1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/types.h>
27 #include <sys/callb.h>
28 #include <sys/sdt.h>
29 #include <sys/strsubr.h>
30 #include <sys/strsun.h>
31 #include <sys/vlan.h>
32 #include <inet/ipsec_impl.h>
33 #include <inet/ip_impl.h>
34 #include <inet/sadb.h>
35 #include <inet/ipsecesp.h>
36 #include <inet/ipsecah.h>
37 #include <inet/ip6.h>
38
39 #include <sys/mac_impl.h>
40 #include <sys/mac_client_impl.h>
41 #include <sys/mac_client_priv.h>
42 #include <sys/mac_soft_ring.h>
43 #include <sys/mac_flow_impl.h>
44
45 static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *,
46 uintptr_t, uint16_t, mblk_t **);
47 static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *,
48 uintptr_t, uint16_t, mblk_t **);
49 static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *,
50 uintptr_t, uint16_t, mblk_t **);
51 static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *,
52 uintptr_t, uint16_t, mblk_t **);
53 static mac_tx_cookie_t mac_tx_aggr_mode(mac_soft_ring_set_t *, mblk_t *,
54 uintptr_t, uint16_t, mblk_t **);
55
56 typedef struct mac_tx_mode_s {
57 mac_tx_srs_mode_t mac_tx_mode;
58 mac_tx_func_t mac_tx_func;
59 } mac_tx_mode_t;
60
61 /*
62 * There are seven modes of operation on the Tx side. These modes get set
63 * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode,
64 * none of the other modes are user configurable. They get selected by
65 * the system depending upon whether the link (or flow) has multiple Tx
66 * rings or a bandwidth configured, or if the link is an aggr, etc.
67 *
68 * When the Tx SRS is operating in aggr mode (st_mode) or if there are
69 * multiple Tx rings owned by Tx SRS, then each Tx ring (pseudo or
70 * otherwise) will have a soft ring associated with it. These soft rings
71 * are stored in srs_tx_soft_rings[] array.
72 *
73 * Additionally in the case of aggr, there is the st_soft_rings[] array
74 * in the mac_srs_tx_t structure. This array is used to store the same
75 * set of soft rings that are present in srs_tx_soft_rings[] array but
76 * in a different manner. The soft ring associated with the pseudo Tx
77 * ring is saved at mr_index (of the pseudo ring) in st_soft_rings[]
78 * array. This helps in quickly getting the soft ring associated with the
79 * Tx ring when aggr_find_tx_ring() returns the pseudo Tx ring that is to
80 * be used for transmit.
81 */
82 mac_tx_mode_t mac_tx_mode_list[] = {
83 {SRS_TX_DEFAULT, mac_tx_single_ring_mode},
84 {SRS_TX_SERIALIZE, mac_tx_serializer_mode},
85 {SRS_TX_FANOUT, mac_tx_fanout_mode},
86 {SRS_TX_BW, mac_tx_bw_mode},
87 {SRS_TX_BW_FANOUT, mac_tx_bw_mode},
88 {SRS_TX_AGGR, mac_tx_aggr_mode},
89 {SRS_TX_BW_AGGR, mac_tx_bw_mode}
90 };
91
92 /*
93 * Soft Ring Set (SRS) - The Run time code that deals with
94 * dynamic polling from the hardware, bandwidth enforcement,
95 * fanout etc.
96 *
97 * We try to use H/W classification on NIC and assign traffic for
98 * a MAC address to a particular Rx ring or ring group. There is a
99 * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically
100 * switches the underlying Rx ring between interrupt and
101 * polling mode and enforces any specified B/W control.
102 *
103 * There is always a SRS created and tied to each H/W and S/W rule.
104 * Whenever we create a H/W rule, we always add the the same rule to
105 * S/W classifier and tie a SRS to it.
106 *
107 * In case a B/W control is specified, it is broken into bytes
108 * per ticks and as soon as the quota for a tick is exhausted,
109 * the underlying Rx ring is forced into poll mode for remainder of
110 * the tick. The SRS poll thread only polls for bytes that are
111 * allowed to come in the SRS. We typically let 4x the configured
112 * B/W worth of packets to come in the SRS (to prevent unnecessary
113 * drops due to bursts) but only process the specified amount.
114 *
115 * A MAC client (e.g. a VNIC or aggr) can have 1 or more
116 * Rx rings (and corresponding SRSs) assigned to it. The SRS
117 * in turn can have softrings to do protocol level fanout or
118 * softrings to do S/W based fanout or both. In case the NIC
119 * has no Rx rings, we do S/W classification to respective SRS.
120 * The S/W classification rule is always setup and ready. This
121 * allows the MAC layer to reassign Rx rings whenever needed
122 * but packets still continue to flow via the default path and
123 * getting S/W classified to correct SRS.
124 *
125 * The SRS's are used on both Tx and Rx side. They use the same
126 * data structure but the processing routines have slightly different
127 * semantics due to the fact that Rx side needs to do dynamic
128 * polling etc.
