xref: /netbsd-src/external/gpl3/gcc/dist/gcc/reg-stack.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992-2022 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This pass converts stack-like registers from the "flat register
21    file" model that gcc uses, to a stack convention that the 387 uses.
22 
23    * The form of the input:
24 
25    On input, the function consists of insn that have had their
26    registers fully allocated to a set of "virtual" registers.  Note that
27    the word "virtual" is used differently here than elsewhere in gcc: for
28    each virtual stack reg, there is a hard reg, but the mapping between
29    them is not known until this pass is run.  On output, hard register
30    numbers have been substituted, and various pop and exchange insns have
31    been emitted.  The hard register numbers and the virtual register
32    numbers completely overlap - before this pass, all stack register
33    numbers are virtual, and afterward they are all hard.
34 
35    The virtual registers can be manipulated normally by gcc, and their
36    semantics are the same as for normal registers.  After the hard
37    register numbers are substituted, the semantics of an insn containing
38    stack-like regs are not the same as for an insn with normal regs: for
39    instance, it is not safe to delete an insn that appears to be a no-op
40    move.  In general, no insn containing hard regs should be changed
41    after this pass is done.
42 
43    * The form of the output:
44 
45    After this pass, hard register numbers represent the distance from
46    the current top of stack to the desired register.  A reference to
47    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48    represents the register just below that, and so forth.  Also, REG_DEAD
49    notes indicate whether or not a stack register should be popped.
50 
51    A "swap" insn looks like a parallel of two patterns, where each
52    pattern is a SET: one sets A to B, the other B to A.
53 
54    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
56    will replace the existing stack top, not push a new value.
57 
58    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59    SET_SRC is REG or MEM.
60 
61    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62    appears ambiguous.  As a special case, the presence of a REG_DEAD note
63    for FIRST_STACK_REG differentiates between a load insn and a pop.
64 
65    If a REG_DEAD is present, the insn represents a "pop" that discards
66    the top of the register stack.  If there is no REG_DEAD note, then the
67    insn represents a "dup" or a push of the current top of stack onto the
68    stack.
69 
70    * Methodology:
71 
72    Existing REG_DEAD and REG_UNUSED notes for stack registers are
73    deleted and recreated from scratch.  REG_DEAD is never created for a
74    SET_DEST, only REG_UNUSED.
75 
76    * asm_operands:
77 
78    There are several rules on the usage of stack-like regs in
79    asm_operands insns.  These rules apply only to the operands that are
80    stack-like regs:
81 
82    1. Given a set of input regs that die in an asm_operands, it is
83       necessary to know which are implicitly popped by the asm, and
84       which must be explicitly popped by gcc.
85 
86 	An input reg that is implicitly popped by the asm must be
87 	explicitly clobbered, unless it is constrained to match an
88 	output operand.
89 
90    2. For any input reg that is implicitly popped by an asm, it is
91       necessary to know how to adjust the stack to compensate for the pop.
92       If any non-popped input is closer to the top of the reg-stack than
93       the implicitly popped reg, it would not be possible to know what the
94       stack looked like - it's not clear how the rest of the stack "slides
95       up".
96 
97 	All implicitly popped input regs must be closer to the top of
98 	the reg-stack than any input that is not implicitly popped.
99 
100 	All explicitly referenced input operands may not "skip" a reg.
101 	Otherwise we can have holes in the stack.
102 
103    3. It is possible that if an input dies in an insn, reload might
104       use the input reg for an output reload.  Consider this example:
105 
106 		asm ("foo" : "=t" (a) : "f" (b));
107 
108       This asm says that input B is not popped by the asm, and that
109       the asm pushes a result onto the reg-stack, i.e., the stack is one
110       deeper after the asm than it was before.  But, it is possible that
111       reload will think that it can use the same reg for both the input and
112       the output, if input B dies in this insn.
113 
114 	If any input operand uses the "f" constraint, all output reg
115 	constraints must use the "&" earlyclobber.
116 
117       The asm above would be written as
118 
119 		asm ("foo" : "=&t" (a) : "f" (b));
120 
121    4. Some operands need to be in particular places on the stack.  All
122       output operands fall in this category - there is no other way to
123       know which regs the outputs appear in unless the user indicates
124       this in the constraints.
125 
126 	Output operands must specifically indicate which reg an output
127 	appears in after an asm.  "=f" is not allowed: the operand
128 	constraints must select a class with a single reg.
129 
130    5. Output operands may not be "inserted" between existing stack regs.
131       Since no 387 opcode uses a read/write operand, all output operands
132       are dead before the asm_operands, and are pushed by the asm_operands.
133       It makes no sense to push anywhere but the top of the reg-stack.
134 
135 	Output operands must start at the top of the reg-stack: output
136 	operands may not "skip" a reg.
137 
138    6. Some asm statements may need extra stack space for internal
139       calculations.  This can be guaranteed by clobbering stack registers
140       unrelated to the inputs and outputs.
141 
142    Here are a couple of reasonable asms to want to write.  This asm
143    takes one input, which is internally popped, and produces two outputs.
144 
145 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 
147    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148    and replaces them with one output.  The user must code the "st(1)"
149    clobber for reg-stack.cc to know that fyl2xp1 pops both inputs.
150 
151 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152 
153 */
154 
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "regs.h"
166 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
167 #include "recog.h"
168 #include "varasm.h"
169 #include "rtl-error.h"
170 #include "cfgrtl.h"
171 #include "cfganal.h"
172 #include "cfgbuild.h"
173 #include "cfgcleanup.h"
174 #include "reload.h"
175 #include "tree-pass.h"
176 #include "rtl-iter.h"
177 #include "function-abi.h"
178 
179 #ifdef STACK_REGS
180 
181 /* We use this array to cache info about insns, because otherwise we
182    spend too much time in stack_regs_mentioned_p.
183 
184    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
185    the insn uses stack registers, two indicates the insn does not use
186    stack registers.  */
187 static vec<char> stack_regs_mentioned_data;
188 
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
190 
191 int regstack_completed = 0;
192 
193 /* This is the basic stack record.  TOP is an index into REG[] such
194    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
195 
196    If TOP is -2, REG[] is not yet initialized.  Stack initialization
197    consists of placing each live reg in array `reg' and setting `top'
198    appropriately.
199 
200    REG_SET indicates which registers are live.  */
201 
202 typedef struct stack_def
203 {
204   int top;			/* index to top stack element */
205   HARD_REG_SET reg_set;		/* set of live registers */
206   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
207 } *stack_ptr;
208 
209 /* This is used to carry information about basic blocks.  It is
210    attached to the AUX field of the standard CFG block.  */
211 
212 typedef struct block_info_def
213 {
214   struct stack_def stack_in;	/* Input stack configuration.  */
215   struct stack_def stack_out;	/* Output stack configuration.  */
216   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
217   int done;			/* True if block already converted.  */
218   int predecessors;		/* Number of predecessors that need
219 				   to be visited.  */
220 } *block_info;
221 
222 #define BLOCK_INFO(B)	((block_info) (B)->aux)
223 
224 /* Passed to change_stack to indicate where to emit insns.  */
225 enum emit_where
226 {
227   EMIT_AFTER,
228   EMIT_BEFORE
229 };
230 
231 /* The block we're currently working on.  */
232 static basic_block current_block;
233 
234 /* In the current_block, whether we're processing the first register
235    stack or call instruction, i.e. the regstack is currently the
236    same as BLOCK_INFO(current_block)->stack_in.  */
237 static bool starting_stack_p;
238 
239 /* This is the register file for all register after conversion.  */
240 static rtx
241   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
242 
243 #define FP_MODE_REG(regno,mode)	\
244   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
245 
246 /* Used to initialize uninitialized registers.  */
247 static rtx not_a_num;
248 
249 /* Forward declarations */
250 
251 static int stack_regs_mentioned_p (const_rtx pat);
252 static void pop_stack (stack_ptr, int);
253 static rtx *get_true_reg (rtx *);
254 
255 static int check_asm_stack_operands (rtx_insn *);
256 static void get_asm_operands_in_out (rtx, int *, int *);
257 static rtx stack_result (tree);
258 static void replace_reg (rtx *, int);
259 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
260 static int get_hard_regnum (stack_ptr, rtx);
261 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
262 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
263 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
264 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
265 static int swap_rtx_condition_1 (rtx);
266 static int swap_rtx_condition (rtx_insn *, int &);
267 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx, bool);
268 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
269 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
270 static bool subst_stack_regs (rtx_insn *, stack_ptr);
271 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
272 static void print_stack (FILE *, stack_ptr);
273 static rtx_insn *next_flags_user (rtx_insn *, int &);
274 
275 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
276 
277 static int
stack_regs_mentioned_p(const_rtx pat)278 stack_regs_mentioned_p (const_rtx pat)
279 {
280   const char *fmt;
281   int i;
282 
283   if (STACK_REG_P (pat))
284     return 1;
285 
286   fmt = GET_RTX_FORMAT (GET_CODE (pat));
287   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288     {
289       if (fmt[i] == 'E')
290 	{
291 	  int j;
292 
293 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
294 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
295 	      return 1;
296 	}
297       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
298 	return 1;
299     }
300 
301   return 0;
302 }
303 
304 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
305 
306 int
stack_regs_mentioned(const_rtx insn)307 stack_regs_mentioned (const_rtx insn)
308 {
309   unsigned int uid, max;
310   int test;
311 
312   if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
313     return 0;
314 
315   uid = INSN_UID (insn);
316   max = stack_regs_mentioned_data.length ();
317   if (uid >= max)
318     {
319       /* Allocate some extra size to avoid too many reallocs, but
320 	 do not grow too quickly.  */
321       max = uid + uid / 20 + 1;
322       stack_regs_mentioned_data.safe_grow_cleared (max, true);
323     }
324 
325   test = stack_regs_mentioned_data[uid];
326   if (test == 0)
327     {
328       /* This insn has yet to be examined.  Do so now.  */
329       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330       stack_regs_mentioned_data[uid] = test;
331     }
332 
333   return test == 1;
334 }
335 
336 static rtx ix86_flags_rtx;
337 
338 static rtx_insn *
next_flags_user(rtx_insn * insn,int & debug_seen)339 next_flags_user (rtx_insn *insn, int &debug_seen)
340 {
341   /* Search forward looking for the first use of this value.
342      Stop at block boundaries.  */
343 
344   while (insn != BB_END (current_block))
345     {
346       insn = NEXT_INSN (insn);
347 
348       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
349 	{
350 	  if (DEBUG_INSN_P (insn) && debug_seen >= 0)
351 	    {
352 	      debug_seen = 1;
353 	      continue;
354 	    }
355 	  return insn;
356 	}
357 
358       if (CALL_P (insn))
359 	return NULL;
360     }
361   return NULL;
362 }
363 
364 /* Reorganize the stack into ascending numbers, before this insn.  */
365 
366 static void
straighten_stack(rtx_insn * insn,stack_ptr regstack)367 straighten_stack (rtx_insn *insn, stack_ptr regstack)
368 {
369   struct stack_def temp_stack;
370   int top;
371 
372   /* If there is only a single register on the stack, then the stack is
373      already in increasing order and no reorganization is needed.
374 
375      Similarly if the stack is empty.  */
376   if (regstack->top <= 0)
377     return;
378 
379   temp_stack.reg_set = regstack->reg_set;
380 
381   for (top = temp_stack.top = regstack->top; top >= 0; top--)
382     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
383 
384   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
385 }
386 
387 /* Pop a register from the stack.  */
388 
389 static void
pop_stack(stack_ptr regstack,int regno)390 pop_stack (stack_ptr regstack, int regno)
391 {
392   int top = regstack->top;
393 
394   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
395   regstack->top--;
396   /* If regno was not at the top of stack then adjust stack.  */
397   if (regstack->reg [top] != regno)
398     {
399       int i;
400       for (i = regstack->top; i >= 0; i--)
401 	if (regstack->reg [i] == regno)
402 	  {
403 	    int j;
404 	    for (j = i; j < top; j++)
405 	      regstack->reg [j] = regstack->reg [j + 1];
406 	    break;
407 	  }
408     }
409 }
410 
411 /* Return a pointer to the REG expression within PAT.  If PAT is not a
412    REG, possible enclosed by a conversion rtx, return the inner part of
413    PAT that stopped the search.  */
414 
415 static rtx *
get_true_reg(rtx * pat)416 get_true_reg (rtx *pat)
417 {
418   for (;;)
419     switch (GET_CODE (*pat))
420       {
421       case SUBREG:
422 	/* Eliminate FP subregister accesses in favor of the
423 	   actual FP register in use.  */
424 	{
425 	  rtx subreg = SUBREG_REG (*pat);
426 
427 	  if (STACK_REG_P (subreg))
428 	    {
429 	      int regno_off = subreg_regno_offset (REGNO (subreg),
430 						   GET_MODE (subreg),
431 						   SUBREG_BYTE (*pat),
432 						   GET_MODE (*pat));
433 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
434 				  GET_MODE (subreg));
435 	      return pat;
436 	    }
437 	  pat = &XEXP (*pat, 0);
438 	  break;
439 	}
440 
441       case FLOAT_TRUNCATE:
442 	if (!flag_unsafe_math_optimizations)
443 	  return pat;
444 	/* FALLTHRU */
445 
446       case FLOAT:
447       case FIX:
448       case FLOAT_EXTEND:
449 	pat = &XEXP (*pat, 0);
450 	break;
451 
452       case UNSPEC:
453 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
454 	    || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
455 	  pat = &XVECEXP (*pat, 0, 0);
456 	return pat;
457 
458       default:
459 	return pat;
460       }
461 }
462 
463 /* Set if we find any malformed asms in a function.  */
464 static bool any_malformed_asm;
465 
466 /* There are many rules that an asm statement for stack-like regs must
467    follow.  Those rules are explained at the top of this file: the rule
468    numbers below refer to that explanation.  */
469 
470 static int
check_asm_stack_operands(rtx_insn * insn)471 check_asm_stack_operands (rtx_insn *insn)
472 {
473   int i;
474   int n_clobbers;
475   int malformed_asm = 0;
476   rtx body = PATTERN (insn);
477 
478   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
479   char implicitly_dies[FIRST_PSEUDO_REGISTER];
480   char explicitly_used[FIRST_PSEUDO_REGISTER];
481 
482   rtx *clobber_reg = 0;
483   int n_inputs, n_outputs;
484 
485   /* Find out what the constraints require.  If no constraint
486      alternative matches, this asm is malformed.  */
487   extract_constrain_insn (insn);
488 
489   preprocess_constraints (insn);
490 
491   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
492 
493   if (which_alternative < 0)
494     {
495       /* Avoid further trouble with this insn.  */
496       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
497       return 0;
498     }
499   const operand_alternative *op_alt = which_op_alt ();
500 
501   /* Strip SUBREGs here to make the following code simpler.  */
502   for (i = 0; i < recog_data.n_operands; i++)
503     if (GET_CODE (recog_data.operand[i]) == SUBREG
504 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
505       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
506 
507   /* Set up CLOBBER_REG.  */
508 
509   n_clobbers = 0;
510 
511   if (GET_CODE (body) == PARALLEL)
512     {
513       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
514 
515       for (i = 0; i < XVECLEN (body, 0); i++)
516 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
517 	  {
518 	    rtx clobber = XVECEXP (body, 0, i);
519 	    rtx reg = XEXP (clobber, 0);
520 
521 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
522 	      reg = SUBREG_REG (reg);
523 
524 	    if (STACK_REG_P (reg))
525 	      {
526 		clobber_reg[n_clobbers] = reg;
527 		n_clobbers++;
528 	      }
529 	  }
530     }
531 
532   /* Enforce rule #4: Output operands must specifically indicate which
533      reg an output appears in after an asm.  "=f" is not allowed: the
534      operand constraints must select a class with a single reg.
