xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reg-stack.c (revision 23f5f46327e37e7811da3520f4bb933f9489322f)
1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This pass converts stack-like registers from the "flat register
21    file" model that gcc uses, to a stack convention that the 387 uses.
22 
23    * The form of the input:
24 
25    On input, the function consists of insn that have had their
26    registers fully allocated to a set of "virtual" registers.  Note that
27    the word "virtual" is used differently here than elsewhere in gcc: for
28    each virtual stack reg, there is a hard reg, but the mapping between
29    them is not known until this pass is run.  On output, hard register
30    numbers have been substituted, and various pop and exchange insns have
31    been emitted.  The hard register numbers and the virtual register
32    numbers completely overlap - before this pass, all stack register
33    numbers are virtual, and afterward they are all hard.
34 
35    The virtual registers can be manipulated normally by gcc, and their
36    semantics are the same as for normal registers.  After the hard
37    register numbers are substituted, the semantics of an insn containing
38    stack-like regs are not the same as for an insn with normal regs: for
39    instance, it is not safe to delete an insn that appears to be a no-op
40    move.  In general, no insn containing hard regs should be changed
41    after this pass is done.
42 
43    * The form of the output:
44 
45    After this pass, hard register numbers represent the distance from
46    the current top of stack to the desired register.  A reference to
47    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48    represents the register just below that, and so forth.  Also, REG_DEAD
49    notes indicate whether or not a stack register should be popped.
50 
51    A "swap" insn looks like a parallel of two patterns, where each
52    pattern is a SET: one sets A to B, the other B to A.
53 
54    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
56    will replace the existing stack top, not push a new value.
57 
58    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59    SET_SRC is REG or MEM.
60 
61    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62    appears ambiguous.  As a special case, the presence of a REG_DEAD note
63    for FIRST_STACK_REG differentiates between a load insn and a pop.
64 
65    If a REG_DEAD is present, the insn represents a "pop" that discards
66    the top of the register stack.  If there is no REG_DEAD note, then the
67    insn represents a "dup" or a push of the current top of stack onto the
68    stack.
69 
70    * Methodology:
71 
72    Existing REG_DEAD and REG_UNUSED notes for stack registers are
73    deleted and recreated from scratch.  REG_DEAD is never created for a
74    SET_DEST, only REG_UNUSED.
75 
76    * asm_operands:
77 
78    There are several rules on the usage of stack-like regs in
79    asm_operands insns.  These rules apply only to the operands that are
80    stack-like regs:
81 
82    1. Given a set of input regs that die in an asm_operands, it is
83       necessary to know which are implicitly popped by the asm, and
84       which must be explicitly popped by gcc.
85 
86 	An input reg that is implicitly popped by the asm must be
87 	explicitly clobbered, unless it is constrained to match an
88 	output operand.
89 
90    2. For any input reg that is implicitly popped by an asm, it is
91       necessary to know how to adjust the stack to compensate for the pop.
92       If any non-popped input is closer to the top of the reg-stack than
93       the implicitly popped reg, it would not be possible to know what the
94       stack looked like - it's not clear how the rest of the stack "slides
95       up".
96 
97 	All implicitly popped input regs must be closer to the top of
98 	the reg-stack than any input that is not implicitly popped.
99 
100 	All explicitly referenced input operands may not "skip" a reg.
101 	Otherwise we can have holes in the stack.
102 
103    3. It is possible that if an input dies in an insn, reload might
104       use the input reg for an output reload.  Consider this example:
105 
106 		asm ("foo" : "=t" (a) : "f" (b));
107 
108       This asm says that input B is not popped by the asm, and that
109       the asm pushes a result onto the reg-stack, i.e., the stack is one
110       deeper after the asm than it was before.  But, it is possible that
111       reload will think that it can use the same reg for both the input and
112       the output, if input B dies in this insn.
113 
114 	If any input operand uses the "f" constraint, all output reg
115 	constraints must use the "&" earlyclobber.
116 
117       The asm above would be written as
118 
119 		asm ("foo" : "=&t" (a) : "f" (b));
120 
121    4. Some operands need to be in particular places on the stack.  All
122       output operands fall in this category - there is no other way to
123       know which regs the outputs appear in unless the user indicates
124       this in the constraints.
125 
126 	Output operands must specifically indicate which reg an output
127 	appears in after an asm.  "=f" is not allowed: the operand
128 	constraints must select a class with a single reg.
129 
130    5. Output operands may not be "inserted" between existing stack regs.
131       Since no 387 opcode uses a read/write operand, all output operands
132       are dead before the asm_operands, and are pushed by the asm_operands.
133       It makes no sense to push anywhere but the top of the reg-stack.
134 
135 	Output operands must start at the top of the reg-stack: output
136 	operands may not "skip" a reg.
137 
138    6. Some asm statements may need extra stack space for internal
139       calculations.  This can be guaranteed by clobbering stack registers
140       unrelated to the inputs and outputs.
141 
142    Here are a couple of reasonable asms to want to write.  This asm
143    takes one input, which is internally popped, and produces two outputs.
144 
145 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 
147    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148    and replaces them with one output.  The user must code the "st(1)"
149    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 
151 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152 
153 */
154 
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "regs.h"
166 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
167 #include "recog.h"
168 #include "varasm.h"
169 #include "rtl-error.h"
170 #include "cfgrtl.h"
171 #include "cfganal.h"
172 #include "cfgbuild.h"
173 #include "cfgcleanup.h"
174 #include "reload.h"
175 #include "tree-pass.h"
176 #include "rtl-iter.h"
177 
178 #ifdef STACK_REGS
179 
180 /* We use this array to cache info about insns, because otherwise we
181    spend too much time in stack_regs_mentioned_p.
182 
183    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
184    the insn uses stack registers, two indicates the insn does not use
185    stack registers.  */
186 static vec<char> stack_regs_mentioned_data;
187 
188 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 
190 int regstack_completed = 0;
191 
192 /* This is the basic stack record.  TOP is an index into REG[] such
193    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
194 
195    If TOP is -2, REG[] is not yet initialized.  Stack initialization
196    consists of placing each live reg in array `reg' and setting `top'
197    appropriately.
198 
199    REG_SET indicates which registers are live.  */
200 
201 typedef struct stack_def
202 {
203   int top;			/* index to top stack element */
204   HARD_REG_SET reg_set;		/* set of live registers */
205   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
206 } *stack_ptr;
207 
208 /* This is used to carry information about basic blocks.  It is
209    attached to the AUX field of the standard CFG block.  */
210 
211 typedef struct block_info_def
212 {
213   struct stack_def stack_in;	/* Input stack configuration.  */
214   struct stack_def stack_out;	/* Output stack configuration.  */
215   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
216   int done;			/* True if block already converted.  */
217   int predecessors;		/* Number of predecessors that need
218 				   to be visited.  */
219 } *block_info;
220 
221 #define BLOCK_INFO(B)	((block_info) (B)->aux)
222 
223 /* Passed to change_stack to indicate where to emit insns.  */
224 enum emit_where
225 {
226   EMIT_AFTER,
227   EMIT_BEFORE
228 };
229 
230 /* The block we're currently working on.  */
231 static basic_block current_block;
232 
233 /* In the current_block, whether we're processing the first register
234    stack or call instruction, i.e. the regstack is currently the
235    same as BLOCK_INFO(current_block)->stack_in.  */
236 static bool starting_stack_p;
237 
238 /* This is the register file for all register after conversion.  */
239 static rtx
240   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241 
242 #define FP_MODE_REG(regno,mode)	\
243   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 
245 /* Used to initialize uninitialized registers.  */
246 static rtx not_a_num;
247 
248 /* Forward declarations */
249 
250 static int stack_regs_mentioned_p (const_rtx pat);
251 static void pop_stack (stack_ptr, int);
252 static rtx *get_true_reg (rtx *);
253 
254 static int check_asm_stack_operands (rtx_insn *);
255 static void get_asm_operands_in_out (rtx, int *, int *);
256 static rtx stack_result (tree);
257 static void replace_reg (rtx *, int);
258 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
259 static int get_hard_regnum (stack_ptr, rtx);
260 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
261 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
262 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
263 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
264 static int swap_rtx_condition_1 (rtx);
265 static int swap_rtx_condition (rtx_insn *, int &);
266 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx, bool);
267 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
268 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
269 static bool subst_stack_regs (rtx_insn *, stack_ptr);
270 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
271 static void print_stack (FILE *, stack_ptr);
272 static rtx_insn *next_flags_user (rtx_insn *, int &);
273 
274 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
275 
276 static int
stack_regs_mentioned_p(const_rtx pat)277 stack_regs_mentioned_p (const_rtx pat)
278 {
279   const char *fmt;
280   int i;
281 
282   if (STACK_REG_P (pat))
283     return 1;
284 
285   fmt = GET_RTX_FORMAT (GET_CODE (pat));
286   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287     {
288       if (fmt[i] == 'E')
289 	{
290 	  int j;
291 
292 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 	      return 1;
295 	}
296       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 	return 1;
298     }
299 
300   return 0;
301 }
302 
303 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
304 
305 int
stack_regs_mentioned(const_rtx insn)306 stack_regs_mentioned (const_rtx insn)
307 {
308   unsigned int uid, max;
309   int test;
310 
311   if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
312     return 0;
313 
314   uid = INSN_UID (insn);
315   max = stack_regs_mentioned_data.length ();
316   if (uid >= max)
317     {
318       /* Allocate some extra size to avoid too many reallocs, but
319 	 do not grow too quickly.  */
320       max = uid + uid / 20 + 1;
321       stack_regs_mentioned_data.safe_grow_cleared (max);
322     }
323 
324   test = stack_regs_mentioned_data[uid];
325   if (test == 0)
326     {
327       /* This insn has yet to be examined.  Do so now.  */
328       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
329       stack_regs_mentioned_data[uid] = test;
330     }
331 
332   return test == 1;
333 }
334 
335 static rtx ix86_flags_rtx;
336 
337 static rtx_insn *
next_flags_user(rtx_insn * insn,int & debug_seen)338 next_flags_user (rtx_insn *insn, int &debug_seen)
339 {
340   /* Search forward looking for the first use of this value.
341      Stop at block boundaries.  */
342 
343   while (insn != BB_END (current_block))
344     {
345       insn = NEXT_INSN (insn);
346 
347       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
348 	{
349 	  if (DEBUG_INSN_P (insn) && debug_seen >= 0)
350 	    {
351 	      debug_seen = 1;
352 	      continue;
353 	    }
354 	  return insn;
355 	}
356 
357       if (CALL_P (insn))
358 	return NULL;
359     }
360   return NULL;
361 }
362 
363 /* Reorganize the stack into ascending numbers, before this insn.  */
364 
365 static void
straighten_stack(rtx_insn * insn,stack_ptr regstack)366 straighten_stack (rtx_insn *insn, stack_ptr regstack)
367 {
368   struct stack_def temp_stack;
369   int top;
370 
371   /* If there is only a single register on the stack, then the stack is
372      already in increasing order and no reorganization is needed.
373 
374      Similarly if the stack is empty.  */
375   if (regstack->top <= 0)
376     return;
377 
378   temp_stack.reg_set = regstack->reg_set;
379 
380   for (top = temp_stack.top = regstack->top; top >= 0; top--)
381     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
382 
383   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
384 }
385 
386 /* Pop a register from the stack.  */
387 
388 static void
pop_stack(stack_ptr regstack,int regno)389 pop_stack (stack_ptr regstack, int regno)
390 {
391   int top = regstack->top;
392 
393   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
394   regstack->top--;
395   /* If regno was not at the top of stack then adjust stack.  */
396   if (regstack->reg [top] != regno)
397     {
398       int i;
399       for (i = regstack->top; i >= 0; i--)
400 	if (regstack->reg [i] == regno)
401 	  {
402 	    int j;
403 	    for (j = i; j < top; j++)
404 	      regstack->reg [j] = regstack->reg [j + 1];
405 	    break;
406 	  }
407     }
408 }
409 
410 /* Return a pointer to the REG expression within PAT.  If PAT is not a
411    REG, possible enclosed by a conversion rtx, return the inner part of
412    PAT that stopped the search.  */
413 
414 static rtx *
get_true_reg(rtx * pat)415 get_true_reg (rtx *pat)
416 {
417   for (;;)
418     switch (GET_CODE (*pat))
419       {
420       case SUBREG:
421 	/* Eliminate FP subregister accesses in favor of the
422 	   actual FP register in use.  */
423 	{
424 	  rtx subreg = SUBREG_REG (*pat);
425 
426 	  if (STACK_REG_P (subreg))
427 	    {
428 	      int regno_off = subreg_regno_offset (REGNO (subreg),
429 						   GET_MODE (subreg),
430 						   SUBREG_BYTE (*pat),
431 						   GET_MODE (*pat));
432 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
433 				  GET_MODE (subreg));
434 	      return pat;
435 	    }
436 	  pat = &XEXP (*pat, 0);
437 	  break;
438 	}
439 
440       case FLOAT_TRUNCATE:
441 	if (!flag_unsafe_math_optimizations)
442 	  return pat;
443 	/* FALLTHRU */
444 
445       case FLOAT:
446       case FIX:
447       case FLOAT_EXTEND:
448 	pat = &XEXP (*pat, 0);
449 	break;
450 
451       case UNSPEC:
452 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
453 	    || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
454 	  pat = &XVECEXP (*pat, 0, 0);
455 	return pat;
456 
457       default:
458 	return pat;
459       }
460 }
461 
462 /* Set if we find any malformed asms in a block.  */
463 static bool any_malformed_asm;
464 
465 /* There are many rules that an asm statement for stack-like regs must
466    follow.  Those rules are explained at the top of this file: the rule
467    numbers below refer to that explanation.  */
468 
469 static int
check_asm_stack_operands(rtx_insn * insn)470 check_asm_stack_operands (rtx_insn *insn)
471 {
472   int i;
473   int n_clobbers;
474   int malformed_asm = 0;
475   rtx body = PATTERN (insn);
476 
477   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
478   char implicitly_dies[FIRST_PSEUDO_REGISTER];
479   char explicitly_used[FIRST_PSEUDO_REGISTER];
480 
481   rtx *clobber_reg = 0;
482   int n_inputs, n_outputs;
483 
484   /* Find out what the constraints require.  If no constraint
485      alternative matches, this asm is malformed.  */
486   extract_constrain_insn (insn);
487 
488   preprocess_constraints (insn);
489 
490   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
491 
492   if (which_alternative < 0)
493     {
494       /* Avoid further trouble with this insn.  */
495       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
496       return 0;
497     }
498   const operand_alternative *op_alt = which_op_alt ();
499 
500   /* Strip SUBREGs here to make the following code simpler.  */
501   for (i = 0; i < recog_data.n_operands; i++)
502     if (GET_CODE (recog_data.operand[i]) == SUBREG
503 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
504       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
505 
506   /* Set up CLOBBER_REG.  */
507 
508   n_clobbers = 0;
509 
510   if (GET_CODE (body) == PARALLEL)
511     {
512       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
513 
514       for (i = 0; i < XVECLEN (body, 0); i++)
515 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
516 	  {
517 	    rtx clobber = XVECEXP (body, 0, i);
518 	    rtx reg = XEXP (clobber, 0);
519 
520 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
521 	      reg = SUBREG_REG (reg);
522 
523 	    if (STACK_REG_P (reg))
524 	      {
525 		clobber_reg[n_clobbers] = reg;
526 		n_clobbers++;
527 	      }
528 	  }
529     }
530 
531   /* Enforce rule #4: Output operands must specifically indicate which
532      reg an output appears in after an asm.  "=f" is not allowed: the
533      operand constraints must select a class with a single reg.
