xref: /netbsd-src/sys/net/npf/npf_connkey.c (revision b899bfd96fd2cbaf2befc9ce4aaed9b9c230837a)
1 /*-
2  * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at netbsd org>
3  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This material is based upon work partially supported by The
7  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * Connection key -- is an n-tuple structure encoding the address length,
33  * layer 3 protocol, source and destination addresses and ports (or other
34  * protocol IDs) and some configurable elements (see below).
35  *
36  * Key layout
37  *
38  *	The single key is formed out of 32-bit integers.  The layout is
39  *	as follows (first row -- fields, second row -- number of bits):
40  *
41  *	| alen | proto |  ckey  | src-id | dst-id | src-addr | dst-addr |
42  *	+------+-------+--------+--------+--------+----------+----------+
43  *	|   4  |   8   |   20   |   16   |   16   |  32-128  |  32-128  |
44  *
45  *	The source and destination are inverted if the key is for the
46  *	backwards stream (NPF_FLOW_BACK).  The address length depends on
47  *	the 'alen' field.  The length is in words and is either 1 or 4,
48  *	meaning 4 or 16 in bytes.
49  *
50  *	The 20-bit configurable key area ('ckey') is for the optional
51  *	elements which may be included or excluded by the user.  It has
52  *	the following layout:
53  *
54  *	| direction | interface-id |
55  *	+-----------+--------------+
56  *	|     2     |      18      |
57  *
58  *	Note: neither direction nor interface ID cannot be zero; we rely
59  *	on this by reserving the zero 'ckey' value to for the case when
60  *	these checks are not applicable.
61  *
62  * Embedding in the connection structure (npf_conn_t)
63  *
64  *	Two keys are stored in the npf_conn_t::c_keys[] array, which is
65  *	variable-length, depending on whether the keys store IPv4 or IPv6
66  *	addresses.  The length of the first key determines the position
67  *	of the second key.
68  *
69  * WARNING: the keys must be immutable while they are in conndb.
70  */
71 
72 #ifdef _KERNEL
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: npf_connkey.c,v 1.2 2020/05/30 14:16:56 rmind Exp $");
75 
76 #include <sys/param.h>
77 #include <sys/types.h>
78 #endif
79 
80 #define __NPF_CONN_PRIVATE
81 #include "npf_conn.h"
82 #include "npf_impl.h"
83 
84 unsigned
npf_connkey_setkey(npf_connkey_t * key,unsigned alen,unsigned proto,const void * ipv,const uint16_t * id,const npf_flow_t flow)85 npf_connkey_setkey(npf_connkey_t *key, unsigned alen, unsigned proto,
86     const void *ipv, const uint16_t *id, const npf_flow_t flow)
87 {
88 	const npf_addr_t * const *ips = ipv;
89 	uint32_t *k = key->ck_key;
90 	unsigned isrc, idst;
91 
92 	if (__predict_true(flow == NPF_FLOW_FORW)) {
93 		isrc = NPF_SRC, idst = NPF_DST;
94 	} else {
95 		isrc = NPF_DST, idst = NPF_SRC;
96 	}
97 
98 	/*
99 	 * See the key layout explanation above.
100 	 */
101 	KASSERT((alen >> 2) <= 0xf && proto <= 0xff);
102 	k[0] = ((uint32_t)(alen >> 2) << 28) | (proto << 20);
103 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
104 
105 	if (__predict_true(alen == sizeof(in_addr_t))) {
106 		k[2] = ips[isrc]->word32[0];
107 		k[3] = ips[idst]->word32[0];
108 		return 4 * sizeof(uint32_t);
109 	} else {
110 		const unsigned nwords = alen >> 2;
111 		memcpy(&k[2], ips[isrc], alen);
112 		memcpy(&k[2 + nwords], ips[idst], alen);
113 		return (2 + (nwords * 2)) * sizeof(uint32_t);
114 	}
115 }
116 
117 void
npf_connkey_getkey(const npf_connkey_t * key,unsigned * alen,unsigned * proto,npf_addr_t * ips,uint16_t * id)118 npf_connkey_getkey(const npf_connkey_t *key, unsigned *alen, unsigned *proto,
119     npf_addr_t *ips, uint16_t *id)
120 {
121 	const uint32_t *k = key->ck_key;
122 
123 	/*
124 	 * See the key layout explanation above.