535 
536      Also enforce rule #5: Output operands must start at the top of
537      the reg-stack: output operands may not "skip" a reg.  */
538 
539   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
540   for (i = 0; i < n_outputs; i++)
541     if (STACK_REG_P (recog_data.operand[i]))
542       {
543 	if (reg_class_size[(int) op_alt[i].cl] != 1)
544 	  {
545 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
546 	    malformed_asm = 1;
547 	  }
548 	else
549 	  {
550 	    int j;
551 
552 	    for (j = 0; j < n_clobbers; j++)
553 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
554 		{
555 		  error_for_asm (insn, "output constraint %d cannot be "
556 				 "specified together with %qs clobber",
557 				 i, reg_names [REGNO (clobber_reg[j])]);
558 		  malformed_asm = 1;
559 		  break;
560 		}
561 	    if (j == n_clobbers)
562 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
563 	  }
564       }
565 
566 
567   /* Search for first non-popped reg.  */
568   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
569     if (! reg_used_as_output[i])
570       break;
571 
572   /* If there are any other popped regs, that's an error.  */
573   for (; i < LAST_STACK_REG + 1; i++)
574     if (reg_used_as_output[i])
575       break;
576 
577   if (i != LAST_STACK_REG + 1)
578     {
579       error_for_asm (insn, "output registers must be grouped at top of stack");
580       malformed_asm = 1;
581     }
582 
583   /* Enforce rule #2: All implicitly popped input regs must be closer
584      to the top of the reg-stack than any input that is not implicitly
585      popped.  */
586 
587   memset (implicitly_dies, 0, sizeof (implicitly_dies));
588   memset (explicitly_used, 0, sizeof (explicitly_used));
589   for (i = n_outputs; i < n_outputs + n_inputs; i++)
590     if (STACK_REG_P (recog_data.operand[i]))
591       {
592 	/* An input reg is implicitly popped if it is tied to an
593 	   output, or if there is a CLOBBER for it.  */
594 	int j;
595 
596 	for (j = 0; j < n_clobbers; j++)
597 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
598 	    break;
599 
600 	if (j < n_clobbers || op_alt[i].matches >= 0)
601 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
602 	else if (reg_class_size[(int) op_alt[i].cl] == 1)
603 	  explicitly_used[REGNO (recog_data.operand[i])] = 1;
604       }
605 
606   /* Search for first non-popped reg.  */
607   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
608     if (! implicitly_dies[i])
609       break;
610 
611   /* If there are any other popped regs, that's an error.  */
612   for (; i < LAST_STACK_REG + 1; i++)
613     if (implicitly_dies[i])
614       break;
615 
616   if (i != LAST_STACK_REG + 1)
617     {
618       error_for_asm (insn,
619 		     "implicitly popped registers must be grouped "
620 		     "at top of stack");
621       malformed_asm = 1;
622     }
623 
624   /* Search for first not-explicitly used reg.  */
625   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
626     if (! implicitly_dies[i] && ! explicitly_used[i])
627       break;
628 
629   /* If there are any other explicitly used regs, that's an error.  */
630   for (; i < LAST_STACK_REG + 1; i++)
631     if (explicitly_used[i])
632       break;
633 
634   if (i != LAST_STACK_REG + 1)
635     {
636       error_for_asm (insn,
637 		     "explicitly used registers must be grouped "
638 		     "at top of stack");
639       malformed_asm = 1;
640     }
641 
642   /* Enforce rule #3: If any input operand uses the "f" constraint, all
643      output constraints must use the "&" earlyclobber.
644 
645      ??? Detect this more deterministically by having constrain_asm_operands
646      record any earlyclobber.  */
647 
648   for (i = n_outputs; i < n_outputs + n_inputs; i++)
649     if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
650       {
651 	int j;
652 
653 	for (j = 0; j < n_outputs; j++)
654 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
655 	    {
656 	      error_for_asm (insn,
657 			     "output operand %d must use %<&%> constraint", j);
658 	      malformed_asm = 1;
659 	    }
660       }
661 
662   if (malformed_asm)
663     {
664       /* Avoid further trouble with this insn.  */
665       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
666       any_malformed_asm = true;
667       return 0;
668     }
669 
670   return 1;
671 }
672 
673 /* Calculate the number of inputs and outputs in BODY, an
674    asm_operands.  N_OPERANDS is the total number of operands, and
675    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
676    placed.  */
677 
678 static void
get_asm_operands_in_out(rtx body,int * pout,int * pin)679 get_asm_operands_in_out (rtx body, int *pout, int *pin)
680 {
681   rtx asmop = extract_asm_operands (body);
682 
683   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
684   *pout = (recog_data.n_operands
685 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
686 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
687 }
688 
689 /* If current function returns its result in an fp stack register,
690    return the REG.  Otherwise, return 0.  */
691 
692 static rtx
stack_result(tree decl)693 stack_result (tree decl)
694 {
695   rtx result;
696 
697   /* If the value is supposed to be returned in memory, then clearly
698      it is not returned in a stack register.  */
699   if (aggregate_value_p (DECL_RESULT (decl), decl))
700     return 0;
701 
702   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
703   if (result != 0)
704     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
705 					   decl, true);
706 
707   return result != 0 && STACK_REG_P (result) ? result : 0;
708 }
709 
710 
711 /*
712  * This section deals with stack register substitution, and forms the second
713  * pass over the RTL.
714  */
715 
716 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
717    the desired hard REGNO.  */
718 
719 static void
replace_reg(rtx * reg,int regno)720 replace_reg (rtx *reg, int regno)
721 {
722   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
723   gcc_assert (STACK_REG_P (*reg));
724 
725   gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
726 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
727 
728   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
729 }
730 
731 /* Remove a note of type NOTE, which must be found, for register
732    number REGNO from INSN.  Remove only one such note.  */
733 
734 static void
remove_regno_note(rtx_insn * insn,enum reg_note note,unsigned int regno)735 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
736 {
737   rtx *note_link, this_rtx;
738 
739   note_link = &REG_NOTES (insn);
740   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
741     if (REG_NOTE_KIND (this_rtx) == note
742 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
743       {
744 	*note_link = XEXP (this_rtx, 1);
745 	return;
746       }
747     else
748       note_link = &XEXP (this_rtx, 1);
749 
750   gcc_unreachable ();
751 }
752 
753 /* Find the hard register number of virtual register REG in REGSTACK.
754    The hard register number is relative to the top of the stack.  -1 is
755    returned if the register is not found.  */
756 
757 static int
get_hard_regnum(stack_ptr regstack,rtx reg)758 get_hard_regnum (stack_ptr regstack, rtx reg)
759 {
760   int i;
761 
762   gcc_assert (STACK_REG_P (reg));
763 
764   for (i = regstack->top; i >= 0; i--)
765     if (regstack->reg[i] == REGNO (reg))
766       break;
767 
768   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
769 }
770 
771 /* Emit an insn to pop virtual register REG before or after INSN.
772    REGSTACK is the stack state after INSN and is updated to reflect this
773    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
774    is represented as a SET whose destination is the register to be popped
775    and source is the top of stack.  A death note for the top of stack
776    cases the movdf pattern to pop.  */
777 
778 static rtx_insn *
emit_pop_insn(rtx_insn * insn,stack_ptr regstack,rtx reg,enum emit_where where)779 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg,
780 	       enum emit_where where)
781 {
782   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
783   rtx_insn *pop_insn;
784   rtx pop_rtx;
785   int hard_regno;
786 
787   /* For complex types take care to pop both halves.  These may survive in
788      CLOBBER and USE expressions.  */
789   if (COMPLEX_MODE_P (GET_MODE (reg)))
790     {
791       rtx reg1 = FP_MODE_REG (REGNO (reg), raw_mode);
792       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, raw_mode);
793 
794       pop_insn = NULL;
795       if (get_hard_regnum (regstack, reg1) >= 0)
796 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
797       if (get_hard_regnum (regstack, reg2) >= 0)
798 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
799       gcc_assert (pop_insn);
800       return pop_insn;
801     }
802 
803   hard_regno = get_hard_regnum (regstack, reg);
804 
805   gcc_assert (hard_regno >= FIRST_STACK_REG);
806 
807   pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, raw_mode),
808 			 FP_MODE_REG (FIRST_STACK_REG, raw_mode));
809 
810   if (where == EMIT_AFTER)
811     pop_insn = emit_insn_after (pop_rtx, insn);
812   else
813     pop_insn = emit_insn_before (pop_rtx, insn);
814 
815   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, raw_mode));
816 
817   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
818     = regstack->reg[regstack->top];
819   regstack->top -= 1;
820   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
821 
822   return pop_insn;