534 
535      Also enforce rule #5: Output operands must start at the top of
536      the reg-stack: output operands may not "skip" a reg.  */
537 
538   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
539   for (i = 0; i < n_outputs; i++)
540     if (STACK_REG_P (recog_data.operand[i]))
541       {
542 	if (reg_class_size[(int) op_alt[i].cl] != 1)
543 	  {
544 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
545 	    malformed_asm = 1;
546 	  }
547 	else
548 	  {
549 	    int j;
550 
551 	    for (j = 0; j < n_clobbers; j++)
552 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
553 		{
554 		  error_for_asm (insn, "output constraint %d cannot be "
555 				 "specified together with %qs clobber",
556 				 i, reg_names [REGNO (clobber_reg[j])]);
557 		  malformed_asm = 1;
558 		  break;
559 		}
560 	    if (j == n_clobbers)
561 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
562 	  }
563       }
564 
565 
566   /* Search for first non-popped reg.  */
567   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
568     if (! reg_used_as_output[i])
569       break;
570 
571   /* If there are any other popped regs, that's an error.  */
572   for (; i < LAST_STACK_REG + 1; i++)
573     if (reg_used_as_output[i])
574       break;
575 
576   if (i != LAST_STACK_REG + 1)
577     {
578       error_for_asm (insn, "output registers must be grouped at top of stack");
579       malformed_asm = 1;
580     }
581 
582   /* Enforce rule #2: All implicitly popped input regs must be closer
583      to the top of the reg-stack than any input that is not implicitly
584      popped.  */
585 
586   memset (implicitly_dies, 0, sizeof (implicitly_dies));
587   memset (explicitly_used, 0, sizeof (explicitly_used));
588   for (i = n_outputs; i < n_outputs + n_inputs; i++)
589     if (STACK_REG_P (recog_data.operand[i]))
590       {
591 	/* An input reg is implicitly popped if it is tied to an
592 	   output, or if there is a CLOBBER for it.  */
593 	int j;
594 
595 	for (j = 0; j < n_clobbers; j++)
596 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
597 	    break;
598 
599 	if (j < n_clobbers || op_alt[i].matches >= 0)
600 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
601 	else if (reg_class_size[(int) op_alt[i].cl] == 1)
602 	  explicitly_used[REGNO (recog_data.operand[i])] = 1;
603       }
604 
605   /* Search for first non-popped reg.  */
606   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
607     if (! implicitly_dies[i])
608       break;
609 
610   /* If there are any other popped regs, that's an error.  */
611   for (; i < LAST_STACK_REG + 1; i++)
612     if (implicitly_dies[i])
613       break;
614 
615   if (i != LAST_STACK_REG + 1)
616     {
617       error_for_asm (insn,
618 		     "implicitly popped registers must be grouped "
619 		     "at top of stack");
620       malformed_asm = 1;
621     }
622 
623   /* Search for first not-explicitly used reg.  */
624   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
625     if (! implicitly_dies[i] && ! explicitly_used[i])
626       break;
627 
628   /* If there are any other explicitly used regs, that's an error.  */
629   for (; i < LAST_STACK_REG + 1; i++)
630     if (explicitly_used[i])
631       break;
632 
633   if (i != LAST_STACK_REG + 1)
634     {
635       error_for_asm (insn,
636 		     "explicitly used registers must be grouped "
637 		     "at top of stack");
638       malformed_asm = 1;
639     }
640 
641   /* Enforce rule #3: If any input operand uses the "f" constraint, all
642      output constraints must use the "&" earlyclobber.
643 
644      ??? Detect this more deterministically by having constrain_asm_operands
645      record any earlyclobber.  */
646 
647   for (i = n_outputs; i < n_outputs + n_inputs; i++)
648     if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
649       {
650 	int j;
651 
652 	for (j = 0; j < n_outputs; j++)
653 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
654 	    {
655 	      error_for_asm (insn,
656 			     "output operand %d must use %<&%> constraint", j);
657 	      malformed_asm = 1;
658 	    }
659       }
660 
661   if (malformed_asm)
662     {
663       /* Avoid further trouble with this insn.  */
664       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
665       any_malformed_asm = true;
666       return 0;
667     }
668 
669   return 1;
670 }
671 
672 /* Calculate the number of inputs and outputs in BODY, an
673    asm_operands.  N_OPERANDS is the total number of operands, and
674    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
675    placed.  */
676 
677 static void
get_asm_operands_in_out(rtx body,int * pout,int * pin)678 get_asm_operands_in_out (rtx body, int *pout, int *pin)
679 {
680   rtx asmop = extract_asm_operands (body);
681 
682   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
683   *pout = (recog_data.n_operands
684 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
685 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
686 }
687 
688 /* If current function returns its result in an fp stack register,
689    return the REG.  Otherwise, return 0.  */
690 
691 static rtx
stack_result(tree decl)692 stack_result (tree decl)
693 {
694   rtx result;
695 
696   /* If the value is supposed to be returned in memory, then clearly
697      it is not returned in a stack register.  */
698   if (aggregate_value_p (DECL_RESULT (decl), decl))
699     return 0;
700 
701   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
702   if (result != 0)
703     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
704 					   decl, true);
705 
706   return result != 0 && STACK_REG_P (result) ? result : 0;
707 }
708 
709 
710 /*
711  * This section deals with stack register substitution, and forms the second
712  * pass over the RTL.
713  */
714 
715 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
716    the desired hard REGNO.  */
717 
718 static void
replace_reg(rtx * reg,int regno)719 replace_reg (rtx *reg, int regno)
720 {
721   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
722   gcc_assert (STACK_REG_P (*reg));
723 
724   gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
725 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
726 
727   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
728 }
729 
730 /* Remove a note of type NOTE, which must be found, for register
731    number REGNO from INSN.  Remove only one such note.  */
732 
733 static void
remove_regno_note(rtx_insn * insn,enum reg_note note,unsigned int regno)734 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
735 {
736   rtx *note_link, this_rtx;
737 
738   note_link = &REG_NOTES (insn);
739   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
740     if (REG_NOTE_KIND (this_rtx) == note
741 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
742       {
743 	*note_link = XEXP (this_rtx, 1);
744 	return;
745       }
746     else
747       note_link = &XEXP (this_rtx, 1);
748 
749   gcc_unreachable ();
750 }
751 
752 /* Find the hard register number of virtual register REG in REGSTACK.
753    The hard register number is relative to the top of the stack.  -1 is
754    returned if the register is not found.  */
755 
756 static int
get_hard_regnum(stack_ptr regstack,rtx reg)757 get_hard_regnum (stack_ptr regstack, rtx reg)
758 {
759   int i;
760 
761   gcc_assert (STACK_REG_P (reg));
762 
763   for (i = regstack->top; i >= 0; i--)
764     if (regstack->reg[i] == REGNO (reg))
765       break;
766 
767   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
768 }
769 
770 /* Emit an insn to pop virtual register REG before or after INSN.
771    REGSTACK is the stack state after INSN and is updated to reflect this
772    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
773    is represented as a SET whose destination is the register to be popped
774    and source is the top of stack.  A death note for the top of stack
775    cases the movdf pattern to pop.  */
776 
777 static rtx_insn *
emit_pop_insn(rtx_insn * insn,stack_ptr regstack,rtx reg,enum emit_where where)778 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg,
779 	       enum emit_where where)
780 {
781   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
782   rtx_insn *pop_insn;
783   rtx pop_rtx;
784   int hard_regno;
785 
786   /* For complex types take care to pop both halves.  These may survive in
787      CLOBBER and USE expressions.  */
788   if (COMPLEX_MODE_P (GET_MODE (reg)))
789     {
790       rtx reg1 = FP_MODE_REG (REGNO (reg), raw_mode);
791       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, raw_mode);
792 
793       pop_insn = NULL;
794       if (get_hard_regnum (regstack, reg1) >= 0)
795 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
796       if (get_hard_regnum (regstack, reg2) >= 0)
797 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
798       gcc_assert (pop_insn);
799       return pop_insn;
800     }
801 
802   hard_regno = get_hard_regnum (regstack, reg);
803 
804   gcc_assert (hard_regno >= FIRST_STACK_REG);
805 
806   pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, raw_mode),
807 			 FP_MODE_REG (FIRST_STACK_REG, raw_mode));
808 
809   if (where == EMIT_AFTER)
810     pop_insn = emit_insn_after (pop_rtx, insn);
811   else
812     pop_insn = emit_insn_before (pop_rtx, insn);
813 
814   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, raw_mode));
815 
816   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
817     = regstack->reg[regstack->top];
818   regstack->top -= 1;
819   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
820 
821   return pop_insn;