125 	 */
126 
127 	*alen = (k[0] >> 28) << 2;
128 	*proto = (k[0] >> 16) & 0xff;
129 	id[NPF_SRC] = k[1] >> 16;
130 	id[NPF_DST] = k[1] & 0xffff;
131 
132 	switch (*alen) {
133 	case sizeof(struct in6_addr):
134 	case sizeof(struct in_addr):
135 		memcpy(&ips[NPF_SRC], &k[2], *alen);
136 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
137 		return;
138 	default:
139 		KASSERT(0);
140 	}
141 }
142 
143 static inline void
npf_connkey_setckey(npf_connkey_t * key,unsigned ifid,unsigned di)144 npf_connkey_setckey(npf_connkey_t *key, unsigned ifid, unsigned di)
145 {
146 	if (ifid) {
147 		/*
148 		 * Interface ID: the lower 18 bits of the 20-bit 'ckey'.
149 		 * Note: the interface ID cannot be zero.
150 		 */
151 		CTASSERT(NPF_MAX_IFMAP < (1U << 18));
152 		key->ck_key[0] |= ifid;
153 	}
154 	if (di) {
155 		/*
156 		 * Direction: The highest 2 bits of the 20-bit 'ckey'.
157 		 * Note: we rely on PFIL_IN and PFIL_OUT definitions.
158 		 */
159 		CTASSERT(PFIL_IN == 0x1 || PFIL_OUT == 0x2);
160 		KASSERT((di & ~PFIL_ALL) == 0);
161 		key->ck_key[0] |= ((uint32_t)di << 18);
162 	}
163 }
164 
165 static void
npf_connkey_getckey(const npf_connkey_t * key,unsigned * ifid,unsigned * di)166 npf_connkey_getckey(const npf_connkey_t *key, unsigned *ifid, unsigned *di)
167 {
168 	const uint32_t * const k = key->ck_key;
169 
170 	*ifid = k[0] & ((1U << 20) - 1);
171 	*di = (k[0] >> 18) & PFIL_ALL;
172 }
173 
174 /*
175  * npf_conn_adjkey: adjust the connection key by setting the address/port.
176  *
177  * => The 'which' must either be NPF_SRC or NPF_DST.
178  */
179 void
npf_conn_adjkey(npf_connkey_t * key,const npf_addr_t * naddr,const uint16_t id,const unsigned which)180 npf_conn_adjkey(npf_connkey_t *key, const npf_addr_t *naddr,
181     const uint16_t id, const unsigned which)
182 {
183 	const unsigned alen = NPF_CONNKEY_ALEN(key);
184 	uint32_t * const k = key->ck_key;
185 	uint32_t *addr = &k[2 + ((alen >> 2) * which)];
186 
187 	KASSERT(which == NPF_SRC || which == NPF_DST);
188 	KASSERT(alen > 0);
189 	memcpy(addr, naddr, alen);
190 
191 	if (id) {
192 		const uint32_t oid = k[1];
193 		const unsigned shift = 16 * !which;
194 		const uint32_t mask = 0xffff0000 >> shift;
195 		k[1] = ((uint32_t)id << shift) | (oid & mask);
196 	}
197 }
198 
199 static unsigned
npf_connkey_copy(const npf_connkey_t * skey,npf_connkey_t * dkey,bool invert)200 npf_connkey_copy(const npf_connkey_t *skey, npf_connkey_t *dkey, bool invert)
201 {
202 	const unsigned klen = NPF_CONNKEY_LEN(skey);
203 	const uint32_t *sk = skey->ck_key;
204 	uint32_t *dk = dkey->ck_key;
205 
206 	if (invert) {
207 		const unsigned alen = NPF_CONNKEY_ALEN(skey);
208 		const unsigned nwords = alen >> 2;
209 
210 		dk[0] = sk[1];
211 		dk[1] = (sk[1] >> 16) | (sk[1] << 16);
212 		memcpy(&dk[2], &sk[2 + nwords], alen);
213 		memcpy(&dk[2 + nwords], &sk[2], alen);
214 	} else {
215 		memcpy(dk, sk, klen);
216 	}
217 	return klen;
218 }
219 
220 /*
221  * npf_conn_conkey: construct a key for the connection lookup.
