f, rld[r].out, 24);
7338 fprintf (f, "\n\t");
7339 }
7340
7341 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7342
7343 fprintf (f, "%s (opnum = %d)",
7344 reload_when_needed_name[(int) rld[r].when_needed],
7345 rld[r].opnum);
7346
7347 if (rld[r].optional)
7348 fprintf (f, ", optional");
7349
7350 if (rld[r].nongroup)
7351 fprintf (f, ", nongroup");
7352
7353 if (maybe_ne (rld[r].inc, 0))
7354 {
7355 fprintf (f, ", inc by ");
7356 print_dec (rld[r].inc, f, SIGNED);
7357 }
7358
7359 if (rld[r].nocombine)
7360 fprintf (f, ", can't combine");
7361
7362 if (rld[r].secondary_p)
7363 fprintf (f, ", secondary_reload_p");
7364
7365 if (rld[r].in_reg != 0)
7366 {
7367 fprintf (f, "\n\treload_in_reg: ");
7368 print_inline_rtx (f, rld[r].in_reg, 24);
7369 }
7370
7371 if (rld[r].out_reg != 0)
7372 {
7373 fprintf (f, "\n\treload_out_reg: ");
7374 print_inline_rtx (f, rld[r].out_reg, 24);
7375 }
7376
7377 if (rld[r].reg_rtx != 0)
7378 {
7379 fprintf (f, "\n\treload_reg_rtx: ");
7380 print_inline_rtx (f, rld[r].reg_rtx, 24);
7381 }
7382
7383 prefix = "\n\t";
7384 if (rld[r].secondary_in_reload != -1)
7385 {
7386 fprintf (f, "%ssecondary_in_reload = %d",
7387 prefix, rld[r].secondary_in_reload);
7388 prefix = ", ";
7389 }
7390
7391 if (rld[r].secondary_out_reload != -1)
7392 fprintf (f, "%ssecondary_out_reload = %d\n",
7393 prefix, rld[r].secondary_out_reload);
7394
7395 prefix = "\n\t";
7396 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7397 {
7398 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7399 insn_data[rld[r].secondary_in_icode].name);
7400 prefix = ", ";
7401 }
7402
7403 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7404 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7405 insn_data[rld[r].secondary_out_icode].name);
7406
7407 fprintf (f, "\n");
7408 }
7409 }
7410
7411 DEBUG_FUNCTION void
debug_reload(void)7412 debug_reload (void)
7413 {
7414 debug_reload_to_stream (stderr);
7415 }
7416