823 }
824 
825 /* Emit an insn before or after INSN to swap virtual register REG with
826    the top of stack.  REGSTACK is the stack state before the swap, and
827    is updated to reflect the swap.  A swap insn is represented as a
828    PARALLEL of two patterns: each pattern moves one reg to the other.
829 
830    If REG is already at the top of the stack, no insn is emitted.  */
831 
832 static void
emit_swap_insn(rtx_insn * insn,stack_ptr regstack,rtx reg)833 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
834 {
835   int hard_regno;
836   int other_reg;		/* swap regno temps */
837   rtx_insn *i1;			/* the stack-reg insn prior to INSN */
838   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
839 
840   hard_regno = get_hard_regnum (regstack, reg);
841 
842   if (hard_regno == FIRST_STACK_REG)
843     return;
844   if (hard_regno == -1)
845     {
846       /* Something failed if the register wasn't on the stack.  If we had
847 	 malformed asms, we zapped the instruction itself, but that didn't
848 	 produce the same pattern of register sets as before.  To prevent
849 	 further failure, adjust REGSTACK to include REG at TOP.  */
850       gcc_assert (any_malformed_asm);
851       regstack->reg[++regstack->top] = REGNO (reg);
852       return;
853     }
854   gcc_assert (hard_regno >= FIRST_STACK_REG);
855 
856   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
857   std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
858 
859   /* Find the previous insn involving stack regs, but don't pass a
860      block boundary.  */
861   i1 = NULL;
862   if (current_block && insn != BB_HEAD (current_block))
863     {
864       rtx_insn *tmp = PREV_INSN (insn);
865       rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
866       while (tmp != limit)
867 	{
868 	  if (LABEL_P (tmp)
869 	      || CALL_P (tmp)
870 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
871 	      || (NONJUMP_INSN_P (tmp)
872 		  && stack_regs_mentioned (tmp)))
873 	    {
874 	      i1 = tmp;
875 	      break;
876 	    }
877 	  tmp = PREV_INSN (tmp);
878 	}
879     }
880 
881   if (i1 != NULL_RTX
882       && (i1set = single_set (i1)) != NULL_RTX)
883     {
884       rtx i1src = *get_true_reg (&SET_SRC (i1set));
885       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
886 
887       /* If the previous register stack push was from the reg we are to
888 	 swap with, omit the swap.  */
889 
890       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
891 	  && REG_P (i1src)
892 	  && REGNO (i1src) == (unsigned) hard_regno - 1
893 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
894 	return;
895 
896       /* If the previous insn wrote to the reg we are to swap with,
897 	 omit the swap.  */
898 
899       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
900 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
901 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
902 	return;
903 
904       /* Instead of
905 	   fld a
906 	   fld b
907 	   fxch %st(1)
908 	 just use
909 	   fld b
910 	   fld a
911 	 if possible.  Similarly for fld1, fldz, fldpi etc. instead of any
912 	 of the loads or for float extension from memory.  */
913 
914       i1src = SET_SRC (i1set);
915       if (GET_CODE (i1src) == FLOAT_EXTEND)
916 	i1src = XEXP (i1src, 0);
917       if (REG_P (i1dest)
918 	  && REGNO (i1dest) == FIRST_STACK_REG
919 	  && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
920 	  && !side_effects_p (i1src)
921 	  && hard_regno == FIRST_STACK_REG + 1
922 	  && i1 != BB_HEAD (current_block))
923 	{
924 	  /* i1 is the last insn that involves stack regs before insn, and
925 	     is known to be a load without other side-effects, i.e. fld b
926 	     in the above comment.  */
927 	  rtx_insn *i2 = NULL;
928 	  rtx i2set;
929 	  rtx_insn *tmp = PREV_INSN (i1);
930 	  rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
931 	  /* Find the previous insn involving stack regs, but don't pass a
932 	     block boundary.  */
933 	  while (tmp != limit)
934 	    {
935 	      if (LABEL_P (tmp)
936 		  || CALL_P (tmp)
937 		  || NOTE_INSN_BASIC_BLOCK_P (tmp)
938 		  || (NONJUMP_INSN_P (tmp)
939 		      && stack_regs_mentioned (tmp)))
940 		{
941 		  i2 = tmp;
942 		  break;
943 		}
944 	      tmp = PREV_INSN (tmp);
945 	    }
946 	  if (i2 != NULL_RTX
947 	      && (i2set = single_set (i2)) != NULL_RTX)
948 	    {
949 	      rtx i2dest = *get_true_reg (&SET_DEST (i2set));
950 	      rtx i2src = SET_SRC (i2set);
951 	      if (GET_CODE (i2src) == FLOAT_EXTEND)
952 		i2src = XEXP (i2src, 0);
953 	      /* If the last two insns before insn that involve
954 		 stack regs are loads, where the latter (i1)
955 		 pushes onto the register stack and thus
956 		 moves the value from the first load (i2) from
957 		 %st to %st(1), consider swapping them.  */
958 	      if (REG_P (i2dest)
959 		  && REGNO (i2dest) == FIRST_STACK_REG
960 		  && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
961 		  /* Ensure i2 doesn't have other side-effects.  */
962 		  && !side_effects_p (i2src)
963 		  /* And that the two instructions can actually be
964 		     swapped, i.e. there shouldn't be any stores
965 		     in between i2 and i1 that might alias with
966 		     the i1 memory, and the memory address can't
967 		     use registers set in between i2 and i1.  */
968 		  && !modified_between_p (SET_SRC (i1set), i2, i1))
969 		{
970 		  /* Move i1 (fld b above) right before i2 (fld a
971 		     above.  */
972 		  remove_insn (i1);
973 		  SET_PREV_INSN (i1) = NULL_RTX;
974 		  SET_NEXT_INSN (i1) = NULL_RTX;
975 		  set_block_for_insn (i1, NULL);
976 		  emit_insn_before (i1, i2);
977 		  return;
978 		}
979 	    }
980 	}
981     }
982 
983   /* Avoid emitting the swap if this is the first register stack insn
984      of the current_block.  Instead update the current_block's stack_in
985      and let compensate edges take care of this for us.  */
986   if (current_block && starting_stack_p)
987     {
988       BLOCK_INFO (current_block)->stack_in = *regstack;
989       starting_stack_p = false;
990       return;
991     }
992 
993   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
994   rtx op1 = FP_MODE_REG (hard_regno, raw_mode);
995   rtx op2 = FP_MODE_REG (FIRST_STACK_REG, raw_mode);
996   rtx swap_rtx
997     = gen_rtx_PARALLEL (VOIDmode,
998 			gen_rtvec (2, gen_rtx_SET (op1, op2),
999 				   gen_rtx_SET (op2, op1)));
1000   if (i1)
1001     emit_insn_after (swap_rtx, i1);
1002   else if (current_block)
1003     emit_insn_before (swap_rtx, BB_HEAD (current_block));
1004   else
1005     emit_insn_before (swap_rtx, insn);
1006 }
1007 
1008 /* Emit an insns before INSN to swap virtual register SRC1 with
1009    the top of stack and virtual register SRC2 with second stack
1010    slot. REGSTACK is the stack state before the swaps, and
1011    is updated to reflect the swaps.  A swap insn is represented as a
1012    PARALLEL of two patterns: each pattern moves one reg to the other.
1013 
1014    If SRC1 and/or SRC2 are already at the right place, no swap insn
1015    is emitted.  */
1016 
1017 static void
swap_to_top(rtx_insn * insn,stack_ptr regstack,rtx src1,rtx src2)1018 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1019 {
1020   struct stack_def temp_stack;
1021   int regno, j, k;
1022 
1023   temp_stack = *regstack;
1024 
1025   /* Place operand 1 at the top of stack.  */
1026   regno = get_hard_regnum (&temp_stack, src1);
1027   gcc_assert (regno >= 0);
1028   if (regno != FIRST_STACK_REG)
1029     {
1030       k = temp_stack.top - (regno - FIRST_STACK_REG);
1031       j = temp_stack.top;
1032 
1033       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1034     }
1035 
1036   /* Place operand 2 next on the stack.  */
1037   regno = get_hard_regnum (&temp_stack, src2);
1038   gcc_assert (regno >= 0);
1039   if (regno != FIRST_STACK_REG + 1)
1040     {
1041       k = temp_stack.top - (regno - FIRST_STACK_REG);
1042       j = temp_stack.top - 1;
1043 
1044       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1045     }
1046 
1047   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1048 }
1049 
1050 /* Handle a move to or from a stack register in PAT, which is in INSN.
1051    REGSTACK is the current stack.  Return whether a control flow insn
1052    was deleted in the process.  */
1053 
1054 static bool
move_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx pat)1055 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1056 {
1057   rtx *psrc =  get_true_reg (&SET_SRC (pat));
1058   rtx *pdest = get_true_reg (&SET_DEST (pat));
1059   rtx src, dest;
1060   rtx note;
1061   bool control_flow_insn_deleted = false;
1062 
1063   src = *psrc; dest = *pdest;
1064 
1065   if (STACK_REG_P (src) && STACK_REG_P (dest))
1066     {
1067       /* Write from one stack reg to another.  If SRC dies here, then
1068 	 just change the register mapping and delete the insn.  */
1069 
1070       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1071       if (note)
1072 	{
1073 	  int i;
1074 
1075 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
1076 	  gcc_assert (REGNO (src) != REGNO (dest));
1077 
1078 	  for (i = regstack->top; i >= 0; i--)
1079 	    if (regstack->reg[i] == REGNO (src))
1080 	      break;
1081 
1082 	  /* The destination must be dead, or life analysis is borked.  */
1083 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1084 
1085 	  /* If the source is not live, this is yet another case of
1086 	     uninitialized variables.  Load up a NaN instead.  */
1087 	  if (i < 0)
1088 	    return move_nan_for_stack_reg (insn, regstack, dest);
1089 
1090 	  /* It is possible that the dest is unused after this insn.
1091 	     If so, just pop the src.  */
1092 
1093 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1094 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1095 	  else
1096 	    {
1097 	      regstack->reg[i] = REGNO (dest);
1098 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1099 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1100 	    }
1101 
1102 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1103 	  delete_insn (insn);
1104 	  return control_flow_insn_deleted;
1105 	}
1106 
1107       /* The source reg does not die.  */
1108 
1109       /* If this appears to be a no-op move, delete it, or else it
1110 	 will confuse the machine description output patterns. But if
1111 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1112 	 for REG_UNUSED will not work for deleted insns.  */
1113 
1114       if (REGNO (src) == REGNO (dest))
1115 	{
1116 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1117 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1118 
1119 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1120 	  delete_insn (insn);
1121 	  return control_flow_insn_deleted;
1122 	}
1123 
1124       /* The destination ought to be dead.  */
1125       if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1126 	gcc_assert (any_malformed_asm);
1127       else
1128 	{
1129 	  replace_reg (psrc, get_hard_regnum (regstack, src));
1130 
1131 	  regstack->reg[++regstack->top] = REGNO (dest);
1132 	  SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1133 	  replace_reg (pdest, FIRST_STACK_REG);
1134 	}
1135     }
1136   else if (STACK_REG_P (src))
1137     {
1138       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1139 	 only top of stack may be saved, emit an exchange first if
1140 	 needs be.  */
1141 
1142       emit_swap_insn (insn, regstack, src);
1143 
1144       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1145       if (note)
1146 	{
1147 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1148 	  regstack->top--;
1149 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1150 	}
1151       else if ((GET_MODE (src) == XFmode)
1152 	       && regstack->top < REG_STACK_SIZE - 1)
1153 	{
1154 	  /* A 387 cannot write an XFmode value to a MEM without
1155 	     clobbering the source reg.  The output code can handle
1156 	     this by reading back the value from the MEM.
1157 	     But it is more efficient to use a temp register if one is
1158 	     available.  Push the source value here if the register
1159 	     stack is not full, and then write the value to memory via
1160 	     a pop.  */
1161 	  rtx push_rtx;
1162 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1163 
1164 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1165 	  emit_insn_before (push_rtx, insn);
1166 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1167 	}
1168 
1169       replace_reg (psrc, FIRST_STACK_REG);
1170     }
1171   else
1172     {
1173       rtx pat = PATTERN (insn);
1174 
1175       gcc_assert (STACK_REG_P (dest));
1176 
1177       /* Load from MEM, or possibly integer REG or constant, into the
1178 	 stack regs.  The actual target is always the top of the
1179 	 stack. The stack mapping is changed to reflect that DEST is
1180 	 now at top of stack.  */
1181 
1182       /* The destination ought to be dead.  However, there is a
1183 	 special case with i387 UNSPEC_TAN, where destination is live
1184 	 (an argument to fptan) but inherent load of 1.0 is modelled
1185 	 as a load from a constant.  */
1186       if (GET_CODE (pat) == PARALLEL
1187 	  && XVECLEN (pat, 0) == 2
1188 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1189 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1190 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1191 	emit_swap_insn (insn, regstack, dest);
1192       else
1193 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1194 		    || any_malformed_asm);
1195 
1196       gcc_assert (regstack->top < REG_STACK_SIZE);
1197 
1198       regstack->reg[++regstack->top] = REGNO (dest);
1199       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1200       replace_reg (pdest, FIRST_STACK_REG);
1201     }
1202 
1203   return control_flow_insn_deleted;
1204 }
1205 
1206 /* A helper function which replaces INSN with a pattern that loads up
1207    a NaN into DEST, then invokes move_for_stack_reg.  */
1208 
1209 static bool
move_nan_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx dest)1210 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1211 {
1212   rtx pat;
1213 
1214   dest = FP_MODE_REG (REGNO (dest), SFmode);
1215   pat = gen_rtx_SET (dest, not_a_num);
1216   PATTERN (insn) = pat;
1217   INSN_CODE (insn) = -1;
1218 
1219   return move_for_stack_reg (insn, regstack, pat);
1220 }
1221 
1222 /* Swap the condition on a branch, if there is one.  Return true if we
1223    found a condition to swap.  False if the condition was not used as
1224    such.  */
1225 
1226 static int
swap_rtx_condition_1(rtx pat)1227 swap_rtx_condition_1 (rtx pat)
1228 {
1229   const char *fmt;
1230   int i, r = 0;
1231 
1232   if (COMPARISON_P (pat))
1233     {
1234       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1235       r = 1;
1236     }
1237   else
1238     {
1239       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1240       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1241 	{
1242 	  if (fmt[i] == 'E')
1243 	    {
1244 	      int j;
1245 
1246 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1247 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1248 	    }
1249 	  else if (fmt[i] == 'e')
1250 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1251 	}
1252     }
1253 
1254   return r;
1255 }
1256 
1257 /* This function swaps condition in cc users and returns true
1258    if successful.  It is invoked in 2 different modes, one with
1259    DEBUG_SEEN set initially to 0.  In this mode, next_flags_user
1260    will skip DEBUG_INSNs that it would otherwise return and just
1261    sets DEBUG_SEEN to 1 in that case.  If DEBUG_SEEN is 0 at
1262    the end of toplevel swap_rtx_condition which returns true,
1263    it means no problematic DEBUG_INSNs were seen and all changes
1264    have been applied.  If it returns true but DEBUG_SEEN is 1,
1265    it means some problematic DEBUG_INSNs were seen and no changes
1266    have been applied so far.  In that case one needs to call
1267    swap_rtx_condition again with DEBUG_SEEN set to -1, in which
1268    case it doesn't skip DEBUG_INSNs, but instead adjusts the
1269    flags related condition in them or resets them as needed.  */
1270 
1271 static int
swap_rtx_condition(rtx_insn * insn,int & debug_seen)1272 swap_rtx_condition (rtx_insn *insn, int &debug_seen)
1273 {
1274   rtx pat = PATTERN (insn);
1275 
1276   /* We're looking for a single set to an HImode temporary.  */
1277 
1278   if (GET_CODE (pat) == SET
1279       && REG_P (SET_DEST (pat))
1280       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1281     {
1282       insn = next_flags_user (insn, debug_seen);
1283       if (insn == NULL_RTX)
1284 	return 0;
1285       pat = PATTERN (insn);
1286     }
1287 
1288   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1289      with the cc value right now.  We may be able to search for one
1290      though.  */
1291 
1292   if (GET_CODE (pat) == SET
1293       && GET_CODE (SET_SRC (pat)) == UNSPEC
1294       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1295     {
1296       rtx dest = SET_DEST (pat);
1297 
1298       /* Search forward looking for the first use of this value.
1299 	 Stop at block boundaries.  */
1300       while (insn != BB_END (current_block))
1301 	{
1302 	  insn = NEXT_INSN (insn);
1303 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1304 	    {
1305 	      if (DEBUG_INSN_P (insn))
1306 		{
1307 		  if (debug_seen >= 0)
1308 		    debug_seen = 1;
1309 		  else
1310 		    /* Reset the DEBUG insn otherwise.  */
1311 		    INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1312 		  continue;
1313 		}
1314 	      break;
1315 	    }
1316 	  if (CALL_P (insn))
1317 	    return 0;
1318 	}
1319 
1320       /* We haven't found it.  */
1321       if (insn == BB_END (current_block))
1322 	return 0;
1323 
1324       /* So we've found the insn using this value.  If it is anything
1325 	 other than sahf or the value does not die (meaning we'd have
1326 	 to search further), then we must give up.  */
1327       pat = PATTERN (insn);
1328       if (GET_CODE (pat) != SET
1329 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1330 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1331 	  || ! dead_or_set_p (insn, dest))
1332 	return 0;
1333 
1334       /* Now we are prepared to handle this.  */
1335       insn = next_flags_user (insn, debug_seen);
1336       if (insn == NULL_RTX)
1337 	return 0;
1338       pat = PATTERN (insn);
1339     }
1340 
1341   if (swap_rtx_condition_1 (pat))
1342     {
1343       int fail = 0;
1344       if (DEBUG_INSN_P (insn))
1345 	gcc_assert (debug_seen < 0);
1346       else
1347 	{
1348 	  INSN_CODE (insn) = -1;
1349 	  if (recog_memoized (insn) == -1)
1350 	    fail = 1;
1351 	}
1352       /* In case the flags don't die here, recurse to try fix
1353 	 following user too.  */
1354       if (!fail && !dead_or_set_p (insn, ix86_flags_rtx))
1355 	{
1356 	  insn = next_flags_user (insn, debug_seen);
1357 	  if (!insn || !swap_rtx_condition (insn, debug_seen))
1358 	    fail = 1;
1359 	}
1360       if (fail || debug_seen == 1)
1361 	swap_rtx_condition_1 (pat);
1362       return !fail;
1363     }
1364   return 0;
1365 }
1366 
1367 /* Handle a comparison.  Special care needs to be taken to avoid
1368    causing comparisons that a 387 cannot do correctly, such as EQ.
