xref: /netbsd-src/external/bsd/ntp/dist/ntpd/refclock_datum.c (revision cdfa2a7ef92791ba9db70a584a1d904730e6fb46)
1 /*	$NetBSD: refclock_datum.c,v 1.8 2020/05/25 20:47:25 christos Exp $	*/
2 
3 /*
4 ** refclock_datum - clock driver for the Datum Programmable Time Server
5 **
6 ** Important note: This driver assumes that you have termios. If you have
7 ** a system that does not have termios, you will have to modify this driver.
8 **
9 ** Sorry, I have only tested this driver on SUN and HP platforms.
10 */
11 
12 #ifdef HAVE_CONFIG_H
13 # include <config.h>
14 #endif
15 
16 #include "ntp_types.h"
17 
18 #if defined(REFCLOCK) && defined(CLOCK_DATUM)
19 
20 /*
21 ** Include Files
22 */
23 
24 #include "ntpd.h"
25 #include "ntp_io.h"
26 #include "ntp_tty.h"
27 #include "ntp_refclock.h"
28 #include "timevalops.h"
29 #include "ntp_stdlib.h"
30 
31 #include <stdio.h>
32 #include <ctype.h>
33 
34 #if defined(STREAM)
35 #include <stropts.h>
36 #endif /* STREAM */
37 
38 #include "ntp_stdlib.h"
39 
40 /*
41 ** This driver supports the Datum Programmable Time System (PTS) clock.
42 ** The clock works in very straight forward manner. When it receives a
43 ** time code request (e.g., the ascii string "//k/mn"), it responds with
44 ** a seven byte BCD time code. This clock only responds with a
45 ** time code after it first receives the "//k/mn" message. It does not
46 ** periodically send time codes back at some rate once it is started.
47 ** the returned time code can be broken down into the following fields.
48 **
49 **            _______________________________
50 ** Bit Index | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
51 **            ===============================
52 ** byte 0:   | -   -   -   - |      H D      |
53 **            ===============================
54 ** byte 1:   |      T D      |      U D      |
55 **            ===============================
56 ** byte 2:   | -   - |  T H  |      U H      |
57 **            ===============================
58 ** byte 3:   | - |    T M    |      U M      |
59 **            ===============================
60 ** byte 4:   | - |    T S    |      U S      |
61 **            ===============================
62 ** byte 5:   |      t S      |      h S      |
63 **            ===============================
64 ** byte 6:   |      m S      | -   -   -   - |
65 **            ===============================
66 **
67 ** In the table above:
68 **
69 **	"-" means don't care
70 **	"H D", "T D", and "U D" means Hundreds, Tens, and Units of Days
71 **	"T H", and "UH" means Tens and Units of Hours
72 **	"T M", and "U M" means Tens and Units of Minutes
73 **	"T S", and "U S" means Tens and Units of Seconds
74 **	"t S", "h S", and "m S" means tenths, hundredths, and thousandths
75 **				of seconds
76 **
77 ** The Datum PTS communicates throught the RS232 port on your machine.
78 ** Right now, it assumes that you have termios. This driver has been tested
79 ** on SUN and HP workstations. The Datum PTS supports various IRIG and
80 ** NASA input codes. This driver assumes that the name of the device is
81 ** /dev/datum. You will need to make a soft link to your RS232 device or
82 ** create a new driver to use this refclock.
83 */
84 
85 /*
86 ** Datum PTS defines
87 */
88 
89 /*
90 ** Note that if GMT is defined, then the Datum PTS must use Greenwich
91 ** time. Otherwise, this driver allows the Datum PTS to use the current
92 ** wall clock for its time. It determines the time zone offset by minimizing
93 ** the error after trying several time zone offsets. If the Datum PTS
94 ** time is Greenwich time and GMT is not defined, everything should still
95 ** work since the time zone will be found to be 0. What this really means
96 ** is that your system time (at least to start with) must be within the
97 ** correct time by less than +- 30 minutes. The default is for GMT to not
98 ** defined. If you really want to force GMT without the funny +- 30 minute
99 ** stuff then you must define (uncomment) GMT below.