822 }
823 
824 /* Emit an insn before or after INSN to swap virtual register REG with
825    the top of stack.  REGSTACK is the stack state before the swap, and
826    is updated to reflect the swap.  A swap insn is represented as a
827    PARALLEL of two patterns: each pattern moves one reg to the other.
828 
829    If REG is already at the top of the stack, no insn is emitted.  */
830 
831 static void
emit_swap_insn(rtx_insn * insn,stack_ptr regstack,rtx reg)832 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
833 {
834   int hard_regno;
835   int other_reg;		/* swap regno temps */
836   rtx_insn *i1;			/* the stack-reg insn prior to INSN */
837   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
838 
839   hard_regno = get_hard_regnum (regstack, reg);
840 
841   if (hard_regno == FIRST_STACK_REG)
842     return;
843   if (hard_regno == -1)
844     {
845       /* Something failed if the register wasn't on the stack.  If we had
846 	 malformed asms, we zapped the instruction itself, but that didn't
847 	 produce the same pattern of register sets as before.  To prevent
848 	 further failure, adjust REGSTACK to include REG at TOP.  */
849       gcc_assert (any_malformed_asm);
850       regstack->reg[++regstack->top] = REGNO (reg);
851       return;
852     }
853   gcc_assert (hard_regno >= FIRST_STACK_REG);
854 
855   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
856   std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
857 
858   /* Find the previous insn involving stack regs, but don't pass a
859      block boundary.  */
860   i1 = NULL;
861   if (current_block && insn != BB_HEAD (current_block))
862     {
863       rtx_insn *tmp = PREV_INSN (insn);
864       rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
865       while (tmp != limit)
866 	{
867 	  if (LABEL_P (tmp)
868 	      || CALL_P (tmp)
869 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
870 	      || (NONJUMP_INSN_P (tmp)
871 		  && stack_regs_mentioned (tmp)))
872 	    {
873 	      i1 = tmp;
874 	      break;
875 	    }
876 	  tmp = PREV_INSN (tmp);
877 	}
878     }
879 
880   if (i1 != NULL_RTX
881       && (i1set = single_set (i1)) != NULL_RTX)
882     {
883       rtx i1src = *get_true_reg (&SET_SRC (i1set));
884       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
885 
886       /* If the previous register stack push was from the reg we are to
887 	 swap with, omit the swap.  */
888 
889       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
890 	  && REG_P (i1src)
891 	  && REGNO (i1src) == (unsigned) hard_regno - 1
892 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
893 	return;
894 
895       /* If the previous insn wrote to the reg we are to swap with,
896 	 omit the swap.  */
897 
898       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
899 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
900 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
901 	return;
902 
903       /* Instead of
904 	   fld a
905 	   fld b
906 	   fxch %st(1)
907 	 just use
908 	   fld b
909 	   fld a
910 	 if possible.  Similarly for fld1, fldz, fldpi etc. instead of any
911 	 of the loads or for float extension from memory.  */
912 
913       i1src = SET_SRC (i1set);
914       if (GET_CODE (i1src) == FLOAT_EXTEND)
915 	i1src = XEXP (i1src, 0);
916       if (REG_P (i1dest)
917 	  && REGNO (i1dest) == FIRST_STACK_REG
918 	  && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
919 	  && !side_effects_p (i1src)
920 	  && hard_regno == FIRST_STACK_REG + 1
921 	  && i1 != BB_HEAD (current_block))
922 	{
923 	  /* i1 is the last insn that involves stack regs before insn, and
924 	     is known to be a load without other side-effects, i.e. fld b
925 	     in the above comment.  */
926 	  rtx_insn *i2 = NULL;
927 	  rtx i2set;
928 	  rtx_insn *tmp = PREV_INSN (i1);
929 	  rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
930 	  /* Find the previous insn involving stack regs, but don't pass a
931 	     block boundary.  */
932 	  while (tmp != limit)
933 	    {
934 	      if (LABEL_P (tmp)
935 		  || CALL_P (tmp)
936 		  || NOTE_INSN_BASIC_BLOCK_P (tmp)
937 		  || (NONJUMP_INSN_P (tmp)
938 		      && stack_regs_mentioned (tmp)))
939 		{
940 		  i2 = tmp;
941 		  break;
942 		}
943 	      tmp = PREV_INSN (tmp);
944 	    }
945 	  if (i2 != NULL_RTX
946 	      && (i2set = single_set (i2)) != NULL_RTX)
947 	    {
948 	      rtx i2dest = *get_true_reg (&SET_DEST (i2set));
949 	      rtx i2src = SET_SRC (i2set);
950 	      if (GET_CODE (i2src) == FLOAT_EXTEND)
951 		i2src = XEXP (i2src, 0);
952 	      /* If the last two insns before insn that involve
953 		 stack regs are loads, where the latter (i1)
954 		 pushes onto the register stack and thus
955 		 moves the value from the first load (i2) from
956 		 %st to %st(1), consider swapping them.  */
957 	      if (REG_P (i2dest)
958 		  && REGNO (i2dest) == FIRST_STACK_REG
959 		  && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
960 		  /* Ensure i2 doesn't have other side-effects.  */
961 		  && !side_effects_p (i2src)
962 		  /* And that the two instructions can actually be
963 		     swapped, i.e. there shouldn't be any stores
964 		     in between i2 and i1 that might alias with
965 		     the i1 memory, and the memory address can't
966 		     use registers set in between i2 and i1.  */
967 		  && !modified_between_p (SET_SRC (i1set), i2, i1))
968 		{
969 		  /* Move i1 (fld b above) right before i2 (fld a
970 		     above.  */
971 		  remove_insn (i1);
972 		  SET_PREV_INSN (i1) = NULL_RTX;
973 		  SET_NEXT_INSN (i1) = NULL_RTX;
974 		  set_block_for_insn (i1, NULL);
975 		  emit_insn_before (i1, i2);
976 		  return;
977 		}
978 	    }
979 	}
980     }
981 
982   /* Avoid emitting the swap if this is the first register stack insn
983      of the current_block.  Instead update the current_block's stack_in
984      and let compensate edges take care of this for us.  */
985   if (current_block && starting_stack_p)
986     {
987       BLOCK_INFO (current_block)->stack_in = *regstack;
988       starting_stack_p = false;
989       return;
990     }
991 
992   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
993   rtx op1 = FP_MODE_REG (hard_regno, raw_mode);
994   rtx op2 = FP_MODE_REG (FIRST_STACK_REG, raw_mode);
995   rtx swap_rtx
996     = gen_rtx_PARALLEL (VOIDmode,
997 			gen_rtvec (2, gen_rtx_SET (op1, op2),
998 				   gen_rtx_SET (op2, op1)));
999   if (i1)
1000     emit_insn_after (swap_rtx, i1);
1001   else if (current_block)
1002     emit_insn_before (swap_rtx, BB_HEAD (current_block));
1003   else
1004     emit_insn_before (swap_rtx, insn);
1005 }
1006 
1007 /* Emit an insns before INSN to swap virtual register SRC1 with
1008    the top of stack and virtual register SRC2 with second stack
1009    slot. REGSTACK is the stack state before the swaps, and
1010    is updated to reflect the swaps.  A swap insn is represented as a
1011    PARALLEL of two patterns: each pattern moves one reg to the other.
1012 
1013    If SRC1 and/or SRC2 are already at the right place, no swap insn
1014    is emitted.  */
1015 
1016 static void
swap_to_top(rtx_insn * insn,stack_ptr regstack,rtx src1,rtx src2)1017 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1018 {
1019   struct stack_def temp_stack;
1020   int regno, j, k;
1021 
1022   temp_stack = *regstack;
1023 
1024   /* Place operand 1 at the top of stack.  */
1025   regno = get_hard_regnum (&temp_stack, src1);
1026   gcc_assert (regno >= 0);
1027   if (regno != FIRST_STACK_REG)
1028     {
1029       k = temp_stack.top - (regno - FIRST_STACK_REG);
1030       j = temp_stack.top;
1031 
1032       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1033     }
1034 
1035   /* Place operand 2 next on the stack.  */
1036   regno = get_hard_regnum (&temp_stack, src2);
1037   gcc_assert (regno >= 0);
1038   if (regno != FIRST_STACK_REG + 1)
1039     {
1040       k = temp_stack.top - (regno - FIRST_STACK_REG);
1041       j = temp_stack.top - 1;
1042 
1043       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1044     }
1045 
1046   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1047 }
1048 
1049 /* Handle a move to or from a stack register in PAT, which is in INSN.
1050    REGSTACK is the current stack.  Return whether a control flow insn
1051    was deleted in the process.  */
1052 
1053 static bool
move_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx pat)1054 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1055 {
1056   rtx *psrc =  get_true_reg (&SET_SRC (pat));
1057   rtx *pdest = get_true_reg (&SET_DEST (pat));
1058   rtx src, dest;
1059   rtx note;
1060   bool control_flow_insn_deleted = false;
1061 
1062   src = *psrc; dest = *pdest;
1063 
1064   if (STACK_REG_P (src) && STACK_REG_P (dest))
1065     {
1066       /* Write from one stack reg to another.  If SRC dies here, then
1067 	 just change the register mapping and delete the insn.  */
1068 
1069       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1070       if (note)
1071 	{
1072 	  int i;
1073 
1074 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
1075 	  gcc_assert (REGNO (src) != REGNO (dest));
1076 
1077 	  for (i = regstack->top; i >= 0; i--)
1078 	    if (regstack->reg[i] == REGNO (src))
1079 	      break;
1080 
1081 	  /* The destination must be dead, or life analysis is borked.  */
1082 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1083 
1084 	  /* If the source is not live, this is yet another case of
1085 	     uninitialized variables.  Load up a NaN instead.  */
1086 	  if (i < 0)
1087 	    return move_nan_for_stack_reg (insn, regstack, dest);
1088 
1089 	  /* It is possible that the dest is unused after this insn.
1090 	     If so, just pop the src.  */
1091 
1092 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1093 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1094 	  else
1095 	    {
1096 	      regstack->reg[i] = REGNO (dest);
1097 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1098 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1099 	    }
1100 
1101 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1102 	  delete_insn (insn);
1103 	  return control_flow_insn_deleted;
1104 	}
1105 
1106       /* The source reg does not die.  */
1107 
1108       /* If this appears to be a no-op move, delete it, or else it
1109 	 will confuse the machine description output patterns. But if
1110 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1111 	 for REG_UNUSED will not work for deleted insns.  */
1112 
1113       if (REGNO (src) == REGNO (dest))
1114 	{
1115 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1116 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1117 
1118 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1119 	  delete_insn (insn);
1120 	  return control_flow_insn_deleted;
1121 	}
1122 
1123       /* The destination ought to be dead.  */
1124       if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1125 	gcc_assert (any_malformed_asm);
1126       else
1127 	{
1128 	  replace_reg (psrc, get_hard_regnum (regstack, src));
1129 
1130 	  regstack->reg[++regstack->top] = REGNO (dest);
1131 	  SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1132 	  replace_reg (pdest, FIRST_STACK_REG);
1133 	}
1134     }
1135   else if (STACK_REG_P (src))
1136     {
1137       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1138 	 only top of stack may be saved, emit an exchange first if
1139 	 needs be.  */
1140 
1141       emit_swap_insn (insn, regstack, src);
1142 
1143       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1144       if (note)
1145 	{
1146 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1147 	  regstack->top--;
1148 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1149 	}
1150       else if ((GET_MODE (src) == XFmode)
1151 	       && regstack->top < REG_STACK_SIZE - 1)
1152 	{
1153 	  /* A 387 cannot write an XFmode value to a MEM without
1154 	     clobbering the source reg.  The output code can handle
1155 	     this by reading back the value from the MEM.
1156 	     But it is more efficient to use a temp register if one is
1157 	     available.  Push the source value here if the register
1158 	     stack is not full, and then write the value to memory via
1159 	     a pop.  */
1160 	  rtx push_rtx;
1161 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1162 
1163 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1164 	  emit_insn_before (push_rtx, insn);
1165 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1166 	}
1167 
1168       replace_reg (psrc, FIRST_STACK_REG);
1169     }
1170   else
1171     {
1172       rtx pat = PATTERN (insn);
1173 
1174       gcc_assert (STACK_REG_P (dest));
1175 
1176       /* Load from MEM, or possibly integer REG or constant, into the
1177 	 stack regs.  The actual target is always the top of the
1178 	 stack. The stack mapping is changed to reflect that DEST is
1179 	 now at top of stack.  */
1180 
1181       /* The destination ought to be dead.  However, there is a
1182 	 special case with i387 UNSPEC_TAN, where destination is live
1183 	 (an argument to fptan) but inherent load of 1.0 is modelled
1184 	 as a load from a constant.  */
1185       if (GET_CODE (pat) == PARALLEL
1186 	  && XVECLEN (pat, 0) == 2
1187 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1188 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1189 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1190 	emit_swap_insn (insn, regstack, dest);
1191       else
1192 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1193 		    || any_malformed_asm);
1194 
1195       gcc_assert (regstack->top < REG_STACK_SIZE);
1196 
1197       regstack->reg[++regstack->top] = REGNO (dest);
1198       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1199       replace_reg (pdest, FIRST_STACK_REG);
1200     }
1201 
1202   return control_flow_insn_deleted;
1203 }
1204 
1205 /* A helper function which replaces INSN with a pattern that loads up
1206    a NaN into DEST, then invokes move_for_stack_reg.  */
1207 
1208 static bool
move_nan_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx dest)1209 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1210 {
1211   rtx pat;
1212 
1213   dest = FP_MODE_REG (REGNO (dest), SFmode);
1214   pat = gen_rtx_SET (dest, not_a_num);
1215   PATTERN (insn) = pat;
1216   INSN_CODE (insn) = -1;
1217 
1218   return move_for_stack_reg (insn, regstack, pat);
1219 }
1220 
1221 /* Swap the condition on a branch, if there is one.  Return true if we
1222    found a condition to swap.  False if the condition was not used as
1223    such.  */
1224 
1225 static int
swap_rtx_condition_1(rtx pat)1226 swap_rtx_condition_1 (rtx pat)
1227 {
1228   const char *fmt;
1229   int i, r = 0;
1230 
1231   if (COMPARISON_P (pat))
1232     {
1233       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1234       r = 1;
1235     }
1236   else
1237     {
1238       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1239       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1240 	{
1241 	  if (fmt[i] == 'E')
1242 	    {
1243 	      int j;
1244 
1245 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1246 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1247 	    }
1248 	  else if (fmt[i] == 'e')
1249 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1250 	}
1251     }
1252 
1253   return r;
1254 }
1255 
1256 /* This function swaps condition in cc users and returns true
1257    if successful.  It is invoked in 2 different modes, one with
1258    DEBUG_SEEN set initially to 0.  In this mode, next_flags_user
1259    will skip DEBUG_INSNs that it would otherwise return and just
1260    sets DEBUG_SEEN to 1 in that case.  If DEBUG_SEEN is 0 at
1261    the end of toplevel swap_rtx_condition which returns true,
1262    it means no problematic DEBUG_INSNs were seen and all changes
1263    have been applied.  If it returns true but DEBUG_SEEN is 1,
1264    it means some problematic DEBUG_INSNs were seen and no changes
1265    have been applied so far.  In that case one needs to call
1266    swap_rtx_condition again with DEBUG_SEEN set to -1, in which
1267    case it doesn't skip DEBUG_INSNs, but instead adjusts the
1268    flags related condition in them or resets them as needed.  */
1269 
1270 static int
swap_rtx_condition(rtx_insn * insn,int & debug_seen)1271 swap_rtx_condition (rtx_insn *insn, int &debug_seen)
1272 {
1273   rtx pat = PATTERN (insn);
1274 
1275   /* We're looking for a single set to cc0 or an HImode temporary.  */
1276 
1277   if (GET_CODE (pat) == SET
1278       && REG_P (SET_DEST (pat))
1279       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1280     {
1281       insn = next_flags_user (insn, debug_seen);
1282       if (insn == NULL_RTX)
1283 	return 0;
1284       pat = PATTERN (insn);
1285     }
1286 
1287   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1288      with the cc value right now.  We may be able to search for one
1289      though.  */
1290 
1291   if (GET_CODE (pat) == SET
1292       && GET_CODE (SET_SRC (pat)) == UNSPEC
1293       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1294     {
1295       rtx dest = SET_DEST (pat);
1296 
1297       /* Search forward looking for the first use of this value.