1369 
1370    Also, a pop insn may need to be emitted.  The 387 does have an
1371    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1372    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1373    set up.  */
1374 
1375 static void
compare_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx pat_src,bool can_pop_second_op)1376 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack,
1377 		       rtx pat_src, bool can_pop_second_op)
1378 {
1379   rtx *src1, *src2;
1380   rtx src1_note, src2_note;
1381   int debug_seen = 0;
1382 
1383   src1 = get_true_reg (&XEXP (pat_src, 0));
1384   src2 = get_true_reg (&XEXP (pat_src, 1));
1385 
1386   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1387      registers that die in this insn - move those to stack top first.  */
1388   if ((! STACK_REG_P (*src1)
1389        || (STACK_REG_P (*src2)
1390 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1391       && swap_rtx_condition (insn, debug_seen))
1392     {
1393       /* If swap_rtx_condition succeeded but some debug insns
1394 	 were seen along the way, it has actually reverted all the
1395 	 changes.  Rerun swap_rtx_condition in a mode where DEBUG_ISNSs
1396 	 will be adjusted as well.  */
1397       if (debug_seen)
1398 	{
1399 	  debug_seen = -1;
1400 	  swap_rtx_condition (insn, debug_seen);
1401 	}
1402       std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1403 
1404       src1 = get_true_reg (&XEXP (pat_src, 0));
1405       src2 = get_true_reg (&XEXP (pat_src, 1));
1406 
1407       INSN_CODE (insn) = -1;
1408     }
1409 
1410   /* We will fix any death note later.  */
1411 
1412   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1413 
1414   if (STACK_REG_P (*src2))
1415     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1416   else
1417     src2_note = NULL_RTX;
1418 
1419   emit_swap_insn (insn, regstack, *src1);
1420 
1421   replace_reg (src1, FIRST_STACK_REG);
1422 
1423   if (STACK_REG_P (*src2))
1424     replace_reg (src2, get_hard_regnum (regstack, *src2));
1425 
1426   if (src1_note)
1427     {
1428       if (*src2 == CONST0_RTX (GET_MODE (*src2)))
1429 	{
1430 	  /* This is `ftst' insn that can't pop register.  */
1431 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src1_note, 0)));
1432 	  emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1433 			 EMIT_AFTER);
1434 	}
1435       else
1436 	{
1437 	  pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1438 	  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1439 	}
1440     }
1441 
1442   /* If the second operand dies, handle that.  But if the operands are
1443      the same stack register, don't bother, because only one death is
1444      needed, and it was just handled.  */
1445 
1446   if (src2_note
1447       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1448 	    && REGNO (*src1) == REGNO (*src2)))
1449     {
1450       /* As a special case, two regs may die in this insn if src2 is
1451 	 next to top of stack and the top of stack also dies.  Since
1452 	 we have already popped src1, "next to top of stack" is really
1453 	 at top (FIRST_STACK_REG) now.  */
1454 
1455       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1456 	  && src1_note && can_pop_second_op)
1457 	{
1458 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1459 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1460 	}
1461       else
1462 	{
1463 	  /* The 386 can only represent death of the first operand in
1464 	     the case handled above.  In all other cases, emit a separate
1465 	     pop and remove the death note from here.  */
1466 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1467 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1468 			 EMIT_AFTER);
1469 	}
1470     }
1471 }
1472 
1473 /* Substitute hardware stack regs in debug insn INSN, using stack
1474    layout REGSTACK.  If we can't find a hardware stack reg for any of
1475    the REGs in it, reset the debug insn.  */
1476 
1477 static void
subst_all_stack_regs_in_debug_insn(rtx_insn * insn,struct stack_def * regstack)1478 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1479 {
1480   subrtx_ptr_iterator::array_type array;
1481   FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1482     {
1483       rtx *loc = *iter;
1484       rtx x = *loc;
1485       if (STACK_REG_P (x))
1486 	{
1487 	  int hard_regno = get_hard_regnum (regstack, x);
1488 
1489 	  /* If we can't find an active register, reset this debug insn.  */
1490 	  if (hard_regno == -1)
1491 	    {
1492 	      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1493 	      return;
1494 	    }
1495 
1496 	  gcc_assert (hard_regno >= FIRST_STACK_REG);
1497 	  replace_reg (loc, hard_regno);
1498 	  iter.skip_subrtxes ();
1499 	}
1500     }
1501 }
1502 
1503 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1504    is the current register layout.  Return whether a control flow insn
1505    was deleted in the process.  */
1506 
1507 static bool
subst_stack_regs_pat(rtx_insn * insn,stack_ptr regstack,rtx pat)1508 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1509 {
1510   rtx *dest, *src;
1511   bool control_flow_insn_deleted = false;
1512 
1513   switch (GET_CODE (pat))
1514     {
1515     case USE:
1516       /* Deaths in USE insns can happen in non optimizing compilation.
1517 	 Handle them by popping the dying register.  */
1518       src = get_true_reg (&XEXP (pat, 0));
1519       if (STACK_REG_P (*src)
1520 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1521 	{
1522 	  /* USEs are ignored for liveness information so USEs of dead
1523 	     register might happen.  */
1524           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1525 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1526 	  return control_flow_insn_deleted;
1527 	}
1528       /* Uninitialized USE might happen for functions returning uninitialized
1529          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1530 	 so it is safe to ignore the use here. This is consistent with behavior
1531 	 of dataflow analyzer that ignores USE too.  (This also imply that
1532 	 forcibly initializing the register to NaN here would lead to ICE later,
1533 	 since the REG_DEAD notes are not issued.)  */
1534       break;
1535 
1536     case VAR_LOCATION:
1537       gcc_unreachable ();
1538 
1539     case CLOBBER:
1540       {
1541 	rtx note;
1542 
1543 	dest = get_true_reg (&XEXP (pat, 0));
1544 	if (STACK_REG_P (*dest))
1545 	  {
1546 	    note = find_reg_note (insn, REG_DEAD, *dest);
1547 
1548 	    if (pat != PATTERN (insn))
1549 	      {
1550 		/* The fix_truncdi_1 pattern wants to be able to
1551 		   allocate its own scratch register.  It does this by
1552 		   clobbering an fp reg so that it is assured of an
1553 		   empty reg-stack register.  If the register is live,
1554 		   kill it now.  Remove the DEAD/UNUSED note so we
1555 		   don't try to kill it later too.
1556 
1557 		   In reality the UNUSED note can be absent in some
1558 		   complicated cases when the register is reused for
1559 		   partially set variable.  */
1560 
1561 		if (note)
1562 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1563 		else
1564 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1565 		if (note)
1566 		  remove_note (insn, note);
1567 		replace_reg (dest, FIRST_STACK_REG + 1);
1568 	      }
1569 	    else
1570 	      {
1571 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1572 		   indicates an uninitialized value.  Because reload removed
1573 		   all other clobbers, this must be due to a function
1574 		   returning without a value.  Load up a NaN.  */
1575 
1576 		if (!note)
1577 		  {
1578 		    rtx t = *dest;
1579 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1580 		      {
1581 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1582 			if (get_hard_regnum (regstack, u) == -1)
1583 			  {
1584 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1585 			    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1586 			    control_flow_insn_deleted
1587 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1588 			  }
1589 		      }
1590 		    if (get_hard_regnum (regstack, t) == -1)
1591 		      control_flow_insn_deleted
1592 			|= move_nan_for_stack_reg (insn, regstack, t);
1593 		  }
1594 	      }
1595 	  }
1596 	break;
1597       }
1598 
1599     case SET:
1600       {
1601 	rtx *src1 = (rtx *) 0, *src2;
1602 	rtx src1_note, src2_note;
1603 	rtx pat_src;
1604 
1605 	dest = get_true_reg (&SET_DEST (pat));
1606 	src  = get_true_reg (&SET_SRC (pat));
1607 	pat_src = SET_SRC (pat);
1608 
1609 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1610 	if (STACK_REG_P (*src)
1611 	    || (STACK_REG_P (*dest)
1612 		&& (REG_P (*src) || MEM_P (*src)
1613 		    || CONST_DOUBLE_P (*src))))
1614 	  {
1615 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1616 	    break;
1617 	  }
1618 
1619 	switch (GET_CODE (pat_src))
1620 	  {
1621 	  case CALL:
1622 	    {
1623 	      int count;
1624 	      for (count = REG_NREGS (*dest); --count >= 0;)
1625 		{
1626 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1627 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1628 		}
1629 	    }
1630 	    replace_reg (dest, FIRST_STACK_REG);
1631 	    break;
1632 
1633 	  case REG:
1634 	    gcc_unreachable ();
1635 
1636 	    /* Fall through.  */
1637 
1638 	  case FLOAT_TRUNCATE:
1639 	  case SQRT:
1640 	  case ABS:
1641 	  case NEG:
1642 	    /* These insns only operate on the top of the stack.  It's
1643 	       possible that the tstM case results in a REG_DEAD note on the
1644 	       source.  */
1645 
1646 	    if (src1 == 0)
1647 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1648 
1649 	    emit_swap_insn (insn, regstack, *src1);
1650 
1651 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1652 
1653 	    if (STACK_REG_P (*dest))
1654 	      replace_reg (dest, FIRST_STACK_REG);
1655 
1656 	    if (src1_note)
1657 	      {
1658 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1659 		regstack->top--;
1660 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1661 	      }
1662 
1663 	    replace_reg (src1, FIRST_STACK_REG);
1664 	    break;
1665 
1666 	  case MINUS:
1667 	  case DIV:
1668 	    /* On i386, reversed forms of subM3 and divM3 exist for
1669 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1670 	       can be used.  */
1671 	  case MULT:
1672 	  case PLUS:
1673 	    /* These insns can accept the top of stack as a destination
1674 	       from a stack reg or mem, or can use the top of stack as a
1675 	       source and some other stack register (possibly top of stack)
1676 	       as a destination.  */
1677 
1678 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1679 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1680 
1681 	    /* We will fix any death note later.  */
1682 
1683 	    if (STACK_REG_P (*src1))
1684 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1685 	    else
1686 	      src1_note = NULL_RTX;
1687 	    if (STACK_REG_P (*src2))
1688 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1689 	    else
1690 	      src2_note = NULL_RTX;
1691 
1692 	    /* If either operand is not a stack register, then the dest
1693 	       must be top of stack.  */
1694 
1695 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1696 	      emit_swap_insn (insn, regstack, *dest);
1697 	    else
1698 	      {
1699 		/* Both operands are REG.  If neither operand is already
1700 		   at the top of stack, choose to make the one that is the
1701 		   dest the new top of stack.  */
1702 
1703 		int src1_hard_regnum, src2_hard_regnum;
1704 
1705 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1706 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1707 
1708 		/* If the source is not live, this is yet another case of
1709 		   uninitialized variables.  Load up a NaN instead.  */
1710 		if (src1_hard_regnum == -1)
1711 		  {
1712 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1713 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1714 		    control_flow_insn_deleted
1715 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1716 		  }
1717 		if (src2_hard_regnum == -1)
1718 		  {
1719 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1720 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1721 		    control_flow_insn_deleted
1722 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1723 		  }
1724 
1725 		if (src1_hard_regnum != FIRST_STACK_REG
1726 		    && src2_hard_regnum != FIRST_STACK_REG)
1727 		  emit_swap_insn (insn, regstack, *dest);
1728 	      }
1729 
1730 	    if (STACK_REG_P (*src1))
1731 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1732 	    if (STACK_REG_P (*src2))
1733 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1734 
1735 	    if (src1_note)
1736 	      {
1737 		rtx src1_reg = XEXP (src1_note, 0);
1738 
1739 		/* If the register that dies is at the top of stack, then
1740 		   the destination is somewhere else - merely substitute it.