100 */
101 
102 /*
103 #define GMT
104 #define DEBUG_DATUM_PTC
105 #define LOG_TIME_ERRORS
106 */
107 
108 
109 #define	PRECISION	(-10)		/* precision assumed 1/1024 ms */
110 #define	REFID "DATM"			/* reference id */
111 #define DATUM_DISPERSION 0		/* fixed dispersion = 0 ms */
112 #define DATUM_MAX_ERROR 0.100		/* limits on sigma squared */
113 #define DATUM_DEV	"/dev/datum"	/* device name */
114 
115 #define DATUM_MAX_ERROR2 (DATUM_MAX_ERROR*DATUM_MAX_ERROR)
116 
117 /*
118 ** The Datum PTS structure
119 */
120 
121 /*
122 ** I don't use a fixed array of MAXUNITS like everyone else just because
123 ** I don't like to program that way. Sorry if this bothers anyone. I assume
124 ** that you can use any id for your unit and I will search for it in a
125 ** dynamic array of units until I find it. I was worried that users might
126 ** enter a bad id in their configuration file (larger than MAXUNITS) and
127 ** besides, it is just cleaner not to have to assume that you have a fixed
128 ** number of anything in a program.
129 */
130 
131 struct datum_pts_unit {
132 	struct peer *peer;		/* peer used by ntp */
133 	int PTS_fd;			/* file descriptor for PTS */
134 	u_int unit;			/* id for unit */
135 	u_long timestarted;		/* time started */
136 	l_fp lastrec;			/* time tag for the receive time (system) */
137 	l_fp lastref;			/* reference time (Datum time) */
138 	u_long yearstart;		/* the year that this clock started */
139 	int coderecv;			/* number of time codes received */
140 	int day;			/* day */
141 	int hour;			/* hour */
142 	int minute;			/* minutes */
143 	int second;			/* seconds */
144 	int msec;			/* miliseconds */
145 	int usec;			/* miliseconds */
146 	u_char leap;			/* funny leap character code */
147 	char retbuf[8];		/* returned time from the datum pts */
148 	char nbytes;			/* number of bytes received from datum pts */
149 	double sigma2;		/* average squared error (roughly) */
150 	int tzoff;			/* time zone offest from GMT */
151 };
152 
153 /*
154 ** PTS static constant variables for internal use
155 */
156 
157 static char TIME_REQUEST[6];	/* request message sent to datum for time */
158 static int nunits;		/* number of active units */
159 
160 /*
161 ** Callback function prototypes that ntpd needs to know about.
162 */
163 
164 static	int	datum_pts_start		(int, struct peer *);
165 static	void	datum_pts_shutdown	(int, struct peer *);
166 static	void	datum_pts_poll		(int, struct peer *);
167 static	void	datum_pts_control	(int, const struct refclockstat *,
168 					 struct refclockstat *, struct peer *);
169 static	void	datum_pts_init		(void);
170 static	void	datum_pts_buginfo	(int, struct refclockbug *, struct peer *);
171 
172 /*
173 ** This is the call back function structure that ntpd actually uses for
174 ** this refclock.
175 */
176 
177 struct	refclock refclock_datum = {
178 	datum_pts_start,		/* start up a new Datum refclock */
179 	datum_pts_shutdown,		/* shutdown a Datum refclock */
180 	datum_pts_poll,		/* sends out the time request */
181 	datum_pts_control,		/* not used */
182 	datum_pts_init,		/* initialization (called first) */
183 	datum_pts_buginfo,		/* not used */
184 	NOFLAGS			/* we are not setting any special flags */
185 };
186 
187 /*
188 ** The datum_pts_receive callback function is handled differently from the
189 ** rest. It is passed to the ntpd io data structure. Basically, every
190 ** 64 seconds, the datum_pts_poll() routine is called. It sends out the time
191 ** request message to the Datum Programmable Time System. Then, ntpd
192 ** waits on a select() call to receive data back. The datum_pts_receive()
193 ** function is called as data comes back. We expect a seven byte time
194 ** code to be returned but the datum_pts_receive() function may only get
195 ** a few bytes passed to it at a time. In other words, this routine may
196 ** get called by the io stuff in ntpd a few times before we get all seven
197 ** bytes. Once the last byte is received, we process it and then pass the
198 ** new time measurement to ntpd for updating the system time. For now,
199 ** there is no 3 state filtering done on the time measurements. The
200 ** jitter may be a little high but at least for its current use, it is not
201 ** a problem. We have tried to keep things as simple as possible. This
202 ** clock should not jitter more than 1 or 2 mseconds at the most once
203 ** things settle down. It is important to get the right drift calibrated
204 ** in the ntpd.drift file as well as getting the right tick set up right
205 ** using tickadj for SUNs. Tickadj is not used for the HP but you need to
206 ** remember to bring up the adjtime daemon because HP does not support
207 ** the adjtime() call.