1298 	 Stop at block boundaries.  */
1299       while (insn != BB_END (current_block))
1300 	{
1301 	  insn = NEXT_INSN (insn);
1302 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1303 	    {
1304 	      if (DEBUG_INSN_P (insn))
1305 		{
1306 		  if (debug_seen >= 0)
1307 		    debug_seen = 1;
1308 		  else
1309 		    /* Reset the DEBUG insn otherwise.  */
1310 		    INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1311 		  continue;
1312 		}
1313 	      break;
1314 	    }
1315 	  if (CALL_P (insn))
1316 	    return 0;
1317 	}
1318 
1319       /* We haven't found it.  */
1320       if (insn == BB_END (current_block))
1321 	return 0;
1322 
1323       /* So we've found the insn using this value.  If it is anything
1324 	 other than sahf or the value does not die (meaning we'd have
1325 	 to search further), then we must give up.  */
1326       pat = PATTERN (insn);
1327       if (GET_CODE (pat) != SET
1328 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1329 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1330 	  || ! dead_or_set_p (insn, dest))
1331 	return 0;
1332 
1333       /* Now we are prepared to handle this as a normal cc0 setter.  */
1334       insn = next_flags_user (insn, debug_seen);
1335       if (insn == NULL_RTX)
1336 	return 0;
1337       pat = PATTERN (insn);
1338     }
1339 
1340   if (swap_rtx_condition_1 (pat))
1341     {
1342       int fail = 0;
1343       if (DEBUG_INSN_P (insn))
1344 	gcc_assert (debug_seen < 0);
1345       else
1346 	{
1347 	  INSN_CODE (insn) = -1;
1348 	  if (recog_memoized (insn) == -1)
1349 	    fail = 1;
1350 	}
1351       /* In case the flags don't die here, recurse to try fix
1352 	 following user too.  */
1353       if (!fail && !dead_or_set_p (insn, ix86_flags_rtx))
1354 	{
1355 	  insn = next_flags_user (insn, debug_seen);
1356 	  if (!insn || !swap_rtx_condition (insn, debug_seen))
1357 	    fail = 1;
1358 	}
1359       if (fail || debug_seen == 1)
1360 	swap_rtx_condition_1 (pat);
1361       return !fail;
1362     }
1363   return 0;
1364 }
1365 
1366 /* Handle a comparison.  Special care needs to be taken to avoid
1367    causing comparisons that a 387 cannot do correctly, such as EQ.
1368 
1369    Also, a pop insn may need to be emitted.  The 387 does have an
1370    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1371    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1372    set up.  */
1373 
1374 static void
compare_for_stack_reg(rtx_insn * insn,stack_ptr regstack,rtx pat_src,bool can_pop_second_op)1375 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack,
1376 		       rtx pat_src, bool can_pop_second_op)
1377 {
1378   rtx *src1, *src2;
1379   rtx src1_note, src2_note;
1380   int debug_seen = 0;
1381 
1382   src1 = get_true_reg (&XEXP (pat_src, 0));
1383   src2 = get_true_reg (&XEXP (pat_src, 1));
1384 
1385   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1386      registers that die in this insn - move those to stack top first.  */
1387   if ((! STACK_REG_P (*src1)
1388        || (STACK_REG_P (*src2)
1389 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1390       && swap_rtx_condition (insn, debug_seen))
1391     {
1392       /* If swap_rtx_condition succeeded but some debug insns
1393 	 were seen along the way, it has actually reverted all the
1394 	 changes.  Rerun swap_rtx_condition in a mode where DEBUG_ISNSs
1395 	 will be adjusted as well.  */
1396       if (debug_seen)
1397 	{
1398 	  debug_seen = -1;
1399 	  swap_rtx_condition (insn, debug_seen);
1400 	}
1401       std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1402 
1403       src1 = get_true_reg (&XEXP (pat_src, 0));
1404       src2 = get_true_reg (&XEXP (pat_src, 1));
1405 
1406       INSN_CODE (insn) = -1;
1407     }
1408 
1409   /* We will fix any death note later.  */
1410 
1411   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1412 
1413   if (STACK_REG_P (*src2))
1414     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1415   else
1416     src2_note = NULL_RTX;
1417 
1418   emit_swap_insn (insn, regstack, *src1);
1419 
1420   replace_reg (src1, FIRST_STACK_REG);
1421 
1422   if (STACK_REG_P (*src2))
1423     replace_reg (src2, get_hard_regnum (regstack, *src2));
1424 
1425   if (src1_note)
1426     {
1427       if (*src2 == CONST0_RTX (GET_MODE (*src2)))
1428 	{
1429 	  /* This is `ftst' insn that can't pop register.  */
1430 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src1_note, 0)));
1431 	  emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1432 			 EMIT_AFTER);
1433 	}
1434       else
1435 	{
1436 	  pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1437 	  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1438 	}
1439     }
1440 
1441   /* If the second operand dies, handle that.  But if the operands are
1442      the same stack register, don't bother, because only one death is
1443      needed, and it was just handled.  */
1444 
1445   if (src2_note
1446       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1447 	    && REGNO (*src1) == REGNO (*src2)))
1448     {
1449       /* As a special case, two regs may die in this insn if src2 is
1450 	 next to top of stack and the top of stack also dies.  Since
1451 	 we have already popped src1, "next to top of stack" is really
1452 	 at top (FIRST_STACK_REG) now.  */
1453 
1454       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1455 	  && src1_note && can_pop_second_op)
1456 	{
1457 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1458 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1459 	}
1460       else
1461 	{
1462 	  /* The 386 can only represent death of the first operand in
1463 	     the case handled above.  In all other cases, emit a separate
1464 	     pop and remove the death note from here.  */
1465 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1466 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1467 			 EMIT_AFTER);
1468 	}
1469     }
1470 }
1471 
1472 /* Substitute hardware stack regs in debug insn INSN, using stack
1473    layout REGSTACK.  If we can't find a hardware stack reg for any of
1474    the REGs in it, reset the debug insn.  */
1475 
1476 static void
subst_all_stack_regs_in_debug_insn(rtx_insn * insn,struct stack_def * regstack)1477 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1478 {
1479   subrtx_ptr_iterator::array_type array;
1480   FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1481     {
1482       rtx *loc = *iter;
1483       rtx x = *loc;
1484       if (STACK_REG_P (x))
1485 	{
1486 	  int hard_regno = get_hard_regnum (regstack, x);
1487 
1488 	  /* If we can't find an active register, reset this debug insn.  */
1489 	  if (hard_regno == -1)
1490 	    {
1491 	      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1492 	      return;
1493 	    }
1494 
1495 	  gcc_assert (hard_regno >= FIRST_STACK_REG);
1496 	  replace_reg (loc, hard_regno);
1497 	  iter.skip_subrtxes ();
1498 	}
1499     }
1500 }
1501 
1502 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1503    is the current register layout.  Return whether a control flow insn
1504    was deleted in the process.  */
1505 
1506 static bool
subst_stack_regs_pat(rtx_insn * insn,stack_ptr regstack,rtx pat)1507 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1508 {
1509   rtx *dest, *src;
1510   bool control_flow_insn_deleted = false;
1511 
1512   switch (GET_CODE (pat))
1513     {
1514     case USE:
1515       /* Deaths in USE insns can happen in non optimizing compilation.
1516 	 Handle them by popping the dying register.  */
1517       src = get_true_reg (&XEXP (pat, 0));
1518       if (STACK_REG_P (*src)
1519 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1520 	{
1521 	  /* USEs are ignored for liveness information so USEs of dead
1522 	     register might happen.  */
1523           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1524 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1525 	  return control_flow_insn_deleted;
1526 	}
1527       /* Uninitialized USE might happen for functions returning uninitialized
1528          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1529 	 so it is safe to ignore the use here. This is consistent with behavior
1530 	 of dataflow analyzer that ignores USE too.  (This also imply that
1531 	 forcibly initializing the register to NaN here would lead to ICE later,
1532 	 since the REG_DEAD notes are not issued.)  */
1533       break;
1534 
1535     case VAR_LOCATION:
1536       gcc_unreachable ();
1537 
1538     case CLOBBER:
1539       {
1540 	rtx note;
1541 
1542 	dest = get_true_reg (&XEXP (pat, 0));
1543 	if (STACK_REG_P (*dest))
1544 	  {
1545 	    note = find_reg_note (insn, REG_DEAD, *dest);
1546 
1547 	    if (pat != PATTERN (insn))
1548 	      {
1549 		/* The fix_truncdi_1 pattern wants to be able to
1550 		   allocate its own scratch register.  It does this by
1551 		   clobbering an fp reg so that it is assured of an
1552 		   empty reg-stack register.  If the register is live,
1553 		   kill it now.  Remove the DEAD/UNUSED note so we
1554 		   don't try to kill it later too.
1555 
1556 		   In reality the UNUSED note can be absent in some
1557 		   complicated cases when the register is reused for
1558 		   partially set variable.  */
1559 
1560 		if (note)
1561 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1562 		else
1563 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1564 		if (note)
1565 		  remove_note (insn, note);
1566 		replace_reg (dest, FIRST_STACK_REG + 1);
1567 	      }
1568 	    else
1569 	      {
1570 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1571 		   indicates an uninitialized value.  Because reload removed
1572 		   all other clobbers, this must be due to a function
1573 		   returning without a value.  Load up a NaN.  */
1574 
1575 		if (!note)
1576 		  {
1577 		    rtx t = *dest;
1578 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1579 		      {
1580 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1581 			if (get_hard_regnum (regstack, u) == -1)
1582 			  {
1583 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1584 			    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1585 			    control_flow_insn_deleted
1586 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1587 			  }
1588 		      }
1589 		    if (get_hard_regnum (regstack, t) == -1)
1590 		      control_flow_insn_deleted
1591 			|= move_nan_for_stack_reg (insn, regstack, t);
1592 		  }
1593 	      }
1594 	  }
1595 	break;
1596       }
1597 
1598     case SET:
1599       {
1600 	rtx *src1 = (rtx *) 0, *src2;
1601 	rtx src1_note, src2_note;
1602 	rtx pat_src;
1603 
1604 	dest = get_true_reg (&SET_DEST (pat));
1605 	src  = get_true_reg (&SET_SRC (pat));
1606 	pat_src = SET_SRC (pat);
1607 
1608 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1609 	if (STACK_REG_P (*src)
1610 	    || (STACK_REG_P (*dest)
1611 		&& (REG_P (*src) || MEM_P (*src)
1612 		    || CONST_DOUBLE_P (*src))))
1613 	  {
1614 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1615 	    break;
1616 	  }
1617 
1618 	switch (GET_CODE (pat_src))
1619 	  {
1620 	  case CALL:
1621 	    {
1622 	      int count;
1623 	      for (count = REG_NREGS (*dest); --count >= 0;)
1624 		{
1625 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1626 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1627 		}
1628 	    }
1629 	    replace_reg (dest, FIRST_STACK_REG);
1630 	    break;
1631 
1632 	  case REG:
1633 	    /* This is a `tstM2' case.  */
1634 	    gcc_assert (*dest == cc0_rtx);
1635 	    src1 = src;
1636 
1637 	    /* Fall through.  */
1638 
1639 	  case FLOAT_TRUNCATE:
1640 	  case SQRT:
1641 	  case ABS:
1642 	  case NEG:
1643 	    /* These insns only operate on the top of the stack. DEST might
1644 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1645 	       possible that the tstM case results in a REG_DEAD note on the
1646 	       source.  */
1647 
1648 	    if (src1 == 0)
1649 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1650 
1651 	    emit_swap_insn (insn, regstack, *src1);
1652 
1653 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1654 
1655 	    if (STACK_REG_P (*dest))
1656 	      replace_reg (dest, FIRST_STACK_REG);
1657 
1658 	    if (src1_note)
1659 	      {
1660 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1661 		regstack->top--;
1662 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1663 	      }
1664 
1665 	    replace_reg (src1, FIRST_STACK_REG);
1666 	    break;
1667 
1668 	  case MINUS:
1669 	  case DIV:
1670 	    /* On i386, reversed forms of subM3 and divM3 exist for
1671 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1672 	       can be used.  */
1673 	  case MULT:
1674 	  case PLUS:
1675 	    /* These insns can accept the top of stack as a destination
1676 	       from a stack reg or mem, or can use the top of stack as a
1677 	       source and some other stack register (possibly top of stack)
1678 	       as a destination.  */
1679 
1680 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1681 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1682 
1683 	    /* We will fix any death note later.  */
1684 
1685 	    if (STACK_REG_P (*src1))
1686 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1687 	    else
1688 	      src1_note = NULL_RTX;
1689 	    if (STACK_REG_P (*src2))
1690 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1691 	    else
1692 	      src2_note = NULL_RTX;
1693 
1694 	    /* If either operand is not a stack register, then the dest
1695 	       must be top of stack.  */
1696 
1697 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1698 	      emit_swap_insn (insn, regstack, *dest);
1699 	    else
1700 	      {
1701 		/* Both operands are REG.  If neither operand is already
1702 		   at the top of stack, choose to make the one that is the
1703 		   dest the new top of stack.  */
1704 
1705 		int src1_hard_regnum, src2_hard_regnum;
1706 
1707 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1708 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1709 
1710 		/* If the source is not live, this is yet another case of
1711 		   uninitialized variables.  Load up a NaN instead.  */
1712 		if (src1_hard_regnum == -1)
1713 		  {
1714 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1715 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1716 		    control_flow_insn_deleted
1717 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1718 		  }
1719 		if (src2_hard_regnum == -1)
1720 		  {
1721 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1722 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1723 		    control_flow_insn_deleted
1724 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1725 		  }
1726 
1727 		if (src1_hard_regnum != FIRST_STACK_REG
1728 		    && src2_hard_regnum != FIRST_STACK_REG)
1729 		  emit_swap_insn (insn, regstack, *dest);
1730 	      }
1731 
1732 	    if (STACK_REG_P (*src1))
1733 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1734 	    if (STACK_REG_P (*src2))
1735 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1736 
1737 	    if (src1_note)
1738 	      {
1739 		rtx src1_reg = XEXP (src1_note, 0);
1740 
1741 		/* If the register that dies is at the top of stack, then
1742 		   the destination is somewhere else - merely substitute it.