129 *
130 * Dynamic Polling Notes
131 * =====================
132 *
133 * Each Soft ring set is capable of switching its Rx ring between
134 * interrupt and poll mode and actively 'polls' for packets in
135 * poll mode. If the SRS is implementing a B/W limit, it makes
136 * sure that only Max allowed packets are pulled in poll mode
137 * and goes to poll mode as soon as B/W limit is exceeded. As
138 * such, there are no overheads to implement B/W limits.
139 *
140 * In poll mode, its better to keep the pipeline going where the
141 * SRS worker thread keeps processing packets and poll thread
142 * keeps bringing more packets (specially if they get to run
143 * on different CPUs). This also prevents the overheads associated
144 * by excessive signalling (on NUMA machines, this can be
145 * pretty devastating). The exception is latency optimized case
146 * where worker thread does no work and interrupt and poll thread
147 * are allowed to do their own drain.
148 *
149 * We use the following policy to control Dynamic Polling:
150 * 1) We switch to poll mode anytime the processing
151 * thread causes a backlog to build up in SRS and
152 * its associated Soft Rings (sr_poll_pkt_cnt > 0).
153 * 2) As long as the backlog stays under the low water
154 * mark (sr_lowat), we poll the H/W for more packets.
155 * 3) If the backlog (sr_poll_pkt_cnt) exceeds low
156 * water mark, we stay in poll mode but don't poll
157 * the H/W for more packets.
158 * 4) Anytime in polling mode, if we poll the H/W for
159 * packets and find nothing plus we have an existing
160 * backlog (sr_poll_pkt_cnt > 0), we stay in polling
161 * mode but don't poll the H/W for packets anymore
162 * (let the polling thread go to sleep).
163 * 5) Once the backlog is relived (packets are processed)
164 * we reenable polling (by signalling the poll thread)
165 * only when the backlog dips below sr_poll_thres.
166 * 6) sr_hiwat is used exclusively when we are not
167 * polling capable and is used to decide when to
168 * drop packets so the SRS queue length doesn't grow
169 * infinitely.
170 *
171 * NOTE: Also see the block level comment on top of mac_soft_ring.c
172 */
173
174 /*
175 * mac_latency_optimize
176 *
177 * Controls whether the poll thread can process the packets inline
178 * or let the SRS worker thread do the processing. This applies if
179 * the SRS was not being processed. For latency sensitive traffic,
180 * this needs to be true to allow inline processing. For throughput
181 * under load, this should be false.
182 *
183 * This (and other similar) tunable should be rolled into a link
184 * or flow specific workload hint that can be set using dladm
185 * linkprop (instead of multiple such tunables).
186 */
187 boolean_t mac_latency_optimize = B_TRUE;
188
189 /*
190 * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN
191 *
192 * queue a mp or chain in soft ring set and increment the
193 * local count (srs_count) for the SRS and the shared counter
194 * (srs_poll_pkt_cnt - shared between SRS and its soft rings
195 * to track the total unprocessed packets for polling to work
196 * correctly).
197 *
198 * The size (total bytes queued) counters are incremented only
199 * if we are doing B/W control.
200 */
201 #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
202 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
203 if ((mac_srs)->srs_last != NULL) \
204 (mac_srs)->srs_last->b_next = (head); \
205 else \
206 (mac_srs)->srs_first = (head); \
207 (mac_srs)->srs_last = (tail); \
208 (mac_srs)->srs_count += count; \
209 }
210
211 #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
212 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
213 \
214 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
215 srs_rx->sr_poll_pkt_cnt += count; \
216 ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \
217 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
218 (mac_srs)->srs_size += (sz); \
219 mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \
220 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
221 mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \
222 } \
223 }
224
225 #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \
226 mac_srs->srs_state |= SRS_ENQUEUED; \
227 MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \
228 if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \
229 (mac_srs)->srs_size += (sz); \
230 (mac_srs)->srs_bw->mac_bw_sz += (sz); \
231 } \
232 }
233
234 /*
235 * Turn polling on routines
236 */
237 #define MAC_SRS_POLLING_ON(mac_srs) { \
238 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
239 if (((mac_srs)->srs_state & \
240 (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \
241 (mac_srs)->srs_state |= SRS_POLLING; \
242 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
243 (mac_srs)->srs_ring); \
244 (mac_srs)->srs_rx.sr_poll_on++; \
245 } \
246 }
247
248 #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \
249 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
250 if (((mac_srs)->srs_state & \
251 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \
252 (SRS_POLLING_CAPAB|SRS_WORKER)) { \
253 (mac_srs)->srs_state |= SRS_POLLING; \
254 (void) mac_hwring_disable_intr((mac_ring_handle_t) \
255 (mac_srs)->srs_ring); \
256 (mac_srs)->srs_rx.sr_worker_poll_on++; \
257 } \
258 }
259
260 /*
261 * MAC_SRS_POLL_RING
262 *
263 * Signal the SRS poll thread to poll the underlying H/W ring
264 * provided it wasn't already polling (SRS_GET_PKTS was set).
265 *
266 * Poll thread gets to run only from mac_rx_srs_drain() and only
267 * if the drain was being done by the worker thread.