208 */
209 
210 static	void	datum_pts_receive	(struct recvbuf *);
211 
212 /*......................................................................*/
213 /*	datum_pts_start - start up the datum PTS. This means open the	*/
214 /*	RS232 device and set up the data structure for my unit.		*/
215 /*......................................................................*/
216 
217 static int
datum_pts_start(int unit,struct peer * peer)218 datum_pts_start(
219 	int unit,
220 	struct peer *peer
221 	)
222 {
223 	struct refclockproc *pp;
224 	struct datum_pts_unit *datum_pts;
225 	int fd;
226 #ifdef HAVE_TERMIOS
227 	int rc;
228 	struct termios arg;
229 #endif
230 
231 #ifdef DEBUG_DATUM_PTC
232 	if (debug)
233 	    printf("Starting Datum PTS unit %d\n", unit);
234 #endif
235 
236 	/*
237 	** Open the Datum PTS device
238 	*/
239 	fd = open(DATUM_DEV, O_RDWR);
240 
241 	if (fd < 0) {
242 		msyslog(LOG_ERR, "Datum_PTS: open(\"%s\", O_RDWR) failed: %m", DATUM_DEV);
243 		return 0;
244 	}
245 
246 	/*
247 	** Create the memory for the new unit
248 	*/
249 	datum_pts = emalloc_zero(sizeof(*datum_pts));
250 	datum_pts->unit = unit;	/* set my unit id */
251 	datum_pts->yearstart = 0;	/* initialize the yearstart to 0 */
252 	datum_pts->sigma2 = 0.0;	/* initialize the sigma2 to 0 */
253 
254 	datum_pts->PTS_fd = fd;
255 
256 	if (-1 == fcntl(datum_pts->PTS_fd, F_SETFL, 0)) /* clear the descriptor flags */
257 		msyslog(LOG_ERR, "MSF_ARCRON(%d): fcntl(F_SETFL, 0): %m.",
258 			unit);
259 
260 #ifdef DEBUG_DATUM_PTC
261 	if (debug)
262 	    printf("Opening RS232 port with file descriptor %d\n",
263 		   datum_pts->PTS_fd);
264 #endif
265 
266 	/*
267 	** Set up the RS232 terminal device information. Note that we assume that
268 	** we have termios. This code has only been tested on SUNs and HPs. If your
269 	** machine does not have termios this driver cannot be initialized. You can change this
270 	** if you want by editing this source. Please give the changes back to the
271 	** ntp folks so that it can become part of their regular distribution.
272 	*/
273 
274 	memset(&arg, 0, sizeof(arg));
275 
276 	arg.c_iflag = IGNBRK;
277 	arg.c_oflag = 0;
278 	arg.c_cflag = B9600 | CS8 | CREAD | PARENB | CLOCAL;
279 	arg.c_lflag = 0;
280 	arg.c_cc[VMIN] = 0;		/* start timeout timer right away (not used) */
281 	arg.c_cc[VTIME] = 30;		/* 3 second timout on reads (not used) */
282 
283 	rc = tcsetattr(datum_pts->PTS_fd, TCSANOW, &arg);
284 	if (rc < 0) {
285 		msyslog(LOG_ERR, "Datum_PTS: tcsetattr(\"%s\") failed: %m", DATUM_DEV);
286 		close(datum_pts->PTS_fd);
287 		free(datum_pts);
288 		return 0;
289 	}
290 
291 	/*
292 	** Initialize the ntpd IO structure
293 	*/
294 
295 	datum_pts->peer = peer;
296 	pp = peer->procptr;
297 	pp->io.clock_recv = datum_pts_receive;
298 	pp->io.srcclock = peer;
299 	pp->io.datalen = 0;
300 	pp->io.fd = datum_pts->PTS_fd;
301 
302 	if (!io_addclock(&pp->io)) {
303 		pp->io.fd = -1;
304 #ifdef DEBUG_DATUM_PTC
305 		if (debug)
306 		    printf("Problem adding clock\n");
307 #endif
308 
309 		msyslog(LOG_ERR, "Datum_PTS: Problem adding clock");
310 		close(datum_pts->PTS_fd);
311 		free(datum_pts);
312 
313 		return 0;
314 	}
315 	peer->procptr->unitptr = datum_pts;
316 
317 	/*
318 	** Now add one to the number of units and return a successful code
319 	*/
320 
321 	nunits++;
322 	return 1;
323 
324 }
325 
326 
327 /*......................................................................*/
328 /*	datum_pts_shutdown - this routine shuts doen the device and	*/