1743 		   But if the reg that dies is not at top of stack, then
1744 		   move the top of stack to the dead reg, as though we had
1745 		   done the insn and then a store-with-pop.  */
1746 
1747 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1748 		  {
1749 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1750 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1751 		  }
1752 		else
1753 		  {
1754 		    int regno = get_hard_regnum (regstack, src1_reg);
1755 
1756 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1757 		    replace_reg (dest, regno);
1758 
1759 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1760 		      = regstack->reg[regstack->top];
1761 		  }
1762 
1763 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1764 				    REGNO (XEXP (src1_note, 0)));
1765 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1766 		regstack->top--;
1767 	      }
1768 	    else if (src2_note)
1769 	      {
1770 		rtx src2_reg = XEXP (src2_note, 0);
1771 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1772 		  {
1773 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1774 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1775 		  }
1776 		else
1777 		  {
1778 		    int regno = get_hard_regnum (regstack, src2_reg);
1779 
1780 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1781 		    replace_reg (dest, regno);
1782 
1783 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1784 		      = regstack->reg[regstack->top];
1785 		  }
1786 
1787 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1788 				    REGNO (XEXP (src2_note, 0)));
1789 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1790 		regstack->top--;
1791 	      }
1792 	    else
1793 	      {
1794 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1795 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1796 	      }
1797 
1798 	    /* Keep operand 1 matching with destination.  */
1799 	    if (COMMUTATIVE_ARITH_P (pat_src)
1800 		&& REG_P (*src1) && REG_P (*src2)
1801 		&& REGNO (*src1) != REGNO (*dest))
1802 	     {
1803 		int tmp = REGNO (*src1);
1804 		replace_reg (src1, REGNO (*src2));
1805 		replace_reg (src2, tmp);
1806 	     }
1807 	    break;
1808 
1809 	  case UNSPEC:
1810 	    switch (XINT (pat_src, 1))
1811 	      {
1812 	      case UNSPEC_FIST:
1813 	      case UNSPEC_FIST_ATOMIC:
1814 
1815 	      case UNSPEC_FIST_FLOOR:
1816 	      case UNSPEC_FIST_CEIL:
1817 
1818 		/* These insns only operate on the top of the stack.  */
1819 
1820 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1821 		emit_swap_insn (insn, regstack, *src1);
1822 
1823 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1824 
1825 		if (STACK_REG_P (*dest))
1826 		  replace_reg (dest, FIRST_STACK_REG);
1827 
1828 		if (src1_note)
1829 		  {
1830 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1831 		    regstack->top--;
1832 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1833 		  }
1834 
1835 		replace_reg (src1, FIRST_STACK_REG);
1836 		break;
1837 
1838 	      case UNSPEC_FXAM:
1839 
1840 		/* This insn only operate on the top of the stack.  */
1841 
1842 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1843 		emit_swap_insn (insn, regstack, *src1);
1844 
1845 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1846 
1847 		replace_reg (src1, FIRST_STACK_REG);
1848 
1849 		if (src1_note)
1850 		  {
1851 		    remove_regno_note (insn, REG_DEAD,
1852 				       REGNO (XEXP (src1_note, 0)));
1853 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1854 				   EMIT_AFTER);
1855 		  }
1856 
1857 		break;
1858 
1859 	      case UNSPEC_SIN:
1860 	      case UNSPEC_COS:
1861 	      case UNSPEC_FRNDINT:
1862 	      case UNSPEC_F2XM1:
1863 
1864 	      case UNSPEC_FRNDINT_ROUNDEVEN:
1865 	      case UNSPEC_FRNDINT_FLOOR:
1866 	      case UNSPEC_FRNDINT_CEIL:
1867 	      case UNSPEC_FRNDINT_TRUNC:
1868 
1869 		/* Above insns operate on the top of the stack.  */
1870 
1871 	      case UNSPEC_SINCOS_COS:
1872 	      case UNSPEC_XTRACT_FRACT:
1873 
1874 		/* Above insns operate on the top two stack slots,
1875 		   first part of one input, double output insn.  */
1876 
1877 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1878 
1879 		emit_swap_insn (insn, regstack, *src1);
1880 
1881 		/* Input should never die, it is replaced with output.  */
1882 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1883 		gcc_assert (!src1_note);
1884 
1885 		if (STACK_REG_P (*dest))
1886 		  replace_reg (dest, FIRST_STACK_REG);
1887 
1888 		replace_reg (src1, FIRST_STACK_REG);
1889 		break;
1890 
1891 	      case UNSPEC_SINCOS_SIN:
1892 	      case UNSPEC_XTRACT_EXP:
1893 
1894 		/* These insns operate on the top two stack slots,
1895 		   second part of one input, double output insn.  */
1896 
1897 		regstack->top++;
1898 		/* FALLTHRU */
1899 
1900 	      case UNSPEC_TAN:
1901 
1902 		/* For UNSPEC_TAN, regstack->top is already increased
1903 		   by inherent load of constant 1.0.  */
1904 
1905 		/* Output value is generated in the second stack slot.
1906 		   Move current value from second slot to the top.  */
1907 		regstack->reg[regstack->top]
1908 		  = regstack->reg[regstack->top - 1];
1909 
1910 		gcc_assert (STACK_REG_P (*dest));
1911 
1912 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1913 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1914 		replace_reg (dest, FIRST_STACK_REG + 1);
1915 
1916 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1917 
1918 		replace_reg (src1, FIRST_STACK_REG);
1919 		break;
1920 
1921 	      case UNSPEC_FPATAN:
1922 	      case UNSPEC_FYL2X:
1923 	      case UNSPEC_FYL2XP1:
1924 		/* These insns operate on the top two stack slots.  */
1925 
1926 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1927 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1928 
1929 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1930 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1931 
1932 		swap_to_top (insn, regstack, *src1, *src2);
1933 
1934 		replace_reg (src1, FIRST_STACK_REG);
1935 		replace_reg (src2, FIRST_STACK_REG + 1);
1936 
1937 		if (src1_note)
1938 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1939 		if (src2_note)
1940 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1941 
1942 		/* Pop both input operands from the stack.  */
1943 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1944 				    regstack->reg[regstack->top]);
1945 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1946 				    regstack->reg[regstack->top - 1]);
1947 		regstack->top -= 2;
1948 
1949 		/* Push the result back onto the stack.  */
1950 		regstack->reg[++regstack->top] = REGNO (*dest);
1951 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1952 		replace_reg (dest, FIRST_STACK_REG);
1953 		break;
1954 
1955 	      case UNSPEC_FSCALE_FRACT:
1956 	      case UNSPEC_FPREM_F:
1957 	      case UNSPEC_FPREM1_F:
1958 		/* These insns operate on the top two stack slots,
1959 		   first part of double input, double output insn.  */
1960 
1961 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1962 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1963 
1964 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1965 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1966 
1967 		/* Inputs should never die, they are
1968 		   replaced with outputs.  */
1969 		gcc_assert (!src1_note);
1970 		gcc_assert (!src2_note);
1971 
1972 		swap_to_top (insn, regstack, *src1, *src2);
1973 
1974 		/* Push the result back onto stack. Empty stack slot
1975 		   will be filled in second part of insn.  */
1976 		if (STACK_REG_P (*dest))
1977 		  {
1978 		    regstack->reg[regstack->top] = REGNO (*dest);
1979 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1980 		    replace_reg (dest, FIRST_STACK_REG);
1981 		  }
1982 
1983 		replace_reg (src1, FIRST_STACK_REG);
1984 		replace_reg (src2, FIRST_STACK_REG + 1);
1985 		break;
1986 
1987 	      case UNSPEC_FSCALE_EXP:
1988 	      case UNSPEC_FPREM_U:
1989 	      case UNSPEC_FPREM1_U:
1990 		/* These insns operate on the top two stack slots,
1991 		   second part of double input, double output insn.  */
1992 
1993 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1994 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1995 
1996 		/* Push the result back onto stack. Fill empty slot from
1997 		   first part of insn and fix top of stack pointer.  */
1998 		if (STACK_REG_P (*dest))
1999 		  {
2000 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
2001 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2002 		    replace_reg (dest, FIRST_STACK_REG + 1);
2003 		  }
2004 
2005 		replace_reg (src1, FIRST_STACK_REG);
2006 		replace_reg (src2, FIRST_STACK_REG + 1);
2007 		break;
2008 
2009 	      case UNSPEC_C2_FLAG:
2010 		/* This insn operates on the top two stack slots,
2011 		   third part of C2 setting double input insn.  */
2012 
2013 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
2014 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
2015 
2016 		replace_reg (src1, FIRST_STACK_REG);
2017 		replace_reg (src2, FIRST_STACK_REG + 1);
2018 		break;
2019 
2020 	      case UNSPEC_FNSTSW:
2021 		/* Combined fcomp+fnstsw generated for doing well with
2022 		   CSE.  When optimizing this would have been broken
2023 		   up before now.  */
2024 
2025 		pat_src = XVECEXP (pat_src, 0, 0);
2026 		if (GET_CODE (pat_src) == COMPARE)
2027 		  goto do_compare;
2028 
2029 		/* Fall through.  */
2030 
2031 	      case UNSPEC_NOTRAP:
2032 
2033 		pat_src = XVECEXP (pat_src, 0, 0);
2034 		gcc_assert (GET_CODE (pat_src) == COMPARE);
2035 		goto do_compare;
2036 
2037 	      default:
2038 		gcc_unreachable ();
2039 	      }
2040 	    break;
2041 
2042 	  case COMPARE:
2043 	  do_compare:
2044 	    /* `fcomi' insn can't pop two regs.  */
2045 	    compare_for_stack_reg (insn, regstack, pat_src,
2046 				   REGNO (*dest) != FLAGS_REG);
2047 	    break;
2048 
2049 	  case IF_THEN_ELSE:
2050 	    /* This insn requires the top of stack to be the destination.  */
2051 
2052 	    src1 = get_true_reg (&XEXP (pat_src, 1));
2053 	    src2 = get_true_reg (&XEXP (pat_src, 2));
2054 
2055 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2056 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2057 
2058 	    /* If the comparison operator is an FP comparison operator,
2059 	       it is handled correctly by compare_for_stack_reg () who
2060 	       will move the destination to the top of stack. But if the
2061 	       comparison operator is not an FP comparison operator, we
2062 	       have to handle it here.  */
2063 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
2064 		&& REGNO (*dest) != regstack->reg[regstack->top])
2065 	      {
2066 		/* In case one of operands is the top of stack and the operands
2067 		   dies, it is safe to make it the destination operand by
2068 		   reversing the direction of cmove and avoid fxch.  */
2069 		if ((REGNO (*src1) == regstack->reg[regstack->top]
2070 		     && src1_note)
2071 		    || (REGNO (*src2) == regstack->reg[regstack->top]
2072 			&& src2_note))
2073 		  {
2074 		    int idx1 = (get_hard_regnum (regstack, *src1)
2075 				- FIRST_STACK_REG);
2076 		    int idx2 = (get_hard_regnum (regstack, *src2)
2077 				- FIRST_STACK_REG);
2078 
2079 		    /* Make reg-stack believe that the operands are already
2080 		       swapped on the stack */
2081 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
2082 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
2083 
2084 		    /* Reverse condition to compensate the operand swap.
2085 		       i386 do have comparison always reversible.  */
2086 		    PUT_CODE (XEXP (pat_src, 0),
2087 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
2088 		  }
2089 		else
2090 	          emit_swap_insn (insn, regstack, *dest);
2091 	      }
2092 
2093 	    {
2094 	      rtx src_note [3];
2095 	      int i;
2096 
2097 	      src_note[0] = 0;
2098 	      src_note[1] = src1_note;
2099 	      src_note[2] = src2_note;
2100 
2101 	      if (STACK_REG_P (*src1))
2102 		replace_reg (src1, get_hard_regnum (regstack, *src1));
2103 	      if (STACK_REG_P (*src2))
2104 		replace_reg (src2, get_hard_regnum (regstack, *src2));
2105 
2106 	      for (i = 1; i <= 2; i++)
2107 		if (src_note [i])
2108 		  {
2109 		    int regno = REGNO (XEXP (src_note[i], 0));
2110 
2111 		    /* If the register that dies is not at the top of
2112 		       stack, then move the top of stack to the dead reg.
2113 		       Top of stack should never die, as it is the
2114 		       destination.  */
2115 		    gcc_assert (regno != regstack->reg[regstack->top]);
2116 		    remove_regno_note (insn, REG_DEAD, regno);
2117 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2118 				    EMIT_AFTER);
2119 		  }
2120 	    }
2121 
2122 	    /* Make dest the top of stack.  Add dest to regstack if
2123 	       not present.  */
2124 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2125 	      regstack->reg[++regstack->top] = REGNO (*dest);
2126 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2127 	    replace_reg (dest, FIRST_STACK_REG);
2128 	    break;
2129 
2130 	  default:
2131 	    gcc_unreachable ();
2132 	  }
2133 	break;
2134       }
2135 
2136     default:
2137       break;
2138     }
2139 
2140   return control_flow_insn_deleted;
2141 }
2142 
2143 /* Substitute hard regnums for any stack regs in INSN, which has
2144    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2145    before the insn, and is updated with changes made here.
