xref: /llvm-project/polly/lib/External/isl/imath/examples/pi.c (revision 658eb9e14264d48888ade0e3daf0b648f76c3f0e)
1 /*
2   Name:     pi.c
3   Purpose:  Computes digits of the physical constant pi.
4   Author:   M. J. Fromberger
5 
6   Copyright (C) 2002-2008 Michael J. Fromberger, All Rights Reserved.
7 
8   Notes:
9   Uses Machin's formula, which should be suitable for a few thousand digits.
10 
11   Permission is hereby granted, free of charge, to any person obtaining a copy
12   of this software and associated documentation files (the "Software"), to deal
13   in the Software without restriction, including without limitation the rights
14   to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15   copies of the Software, and to permit persons to whom the Software is
16   furnished to do so, subject to the following conditions:
17 
18   The above copyright notice and this permission notice shall be included in
19   all copies or substantial portions of the Software.
20 
21   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
24   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26   OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27   SOFTWARE.
28  */
29 
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <time.h>
34 
35 #include "imath.h"
36 
37 int g_radix = 10; /* use this radix for output */
38 
39 mp_result arctan(mp_small radix, mp_small mul, mp_small x, mp_small prec,
40                  mp_int sum);
41 
42 char g_buf[4096];
43 
main(int argc,char * argv[])44 int main(int argc, char *argv[]) {
45   mp_result res;
46   mpz_t sum1, sum2;
47   int ndigits, out = 0;
48   clock_t start, end;
49 
50   if (argc < 2) {
51     fprintf(stderr, "Usage: %s <num-digits> [<radix>]\n", argv[0]);
52     return 1;
53   }
54 
55   if ((ndigits = abs(atoi(argv[1]))) == 0) {
56     fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]);
57     return 1;
58   } else if ((mp_word)ndigits > MP_DIGIT_MAX) {
59     fprintf(stderr, "%s: you may request at most %u digits\n", argv[0],
60             (unsigned int)MP_DIGIT_MAX);
61     return 1;
62   }
63 
64   if (argc > 2) {
65     int radix = atoi(argv[2]);
66 
67     if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX) {
68       fprintf(stderr, "%s: you may only specify a radix between %d and %d\n",
69               argv[0], MP_MIN_RADIX, MP_MAX_RADIX);
70       return 1;
71     }
72     g_radix = radix;
73   }
74 
75   mp_int_init(&sum1);
76   mp_int_init(&sum2);
77   start = clock();
78 
79   /* sum1 = 16 * arctan(1/5) */
80   if ((res = arctan(g_radix, 16, 5, ndigits, &sum1)) != MP_OK) {
81     fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res);
82     out = 1;
83     goto CLEANUP;
84   }
85 
86   /* sum2 = 4 * arctan(1/239) */
87   if ((res = arctan(g_radix, 4, 239, ndigits, &sum2)) != MP_OK) {
88     fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res);
89     out = 1;
90     goto CLEANUP;
91   }
92 
93   /* pi = sum1 - sum2 */
94   if ((res = mp_int_sub(&sum1, &sum2, &sum1)) != MP_OK) {
95     fprintf(stderr, "%s: error computing pi: %d\n", argv[0], res);
96     out = 1;
97     goto CLEANUP;
98   }
99   end = clock();
100 
101   mp_int_to_string(&sum1, g_radix, g_buf, sizeof(g_buf));
102   printf("%c.%s\n", g_buf[0], g_buf + 1);
103 
104   fprintf(stderr, "Computation took %.2f sec.\n",
105           (double)(end - start) / CLOCKS_PER_SEC);
106 
107 CLEANUP:
108   mp_int_clear(&sum1);
109   mp_int_clear(&sum2);
110 
111   return out;
112 }
113 
114 /*
115   Compute mul * atan(1/x) to prec digits of precision, and store the
116   result in sum.
117 
118   Computes atan(1/x) using the formula:
119 
120                1     1      1      1
121   atan(1/x) = --- - ---- + ---- - ---- + ...
122                x    3x^3   5x^5   7x^7
123 
124  */
arctan(mp_small radix,mp_small mul,mp_small x,mp_small prec,mp_int sum)125 mp_result arctan(mp_small radix, mp_small mul, mp_small x, mp_small prec,
126                  mp_int sum) {
127   mpz_t t, v;
128   mp_result res;
129   mp_small rem, sign = 1, coeff = 1;
130 
131   mp_int_init(&t);
132   mp_int_init(&v);
133   ++prec;
134 
135   /* Compute mul * radix^prec * x
136      The initial multiplication by x saves a special case in the loop for
137      the first term of the series.
138    */
139   if ((res = mp_int_expt_value(radix, prec, &t)) != MP_OK ||
140       (res = mp_int_mul_value(&t, mul, &t)) != MP_OK ||
141       (res = mp_int_mul_value(&t, x, &t)) != MP_OK)
142     goto CLEANUP;
143 
144   x *= x; /* assumes x <= sqrt(MP_SMALL_MAX) */
145   mp_int_zero(sum);
146 
147   do {
148     if ((res = mp_int_div_value(&t, x, &t, &rem)) != MP_OK) goto CLEANUP;
149 
150     if ((res = mp_int_div_value(&t, coeff, &v, &rem)) != MP_OK) goto CLEANUP;
151 
152     /* Add or subtract the result depending on the current sign (1 = add) */
153     if (sign > 0)
154       res = mp_int_add(sum, &v, sum);
155     else
156       res = mp_int_sub(sum, &v, sum);
157 
158     if (res != MP_OK) goto CLEANUP;
159     sign = -sign;
160     coeff += 2;
161 
162   } while (mp_int_compare_zero(&t) != 0);
163 
164   res = mp_int_div_value(sum, radix, sum, NULL);
165 
166 CLEANUP:
167   mp_int_clear(&v);
168   mp_int_clear(&t);
169 
170   return res;
171 }
172 
173 /* Here there be dragons */
174