329 /*	removes the memory for the unit.				*/
330 /*......................................................................*/
331 
332 static void
datum_pts_shutdown(int unit,struct peer * peer)333 datum_pts_shutdown(
334 	int unit,
335 	struct peer *peer
336 	)
337 {
338 	struct refclockproc *pp;
339 	struct datum_pts_unit *datum_pts;
340 
341 #ifdef DEBUG_DATUM_PTC
342 	if (debug)
343 	    printf("Shutdown Datum PTS\n");
344 #endif
345 
346 	msyslog(LOG_ERR, "Datum_PTS: Shutdown Datum PTS");
347 
348 	/*
349 	** We found the unit so close the file descriptor and free up the memory used
350 	** by the structure.
351 	*/
352 	pp = peer->procptr;
353 	datum_pts = pp->unitptr;
354 	if (NULL != datum_pts) {
355 		io_closeclock(&pp->io);
356 		free(datum_pts);
357 	}
358 }
359 
360 
361 /*......................................................................*/
362 /*	datum_pts_poll - this routine sends out the time request to the */
363 /*	Datum PTS device. The time will be passed back in the 		*/
364 /*	datum_pts_receive() routine.					*/
365 /*......................................................................*/
366 
367 static void
datum_pts_poll(int unit,struct peer * peer)368 datum_pts_poll(
369 	int unit,
370 	struct peer *peer
371 	)
372 {
373 	int error_code;
374 	struct datum_pts_unit *datum_pts;
375 
376 	datum_pts = peer->procptr->unitptr;
377 
378 #ifdef DEBUG_DATUM_PTC
379 	if (debug)
380 	    printf("Poll Datum PTS\n");
381 #endif
382 
383 	/*
384 	** Find the right unit and send out a time request once it is found.
385 	*/
386 	error_code = write(datum_pts->PTS_fd, TIME_REQUEST, 6);
387 	if (error_code != 6)
388 		perror("TIME_REQUEST");
389 	datum_pts->nbytes = 0;
390 }
391 
392 
393 /*......................................................................*/
394 /*	datum_pts_control - not used					*/
395 /*......................................................................*/
396 
397 static void
datum_pts_control(int unit,const struct refclockstat * in,struct refclockstat * out,struct peer * peer)398 datum_pts_control(
399 	int unit,
400 	const struct refclockstat *in,
401 	struct refclockstat *out,
402 	struct peer *peer
403 	)
404 {
405 
406 #ifdef DEBUG_DATUM_PTC
407 	if (debug)
408 	    printf("Control Datum PTS\n");
409 #endif
410 
411 }
412 
413 
414 /*......................................................................*/
415 /*	datum_pts_init - initializes things for all possible Datum	*/
416 /*	time code generators that might be used. In practice, this is	*/
417 /*	only called once at the beginning before anything else is	*/
418 /*	called.								*/
419 /*......................................................................*/
420 
421 static void
datum_pts_init(void)422 datum_pts_init(void)
423 {
424 
425 	/*									*/
426 	/*...... open up the log file if we are debugging ......................*/
427 	/*									*/
428 
429 	/*
430 	** Open up the log file if we are debugging. For now, send data out to the
431 	** screen (stdout).
432 	*/
433 
434 #ifdef DEBUG_DATUM_PTC
435 	if (debug)
436 	    printf("Init Datum PTS\n");
437 #endif
438 
439 	/*
440 	** Initialize the time request command string. This is the only message
441 	** that we ever have to send to the Datum PTS (although others are defined).
442 	*/
443 
444 	memcpy(TIME_REQUEST, "//k/mn",6);
445 
446 	/*
447 	** Initialize the number of units to 0 and set the dynamic array of units to
448 	** NULL since there are no units defined yet.