1741 		   But if the reg that dies is not at top of stack, then
1742 		   move the top of stack to the dead reg, as though we had
1743 		   done the insn and then a store-with-pop.  */
1744 
1745 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1746 		  {
1747 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1748 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1749 		  }
1750 		else
1751 		  {
1752 		    int regno = get_hard_regnum (regstack, src1_reg);
1753 
1754 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1755 		    replace_reg (dest, regno);
1756 
1757 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1758 		      = regstack->reg[regstack->top];
1759 		  }
1760 
1761 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1762 				    REGNO (XEXP (src1_note, 0)));
1763 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1764 		regstack->top--;
1765 	      }
1766 	    else if (src2_note)
1767 	      {
1768 		rtx src2_reg = XEXP (src2_note, 0);
1769 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1770 		  {
1771 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1772 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1773 		  }
1774 		else
1775 		  {
1776 		    int regno = get_hard_regnum (regstack, src2_reg);
1777 
1778 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1779 		    replace_reg (dest, regno);
1780 
1781 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1782 		      = regstack->reg[regstack->top];
1783 		  }
1784 
1785 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1786 				    REGNO (XEXP (src2_note, 0)));
1787 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1788 		regstack->top--;
1789 	      }
1790 	    else
1791 	      {
1792 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1793 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1794 	      }
1795 
1796 	    /* Keep operand 1 matching with destination.  */
1797 	    if (COMMUTATIVE_ARITH_P (pat_src)
1798 		&& REG_P (*src1) && REG_P (*src2)
1799 		&& REGNO (*src1) != REGNO (*dest))
1800 	     {
1801 		int tmp = REGNO (*src1);
1802 		replace_reg (src1, REGNO (*src2));
1803 		replace_reg (src2, tmp);
1804 	     }
1805 	    break;
1806 
1807 	  case UNSPEC:
1808 	    switch (XINT (pat_src, 1))
1809 	      {
1810 	      case UNSPEC_FIST:
1811 	      case UNSPEC_FIST_ATOMIC:
1812 
1813 	      case UNSPEC_FIST_FLOOR:
1814 	      case UNSPEC_FIST_CEIL:
1815 
1816 		/* These insns only operate on the top of the stack.  */
1817 
1818 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1819 		emit_swap_insn (insn, regstack, *src1);
1820 
1821 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1822 
1823 		if (STACK_REG_P (*dest))
1824 		  replace_reg (dest, FIRST_STACK_REG);
1825 
1826 		if (src1_note)
1827 		  {
1828 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1829 		    regstack->top--;
1830 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1831 		  }
1832 
1833 		replace_reg (src1, FIRST_STACK_REG);
1834 		break;
1835 
1836 	      case UNSPEC_FXAM:
1837 
1838 		/* This insn only operate on the top of the stack.  */
1839 
1840 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1841 		emit_swap_insn (insn, regstack, *src1);
1842 
1843 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1844 
1845 		replace_reg (src1, FIRST_STACK_REG);
1846 
1847 		if (src1_note)
1848 		  {
1849 		    remove_regno_note (insn, REG_DEAD,
1850 				       REGNO (XEXP (src1_note, 0)));
1851 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1852 				   EMIT_AFTER);
1853 		  }
1854 
1855 		break;
1856 
1857 	      case UNSPEC_SIN:
1858 	      case UNSPEC_COS:
1859 	      case UNSPEC_FRNDINT:
1860 	      case UNSPEC_F2XM1:
1861 
1862 	      case UNSPEC_FRNDINT_ROUNDEVEN:
1863 	      case UNSPEC_FRNDINT_FLOOR:
1864 	      case UNSPEC_FRNDINT_CEIL:
1865 	      case UNSPEC_FRNDINT_TRUNC:
1866 
1867 		/* Above insns operate on the top of the stack.  */
1868 
1869 	      case UNSPEC_SINCOS_COS:
1870 	      case UNSPEC_XTRACT_FRACT:
1871 
1872 		/* Above insns operate on the top two stack slots,
1873 		   first part of one input, double output insn.  */
1874 
1875 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1876 
1877 		emit_swap_insn (insn, regstack, *src1);
1878 
1879 		/* Input should never die, it is replaced with output.  */
1880 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1881 		gcc_assert (!src1_note);
1882 
1883 		if (STACK_REG_P (*dest))
1884 		  replace_reg (dest, FIRST_STACK_REG);
1885 
1886 		replace_reg (src1, FIRST_STACK_REG);
1887 		break;
1888 
1889 	      case UNSPEC_SINCOS_SIN:
1890 	      case UNSPEC_XTRACT_EXP:
1891 
1892 		/* These insns operate on the top two stack slots,
1893 		   second part of one input, double output insn.  */
1894 
1895 		regstack->top++;
1896 		/* FALLTHRU */
1897 
1898 	      case UNSPEC_TAN:
1899 
1900 		/* For UNSPEC_TAN, regstack->top is already increased
1901 		   by inherent load of constant 1.0.  */
1902 
1903 		/* Output value is generated in the second stack slot.
1904 		   Move current value from second slot to the top.  */
1905 		regstack->reg[regstack->top]
1906 		  = regstack->reg[regstack->top - 1];
1907 
1908 		gcc_assert (STACK_REG_P (*dest));
1909 
1910 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1911 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1912 		replace_reg (dest, FIRST_STACK_REG + 1);
1913 
1914 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1915 
1916 		replace_reg (src1, FIRST_STACK_REG);
1917 		break;
1918 
1919 	      case UNSPEC_FPATAN:
1920 	      case UNSPEC_FYL2X:
1921 	      case UNSPEC_FYL2XP1:
1922 		/* These insns operate on the top two stack slots.  */
1923 
1924 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1925 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1926 
1927 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1928 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1929 
1930 		swap_to_top (insn, regstack, *src1, *src2);
1931 
1932 		replace_reg (src1, FIRST_STACK_REG);
1933 		replace_reg (src2, FIRST_STACK_REG + 1);
1934 
1935 		if (src1_note)
1936 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1937 		if (src2_note)
1938 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1939 
1940 		/* Pop both input operands from the stack.  */
1941 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1942 				    regstack->reg[regstack->top]);
1943 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1944 				    regstack->reg[regstack->top - 1]);
1945 		regstack->top -= 2;
1946 
1947 		/* Push the result back onto the stack.  */
1948 		regstack->reg[++regstack->top] = REGNO (*dest);
1949 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1950 		replace_reg (dest, FIRST_STACK_REG);
1951 		break;
1952 
1953 	      case UNSPEC_FSCALE_FRACT:
1954 	      case UNSPEC_FPREM_F:
1955 	      case UNSPEC_FPREM1_F:
1956 		/* These insns operate on the top two stack slots,
1957 		   first part of double input, double output insn.  */
1958 
1959 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1960 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1961 
1962 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1963 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1964 
1965 		/* Inputs should never die, they are
1966 		   replaced with outputs.  */
1967 		gcc_assert (!src1_note);
1968 		gcc_assert (!src2_note);
1969 
1970 		swap_to_top (insn, regstack, *src1, *src2);
1971 
1972 		/* Push the result back onto stack. Empty stack slot
1973 		   will be filled in second part of insn.  */
1974 		if (STACK_REG_P (*dest))
1975 		  {
1976 		    regstack->reg[regstack->top] = REGNO (*dest);
1977 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1978 		    replace_reg (dest, FIRST_STACK_REG);
1979 		  }
1980 
1981 		replace_reg (src1, FIRST_STACK_REG);
1982 		replace_reg (src2, FIRST_STACK_REG + 1);
1983 		break;
1984 
1985 	      case UNSPEC_FSCALE_EXP:
1986 	      case UNSPEC_FPREM_U:
1987 	      case UNSPEC_FPREM1_U:
1988 		/* These insns operate on the top two stack slots,
1989 		   second part of double input, double output insn.  */
1990 
1991 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1992 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1993 
1994 		/* Push the result back onto stack. Fill empty slot from
1995 		   first part of insn and fix top of stack pointer.  */
1996 		if (STACK_REG_P (*dest))
1997 		  {
1998 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
1999 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2000 		    replace_reg (dest, FIRST_STACK_REG + 1);
2001 		  }
2002 
2003 		replace_reg (src1, FIRST_STACK_REG);
2004 		replace_reg (src2, FIRST_STACK_REG + 1);
2005 		break;
2006 
2007 	      case UNSPEC_C2_FLAG:
2008 		/* This insn operates on the top two stack slots,
2009 		   third part of C2 setting double input insn.  */
2010 
2011 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
2012 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
2013 
2014 		replace_reg (src1, FIRST_STACK_REG);
2015 		replace_reg (src2, FIRST_STACK_REG + 1);
2016 		break;
2017 
2018 	      case UNSPEC_FNSTSW:
2019 		/* Combined fcomp+fnstsw generated for doing well with
2020 		   CSE.  When optimizing this would have been broken
2021 		   up before now.  */
2022 
2023 		pat_src = XVECEXP (pat_src, 0, 0);
2024 		if (GET_CODE (pat_src) == COMPARE)
2025 		  goto do_compare;
2026 
2027 		/* Fall through.  */
2028 
2029 	      case UNSPEC_NOTRAP:
2030 
2031 		pat_src = XVECEXP (pat_src, 0, 0);
2032 		gcc_assert (GET_CODE (pat_src) == COMPARE);
2033 		goto do_compare;
2034 
2035 	      default:
2036 		gcc_unreachable ();
2037 	      }
2038 	    break;
2039 
2040 	  case COMPARE:
2041 	  do_compare:
2042 	    /* `fcomi' insn can't pop two regs.  */
2043 	    compare_for_stack_reg (insn, regstack, pat_src,
2044 				   REGNO (*dest) != FLAGS_REG);
2045 	    break;
2046 
2047 	  case IF_THEN_ELSE:
2048 	    /* This insn requires the top of stack to be the destination.  */
2049 
2050 	    src1 = get_true_reg (&XEXP (pat_src, 1));
2051 	    src2 = get_true_reg (&XEXP (pat_src, 2));
2052 
2053 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2054 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2055 
2056 	    /* If the comparison operator is an FP comparison operator,
2057 	       it is handled correctly by compare_for_stack_reg () who
2058 	       will move the destination to the top of stack. But if the
2059 	       comparison operator is not an FP comparison operator, we
2060 	       have to handle it here.  */
2061 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
2062 		&& REGNO (*dest) != regstack->reg[regstack->top])
2063 	      {
2064 		/* In case one of operands is the top of stack and the operands
2065 		   dies, it is safe to make it the destination operand by
2066 		   reversing the direction of cmove and avoid fxch.  */
2067 		if ((REGNO (*src1) == regstack->reg[regstack->top]
2068 		     && src1_note)
2069 		    || (REGNO (*src2) == regstack->reg[regstack->top]
2070 			&& src2_note))
2071 		  {
2072 		    int idx1 = (get_hard_regnum (regstack, *src1)
2073 				- FIRST_STACK_REG);
2074 		    int idx2 = (get_hard_regnum (regstack, *src2)
2075 				- FIRST_STACK_REG);
2076 
2077 		    /* Make reg-stack believe that the operands are already
2078 		       swapped on the stack */
2079 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
2080 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
2081 
2082 		    /* Reverse condition to compensate the operand swap.
2083 		       i386 do have comparison always reversible.  */
2084 		    PUT_CODE (XEXP (pat_src, 0),
2085 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
2086 		  }
2087 		else
2088 	          emit_swap_insn (insn, regstack, *dest);
2089 	      }
2090 
2091 	    {
2092 	      rtx src_note [3];
2093 	      int i;
2094 
2095 	      src_note[0] = 0;
2096 	      src_note[1] = src1_note;
2097 	      src_note[2] = src2_note;
2098 
2099 	      if (STACK_REG_P (*src1))
2100 		replace_reg (src1, get_hard_regnum (regstack, *src1));
2101 	      if (STACK_REG_P (*src2))
2102 		replace_reg (src2, get_hard_regnum (regstack, *src2));
2103 
2104 	      for (i = 1; i <= 2; i++)
2105 		if (src_note [i])
2106 		  {
2107 		    int regno = REGNO (XEXP (src_note[i], 0));
2108 
2109 		    /* If the register that dies is not at the top of
2110 		       stack, then move the top of stack to the dead reg.
2111 		       Top of stack should never die, as it is the
2112 		       destination.  */
2113 		    gcc_assert (regno != regstack->reg[regstack->top]);
2114 		    remove_regno_note (insn, REG_DEAD, regno);
2115 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2116 				    EMIT_AFTER);
2117 		  }
2118 	    }
2119 
2120 	    /* Make dest the top of stack.  Add dest to regstack if
2121 	       not present.  */
2122 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2123 	      regstack->reg[++regstack->top] = REGNO (*dest);
2124 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2125 	    replace_reg (dest, FIRST_STACK_REG);
2126 	    break;
2127 
2128 	  default:
2129 	    gcc_unreachable ();
2130 	  }
2131 	break;
2132       }
2133 
2134     default:
2135       break;
2136     }
2137 
2138   return control_flow_insn_deleted;
2139 }
2140 
2141 /* Substitute hard regnums for any stack regs in INSN, which has
2142    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2143    before the insn, and is updated with changes made here.