222  *
223  * => Returns the key length in bytes or zero on failure.
224  */
225 unsigned
npf_conn_conkey(const npf_cache_t * npc,npf_connkey_t * key,const unsigned di,const npf_flow_t flow)226 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key,
227     const unsigned di, const npf_flow_t flow)
228 {
229 	const npf_conn_params_t *params = npc->npc_ctx->params[NPF_PARAMS_CONN];
230 	const nbuf_t *nbuf = npc->npc_nbuf;
231 	const unsigned proto = npc->npc_proto;
232 	const unsigned alen = npc->npc_alen;
233 	const struct tcphdr *th;
234 	const struct udphdr *uh;
235 	uint16_t id[2] = { 0, 0 };
236 	unsigned ret;
237 
238 	if (npc->npc_ckey) {
239 		/*
240 		 * Request to override the connection key.
241 		 */
242 		const bool invert = flow != NPF_FLOW_FORW;
243 		return npf_connkey_copy(npc->npc_ckey, key, invert);
244 	}
245 
246 	switch (proto) {
247 	case IPPROTO_TCP:
248 		KASSERT(npf_iscached(npc, NPC_TCP));
249 		th = npc->npc_l4.tcp;
250 		id[NPF_SRC] = th->th_sport;
251 		id[NPF_DST] = th->th_dport;
252 		break;
253 	case IPPROTO_UDP:
254 		KASSERT(npf_iscached(npc, NPC_UDP));
255 		uh = npc->npc_l4.udp;
256 		id[NPF_SRC] = uh->uh_sport;
257 		id[NPF_DST] = uh->uh_dport;
258 		break;
259 	case IPPROTO_ICMP:
260 		if (npf_iscached(npc, NPC_ICMP_ID)) {
261 			const struct icmp *ic = npc->npc_l4.icmp;
262 			id[NPF_SRC] = ic->icmp_id;
263 			id[NPF_DST] = ic->icmp_id;
264 			break;
265 		}
266 		return 0;
267 	case IPPROTO_ICMPV6:
268 		if (npf_iscached(npc, NPC_ICMP_ID)) {
269 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
270 			id[NPF_SRC] = ic6->icmp6_id;
271 			id[NPF_DST] = ic6->icmp6_id;
272 			break;
273 		}
274 		return 0;
275 	default:
276 		/* Unsupported protocol. */
277 		return 0;
278 	}
279 
280 	ret = npf_connkey_setkey(key, alen, proto, npc->npc_ips, id, flow);
281 	npf_connkey_setckey(key,
282 	    params->connkey_interface ? nbuf->nb_ifid : 0,
283 	    params->connkey_direction ? (di & PFIL_ALL) : 0);
284 	return ret;
285 }
286 
287 /*
288  * npf_conn_getforwkey: get the address to the "forwards" key.
289  */
290 npf_connkey_t *
npf_conn_getforwkey(npf_conn_t * conn)291 npf_conn_getforwkey(npf_conn_t *conn)
292 {
293 	return (void *)&conn->c_keys[0];
294 }
295 
296 /*
297  * npf_conn_getbackkey: get the address to the "backwards" key.
298  *
299  * => It depends on the address length.
300  */
301 npf_connkey_t *
npf_conn_getbackkey(npf_conn_t * conn,unsigned alen)302 npf_conn_getbackkey(npf_conn_t *conn, unsigned alen)
303 {
304 	const unsigned off = 2 + ((alen * 2) >> 2);
305 	KASSERT(off == NPF_CONNKEY_V4WORDS || off == NPF_CONNKEY_V6WORDS);
306 	return (void *)&conn->c_keys[off];
307 }
308 
309 /*
310  * Connection key exporting/importing.