449 	*/
450 
451 	nunits = 0;
452 
453 }
454 
455 
456 /*......................................................................*/
457 /*	datum_pts_buginfo - not used					*/
458 /*......................................................................*/
459 
460 static void
datum_pts_buginfo(int unit,register struct refclockbug * bug,register struct peer * peer)461 datum_pts_buginfo(
462 	int unit,
463 	register struct refclockbug *bug,
464 	register struct peer *peer
465 	)
466 {
467 
468 #ifdef DEBUG_DATUM_PTC
469 	if (debug)
470 	    printf("Buginfo Datum PTS\n");
471 #endif
472 
473 }
474 
475 
476 /*......................................................................*/
477 /*	datum_pts_receive - receive the time buffer that was read in	*/
478 /*	by the ntpd io handling routines. When 7 bytes have been	*/
479 /*	received (it may take several tries before all 7 bytes are	*/
480 /*	received), then the time code must be unpacked and sent to	*/
481 /*	the ntpd clock_receive() routine which causes the systems	*/
482 /*	clock to be updated (several layers down).			*/
483 /*......................................................................*/
484 
485 static void
datum_pts_receive(struct recvbuf * rbufp)486 datum_pts_receive(
487 	struct recvbuf *rbufp
488 	)
489 {
490 	int i;
491 	size_t nb;
492 	l_fp tstmp;
493 	struct peer *p;
494 	struct datum_pts_unit *datum_pts;
495 	char *dpt;
496 	int dpend;
497 	int tzoff;
498 	int timerr;
499 	double ftimerr, abserr;
500 #ifdef DEBUG_DATUM_PTC
501 	double dispersion;
502 #endif
503 	int goodtime;
504       /*double doffset;*/
505 
506 	/*
507 	** Get the time code (maybe partial) message out of the rbufp buffer.
508 	*/
509 
510 	p = rbufp->recv_peer;
511 	datum_pts = p->procptr->unitptr;
512 	dpt = (char *)&rbufp->recv_space;
513 	dpend = rbufp->recv_length;
514 
515 #ifdef DEBUG_DATUM_PTC
516 	if (debug)
517 		printf("Receive Datum PTS: %d bytes\n", dpend);
518 #endif
519 
520 	/*									*/
521 	/*...... save the ntp system time when the first byte is received ......*/
522 	/*									*/
523 
524 	/*
525 	** Save the ntp system time when the first byte is received. Note that
526 	** because it may take several calls to this routine before all seven
527 	** bytes of our return message are finally received by the io handlers in
528 	** ntpd, we really do want to use the time tag when the first byte is
529 	** received to reduce the jitter.
530 	*/
531 
532 	nb = datum_pts->nbytes;
533 	if (nb == 0) {
534 		datum_pts->lastrec = rbufp->recv_time;
535 	}
536 
537 	/*
538 	** Increment our count to the number of bytes received so far. Return if we
539 	** haven't gotten all seven bytes yet.
540 	** [Sec 3388] make sure we do not overrun the buffer.
541 	** TODO: what to do with excessive bytes, if we ever get them?
542 	*/
543 	for (i=0; (i < dpend) && (nb < sizeof(datum_pts->retbuf)); i++, nb++) {
544 		datum_pts->retbuf[nb] = dpt[i];
545 	}
546 	datum_pts->nbytes = nb;
547 
548 	if (nb < 7) {
549 		return;
550 	}
551 
552 	/*
553 	** Convert the seven bytes received in our time buffer to day, hour, minute,
554 	** second, and msecond values. The usec value is not used for anything
555 	** currently. It is just the fractional part of the time stored in units
556 	** of microseconds.