2146 
2147    There are several requirements and assumptions about the use of
2148    stack-like regs in asm statements.  These rules are enforced by
2149    record_asm_stack_regs; see comments there for details.  Any
2150    asm_operands left in the RTL at this point may be assume to meet the
2151    requirements, since record_asm_stack_regs removes any problem asm.  */
2152 
2153 static void
subst_asm_stack_regs(rtx_insn * insn,stack_ptr regstack)2154 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2155 {
2156   rtx body = PATTERN (insn);
2157 
2158   rtx *note_reg;		/* Array of note contents */
2159   rtx **note_loc;		/* Address of REG field of each note */
2160   enum reg_note *note_kind;	/* The type of each note */
2161 
2162   rtx *clobber_reg = 0;
2163   rtx **clobber_loc = 0;
2164 
2165   struct stack_def temp_stack;
2166   int n_notes;
2167   int n_clobbers;
2168   rtx note;
2169   int i;
2170   int n_inputs, n_outputs;
2171 
2172   if (! check_asm_stack_operands (insn))
2173     return;
2174 
2175   /* Find out what the constraints required.  If no constraint
2176      alternative matches, that is a compiler bug: we should have caught
2177      such an insn in check_asm_stack_operands.  */
2178   extract_constrain_insn (insn);
2179 
2180   preprocess_constraints (insn);
2181   const operand_alternative *op_alt = which_op_alt ();
2182 
2183   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2184 
2185   /* Strip SUBREGs here to make the following code simpler.  */
2186   for (i = 0; i < recog_data.n_operands; i++)
2187     if (GET_CODE (recog_data.operand[i]) == SUBREG
2188 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2189       {
2190 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2191 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2192       }
2193 
2194   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2195 
2196   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2197     i++;
2198 
2199   note_reg = XALLOCAVEC (rtx, i);
2200   note_loc = XALLOCAVEC (rtx *, i);
2201   note_kind = XALLOCAVEC (enum reg_note, i);
2202 
2203   n_notes = 0;
2204   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2205     {
2206       if (GET_CODE (note) != EXPR_LIST)
2207 	continue;
2208       rtx reg = XEXP (note, 0);
2209       rtx *loc = & XEXP (note, 0);
2210 
2211       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2212 	{
2213 	  loc = & SUBREG_REG (reg);
2214 	  reg = SUBREG_REG (reg);
2215 	}
2216 
2217       if (STACK_REG_P (reg)
2218 	  && (REG_NOTE_KIND (note) == REG_DEAD
2219 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2220 	{
2221 	  note_reg[n_notes] = reg;
2222 	  note_loc[n_notes] = loc;
2223 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2224 	  n_notes++;
2225 	}
2226     }
2227 
2228   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2229 
2230   n_clobbers = 0;
2231 
2232   if (GET_CODE (body) == PARALLEL)
2233     {
2234       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2235       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2236 
2237       for (i = 0; i < XVECLEN (body, 0); i++)
2238 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2239 	  {
2240 	    rtx clobber = XVECEXP (body, 0, i);
2241 	    rtx reg = XEXP (clobber, 0);
2242 	    rtx *loc = & XEXP (clobber, 0);
2243 
2244 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2245 	      {
2246 		loc = & SUBREG_REG (reg);
2247 		reg = SUBREG_REG (reg);
2248 	      }
2249 
2250 	    if (STACK_REG_P (reg))
2251 	      {
2252 		clobber_reg[n_clobbers] = reg;
2253 		clobber_loc[n_clobbers] = loc;
2254 		n_clobbers++;
2255 	      }
2256 	  }
2257     }
2258 
2259   temp_stack = *regstack;
2260 
2261   /* Put the input regs into the desired place in TEMP_STACK.  */
2262 
2263   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2264     if (STACK_REG_P (recog_data.operand[i])
2265 	&& reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2266 	&& op_alt[i].cl != FLOAT_REGS)
2267       {
2268 	/* If an operand needs to be in a particular reg in
2269 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2270 	   these constraints are for single register classes, and
2271 	   reload guaranteed that operand[i] is already in that class,
2272 	   we can just use REGNO (recog_data.operand[i]) to know which
2273 	   actual reg this operand needs to be in.  */
2274 
2275 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2276 
2277 	gcc_assert (regno >= 0);
2278 
2279 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2280 	  {
2281 	    /* recog_data.operand[i] is not in the right place.  Find
2282 	       it and swap it with whatever is already in I's place.
2283 	       K is where recog_data.operand[i] is now.  J is where it
2284 	       should be.  */
2285 	    int j, k;
2286 
2287 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2288 	    j = (temp_stack.top
2289 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2290 
2291 	    std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2292 	  }
2293       }
2294 
2295   /* Emit insns before INSN to make sure the reg-stack is in the right
2296      order.  */
2297 
2298   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2299 
2300   /* Make the needed input register substitutions.  Do death notes and
2301      clobbers too, because these are for inputs, not outputs.  */
2302 
2303   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2304     if (STACK_REG_P (recog_data.operand[i]))
2305       {
2306 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2307 
2308 	gcc_assert (regnum >= 0);
2309 
2310 	replace_reg (recog_data.operand_loc[i], regnum);
2311       }
2312 
2313   for (i = 0; i < n_notes; i++)
2314     if (note_kind[i] == REG_DEAD)
2315       {
2316 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2317 
2318 	gcc_assert (regnum >= 0);
2319 
2320 	replace_reg (note_loc[i], regnum);
2321       }
2322 
2323   for (i = 0; i < n_clobbers; i++)
2324     {
2325       /* It's OK for a CLOBBER to reference a reg that is not live.
2326          Don't try to replace it in that case.  */
2327       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2328 
2329       if (regnum >= 0)
2330 	replace_reg (clobber_loc[i], regnum);
2331     }
2332 
2333   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2334 
2335   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2336     if (STACK_REG_P (recog_data.operand[i]))
2337       {
2338 	/* An input reg is implicitly popped if it is tied to an
2339 	   output, or if there is a CLOBBER for it.  */
2340 	int j;
2341 
2342 	for (j = 0; j < n_clobbers; j++)
2343 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2344 	    break;
2345 
2346 	if (j < n_clobbers || op_alt[i].matches >= 0)
2347 	  {
2348 	    /* recog_data.operand[i] might not be at the top of stack.
2349 	       But that's OK, because all we need to do is pop the
2350 	       right number of regs off of the top of the reg-stack.
2351 	       record_asm_stack_regs guaranteed that all implicitly
2352 	       popped regs were grouped at the top of the reg-stack.  */
2353 
2354 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2355 				regstack->reg[regstack->top]);
2356 	    regstack->top--;
2357 	  }
2358       }
2359 
2360   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2361      Note that there isn't any need to substitute register numbers.
2362      ???  Explain why this is true.  */
2363 
2364   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2365     {
2366       /* See if there is an output for this hard reg.  */
2367       int j;
2368 
2369       for (j = 0; j < n_outputs; j++)
2370 	if (STACK_REG_P (recog_data.operand[j])
2371 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2372 	  {
2373 	    regstack->reg[++regstack->top] = i;
2374 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2375 	    break;
2376 	  }
2377     }
2378 
2379   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2380      input that the asm didn't implicitly pop.  If the asm didn't
2381      implicitly pop an input reg, that reg will still be live.
2382 
2383      Note that we can't use find_regno_note here: the register numbers
2384      in the death notes have already been substituted.  */
2385 
2386   for (i = 0; i < n_outputs; i++)
2387     if (STACK_REG_P (recog_data.operand[i]))
2388       {
2389 	int j;
2390 
2391 	for (j = 0; j < n_notes; j++)
2392 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2393 	      && note_kind[j] == REG_UNUSED)
2394 	    {
2395 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2396 				    EMIT_AFTER);
2397 	      break;
2398 	    }
2399       }
2400 
2401   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2402     if (STACK_REG_P (recog_data.operand[i]))
2403       {
2404 	int j;
2405 
2406 	for (j = 0; j < n_notes; j++)
2407 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2408 	      && note_kind[j] == REG_DEAD
2409 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2410 				    REGNO (recog_data.operand[i])))
2411 	    {
2412 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2413 				    EMIT_AFTER);
2414 	      break;
2415 	    }
2416       }
2417 }
2418 
2419 /* Substitute stack hard reg numbers for stack virtual registers in
2420    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2421    current stack content.  Insns may be emitted as needed to arrange the
2422    stack for the 387 based on the contents of the insn.  Return whether
2423    a control flow insn was deleted in the process.  */
2424 
2425 static bool
subst_stack_regs(rtx_insn * insn,stack_ptr regstack)2426 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2427 {
2428   rtx *note_link, note;
2429   bool control_flow_insn_deleted = false;
2430   int i;
2431 
2432   if (CALL_P (insn))
2433     {
2434       int top = regstack->top;
2435 
2436       /* If there are any floating point parameters to be passed in
2437 	 registers for this call, make sure they are in the right
2438 	 order.  */
2439 
2440       if (top >= 0)
2441 	{
2442 	  straighten_stack (insn, regstack);
2443 
2444 	  /* Now mark the arguments as dead after the call.  */
2445 
2446 	  while (regstack->top >= 0)
2447 	    {
2448 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2449 	      regstack->top--;
2450 	    }
2451 	}
2452     }
2453 
2454   /* Do the actual substitution if any stack regs are mentioned.
2455      Since we only record whether entire insn mentions stack regs, and
2456      subst_stack_regs_pat only works for patterns that contain stack regs,
2457      we must check each pattern in a parallel here.  A call_value_pop could
2458      fail otherwise.  */
2459 
2460   if (stack_regs_mentioned (insn))
2461     {
2462       int n_operands = asm_noperands (PATTERN (insn));
2463       if (n_operands >= 0)
2464 	{
2465 	  /* This insn is an `asm' with operands.  Decode the operands,
2466 	     decide how many are inputs, and do register substitution.
2467 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2468 
2469 	  subst_asm_stack_regs (insn, regstack);
2470 	  return control_flow_insn_deleted;
2471 	}
2472 
2473       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2474 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2475 	  {
2476 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2477 	      {
2478 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2479 	           XVECEXP (PATTERN (insn), 0, i)
2480 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2481 		control_flow_insn_deleted
2482 		  |= subst_stack_regs_pat (insn, regstack,
2483 					   XVECEXP (PATTERN (insn), 0, i));
2484 	      }
2485 	  }
2486       else
2487 	control_flow_insn_deleted
2488 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2489     }
2490 
2491   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2492      REG_UNUSED will already have been dealt with, so just return.  */
2493 
2494   if (NOTE_P (insn) || insn->deleted ())
2495     return control_flow_insn_deleted;
2496 
2497   /* If this a noreturn call, we can't insert pop insns after it.
2498      Instead, reset the stack state to empty.  */
2499   if (CALL_P (insn)
2500       && find_reg_note (insn, REG_NORETURN, NULL))
2501     {
2502       regstack->top = -1;
2503       CLEAR_HARD_REG_SET (regstack->reg_set);
2504       return control_flow_insn_deleted;
2505     }
2506 
2507   /* If there is a REG_UNUSED note on a stack register on this insn,
2508      the indicated reg must be popped.  The REG_UNUSED note is removed,
2509      since the form of the newly emitted pop insn references the reg,
2510      making it no longer `unset'.  */
2511 
2512   note_link = &REG_NOTES (insn);
2513   for (note = *note_link; note; note = XEXP (note, 1))
2514     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2515       {
2516 	*note_link = XEXP (note, 1);
2517 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2518       }
2519     else
2520       note_link = &XEXP (note, 1);
2521 
2522   return control_flow_insn_deleted;
2523 }
2524 
2525 /* Change the organization of the stack so that it fits a new basic
2526    block.  Some registers might have to be popped, but there can never be
2527    a register live in the new block that is not now live.
2528 
2529    Insert any needed insns before or after INSN, as indicated by
2530    WHERE.  OLD is the original stack layout, and NEW is the desired
2531    form.  OLD is updated to reflect the code emitted, i.e., it will be
2532    the same as NEW upon return.
2533 
2534    This function will not preserve block_end[].  But that information
2535    is no longer needed once this has executed.  */
2536 
2537 static void
change_stack(rtx_insn * insn,stack_ptr old,stack_ptr new_stack,enum emit_where where)2538 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2539 	      enum emit_where where)
2540 {
2541   int reg;
2542   machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
2543   rtx_insn *update_end = NULL;
2544   int i;
2545 
2546   /* Stack adjustments for the first insn in a block update the
2547      current_block's stack_in instead of inserting insns directly.
2548      compensate_edges will add the necessary code later.  */
2549   if (current_block
2550       && starting_stack_p
2551       && where == EMIT_BEFORE)
2552     {
2553       BLOCK_INFO (current_block)->stack_in = *new_stack;
2554       starting_stack_p = false;
2555       *old = *new_stack;
2556       return;
2557     }
2558 
2559   /* We will be inserting new insns "backwards".  If we are to insert
2560      after INSN, find the next insn, and insert before it.  */
2561 
2562   if (where == EMIT_AFTER)
2563     {
2564       if (current_block && BB_END (current_block) == insn)
2565 	update_end = insn;
2566       insn = NEXT_INSN (insn);
2567     }
2568 
2569   /* Initialize partially dead variables.  */
2570   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2571     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2572 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2573       {
2574 	old->reg[++old->top] = i;
2575         SET_HARD_REG_BIT (old->reg_set, i);
2576 	emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2577 			  insn);
2578       }
2579 
2580   /* Pop any registers that are not needed in the new block.  */
2581 
2582   /* If the destination block's stack already has a specified layout
2583      and contains two or more registers, use a more intelligent algorithm
2584      to pop registers that minimizes the number of fxchs below.  */
2585   if (new_stack->top > 0)
2586     {
2587       bool slots[REG_STACK_SIZE];
2588       int pops[REG_STACK_SIZE];
2589       int next, dest, topsrc;
2590 
2591       /* First pass to determine the free slots.  */
2592       for (reg = 0; reg <= new_stack->top; reg++)
2593 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2594 
2595       /* Second pass to allocate preferred slots.  */
2596       topsrc = -1;
2597       for (reg = old->top; reg > new_stack->top; reg--)
2598 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2599 	  {
2600 	    dest = -1;
2601 	    for (next = 0; next <= new_stack->top; next++)
2602 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2603 		{
2604 		  /* If this is a preference for the new top of stack, record
2605 		     the fact by remembering it's old->reg in topsrc.  */
2606                   if (next == new_stack->top)
2607 		    topsrc = reg;
2608 		  slots[next] = true;
2609 		  dest = next;
2610 		  break;
2611 		}
2612 	    pops[reg] = dest;
2613 	  }
2614 	else
2615 	  pops[reg] = reg;
2616 
2617       /* Intentionally, avoid placing the top of stack in it's correct
2618 	 location, if we still need to permute the stack below and we
2619 	 can usefully place it somewhere else.  This is the case if any
2620 	 slot is still unallocated, in which case we should place the
2621 	 top of stack there.  */
2622       if (topsrc != -1)
2623 	for (reg = 0; reg < new_stack->top; reg++)
2624 	  if (!slots[reg])
2625 	    {
2626 	      pops[topsrc] = reg;
2627 	      slots[new_stack->top] = false;
2628 	      slots[reg] = true;
2629 	      break;
2630 	    }
2631 
2632       /* Third pass allocates remaining slots and emits pop insns.  */
2633       next = new_stack->top;
2634       for (reg = old->top; reg > new_stack->top; reg--)
2635 	{
2636 	  dest = pops[reg];
2637 	  if (dest == -1)
2638 	    {
2639 	      /* Find next free slot.  */
2640 	      while (slots[next])
2641 		next--;
2642 	      dest = next--;
2643 	    }
2644 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], raw_mode),
2645 			 EMIT_BEFORE);
2646 	}
2647     }
2648   else
2649     {
2650       /* The following loop attempts to maximize the number of times we
2651 	 pop the top of the stack, as this permits the use of the faster
2652 	 ffreep instruction on platforms that support it.  */
2653       int live, next;
2654 
2655       live = 0;
2656       for (reg = 0; reg <= old->top; reg++)
2657         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2658           live++;
2659 
2660       next = live;
2661       while (old->top >= live)
2662         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2663 	  {
2664 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2665 	      next--;
2666 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], raw_mode),
2667 			   EMIT_BEFORE);
2668 	  }
2669 	else
2670 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], raw_mode),
2671 			 EMIT_BEFORE);
2672     }
2673 
2674   if (new_stack->top == -2)
2675     {
2676       /* If the new block has never been processed, then it can inherit
2677 	 the old stack order.  */
2678 
2679       new_stack->top = old->top;
2680       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2681     }
2682   else
2683     {
2684       /* This block has been entered before, and we must match the
2685 	 previously selected stack order.  */
2686 
2687       /* By now, the only difference should be the order of the stack,
2688 	 not their depth or liveliness.  */
2689 
2690       gcc_assert (old->reg_set == new_stack->reg_set);
2691       gcc_assert (old->top == new_stack->top);
2692 
2693       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2694 	 swaps until the stack is correct.