311  */
312 
313 nvlist_t *
npf_connkey_export(npf_t * npf,const npf_connkey_t * key)314 npf_connkey_export(npf_t *npf, const npf_connkey_t *key)
315 {
316 	unsigned alen, proto, ifid, di;
317 	npf_addr_t ips[2];
318 	uint16_t ids[2];
319 	nvlist_t *key_nv;
320 
321 	key_nv = nvlist_create(0);
322 
323 	npf_connkey_getkey(key, &alen, &proto, ips, ids);
324 	nvlist_add_number(key_nv, "proto", proto);
325 	nvlist_add_number(key_nv, "sport", ids[NPF_SRC]);
326 	nvlist_add_number(key_nv, "dport", ids[NPF_DST]);
327 	nvlist_add_binary(key_nv, "saddr", &ips[NPF_SRC], alen);
328 	nvlist_add_binary(key_nv, "daddr", &ips[NPF_DST], alen);
329 
330 	npf_connkey_getckey(key, &ifid, &di);
331 	if (ifid) {
332 		char ifname[IFNAMSIZ];
333 		npf_ifmap_copyname(npf, ifid, ifname, sizeof(ifname));
334 		nvlist_add_string(key_nv, "ifname", ifname);
335 	}
336 	if (di) {
337 		nvlist_add_number(key_nv, "di", di);
338 	}
339 
340 	return key_nv;
341 }
342 
343 unsigned
npf_connkey_import(npf_t * npf,const nvlist_t * key_nv,npf_connkey_t * key)344 npf_connkey_import(npf_t *npf, const nvlist_t *key_nv, npf_connkey_t *key)
345 {
346 	npf_addr_t const * ips[2];
347 	size_t alen1, alen2, proto;
348 	unsigned ret, di, ifid = 0;
349 	const char *ifname;
350 	uint16_t ids[2];
351 
352 	proto = dnvlist_get_number(key_nv, "proto", 0);
353 	if (proto >= IPPROTO_MAX) {
354 		return 0;
355 	}
356 	ids[NPF_SRC] = dnvlist_get_number(key_nv, "sport", 0);
357 	ids[NPF_DST] = dnvlist_get_number(key_nv, "dport", 0);
358 	ips[NPF_SRC] = dnvlist_get_binary(key_nv, "saddr", &alen1, NULL, 0);
359 	ips[NPF_DST] = dnvlist_get_binary(key_nv, "daddr", &alen2, NULL, 0);
360 	if (alen1 == 0 || alen1 > sizeof(npf_addr_t) || alen1 != alen2) {
361 		return 0;
362 	}
363 	ret = npf_connkey_setkey(key, alen1, proto, ips, ids, NPF_FLOW_FORW);
364 	if (ret == 0) {
365 		return 0;
366 	}
367 
368 	ifname = dnvlist_get_string(key_nv, "ifname", NULL);
369 	if (ifname && (ifid = npf_ifmap_register(npf, ifname)) == 0) {
370 		return 0;
371 	}
372 	di = dnvlist_get_number(key_nv, "di", 0) & PFIL_ALL;
373 	npf_connkey_setckey(key, ifid, di);
374 
375 	return ret;
376 }
377 
378 #if defined(DDB) || defined(_NPF_TESTING)
379 
380 void
npf_connkey_print(const npf_connkey_t * key)381 npf_connkey_print(const npf_connkey_t *key)
382 {
383 	unsigned alen, proto, ifid, di;
384 	npf_addr_t ips[2];
385 	uint16_t ids[2];
386 
387 	npf_connkey_getkey(key, &alen, &proto, ips, ids);
388 	npf_connkey_getckey(key, &ifid, &di);
389 	printf("\tkey (ifid %u, di %x)\t", ifid, di);
390 	printf("%s:%u", npf_addr_dump(&ips[0], alen), ids[0]);
391 	printf("-> %s:%u\n", npf_addr_dump(&ips[1], alen), ids[1]);
392 }
393 
394 #endif
395