2144 
2145    There are several requirements and assumptions about the use of
2146    stack-like regs in asm statements.  These rules are enforced by
2147    record_asm_stack_regs; see comments there for details.  Any
2148    asm_operands left in the RTL at this point may be assume to meet the
2149    requirements, since record_asm_stack_regs removes any problem asm.  */
2150 
2151 static void
subst_asm_stack_regs(rtx_insn * insn,stack_ptr regstack)2152 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2153 {
2154   rtx body = PATTERN (insn);
2155 
2156   rtx *note_reg;		/* Array of note contents */
2157   rtx **note_loc;		/* Address of REG field of each note */
2158   enum reg_note *note_kind;	/* The type of each note */
2159 
2160   rtx *clobber_reg = 0;
2161   rtx **clobber_loc = 0;
2162 
2163   struct stack_def temp_stack;
2164   int n_notes;
2165   int n_clobbers;
2166   rtx note;
2167   int i;
2168   int n_inputs, n_outputs;
2169 
2170   if (! check_asm_stack_operands (insn))
2171     return;
2172 
2173   /* Find out what the constraints required.  If no constraint
2174      alternative matches, that is a compiler bug: we should have caught
2175      such an insn in check_asm_stack_operands.  */
2176   extract_constrain_insn (insn);
2177 
2178   preprocess_constraints (insn);
2179   const operand_alternative *op_alt = which_op_alt ();
2180 
2181   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2182 
2183   /* Strip SUBREGs here to make the following code simpler.  */
2184   for (i = 0; i < recog_data.n_operands; i++)
2185     if (GET_CODE (recog_data.operand[i]) == SUBREG
2186 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2187       {
2188 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2189 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2190       }
2191 
2192   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2193 
2194   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2195     i++;
2196 
2197   note_reg = XALLOCAVEC (rtx, i);
2198   note_loc = XALLOCAVEC (rtx *, i);
2199   note_kind = XALLOCAVEC (enum reg_note, i);
2200 
2201   n_notes = 0;
2202   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2203     {
2204       if (GET_CODE (note) != EXPR_LIST)
2205 	continue;
2206       rtx reg = XEXP (note, 0);
2207       rtx *loc = & XEXP (note, 0);
2208 
2209       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2210 	{
2211 	  loc = & SUBREG_REG (reg);
2212 	  reg = SUBREG_REG (reg);
2213 	}
2214 
2215       if (STACK_REG_P (reg)
2216 	  && (REG_NOTE_KIND (note) == REG_DEAD
2217 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2218 	{
2219 	  note_reg[n_notes] = reg;
2220 	  note_loc[n_notes] = loc;
2221 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2222 	  n_notes++;
2223 	}
2224     }
2225 
2226   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2227 
2228   n_clobbers = 0;
2229 
2230   if (GET_CODE (body) == PARALLEL)
2231     {
2232       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2233       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2234 
2235       for (i = 0; i < XVECLEN (body, 0); i++)
2236 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2237 	  {
2238 	    rtx clobber = XVECEXP (body, 0, i);
2239 	    rtx reg = XEXP (clobber, 0);
2240 	    rtx *loc = & XEXP (clobber, 0);
2241 
2242 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2243 	      {
2244 		loc = & SUBREG_REG (reg);
2245 		reg = SUBREG_REG (reg);
2246 	      }
2247 
2248 	    if (STACK_REG_P (reg))
2249 	      {
2250 		clobber_reg[n_clobbers] = reg;
2251 		clobber_loc[n_clobbers] = loc;
2252 		n_clobbers++;
2253 	      }
2254 	  }
2255     }
2256 
2257   temp_stack = *regstack;
2258 
2259   /* Put the input regs into the desired place in TEMP_STACK.  */
2260 
2261   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2262     if (STACK_REG_P (recog_data.operand[i])
2263 	&& reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2264 	&& op_alt[i].cl != FLOAT_REGS)
2265       {
2266 	/* If an operand needs to be in a particular reg in
2267 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2268 	   these constraints are for single register classes, and
2269 	   reload guaranteed that operand[i] is already in that class,
2270 	   we can just use REGNO (recog_data.operand[i]) to know which
2271 	   actual reg this operand needs to be in.  */
2272 
2273 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2274 
2275 	gcc_assert (regno >= 0);
2276 
2277 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2278 	  {
2279 	    /* recog_data.operand[i] is not in the right place.  Find
2280 	       it and swap it with whatever is already in I's place.
2281 	       K is where recog_data.operand[i] is now.  J is where it
2282 	       should be.  */
2283 	    int j, k;
2284 
2285 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2286 	    j = (temp_stack.top
2287 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2288 
2289 	    std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2290 	  }
2291       }
2292 
2293   /* Emit insns before INSN to make sure the reg-stack is in the right
2294      order.  */
2295 
2296   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2297 
2298   /* Make the needed input register substitutions.  Do death notes and
2299      clobbers too, because these are for inputs, not outputs.  */
2300 
2301   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2302     if (STACK_REG_P (recog_data.operand[i]))
2303       {
2304 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2305 
2306 	gcc_assert (regnum >= 0);
2307 
2308 	replace_reg (recog_data.operand_loc[i], regnum);
2309       }
2310 
2311   for (i = 0; i < n_notes; i++)
2312     if (note_kind[i] == REG_DEAD)
2313       {
2314 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2315 
2316 	gcc_assert (regnum >= 0);
2317 
2318 	replace_reg (note_loc[i], regnum);
2319       }
2320 
2321   for (i = 0; i < n_clobbers; i++)
2322     {
2323       /* It's OK for a CLOBBER to reference a reg that is not live.
2324          Don't try to replace it in that case.  */
2325       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2326 
2327       if (regnum >= 0)
2328 	replace_reg (clobber_loc[i], regnum);
2329     }
2330 
2331   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2332 
2333   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2334     if (STACK_REG_P (recog_data.operand[i]))
2335       {
2336 	/* An input reg is implicitly popped if it is tied to an
2337 	   output, or if there is a CLOBBER for it.  */
2338 	int j;
2339 
2340 	for (j = 0; j < n_clobbers; j++)
2341 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2342 	    break;
2343 
2344 	if (j < n_clobbers || op_alt[i].matches >= 0)
2345 	  {
2346 	    /* recog_data.operand[i] might not be at the top of stack.
2347 	       But that's OK, because all we need to do is pop the
2348 	       right number of regs off of the top of the reg-stack.
2349 	       record_asm_stack_regs guaranteed that all implicitly
2350 	       popped regs were grouped at the top of the reg-stack.  */
2351 
2352 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2353 				regstack->reg[regstack->top]);
2354 	    regstack->top--;
2355 	  }
2356       }
2357 
2358   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2359      Note that there isn't any need to substitute register numbers.
2360      ???  Explain why this is true.  */
2361 
2362   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2363     {
2364       /* See if there is an output for this hard reg.  */
2365       int j;
2366 
2367       for (j = 0; j < n_outputs; j++)
2368 	if (STACK_REG_P (recog_data.operand[j])
2369 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2370 	  {
2371 	    regstack->reg[++regstack->top] = i;
2372 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2373 	    break;
2374 	  }
2375     }
2376 
2377   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2378      input that the asm didn't implicitly pop.  If the asm didn't
2379      implicitly pop an input reg, that reg will still be live.
2380 
2381      Note that we can't use find_regno_note here: the register numbers
2382      in the death notes have already been substituted.  */
2383 
2384   for (i = 0; i < n_outputs; i++)
2385     if (STACK_REG_P (recog_data.operand[i]))
2386       {
2387 	int j;
2388 
2389 	for (j = 0; j < n_notes; j++)
2390 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2391 	      && note_kind[j] == REG_UNUSED)
2392 	    {
2393 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2394 				    EMIT_AFTER);
2395 	      break;
2396 	    }
2397       }
2398 
2399   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2400     if (STACK_REG_P (recog_data.operand[i]))
2401       {
2402 	int j;
2403 
2404 	for (j = 0; j < n_notes; j++)
2405 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2406 	      && note_kind[j] == REG_DEAD
2407 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2408 				    REGNO (recog_data.operand[i])))
2409 	    {
2410 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2411 				    EMIT_AFTER);
2412 	      break;
2413 	    }
2414       }
2415 }
2416 
2417 /* Return true if a function call is allowed to alter some or all bits
2418    of any stack reg.  */
2419 static bool
callee_clobbers_any_stack_reg(const function_abi & callee_abi)2420 callee_clobbers_any_stack_reg (const function_abi & callee_abi)
2421 {
2422   for (unsigned regno = FIRST_STACK_REG; regno <= LAST_STACK_REG; regno++)
2423     if (callee_abi.clobbers_at_least_part_of_reg_p (regno))
2424       return true;
2425   return false;
2426 }
2427 
2428 
2429 /* Substitute stack hard reg numbers for stack virtual registers in
2430    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2431    current stack content.  Insns may be emitted as needed to arrange the
2432    stack for the 387 based on the contents of the insn.  Return whether
2433    a control flow insn was deleted in the process.  */
2434 
2435 static bool
subst_stack_regs(rtx_insn * insn,stack_ptr regstack)2436 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2437 {
2438   rtx *note_link, note;
2439   bool control_flow_insn_deleted = false;
2440   int i;
2441 
2442   /* If the target of the call doesn't clobber any stack registers,
2443      Don't clear the arguments.  */
2444   if (CALL_P (insn)
2445       && callee_clobbers_any_stack_reg (insn_callee_abi (insn)))
2446     {
2447       int top = regstack->top;
2448 
2449       /* If there are any floating point parameters to be passed in
2450 	 registers for this call, make sure they are in the right
2451 	 order.  */
2452 
2453       if (top >= 0)
2454 	{
2455 	  straighten_stack (insn, regstack);
2456 
2457 	  /* Now mark the arguments as dead after the call.  */
2458 
2459 	  while (regstack->top >= 0)
2460 	    {
2461 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2462 	      regstack->top--;
2463 	    }
2464 	}
2465     }
2466 
2467   /* Do the actual substitution if any stack regs are mentioned.
2468      Since we only record whether entire insn mentions stack regs, and
2469      subst_stack_regs_pat only works for patterns that contain stack regs,
2470      we must check each pattern in a parallel here.  A call_value_pop could
2471      fail otherwise.  */
2472 
2473   if (stack_regs_mentioned (insn))
2474     {
2475       int n_operands = asm_noperands (PATTERN (insn));
2476       if (n_operands >= 0)
2477 	{
2478 	  /* This insn is an `asm' with operands.  Decode the operands,
2479 	     decide how many are inputs, and do register substitution.
2480 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2481 
2482 	  subst_asm_stack_regs (insn, regstack);
2483 	  return control_flow_insn_deleted;
2484 	}
2485 
2486       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2487 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2488 	  {
2489 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2490 	      {
2491 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2492 	           XVECEXP (PATTERN (insn), 0, i)
2493 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2494 		control_flow_insn_deleted
2495 		  |= subst_stack_regs_pat (insn, regstack,
2496 					   XVECEXP (PATTERN (insn), 0, i));
2497 	      }
2498 	  }
2499       else
2500 	control_flow_insn_deleted
2501 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2502     }
2503 
2504   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2505      REG_UNUSED will already have been dealt with, so just return.  */
2506 
2507   if (NOTE_P (insn) || insn->deleted ())
2508     return control_flow_insn_deleted;
2509 
2510   /* If this a noreturn call, we can't insert pop insns after it.
2511      Instead, reset the stack state to empty.  */
2512   if (CALL_P (insn)
2513       && find_reg_note (insn, REG_NORETURN, NULL))
2514     {
2515       regstack->top = -1;
2516       CLEAR_HARD_REG_SET (regstack->reg_set);
2517       return control_flow_insn_deleted;
2518     }
2519 
2520   /* If there is a REG_UNUSED note on a stack register on this insn,
2521      the indicated reg must be popped.  The REG_UNUSED note is removed,
2522      since the form of the newly emitted pop insn references the reg,
2523      making it no longer `unset'.  */
2524 
2525   note_link = &REG_NOTES (insn);
2526   for (note = *note_link; note; note = XEXP (note, 1))
2527     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2528       {
2529 	*note_link = XEXP (note, 1);
2530 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2531       }
2532     else
2533       note_link = &XEXP (note, 1);
2534 
2535   return control_flow_insn_deleted;
2536 }
2537 
2538 /* Change the organization of the stack so that it fits a new basic
2539    block.  Some registers might have to be popped, but there can never be
2540    a register live in the new block that is not now live.
2541 
2542    Insert any needed insns before or after INSN, as indicated by
2543    WHERE.  OLD is the original stack layout, and NEW is the desired
2544    form.  OLD is updated to reflect the code emitted, i.e., it will be
2545    the same as NEW upon return.
2546 
2547    This function will not preserve block_end[].  But that information
2548    is no longer needed once this has executed.  */
2549 
2550 static void
change_stack(rtx_insn * insn,stack_ptr old,stack_ptr new_stack,enum emit_where where)2551 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2552 	      enum emit_where where)
2553 {
2554   int reg;
2555   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
2556   rtx_insn *update_end = NULL;
2557   int i;
2558 
2559   /* Stack adjustments for the first insn in a block update the
2560      current_block's stack_in instead of inserting insns directly.
2561      compensate_edges will add the necessary code later.  */
2562   if (current_block
2563       && starting_stack_p
2564       && where == EMIT_BEFORE)
2565     {
2566       BLOCK_INFO (current_block)->stack_in = *new_stack;
2567       starting_stack_p = false;
2568       *old = *new_stack;
2569       return;
2570     }
2571 
2572   /* We will be inserting new insns "backwards".  If we are to insert
2573      after INSN, find the next insn, and insert before it.  */
2574 
2575   if (where == EMIT_AFTER)
2576     {
2577       if (current_block && BB_END (current_block) == insn)
2578 	update_end = insn;
2579       insn = NEXT_INSN (insn);
2580     }
2581 
2582   /* Initialize partially dead variables.  */
2583   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2584     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2585 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2586       {
2587 	old->reg[++old->top] = i;
2588         SET_HARD_REG_BIT (old->reg_set, i);
2589 	emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2590 			  insn);
2591       }
2592 
2593   /* Pop any registers that are not needed in the new block.  */
2594 
2595   /* If the destination block's stack already has a specified layout
2596      and contains two or more registers, use a more intelligent algorithm
2597      to pop registers that minimizes the number of fxchs below.  */
2598   if (new_stack->top > 0)
2599     {
2600       bool slots[REG_STACK_SIZE];
2601       int pops[REG_STACK_SIZE];
2602       int next, dest, topsrc;
2603 
2604       /* First pass to determine the free slots.  */
2605       for (reg = 0; reg <= new_stack->top; reg++)
2606 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2607 
2608       /* Second pass to allocate preferred slots.  */
2609       topsrc = -1;
2610       for (reg = old->top; reg > new_stack->top; reg--)
2611 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2612 	  {
2613 	    dest = -1;
2614 	    for (next = 0; next <= new_stack->top; next++)
2615 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2616 		{
2617 		  /* If this is a preference for the new top of stack, record
2618 		     the fact by remembering it's old->reg in topsrc.  */
2619                   if (next == new_stack->top)
2620 		    topsrc = reg;
2621 		  slots[next] = true;
2622 		  dest = next;
2623 		  break;
2624 		}
2625 	    pops[reg] = dest;
2626 	  }
2627 	else
2628 	  pops[reg] = reg;
2629 
2630       /* Intentionally, avoid placing the top of stack in it's correct
2631 	 location, if we still need to permute the stack below and we
2632 	 can usefully place it somewhere else.  This is the case if any
2633 	 slot is still unallocated, in which case we should place the
2634 	 top of stack there.  */
2635       if (topsrc != -1)
2636 	for (reg = 0; reg < new_stack->top; reg++)
2637 	  if (!slots[reg])
2638 	    {
2639 	      pops[topsrc] = reg;
2640 	      slots[new_stack->top] = false;
2641 	      slots[reg] = true;
2642 	      break;
2643 	    }
2644 
2645       /* Third pass allocates remaining slots and emits pop insns.  */
2646       next = new_stack->top;
2647       for (reg = old->top; reg > new_stack->top; reg--)
2648 	{
2649 	  dest = pops[reg];
2650 	  if (dest == -1)
2651 	    {
2652 	      /* Find next free slot.  */
2653 	      while (slots[next])
2654 		next--;
2655 	      dest = next--;
2656 	    }
2657 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], raw_mode),
2658 			 EMIT_BEFORE);
2659 	}
2660     }
2661   else
2662     {
2663       /* The following loop attempts to maximize the number of times we
2664 	 pop the top of the stack, as this permits the use of the faster
2665 	 ffreep instruction on platforms that support it.  */
2666       int live, next;
2667 
2668       live = 0;
2669       for (reg = 0; reg <= old->top; reg++)
2670         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2671           live++;
2672 
2673       next = live;
2674       while (old->top >= live)
2675         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2676 	  {
2677 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2678 	      next--;
2679 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], raw_mode),
2680 			   EMIT_BEFORE);
2681 	  }
2682 	else
2683 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], raw_mode),
2684 			 EMIT_BEFORE);
2685     }
2686 
2687   if (new_stack->top == -2)
2688     {
2689       /* If the new block has never been processed, then it can inherit
2690 	 the old stack order.  */
2691 
2692       new_stack->top = old->top;
2693       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2694     }
2695   else
2696     {
2697       /* This block has been entered before, and we must match the
2698 	 previously selected stack order.  */
2699 
2700       /* By now, the only difference should be the order of the stack,
2701 	 not their depth or liveliness.  */
2702 
2703       gcc_assert (old->reg_set == new_stack->reg_set);
2704       gcc_assert (old->top == new_stack->top);
2705 
2706       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2707 	 swaps until the stack is correct.