2695 
2696 	 The worst case number of swaps emitted is N + 2, where N is the
2697 	 depth of the stack.  In some cases, the reg at the top of
2698 	 stack may be correct, but swapped anyway in order to fix
2699 	 other regs.  But since we never swap any other reg away from
2700 	 its correct slot, this algorithm will converge.  */
2701 
2702       if (new_stack->top != -1)
2703 	do
2704 	  {
2705 	    /* Swap the reg at top of stack into the position it is
2706 	       supposed to be in, until the correct top of stack appears.  */
2707 
2708 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2709 	      {
2710 		for (reg = new_stack->top; reg >= 0; reg--)
2711 		  if (new_stack->reg[reg] == old->reg[old->top])
2712 		    break;
2713 
2714 		gcc_assert (reg != -1);
2715 
2716 		emit_swap_insn (insn, old,
2717 				FP_MODE_REG (old->reg[reg], raw_mode));
2718 	      }
2719 
2720 	    /* See if any regs remain incorrect.  If so, bring an
2721 	     incorrect reg to the top of stack, and let the while loop
2722 	     above fix it.  */
2723 
2724 	    for (reg = new_stack->top; reg >= 0; reg--)
2725 	      if (new_stack->reg[reg] != old->reg[reg])
2726 		{
2727 		  emit_swap_insn (insn, old,
2728 				  FP_MODE_REG (old->reg[reg], raw_mode));
2729 		  break;
2730 		}
2731 	  } while (reg >= 0);
2732 
2733       /* At this point there must be no differences.  */
2734 
2735       for (reg = old->top; reg >= 0; reg--)
2736 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2737     }
2738 
2739   if (update_end)
2740     {
2741       for (update_end = NEXT_INSN (update_end); update_end != insn;
2742 	   update_end = NEXT_INSN (update_end))
2743 	{
2744 	  set_block_for_insn (update_end, current_block);
2745 	  if (INSN_P (update_end))
2746 	    df_insn_rescan (update_end);
2747 	}
2748       BB_END (current_block) = PREV_INSN (insn);
2749     }
2750 }
2751 
2752 /* Print stack configuration.  */
2753 
2754 static void
print_stack(FILE * file,stack_ptr s)2755 print_stack (FILE *file, stack_ptr s)
2756 {
2757   if (! file)
2758     return;
2759 
2760   if (s->top == -2)
2761     fprintf (file, "uninitialized\n");
2762   else if (s->top == -1)
2763     fprintf (file, "empty\n");
2764   else
2765     {
2766       int i;
2767       fputs ("[ ", file);
2768       for (i = 0; i <= s->top; ++i)
2769 	fprintf (file, "%d ", s->reg[i]);
2770       fputs ("]\n", file);
2771     }
2772 }
2773 
2774 /* This function was doing life analysis.  We now let the regular live
2775    code do it's job, so we only need to check some extra invariants
2776    that reg-stack expects.  Primary among these being that all registers
2777    are initialized before use.
2778 
2779    The function returns true when code was emitted to CFG edges and
2780    commit_edge_insertions needs to be called.  */
2781 
2782 static int
convert_regs_entry(void)2783 convert_regs_entry (void)
2784 {
2785   int inserted = 0;
2786   edge e;
2787   edge_iterator ei;
2788 
2789   /* Load something into each stack register live at function entry.
2790      Such live registers can be caused by uninitialized variables or
2791      functions not returning values on all paths.  In order to keep
2792      the push/pop code happy, and to not scrog the register stack, we
2793      must put something in these registers.  Use a QNaN.
2794 
2795      Note that we are inserting converted code here.  This code is
2796      never seen by the convert_regs pass.  */
2797 
2798   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2799     {
2800       basic_block block = e->dest;
2801       block_info bi = BLOCK_INFO (block);
2802       int reg, top = -1;
2803 
2804       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2805 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2806 	  {
2807 	    rtx init;
2808 
2809 	    bi->stack_in.reg[++top] = reg;
2810 
2811 	    init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2812 				not_a_num);
2813 	    insert_insn_on_edge (init, e);
2814 	    inserted = 1;
2815 	  }
2816 
2817       bi->stack_in.top = top;
2818     }
2819 
2820   return inserted;
2821 }
2822 
2823 /* Construct the desired stack for function exit.  This will either
2824    be `empty', or the function return value at top-of-stack.  */
2825 
2826 static void
convert_regs_exit(void)2827 convert_regs_exit (void)
2828 {
2829   int value_reg_low, value_reg_high;
2830   stack_ptr output_stack;
2831   rtx retvalue;
2832 
2833   retvalue = stack_result (current_function_decl);
2834   value_reg_low = value_reg_high = -1;
2835   if (retvalue)
2836     {
2837       value_reg_low = REGNO (retvalue);
2838       value_reg_high = END_REGNO (retvalue) - 1;
2839     }
2840 
2841   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2842   if (value_reg_low == -1)
2843     output_stack->top = -1;
2844   else
2845     {
2846       int reg;
2847 
2848       output_stack->top = value_reg_high - value_reg_low;
2849       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2850 	{
2851 	  output_stack->reg[value_reg_high - reg] = reg;
2852 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2853 	}
2854     }
2855 }
2856 
2857 /* Copy the stack info from the end of edge E's source block to the
2858    start of E's destination block.  */
2859 
2860 static void
propagate_stack(edge e)2861 propagate_stack (edge e)
2862 {
2863   stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2864   stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2865   int reg;
2866 
2867   /* Preserve the order of the original stack, but check whether
2868      any pops are needed.  */
2869   dest_stack->top = -1;
2870   for (reg = 0; reg <= src_stack->top; ++reg)
2871     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2872       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2873 
2874   /* Push in any partially dead values.  */
2875   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2876     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2877         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2878       dest_stack->reg[++dest_stack->top] = reg;
2879 }
2880 
2881 
2882 /* Adjust the stack of edge E's source block on exit to match the stack
2883    of it's target block upon input.  The stack layouts of both blocks
2884    should have been defined by now.  */
2885 
2886 static bool
compensate_edge(edge e)2887 compensate_edge (edge e)
2888 {
2889   basic_block source = e->src, target = e->dest;
2890   stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2891   stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2892   struct stack_def regstack;
2893   int reg;
2894 
2895   if (dump_file)
2896     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2897 
2898   gcc_assert (target_stack->top != -2);
2899 
2900   /* Check whether stacks are identical.  */
2901   if (target_stack->top == source_stack->top)
2902     {
2903       for (reg = target_stack->top; reg >= 0; --reg)
2904 	if (target_stack->reg[reg] != source_stack->reg[reg])
2905 	  break;
2906 
2907       if (reg == -1)
2908 	{
2909 	  if (dump_file)
2910 	    fprintf (dump_file, "no changes needed\n");
2911 	  return false;
2912 	}
2913     }
2914 
2915   if (dump_file)
2916     {
2917       fprintf (dump_file, "correcting stack to ");
2918       print_stack (dump_file, target_stack);
2919     }
2920 
2921   /* Abnormal calls may appear to have values live in st(0), but the
2922      abnormal return path will not have actually loaded the values.  */
2923   if (e->flags & EDGE_ABNORMAL_CALL)
2924     {
2925       /* Assert that the lifetimes are as we expect -- one value
2926          live at st(0) on the end of the source block, and no
2927          values live at the beginning of the destination block.
2928 	 For complex return values, we may have st(1) live as well.  */
2929       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2930       gcc_assert (target_stack->top == -1);
2931       return false;
2932     }
2933 
2934   /* Handle non-call EH edges specially.  The normal return path have
2935      values in registers.  These will be popped en masse by the unwind
2936      library.  */
2937   if (e->flags & EDGE_EH)
2938     {
2939       gcc_assert (target_stack->top == -1);
2940       return false;
2941     }
2942 
2943   /* We don't support abnormal edges.  Global takes care to
2944      avoid any live register across them, so we should never
2945      have to insert instructions on such edges.  */
2946   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2947 
2948   /* Make a copy of source_stack as change_stack is destructive.  */
2949   regstack = *source_stack;
2950 
2951   /* It is better to output directly to the end of the block
2952      instead of to the edge, because emit_swap can do minimal
2953      insn scheduling.  We can do this when there is only one
2954      edge out, and it is not abnormal.  */
2955   if (EDGE_COUNT (source->succs) == 1)
2956     {
2957       current_block = source;
2958       change_stack (BB_END (source), &regstack, target_stack,
2959 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2960     }
2961   else
2962     {
2963       rtx_insn *seq;
2964       rtx_note *after;
2965 
2966       current_block = NULL;
2967       start_sequence ();
2968 
2969       /* ??? change_stack needs some point to emit insns after.  */
2970       after = emit_note (NOTE_INSN_DELETED);
2971 
2972       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2973 
2974       seq = get_insns ();
2975       end_sequence ();
2976 
2977       set_insn_locations (seq, e->goto_locus);
2978       insert_insn_on_edge (seq, e);
2979       return true;
2980     }
2981   return false;
2982 }
2983 
2984 /* Traverse all non-entry edges in the CFG, and emit the necessary
2985    edge compensation code to change the stack from stack_out of the
2986    source block to the stack_in of the destination block.  */
2987 
2988 static bool
compensate_edges(void)2989 compensate_edges (void)
2990 {
2991   bool inserted = false;
2992   basic_block bb;
2993 
2994   starting_stack_p = false;
2995 
2996   FOR_EACH_BB_FN (bb, cfun)
2997     if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2998       {
2999         edge e;
3000         edge_iterator ei;
3001 
3002         FOR_EACH_EDGE (e, ei, bb->succs)
3003 	  inserted |= compensate_edge (e);
3004       }
3005   return inserted;
3006 }
3007 
3008 /* Select the better of two edges E1 and E2 to use to determine the
3009    stack layout for their shared destination basic block.  This is
3010    typically the more frequently executed.  The edge E1 may be NULL
3011    (in which case E2 is returned), but E2 is always non-NULL.  */
3012 
3013 static edge
better_edge(edge e1,edge e2)3014 better_edge (edge e1, edge e2)
3015 {
3016   if (!e1)
3017     return e2;
3018 
3019   if (e1->count () > e2->count ())
3020     return e1;
3021   if (e1->count () < e2->count ())
3022     return e2;
3023 
3024   /* Prefer critical edges to minimize inserting compensation code on
3025      critical edges.  */
3026 
3027   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
3028     return EDGE_CRITICAL_P (e1) ? e1 : e2;
3029 
3030   /* Avoid non-deterministic behavior.  */
3031   return (e1->src->index < e2->src->index) ? e1 : e2;
3032 }
3033 
3034 /* Convert stack register references in one block.  Return true if the CFG
3035    has been modified in the process.  */
3036 
3037 static bool
convert_regs_1(basic_block block)3038 convert_regs_1 (basic_block block)
3039 {
3040   struct stack_def regstack;
3041   block_info bi = BLOCK_INFO (block);
3042   int reg;
3043   rtx_insn *insn, *next;
3044   bool control_flow_insn_deleted = false;
3045   bool cfg_altered = false;
3046   int debug_insns_with_starting_stack = 0;
3047 
3048   any_malformed_asm = false;
3049 
3050   /* Choose an initial stack layout, if one hasn't already been chosen.  */
3051   if (bi->stack_in.top == -2)
3052     {
3053       edge e, beste = NULL;
3054       edge_iterator ei;
3055 
3056       /* Select the best incoming edge (typically the most frequent) to
3057 	 use as a template for this basic block.  */
3058       FOR_EACH_EDGE (e, ei, block->preds)
3059 	if (BLOCK_INFO (e->src)->done)
3060 	  beste = better_edge (beste, e);
3061 
3062       if (beste)
3063 	propagate_stack (beste);
3064       else
3065 	{
3066 	  /* No predecessors.  Create an arbitrary input stack.  */
3067 	  bi->stack_in.top = -1;
3068 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3069 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
3070 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
3071 	}
3072     }
3073 
3074   if (dump_file)
3075     {
3076       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3077       print_stack (dump_file, &bi->stack_in);
3078     }
3079 
3080   /* Process all insns in this block.  Keep track of NEXT so that we
3081      don't process insns emitted while substituting in INSN.  */
3082   current_block = block;
3083   next = BB_HEAD (block);
3084   regstack = bi->stack_in;
3085   starting_stack_p = true;
3086 
3087   do
3088     {
3089       insn = next;
3090       next = NEXT_INSN (insn);
3091 
3092       /* Ensure we have not missed a block boundary.  */
3093       gcc_assert (next);
3094       if (insn == BB_END (block))
3095 	next = NULL;
3096 
3097       /* Don't bother processing unless there is a stack reg
3098 	 mentioned or if it's a CALL_INSN.  */
3099       if (DEBUG_BIND_INSN_P (insn))
3100 	{
3101 	  if (starting_stack_p)
3102 	    debug_insns_with_starting_stack++;
3103 	  else
3104 	    {
3105 	      subst_all_stack_regs_in_debug_insn (insn, &regstack);
3106 
3107 	      /* Nothing must ever die at a debug insn.  If something
3108 		 is referenced in it that becomes dead, it should have
3109 		 died before and the reference in the debug insn
3110 		 should have been removed so as to avoid changing code
3111 		 generation.  */
3112 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3113 	    }
3114 	}
3115       else if (stack_regs_mentioned (insn)
3116 	       || CALL_P (insn))
3117 	{
3118 	  if (dump_file)
3119 	    {
3120 	      fprintf (dump_file, "  insn %d input stack: ",
3121 		       INSN_UID (insn));
3122 	      print_stack (dump_file, &regstack);
3123 	    }
3124 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3125 	  starting_stack_p = false;
3126 	}
3127     }
3128   while (next);
3129 
3130   if (debug_insns_with_starting_stack)
3131     {
3132       /* Since it's the first non-debug instruction that determines
3133 	 the stack requirements of the current basic block, we refrain
3134 	 from updating debug insns before it in the loop above, and
3135 	 fix them up here.  */
3136       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3137 	   insn = NEXT_INSN (insn))
3138 	{
3139 	  if (!DEBUG_BIND_INSN_P (insn))
3140 	    continue;
3141 
3142 	  debug_insns_with_starting_stack--;
3143 	  subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3144 	}
3145     }
3146 
3147   if (dump_file)
3148     {
3149       fprintf (dump_file, "Expected live registers [");
3150       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3151 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3152 	  fprintf (dump_file, " %d", reg);
3153       fprintf (dump_file, " ]\nOutput stack: ");
3154       print_stack (dump_file, &regstack);
3155     }
3156 
3157   insn = BB_END (block);
3158   if (JUMP_P (insn))
3159     insn = PREV_INSN (insn);
3160 
3161   /* If the function is declared to return a value, but it returns one
3162      in only some cases, some registers might come live here.  Emit
3163      necessary moves for them.  */
3164 
3165   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3166     {
3167       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3168 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3169 	{
3170 	  rtx set;
3171 
3172 	  if (dump_file)
3173 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3174 
3175 	  set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3176 	  insn = emit_insn_after (set, insn);
3177 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3178 	}
3179     }
3180 
3181   /* Amongst the insns possibly deleted during the substitution process above,
3182      might have been the only trapping insn in the block.  We purge the now
3183      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3184      called at the end of convert_regs.  The order in which we process the
3185      blocks ensures that we never delete an already processed edge.