557 	*/
558 
559 	datum_pts->day =	100*(datum_pts->retbuf[0] & 0x0f) +
560 		10*((datum_pts->retbuf[1] & 0xf0)>>4) +
561 		(datum_pts->retbuf[1] & 0x0f);
562 
563 	datum_pts->hour =	10*((datum_pts->retbuf[2] & 0x30)>>4) +
564 		(datum_pts->retbuf[2] & 0x0f);
565 
566 	datum_pts->minute =	10*((datum_pts->retbuf[3] & 0x70)>>4) +
567 		(datum_pts->retbuf[3] & 0x0f);
568 
569 	datum_pts->second =	10*((datum_pts->retbuf[4] & 0x70)>>4) +
570 		(datum_pts->retbuf[4] & 0x0f);
571 
572 	datum_pts->msec =	100*((datum_pts->retbuf[5] & 0xf0) >> 4) +
573 		10*(datum_pts->retbuf[5] & 0x0f) +
574 		((datum_pts->retbuf[6] & 0xf0)>>4);
575 
576 	datum_pts->usec =	1000*datum_pts->msec;
577 
578 #ifdef DEBUG_DATUM_PTC
579 	if (debug)
580 	    printf("day %d, hour %d, minute %d, second %d, msec %d\n",
581 		   datum_pts->day,
582 		   datum_pts->hour,
583 		   datum_pts->minute,
584 		   datum_pts->second,
585 		   datum_pts->msec);
586 #endif
587 
588 	/*
589 	** Get the GMT time zone offset. Note that GMT should be zero if the Datum
590 	** reference time is using GMT as its time base. Otherwise we have to
591 	** determine the offset if the Datum PTS is using time of day as its time
592 	** base.
593 	*/
594 
595 	goodtime = 0;		/* We are not sure about the time and offset yet */
596 
597 #ifdef GMT
598 
599 	/*
600 	** This is the case where the Datum PTS is using GMT so there is no time
601 	** zone offset.
602 	*/
603 
604 	tzoff = 0;		/* set time zone offset to 0 */
605 
606 #else
607 
608 	/*
609 	** This is the case where the Datum PTS is using regular time of day for its
610 	** time so we must compute the time zone offset. The way we do it is kind of
611 	** funny but it works. We loop through different time zones (0 to 24) and
612 	** pick the one that gives the smallest error (+- one half hour). The time
613 	** zone offset is stored in the datum_pts structure for future use. Normally,
614 	** the clocktime() routine is only called once (unless the time zone offset
615 	** changes due to daylight savings) since the goodtime flag is set when a
616 	** good time is found (with a good offset). Note that even if the Datum
617 	** PTS is using GMT, this mechanism will still work since it should come up
618 	** with a value for tzoff = 0 (assuming that your system clock is within
619 	** a half hour of the Datum time (even with time zone differences).
620 	*/
621 
622 	for (tzoff=0; tzoff<24; tzoff++) {
623 		if (clocktime( datum_pts->day,
624 			       datum_pts->hour,
625 			       datum_pts->minute,
626 			       datum_pts->second,
627 			       (tzoff + datum_pts->tzoff) % 24,
628 			       datum_pts->lastrec.l_ui,
629 			       &datum_pts->yearstart,
630 			       &datum_pts->lastref.l_ui) ) {
631 
632 			datum_pts->lastref.l_uf = 0;
633 			error = datum_pts->lastref.l_ui - datum_pts->lastrec.l_ui;
634 
635 #ifdef DEBUG_DATUM_PTC
636 			printf("Time Zone (clocktime method) = %d, error = %d\n", tzoff, error);
637 #endif
638 
639 			if ((error < 1799) && (error > -1799)) {
640 				tzoff = (tzoff + datum_pts->tzoff) % 24;
641 				datum_pts->tzoff = tzoff;
642 				goodtime = 1;
643 
644 #ifdef DEBUG_DATUM_PTC
645 				printf("Time Zone found (clocktime method) = %d\n",tzoff);
646 #endif
647 
648 				break;
649 			}
650 
651 		}
652 	}
653 
654 #endif
655 
656 	/*
657 	** Make sure that we have a good time from the Datum PTS. Clocktime() also
658 	** sets yearstart and lastref.l_ui. We will have to set astref.l_uf (i.e.,
659 	** the fraction of a second) stuff later.
660 	*/
661 
662 	if (!goodtime) {
663 
664 		if (!clocktime( datum_pts->day,
665 				datum_pts->hour,
666 				datum_pts->minute,
667 				datum_pts->second,
668 				tzoff,
669 				datum_pts->lastrec.l_ui,
670 				&datum_pts->yearstart,
671 				&datum_pts->lastref.l_ui) ) {
672 
673 #ifdef DEBUG_DATUM_PTC
674 			if (debug)
675 			{
676 				printf("Error: bad clocktime\n");
677 				printf("GMT %d, lastrec %d, yearstart %d, lastref %d\n",
678 				       tzoff,
679 				       datum_pts->lastrec.l_ui,
680 				       datum_pts->yearstart,
681 				       datum_pts->lastref.l_ui);
682 			}
683 #endif
684 
685 			msyslog(LOG_ERR, "Datum_PTS: Bad clocktime");
686 
687 			return;
688 
689 		}else{
690 
691 #ifdef DEBUG_DATUM_PTC
692 			if (debug)
693 			    printf("Good clocktime\n");
694 #endif
695 
696 		}
697 
698 	}
699 
700 	/*
701 	** We have datum_pts->lastref.l_ui set (which is the integer part of the
702 	** time. Now set the microseconds field.