2708 
2709 	 The worst case number of swaps emitted is N + 2, where N is the
2710 	 depth of the stack.  In some cases, the reg at the top of
2711 	 stack may be correct, but swapped anyway in order to fix
2712 	 other regs.  But since we never swap any other reg away from
2713 	 its correct slot, this algorithm will converge.  */
2714 
2715       if (new_stack->top != -1)
2716 	do
2717 	  {
2718 	    /* Swap the reg at top of stack into the position it is
2719 	       supposed to be in, until the correct top of stack appears.  */
2720 
2721 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2722 	      {
2723 		for (reg = new_stack->top; reg >= 0; reg--)
2724 		  if (new_stack->reg[reg] == old->reg[old->top])
2725 		    break;
2726 
2727 		gcc_assert (reg != -1);
2728 
2729 		emit_swap_insn (insn, old,
2730 				FP_MODE_REG (old->reg[reg], raw_mode));
2731 	      }
2732 
2733 	    /* See if any regs remain incorrect.  If so, bring an
2734 	     incorrect reg to the top of stack, and let the while loop
2735 	     above fix it.  */
2736 
2737 	    for (reg = new_stack->top; reg >= 0; reg--)
2738 	      if (new_stack->reg[reg] != old->reg[reg])
2739 		{
2740 		  emit_swap_insn (insn, old,
2741 				  FP_MODE_REG (old->reg[reg], raw_mode));
2742 		  break;
2743 		}
2744 	  } while (reg >= 0);
2745 
2746       /* At this point there must be no differences.  */
2747 
2748       for (reg = old->top; reg >= 0; reg--)
2749 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2750     }
2751 
2752   if (update_end)
2753     {
2754       for (update_end = NEXT_INSN (update_end); update_end != insn;
2755 	   update_end = NEXT_INSN (update_end))
2756 	{
2757 	  set_block_for_insn (update_end, current_block);
2758 	  if (INSN_P (update_end))
2759 	    df_insn_rescan (update_end);
2760 	}
2761       BB_END (current_block) = PREV_INSN (insn);
2762     }
2763 }
2764 
2765 /* Print stack configuration.  */
2766 
2767 static void
print_stack(FILE * file,stack_ptr s)2768 print_stack (FILE *file, stack_ptr s)
2769 {
2770   if (! file)
2771     return;
2772 
2773   if (s->top == -2)
2774     fprintf (file, "uninitialized\n");
2775   else if (s->top == -1)
2776     fprintf (file, "empty\n");
2777   else
2778     {
2779       int i;
2780       fputs ("[ ", file);
2781       for (i = 0; i <= s->top; ++i)
2782 	fprintf (file, "%d ", s->reg[i]);
2783       fputs ("]\n", file);
2784     }
2785 }
2786 
2787 /* This function was doing life analysis.  We now let the regular live
2788    code do it's job, so we only need to check some extra invariants
2789    that reg-stack expects.  Primary among these being that all registers
2790    are initialized before use.
2791 
2792    The function returns true when code was emitted to CFG edges and
2793    commit_edge_insertions needs to be called.  */
2794 
2795 static int
convert_regs_entry(void)2796 convert_regs_entry (void)
2797 {
2798   int inserted = 0;
2799   edge e;
2800   edge_iterator ei;
2801 
2802   /* Load something into each stack register live at function entry.
2803      Such live registers can be caused by uninitialized variables or
2804      functions not returning values on all paths.  In order to keep
2805      the push/pop code happy, and to not scrog the register stack, we
2806      must put something in these registers.  Use a QNaN.
2807 
2808      Note that we are inserting converted code here.  This code is
2809      never seen by the convert_regs pass.  */
2810 
2811   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2812     {
2813       basic_block block = e->dest;
2814       block_info bi = BLOCK_INFO (block);
2815       int reg, top = -1;
2816 
2817       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2818 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2819 	  {
2820 	    rtx init;
2821 
2822 	    bi->stack_in.reg[++top] = reg;
2823 
2824 	    init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2825 				not_a_num);
2826 	    insert_insn_on_edge (init, e);
2827 	    inserted = 1;
2828 	  }
2829 
2830       bi->stack_in.top = top;
2831     }
2832 
2833   return inserted;
2834 }
2835 
2836 /* Construct the desired stack for function exit.  This will either
2837    be `empty', or the function return value at top-of-stack.  */
2838 
2839 static void
convert_regs_exit(void)2840 convert_regs_exit (void)
2841 {
2842   int value_reg_low, value_reg_high;
2843   stack_ptr output_stack;
2844   rtx retvalue;
2845 
2846   retvalue = stack_result (current_function_decl);
2847   value_reg_low = value_reg_high = -1;
2848   if (retvalue)
2849     {
2850       value_reg_low = REGNO (retvalue);
2851       value_reg_high = END_REGNO (retvalue) - 1;
2852     }
2853 
2854   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2855   if (value_reg_low == -1)
2856     output_stack->top = -1;
2857   else
2858     {
2859       int reg;
2860 
2861       output_stack->top = value_reg_high - value_reg_low;
2862       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2863 	{
2864 	  output_stack->reg[value_reg_high - reg] = reg;
2865 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2866 	}
2867     }
2868 }
2869 
2870 /* Copy the stack info from the end of edge E's source block to the
2871    start of E's destination block.  */
2872 
2873 static void
propagate_stack(edge e)2874 propagate_stack (edge e)
2875 {
2876   stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2877   stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2878   int reg;
2879 
2880   /* Preserve the order of the original stack, but check whether
2881      any pops are needed.  */
2882   dest_stack->top = -1;
2883   for (reg = 0; reg <= src_stack->top; ++reg)
2884     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2885       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2886 
2887   /* Push in any partially dead values.  */
2888   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2889     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2890         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2891       dest_stack->reg[++dest_stack->top] = reg;
2892 }
2893 
2894 
2895 /* Adjust the stack of edge E's source block on exit to match the stack
2896    of it's target block upon input.  The stack layouts of both blocks
2897    should have been defined by now.  */
2898 
2899 static bool
compensate_edge(edge e)2900 compensate_edge (edge e)
2901 {
2902   basic_block source = e->src, target = e->dest;
2903   stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2904   stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2905   struct stack_def regstack;
2906   int reg;
2907 
2908   if (dump_file)
2909     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2910 
2911   gcc_assert (target_stack->top != -2);
2912 
2913   /* Check whether stacks are identical.  */
2914   if (target_stack->top == source_stack->top)
2915     {
2916       for (reg = target_stack->top; reg >= 0; --reg)
2917 	if (target_stack->reg[reg] != source_stack->reg[reg])
2918 	  break;
2919 
2920       if (reg == -1)
2921 	{
2922 	  if (dump_file)
2923 	    fprintf (dump_file, "no changes needed\n");
2924 	  return false;
2925 	}
2926     }
2927 
2928   if (dump_file)
2929     {
2930       fprintf (dump_file, "correcting stack to ");
2931       print_stack (dump_file, target_stack);
2932     }
2933 
2934   /* Abnormal calls may appear to have values live in st(0), but the
2935      abnormal return path will not have actually loaded the values.  */
2936   if (e->flags & EDGE_ABNORMAL_CALL)
2937     {
2938       /* Assert that the lifetimes are as we expect -- one value
2939          live at st(0) on the end of the source block, and no
2940          values live at the beginning of the destination block.
2941 	 For complex return values, we may have st(1) live as well.  */
2942       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2943       gcc_assert (target_stack->top == -1);
2944       return false;
2945     }
2946 
2947   /* Handle non-call EH edges specially.  The normal return path have
2948      values in registers.  These will be popped en masse by the unwind
2949      library.  */
2950   if (e->flags & EDGE_EH)
2951     {
2952       gcc_assert (target_stack->top == -1);
2953       return false;
2954     }
2955 
2956   /* We don't support abnormal edges.  Global takes care to
2957      avoid any live register across them, so we should never
2958      have to insert instructions on such edges.  */
2959   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2960 
2961   /* Make a copy of source_stack as change_stack is destructive.  */
2962   regstack = *source_stack;
2963 
2964   /* It is better to output directly to the end of the block
2965      instead of to the edge, because emit_swap can do minimal
2966      insn scheduling.  We can do this when there is only one
2967      edge out, and it is not abnormal.  */
2968   if (EDGE_COUNT (source->succs) == 1)
2969     {
2970       current_block = source;
2971       change_stack (BB_END (source), &regstack, target_stack,
2972 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2973     }
2974   else
2975     {
2976       rtx_insn *seq;
2977       rtx_note *after;
2978 
2979       current_block = NULL;
2980       start_sequence ();
2981 
2982       /* ??? change_stack needs some point to emit insns after.  */
2983       after = emit_note (NOTE_INSN_DELETED);
2984 
2985       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2986 
2987       seq = get_insns ();
2988       end_sequence ();
2989 
2990       set_insn_locations (seq, e->goto_locus);
2991       insert_insn_on_edge (seq, e);
2992       return true;
2993     }
2994   return false;
2995 }
2996 
2997 /* Traverse all non-entry edges in the CFG, and emit the necessary
2998    edge compensation code to change the stack from stack_out of the
2999    source block to the stack_in of the destination block.  */
3000 
3001 static bool
compensate_edges(void)3002 compensate_edges (void)
3003 {
3004   bool inserted = false;
3005   basic_block bb;
3006 
3007   starting_stack_p = false;
3008 
3009   FOR_EACH_BB_FN (bb, cfun)
3010     if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3011       {
3012         edge e;
3013         edge_iterator ei;
3014 
3015         FOR_EACH_EDGE (e, ei, bb->succs)
3016 	  inserted |= compensate_edge (e);
3017       }
3018   return inserted;
3019 }
3020 
3021 /* Select the better of two edges E1 and E2 to use to determine the
3022    stack layout for their shared destination basic block.  This is
3023    typically the more frequently executed.  The edge E1 may be NULL
3024    (in which case E2 is returned), but E2 is always non-NULL.  */
3025 
3026 static edge
better_edge(edge e1,edge e2)3027 better_edge (edge e1, edge e2)
3028 {
3029   if (!e1)
3030     return e2;
3031 
3032   if (e1->count () > e2->count ())
3033     return e1;
3034   if (e1->count () < e2->count ())
3035     return e2;
3036 
3037   /* Prefer critical edges to minimize inserting compensation code on
3038      critical edges.  */
3039 
3040   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
3041     return EDGE_CRITICAL_P (e1) ? e1 : e2;
3042 
3043   /* Avoid non-deterministic behavior.  */
3044   return (e1->src->index < e2->src->index) ? e1 : e2;
3045 }
3046 
3047 /* Convert stack register references in one block.  Return true if the CFG
3048    has been modified in the process.  */
3049 
3050 static bool
convert_regs_1(basic_block block)3051 convert_regs_1 (basic_block block)
3052 {
3053   struct stack_def regstack;
3054   block_info bi = BLOCK_INFO (block);
3055   int reg;
3056   rtx_insn *insn, *next;
3057   bool control_flow_insn_deleted = false;
3058   bool cfg_altered = false;
3059   int debug_insns_with_starting_stack = 0;
3060 
3061   /* Choose an initial stack layout, if one hasn't already been chosen.  */
3062   if (bi->stack_in.top == -2)
3063     {
3064       edge e, beste = NULL;
3065       edge_iterator ei;
3066 
3067       /* Select the best incoming edge (typically the most frequent) to
3068 	 use as a template for this basic block.  */
3069       FOR_EACH_EDGE (e, ei, block->preds)
3070 	if (BLOCK_INFO (e->src)->done)
3071 	  beste = better_edge (beste, e);
3072 
3073       if (beste)
3074 	propagate_stack (beste);
3075       else
3076 	{
3077 	  /* No predecessors.  Create an arbitrary input stack.  */
3078 	  bi->stack_in.top = -1;
3079 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3080 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
3081 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
3082 	}
3083     }
3084 
3085   if (dump_file)
3086     {
3087       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3088       print_stack (dump_file, &bi->stack_in);
3089     }
3090 
3091   /* Process all insns in this block.  Keep track of NEXT so that we
3092      don't process insns emitted while substituting in INSN.  */
3093   current_block = block;
3094   next = BB_HEAD (block);
3095   regstack = bi->stack_in;
3096   starting_stack_p = true;
3097 
3098   do
3099     {
3100       insn = next;
3101       next = NEXT_INSN (insn);
3102 
3103       /* Ensure we have not missed a block boundary.  */
3104       gcc_assert (next);
3105       if (insn == BB_END (block))
3106 	next = NULL;
3107 
3108       /* Don't bother processing unless there is a stack reg
3109 	 mentioned or if it's a CALL_INSN.  */
3110       if (DEBUG_BIND_INSN_P (insn))
3111 	{
3112 	  if (starting_stack_p)
3113 	    debug_insns_with_starting_stack++;
3114 	  else
3115 	    {
3116 	      subst_all_stack_regs_in_debug_insn (insn, &regstack);
3117 
3118 	      /* Nothing must ever die at a debug insn.  If something
3119 		 is referenced in it that becomes dead, it should have
3120 		 died before and the reference in the debug insn
3121 		 should have been removed so as to avoid changing code
3122 		 generation.  */
3123 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3124 	    }
3125 	}
3126       else if (stack_regs_mentioned (insn)
3127 	       || CALL_P (insn))
3128 	{
3129 	  if (dump_file)
3130 	    {
3131 	      fprintf (dump_file, "  insn %d input stack: ",
3132 		       INSN_UID (insn));
3133 	      print_stack (dump_file, &regstack);
3134 	    }
3135 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3136 	  starting_stack_p = false;
3137 	}
3138     }
3139   while (next);
3140 
3141   if (debug_insns_with_starting_stack)
3142     {
3143       /* Since it's the first non-debug instruction that determines
3144 	 the stack requirements of the current basic block, we refrain
3145 	 from updating debug insns before it in the loop above, and
3146 	 fix them up here.  */
3147       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3148 	   insn = NEXT_INSN (insn))
3149 	{
3150 	  if (!DEBUG_BIND_INSN_P (insn))
3151 	    continue;
3152 
3153 	  debug_insns_with_starting_stack--;
3154 	  subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3155 	}
3156     }
3157 
3158   if (dump_file)
3159     {
3160       fprintf (dump_file, "Expected live registers [");
3161       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3162 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3163 	  fprintf (dump_file, " %d", reg);
3164       fprintf (dump_file, " ]\nOutput stack: ");
3165       print_stack (dump_file, &regstack);
3166     }
3167 
3168   insn = BB_END (block);
3169   if (JUMP_P (insn))
3170     insn = PREV_INSN (insn);
3171 
3172   /* If the function is declared to return a value, but it returns one
3173      in only some cases, some registers might come live here.  Emit
3174      necessary moves for them.  */
3175 
3176   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3177     {
3178       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3179 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3180 	{
3181 	  rtx set;
3182 
3183 	  if (dump_file)
3184 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3185 
3186 	  set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3187 	  insn = emit_insn_after (set, insn);
3188 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3189 	}
3190     }
3191 
3192   /* Amongst the insns possibly deleted during the substitution process above,
3193      might have been the only trapping insn in the block.  We purge the now
3194      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3195      called at the end of convert_regs.  The order in which we process the
3196      blocks ensures that we never delete an already processed edge.