3186 
3187      Note that, at this point, the CFG may have been damaged by the emission
3188      of instructions after an abnormal call, which moves the basic block end
3189      (and is the reason why we call fixup_abnormal_edges later).  So we must
3190      be sure that the trapping insn has been deleted before trying to purge
3191      dead edges, otherwise we risk purging valid edges.
3192 
3193      ??? We are normally supposed not to delete trapping insns, so we pretend
3194      that the insns deleted above don't actually trap.  It would have been
3195      better to detect this earlier and avoid creating the EH edge in the first
3196      place, still, but we don't have enough information at that time.  */
3197 
3198   if (control_flow_insn_deleted)
3199     cfg_altered |= purge_dead_edges (block);
3200 
3201   /* Something failed if the stack lives don't match.  If we had malformed
3202      asms, we zapped the instruction itself, but that didn't produce the
3203      same pattern of register kills as before.  */
3204 
3205   gcc_assert (regstack.reg_set == bi->out_reg_set || any_malformed_asm);
3206   bi->stack_out = regstack;
3207   bi->done = true;
3208 
3209   return cfg_altered;
3210 }
3211 
3212 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3213    CFG has been modified in the process.  */
3214 
3215 static bool
convert_regs_2(basic_block block)3216 convert_regs_2 (basic_block block)
3217 {
3218   basic_block *stack, *sp;
3219   bool cfg_altered = false;
3220 
3221   /* We process the blocks in a top-down manner, in a way such that one block
3222      is only processed after all its predecessors.  The number of predecessors
3223      of every block has already been computed.  */
3224 
3225   stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3226   sp = stack;
3227 
3228   *sp++ = block;
3229 
3230   do
3231     {
3232       edge e;
3233       edge_iterator ei;
3234 
3235       block = *--sp;
3236 
3237       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3238 	 some dead EH outgoing edge after the deletion of the trapping
3239 	 insn inside the block.  Since the number of predecessors of
3240 	 BLOCK's successors was computed based on the initial edge set,
3241 	 we check the necessity to process some of these successors
3242 	 before such an edge deletion may happen.  However, there is
3243 	 a pitfall: if BLOCK is the only predecessor of a successor and
3244 	 the edge between them happens to be deleted, the successor
3245 	 becomes unreachable and should not be processed.  The problem
3246 	 is that there is no way to preventively detect this case so we
3247 	 stack the successor in all cases and hand over the task of
3248 	 fixing up the discrepancy to convert_regs_1.  */
3249 
3250       FOR_EACH_EDGE (e, ei, block->succs)
3251 	if (! (e->flags & EDGE_DFS_BACK))
3252 	  {
3253 	    BLOCK_INFO (e->dest)->predecessors--;
3254 	    if (!BLOCK_INFO (e->dest)->predecessors)
3255 	      *sp++ = e->dest;
3256 	  }
3257 
3258       cfg_altered |= convert_regs_1 (block);
3259     }
3260   while (sp != stack);
3261 
3262   free (stack);
3263 
3264   return cfg_altered;
3265 }
3266 
3267 /* Traverse all basic blocks in a function, converting the register
3268    references in each insn from the "flat" register file that gcc uses,
3269    to the stack-like registers the 387 uses.  */
3270 
3271 static void
convert_regs(void)3272 convert_regs (void)
3273 {
3274   bool cfg_altered = false;
3275   int inserted;
3276   basic_block b;
3277   edge e;
3278   edge_iterator ei;
3279 
3280   /* Initialize uninitialized registers on function entry.  */
3281   inserted = convert_regs_entry ();
3282 
3283   /* Construct the desired stack for function exit.  */
3284   convert_regs_exit ();
3285   BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3286 
3287   /* ??? Future: process inner loops first, and give them arbitrary
3288      initial stacks which emit_swap_insn can modify.  This ought to
3289      prevent double fxch that often appears at the head of a loop.  */
3290 
3291   /* Process all blocks reachable from all entry points.  */
3292   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3293     cfg_altered |= convert_regs_2 (e->dest);
3294 
3295   /* ??? Process all unreachable blocks.  Though there's no excuse
3296      for keeping these even when not optimizing.  */
3297   FOR_EACH_BB_FN (b, cfun)
3298     {
3299       block_info bi = BLOCK_INFO (b);
3300 
3301       if (! bi->done)
3302 	cfg_altered |= convert_regs_2 (b);
3303     }
3304 
3305   /* We must fix up abnormal edges before inserting compensation code
3306      because both mechanisms insert insns on edges.  */
3307   inserted |= fixup_abnormal_edges ();
3308 
3309   inserted |= compensate_edges ();
3310 
3311   clear_aux_for_blocks ();
3312 
3313   if (inserted)
3314     commit_edge_insertions ();
3315 
3316   if (cfg_altered)
3317     cleanup_cfg (0);
3318 
3319   if (dump_file)
3320     fputc ('\n', dump_file);
3321 }
3322 
3323 /* Convert register usage from "flat" register file usage to a "stack
3324    register file.  FILE is the dump file, if used.
3325 
3326    Construct a CFG and run life analysis.  Then convert each insn one
3327    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3328    code duplication created when the converter inserts pop insns on
3329    the edges.  */
3330 
3331 static bool
reg_to_stack(void)3332 reg_to_stack (void)
3333 {
3334   basic_block bb;
3335   int i;
3336   int max_uid;
3337 
3338   /* Clean up previous run.  */
3339   stack_regs_mentioned_data.release ();
3340 
3341   /* See if there is something to do.  Flow analysis is quite
3342      expensive so we might save some compilation time.  */
3343   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3344     if (df_regs_ever_live_p (i))
3345       break;
3346   if (i > LAST_STACK_REG)
3347     return false;
3348 
3349   df_note_add_problem ();
3350   df_analyze ();
3351 
3352   mark_dfs_back_edges ();
3353 
3354   /* Set up block info for each basic block.  */
3355   alloc_aux_for_blocks (sizeof (struct block_info_def));
3356   FOR_EACH_BB_FN (bb, cfun)
3357     {
3358       block_info bi = BLOCK_INFO (bb);
3359       edge_iterator ei;
3360       edge e;
3361       int reg;
3362 
3363       FOR_EACH_EDGE (e, ei, bb->preds)
3364 	if (!(e->flags & EDGE_DFS_BACK)
3365 	    && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3366 	  bi->predecessors++;
3367 
3368       /* Set current register status at last instruction `uninitialized'.  */
3369       bi->stack_in.top = -2;
3370 
3371       /* Copy live_at_end and live_at_start into temporaries.  */
3372       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3373 	{
3374 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3375 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3376 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3377 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3378 	}
3379     }
3380 
3381   /* Create the replacement registers up front.  */
3382   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3383     {
3384       machine_mode mode;
3385       FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
3386 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3387       FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
3388 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3389     }
3390 
3391   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3392 
3393   /* A QNaN for initializing uninitialized variables.
3394 
3395      ??? We can't load from constant memory in PIC mode, because
3396      we're inserting these instructions before the prologue and
3397      the PIC register hasn't been set up.  In that case, fall back
3398      on zero, which we can get from `fldz'.  */
3399 
3400   if ((flag_pic && !TARGET_64BIT)
3401       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3402     not_a_num = CONST0_RTX (SFmode);
3403   else
3404     {
3405       REAL_VALUE_TYPE r;
3406 
3407       real_nan (&r, "", 1, SFmode);
3408       not_a_num = const_double_from_real_value (r, SFmode);
3409       not_a_num = force_const_mem (SFmode, not_a_num);
3410     }
3411 
3412   /* Allocate a cache for stack_regs_mentioned.  */
3413   max_uid = get_max_uid ();
3414   stack_regs_mentioned_data.create (max_uid + 1);
3415   memset (stack_regs_mentioned_data.address (),
3416 	  0, sizeof (char) * (max_uid + 1));
3417 
3418   convert_regs ();
3419 
3420   free_aux_for_blocks ();
3421   return true;
3422 }
3423 #endif /* STACK_REGS */
3424 
3425 namespace {
3426 
3427 const pass_data pass_data_stack_regs =
3428 {
3429   RTL_PASS, /* type */
3430   "*stack_regs", /* name */
3431   OPTGROUP_NONE, /* optinfo_flags */
3432   TV_REG_STACK, /* tv_id */
3433   0, /* properties_required */
3434   0, /* properties_provided */
3435   0, /* properties_destroyed */
3436   0, /* todo_flags_start */
3437   0, /* todo_flags_finish */
3438 };
3439 
3440 class pass_stack_regs : public rtl_opt_pass
3441 {
3442 public:
pass_stack_regs(gcc::context * ctxt)3443   pass_stack_regs (gcc::context *ctxt)
3444     : rtl_opt_pass (pass_data_stack_regs, ctxt)
3445   {}
3446 
3447   /* opt_pass methods: */
gate(function *)3448   virtual bool gate (function *)
3449     {
3450 #ifdef STACK_REGS
3451       return true;
3452 #else
3453       return false;
3454 #endif
3455     }
3456 
3457 }; // class pass_stack_regs
3458 
3459 } // anon namespace
3460 
3461 rtl_opt_pass *
make_pass_stack_regs(gcc::context * ctxt)3462 make_pass_stack_regs (gcc::context *ctxt)
3463 {
3464   return new pass_stack_regs (ctxt);
3465 }
3466 
3467 /* Convert register usage from flat register file usage to a stack
3468    register file.  */
3469 static unsigned int
rest_of_handle_stack_regs(void)3470 rest_of_handle_stack_regs (void)
3471 {
3472 #ifdef STACK_REGS
3473   reg_to_stack ();
3474   regstack_completed = 1;
3475 #endif
3476   return 0;
3477 }
3478 
3479 namespace {
3480 
3481 const pass_data pass_data_stack_regs_run =
3482 {
3483   RTL_PASS, /* type */
3484   "stack", /* name */
3485   OPTGROUP_NONE, /* optinfo_flags */
3486   TV_REG_STACK, /* tv_id */
3487   0, /* properties_required */
3488   0, /* properties_provided */
3489   0, /* properties_destroyed */
3490   0, /* todo_flags_start */
3491   TODO_df_finish, /* todo_flags_finish */
3492 };
3493 
3494 class pass_stack_regs_run : public rtl_opt_pass
3495 {
3496 public:
pass_stack_regs_run(gcc::context * ctxt)3497   pass_stack_regs_run (gcc::context *ctxt)
3498     : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3499   {}
3500 
3501   /* opt_pass methods: */
execute(function *)3502   virtual unsigned int execute (function *)
3503     {
3504       return rest_of_handle_stack_regs ();
3505     }
3506 
3507 }; // class pass_stack_regs_run
3508 
3509 } // anon namespace
3510 
3511 rtl_opt_pass *
make_pass_stack_regs_run(gcc::context * ctxt)3512 make_pass_stack_regs_run (gcc::context *ctxt)
3513 {
3514   return new pass_stack_regs_run (ctxt);
3515 }
3516