703 	*/
704 
705 	TVUTOTSF(datum_pts->usec, datum_pts->lastref.l_uf);
706 
707 	/*
708 	** Compute the time correction as the difference between the reference
709 	** time (i.e., the Datum time) minus the receive time (system time).
710 	*/
711 
712 	tstmp = datum_pts->lastref;		/* tstmp is the datum ntp time */
713 	L_SUB(&tstmp, &datum_pts->lastrec);	/* tstmp is now the correction */
714 	datum_pts->coderecv++;		/* increment a counter */
715 
716 #ifdef DEBUG_DATUM_PTC
717 	dispersion = DATUM_DISPERSION;	/* set the dispersion to 0 */
718 	ftimerr = dispersion;
719 	ftimerr /= (1024.0 * 64.0);
720 	if (debug)
721 	    printf("dispersion = %d, %f\n", dispersion, ftimerr);
722 #endif
723 
724 	/*
725 	** Pass the new time to ntpd through the refclock_receive function. Note
726 	** that we are not trying to make any corrections due to the time it takes
727 	** for the Datum PTS to send the message back. I am (erroneously) assuming
728 	** that the time for the Datum PTS to send the time back to us is negligable.
729 	** I suspect that this time delay may be as much as 15 ms or so (but probably
730 	** less). For our needs at JPL, this kind of error is ok so it is not
731 	** necessary to use fudge factors in the ntp.conf file. Maybe later we will.
732 	*/
733       /*LFPTOD(&tstmp, doffset);*/
734 	datum_pts->lastref = datum_pts->lastrec;
735 	refclock_receive(datum_pts->peer);
736 
737 	/*
738 	** Compute sigma squared (not used currently). Maybe later, this could be
739 	** used for the dispersion estimate. The problem is that ntpd does not link
740 	** in the math library so sqrt() is not available. Anyway, this is useful
741 	** for debugging. Maybe later I will just use absolute values for the time
742 	** error to come up with my dispersion estimate. Anyway, for now my dispersion
743 	** is set to 0.
744 	*/
745 
746 	timerr = tstmp.l_ui<<20;
747 	timerr |= (tstmp.l_uf>>12) & 0x000fffff;
748 	ftimerr = timerr;
749 	ftimerr /= 1024*1024;
750 	abserr = ftimerr;
751 	if (ftimerr < 0.0) abserr = -ftimerr;
752 
753 	if (datum_pts->sigma2 == 0.0) {
754 		if (abserr < DATUM_MAX_ERROR) {
755 			datum_pts->sigma2 = abserr*abserr;
756 		}else{
757 			datum_pts->sigma2 = DATUM_MAX_ERROR2;
758 		}
759 	}else{
760 		if (abserr < DATUM_MAX_ERROR) {
761 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*abserr*abserr;
762 		}else{
763 			datum_pts->sigma2 = 0.95*datum_pts->sigma2 + 0.05*DATUM_MAX_ERROR2;
764 		}
765 	}
766 
767 #ifdef DEBUG_DATUM_PTC
768 	if (debug)
769 	    printf("Time error = %f seconds\n", ftimerr);
770 #endif
771 
772 #if defined(DEBUG_DATUM_PTC) || defined(LOG_TIME_ERRORS)
773 	if (debug)
774 	    printf("PTS: day %d, hour %d, minute %d, second %d, msec %d, Time Error %f\n",
775 		   datum_pts->day,
776 		   datum_pts->hour,
777 		   datum_pts->minute,
778 		   datum_pts->second,
779 		   datum_pts->msec,
780 		   ftimerr);
781 #endif
782 
783 }
784 #else
785 NONEMPTY_TRANSLATION_UNIT
786 #endif /* REFCLOCK */
787