3197 
3198      Note that, at this point, the CFG may have been damaged by the emission
3199      of instructions after an abnormal call, which moves the basic block end
3200      (and is the reason why we call fixup_abnormal_edges later).  So we must
3201      be sure that the trapping insn has been deleted before trying to purge
3202      dead edges, otherwise we risk purging valid edges.
3203 
3204      ??? We are normally supposed not to delete trapping insns, so we pretend
3205      that the insns deleted above don't actually trap.  It would have been
3206      better to detect this earlier and avoid creating the EH edge in the first
3207      place, still, but we don't have enough information at that time.  */
3208 
3209   if (control_flow_insn_deleted)
3210     cfg_altered |= purge_dead_edges (block);
3211 
3212   /* Something failed if the stack lives don't match.  If we had malformed
3213      asms, we zapped the instruction itself, but that didn't produce the
3214      same pattern of register kills as before.  */
3215 
3216   gcc_assert (regstack.reg_set == bi->out_reg_set || any_malformed_asm);
3217   bi->stack_out = regstack;
3218   bi->done = true;
3219 
3220   return cfg_altered;
3221 }
3222 
3223 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3224    CFG has been modified in the process.  */
3225 
3226 static bool
convert_regs_2(basic_block block)3227 convert_regs_2 (basic_block block)
3228 {
3229   basic_block *stack, *sp;
3230   bool cfg_altered = false;
3231 
3232   /* We process the blocks in a top-down manner, in a way such that one block
3233      is only processed after all its predecessors.  The number of predecessors
3234      of every block has already been computed.  */
3235 
3236   stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3237   sp = stack;
3238 
3239   *sp++ = block;
3240 
3241   do
3242     {
3243       edge e;
3244       edge_iterator ei;
3245 
3246       block = *--sp;
3247 
3248       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3249 	 some dead EH outgoing edge after the deletion of the trapping
3250 	 insn inside the block.  Since the number of predecessors of
3251 	 BLOCK's successors was computed based on the initial edge set,
3252 	 we check the necessity to process some of these successors
3253 	 before such an edge deletion may happen.  However, there is
3254 	 a pitfall: if BLOCK is the only predecessor of a successor and
3255 	 the edge between them happens to be deleted, the successor
3256 	 becomes unreachable and should not be processed.  The problem
3257 	 is that there is no way to preventively detect this case so we
3258 	 stack the successor in all cases and hand over the task of
3259 	 fixing up the discrepancy to convert_regs_1.  */
3260 
3261       FOR_EACH_EDGE (e, ei, block->succs)
3262 	if (! (e->flags & EDGE_DFS_BACK))
3263 	  {
3264 	    BLOCK_INFO (e->dest)->predecessors--;
3265 	    if (!BLOCK_INFO (e->dest)->predecessors)
3266 	      *sp++ = e->dest;
3267 	  }
3268 
3269       cfg_altered |= convert_regs_1 (block);
3270     }
3271   while (sp != stack);
3272 
3273   free (stack);
3274 
3275   return cfg_altered;
3276 }
3277 
3278 /* Traverse all basic blocks in a function, converting the register
3279    references in each insn from the "flat" register file that gcc uses,
3280    to the stack-like registers the 387 uses.  */
3281 
3282 static void
convert_regs(void)3283 convert_regs (void)
3284 {
3285   bool cfg_altered = false;
3286   int inserted;
3287   basic_block b;
3288   edge e;
3289   edge_iterator ei;
3290 
3291   /* Initialize uninitialized registers on function entry.  */
3292   inserted = convert_regs_entry ();
3293 
3294   /* Construct the desired stack for function exit.  */
3295   convert_regs_exit ();
3296   BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3297 
3298   /* ??? Future: process inner loops first, and give them arbitrary
3299      initial stacks which emit_swap_insn can modify.  This ought to
3300      prevent double fxch that often appears at the head of a loop.  */
3301 
3302   /* Process all blocks reachable from all entry points.  */
3303   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3304     cfg_altered |= convert_regs_2 (e->dest);
3305 
3306   /* ??? Process all unreachable blocks.  Though there's no excuse
3307      for keeping these even when not optimizing.  */
3308   FOR_EACH_BB_FN (b, cfun)
3309     {
3310       block_info bi = BLOCK_INFO (b);
3311 
3312       if (! bi->done)
3313 	cfg_altered |= convert_regs_2 (b);
3314     }
3315 
3316   /* We must fix up abnormal edges before inserting compensation code
3317      because both mechanisms insert insns on edges.  */
3318   inserted |= fixup_abnormal_edges ();
3319 
3320   inserted |= compensate_edges ();
3321 
3322   clear_aux_for_blocks ();
3323 
3324   if (inserted)
3325     commit_edge_insertions ();
3326 
3327   if (cfg_altered)
3328     cleanup_cfg (0);
3329 
3330   if (dump_file)
3331     fputc ('\n', dump_file);
3332 }
3333 
3334 /* Convert register usage from "flat" register file usage to a "stack
3335    register file.  FILE is the dump file, if used.
3336 
3337    Construct a CFG and run life analysis.  Then convert each insn one
3338    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3339    code duplication created when the converter inserts pop insns on
3340    the edges.  */
3341 
3342 static bool
reg_to_stack(void)3343 reg_to_stack (void)
3344 {
3345   basic_block bb;
3346   int i;
3347   int max_uid;
3348 
3349   /* Clean up previous run.  */
3350   stack_regs_mentioned_data.release ();
3351 
3352   /* See if there is something to do.  Flow analysis is quite
3353      expensive so we might save some compilation time.  */
3354   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3355     if (df_regs_ever_live_p (i))
3356       break;
3357   if (i > LAST_STACK_REG)
3358     return false;
3359 
3360   df_note_add_problem ();
3361   df_analyze ();
3362 
3363   mark_dfs_back_edges ();
3364 
3365   /* Set up block info for each basic block.  */
3366   alloc_aux_for_blocks (sizeof (struct block_info_def));
3367   FOR_EACH_BB_FN (bb, cfun)
3368     {
3369       block_info bi = BLOCK_INFO (bb);
3370       edge_iterator ei;
3371       edge e;
3372       int reg;
3373 
3374       FOR_EACH_EDGE (e, ei, bb->preds)
3375 	if (!(e->flags & EDGE_DFS_BACK)
3376 	    && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3377 	  bi->predecessors++;
3378 
3379       /* Set current register status at last instruction `uninitialized'.  */
3380       bi->stack_in.top = -2;
3381 
3382       /* Copy live_at_end and live_at_start into temporaries.  */
3383       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3384 	{
3385 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3386 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3387 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3388 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3389 	}
3390     }
3391 
3392   /* Create the replacement registers up front.  */
3393   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3394     {
3395       machine_mode mode;
3396       FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
3397 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3398       FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
3399 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3400     }
3401 
3402   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3403 
3404   /* A QNaN for initializing uninitialized variables.
3405 
3406      ??? We can't load from constant memory in PIC mode, because
3407      we're inserting these instructions before the prologue and
3408      the PIC register hasn't been set up.  In that case, fall back
3409      on zero, which we can get from `fldz'.  */
3410 
3411   if ((flag_pic && !TARGET_64BIT)
3412       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3413     not_a_num = CONST0_RTX (SFmode);
3414   else
3415     {
3416       REAL_VALUE_TYPE r;
3417 
3418       real_nan (&r, "", 1, SFmode);
3419       not_a_num = const_double_from_real_value (r, SFmode);
3420       not_a_num = force_const_mem (SFmode, not_a_num);
3421     }
3422 
3423   /* Allocate a cache for stack_regs_mentioned.  */
3424   max_uid = get_max_uid ();
3425   stack_regs_mentioned_data.create (max_uid + 1);
3426   memset (stack_regs_mentioned_data.address (),
3427 	  0, sizeof (char) * (max_uid + 1));
3428 
3429   convert_regs ();
3430   any_malformed_asm = false;
3431 
3432   free_aux_for_blocks ();
3433   return true;
3434 }
3435 #endif /* STACK_REGS */
3436 
3437 namespace {
3438 
3439 const pass_data pass_data_stack_regs =
3440 {
3441   RTL_PASS, /* type */
3442   "*stack_regs", /* name */
3443   OPTGROUP_NONE, /* optinfo_flags */
3444   TV_REG_STACK, /* tv_id */
3445   0, /* properties_required */
3446   0, /* properties_provided */
3447   0, /* properties_destroyed */
3448   0, /* todo_flags_start */
3449   0, /* todo_flags_finish */
3450 };
3451 
3452 class pass_stack_regs : public rtl_opt_pass
3453 {
3454 public:
pass_stack_regs(gcc::context * ctxt)3455   pass_stack_regs (gcc::context *ctxt)
3456     : rtl_opt_pass (pass_data_stack_regs, ctxt)
3457   {}
3458 
3459   /* opt_pass methods: */
gate(function *)3460   virtual bool gate (function *)
3461     {
3462 #ifdef STACK_REGS
3463       return true;
3464 #else
3465       return false;
3466 #endif
3467     }
3468 
3469 }; // class pass_stack_regs
3470 
3471 } // anon namespace
3472 
3473 rtl_opt_pass *
make_pass_stack_regs(gcc::context * ctxt)3474 make_pass_stack_regs (gcc::context *ctxt)
3475 {
3476   return new pass_stack_regs (ctxt);
3477 }
3478 
3479 /* Convert register usage from flat register file usage to a stack
3480    register file.  */
3481 static unsigned int
rest_of_handle_stack_regs(void)3482 rest_of_handle_stack_regs (void)
3483 {
3484 #ifdef STACK_REGS
3485   if (reg_to_stack ())
3486     df_insn_rescan_all ();
3487   regstack_completed = 1;
3488 #endif
3489   return 0;
3490 }
3491 
3492 namespace {
3493 
3494 const pass_data pass_data_stack_regs_run =
3495 {
3496   RTL_PASS, /* type */
3497   "stack", /* name */
3498   OPTGROUP_NONE, /* optinfo_flags */
3499   TV_REG_STACK, /* tv_id */
3500   0, /* properties_required */
3501   0, /* properties_provided */
3502   0, /* properties_destroyed */
3503   0, /* todo_flags_start */
3504   TODO_df_finish, /* todo_flags_finish */
3505 };
3506 
3507 class pass_stack_regs_run : public rtl_opt_pass
3508 {
3509 public:
pass_stack_regs_run(gcc::context * ctxt)3510   pass_stack_regs_run (gcc::context *ctxt)
3511     : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3512   {}
3513 
3514   /* opt_pass methods: */
execute(function *)3515   virtual unsigned int execute (function *)
3516     {
3517       return rest_of_handle_stack_regs ();
3518     }
3519 
3520 }; // class pass_stack_regs_run
3521 
3522 } // anon namespace
3523 
3524 rtl_opt_pass *
make_pass_stack_regs_run(gcc::context * ctxt)3525 make_pass_stack_regs_run (gcc::context *ctxt)
3526 {
3527   return new pass_stack_regs_run (ctxt);
3528 }
3529