268 */
269 #define MAC_SRS_POLL_RING(mac_srs) { \
270 mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \
271 \
272 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
273 srs_rx->sr_poll_thr_sig++; \
274 if (((mac_srs)->srs_state & \
275 (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \
276 (SRS_WORKER|SRS_POLLING_CAPAB)) { \
277 (mac_srs)->srs_state |= SRS_GET_PKTS; \
278 cv_signal(&(mac_srs)->srs_cv); \
279 } else { \
280 srs_rx->sr_poll_thr_busy++; \
281 } \
282 }
283
284 /*
285 * MAC_SRS_CHECK_BW_CONTROL
286 *
287 * Check to see if next tick has started so we can reset the
288 * SRS_BW_ENFORCED flag and allow more packets to come in the
289 * system.
290 */
291 #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \
292 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
293 ASSERT(((mac_srs)->srs_type & SRST_TX) || \
294 MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \
295 clock_t now = ddi_get_lbolt(); \
296 if ((mac_srs)->srs_bw->mac_bw_curr_time != now) { \
297 (mac_srs)->srs_bw->mac_bw_curr_time = now; \
298 (mac_srs)->srs_bw->mac_bw_used = 0; \
299 if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \
300 (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \
301 } \
302 }
303
304 /*
305 * MAC_SRS_WORKER_WAKEUP
306 *
307 * Wake up the SRS worker thread to process the queue as long as
308 * no one else is processing the queue. If we are optimizing for
309 * latency, we wake up the worker thread immediately or else we
310 * wait mac_srs_worker_wakeup_ticks before worker thread gets
311 * woken up.
312 */
313 int mac_srs_worker_wakeup_ticks = 0;
314 #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \
315 ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \
316 if (!((mac_srs)->srs_state & SRS_PROC) && \
317 (mac_srs)->srs_tid == NULL) { \
318 if (((mac_srs)->srs_state & SRS_LATENCY_OPT) || \
319 (mac_srs_worker_wakeup_ticks == 0)) \
320 cv_signal(&(mac_srs)->srs_async); \
321 else \
322 (mac_srs)->srs_tid = \
323 timeout(mac_srs_fire, (mac_srs), \
324 mac_srs_worker_wakeup_ticks); \
325 } \
326 }
327
328 #define TX_BANDWIDTH_MODE(mac_srs) \
329 ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \
330 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT || \
331 (mac_srs)->srs_tx.st_mode == SRS_TX_BW_AGGR)
332
333 #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \
334 if (tx_mode == SRS_TX_BW_FANOUT) \
335 (void) mac_tx_fanout_mode(mac_srs, head, hint, 0, NULL);\
336 else \
337 (void) mac_tx_aggr_mode(mac_srs, head, hint, 0, NULL); \
338 }
339
340 /*
341 * MAC_TX_SRS_BLOCK
342 *
343 * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED
344 * will be set only if srs_tx_woken_up is FALSE. If
345 * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived
346 * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to
347 * attempt to transmit again and not setting SRS_TX_BLOCKED does
348 * that.
349 */
350 #define MAC_TX_SRS_BLOCK(srs, mp) { \
351 ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \
352 if ((srs)->srs_tx.st_woken_up) { \
353 (srs)->srs_tx.st_woken_up = B_FALSE; \
354 } else { \
355 ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \
356 (srs)->srs_state |= SRS_TX_BLOCKED; \
357 (srs)->srs_tx.st_stat.mts_blockcnt++; \
358 } \
359 }
360
361 /*
362 * MAC_TX_SRS_TEST_HIWAT
363 *
364 * Called before queueing a packet onto Tx SRS to test and set
365 * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat.
366 */
367 #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \
368 boolean_t enqueue = 1; \
369 \
370 if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \
371 /* \
372 * flow-controlled. Store srs in cookie so that it \
373 * can be returned as mac_tx_cookie_t to client \
374 */ \
375 (srs)->srs_state |= SRS_TX_HIWAT; \
376 cookie = (mac_tx_cookie_t)srs; \
377 (srs)->srs_tx.st_hiwat_cnt++; \
378 if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \
379 /* increment freed stats */ \
380 (srs)->srs_tx.st_stat.mts_sdrops += cnt; \
381 /* \
382 * b_prev may be set to the fanout hint \
383 * hence can't use freemsg directly \
384 */ \
385 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \
386 DTRACE_PROBE1(tx_queued_hiwat, \
387 mac_soft_ring_set_t *, srs); \
388 enqueue = 0; \
389 } \
390 } \
391 if (enqueue) \
392 MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \
393 }
394
395 /* Some utility macros */
396 #define MAC_SRS_BW_LOCK(srs) \
397 if (!(srs->srs_type & SRST_TX)) \
398 mutex_enter(&srs->srs_bw->mac_bw_lock);
399
400 #define MAC_SRS_BW_UNLOCK(srs) \
401 if (!(srs->srs_type & SRST_TX)) \
402 mutex_exit(&srs->srs_bw->mac_bw_lock);
403
404 #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \
405 mac_pkt_drop(NULL, NULL, mp, B_FALSE); \
406 /* increment freed stats */ \
407 mac_srs->srs_tx.st_stat.mts_sdrops++; \
408 cookie = (mac_tx_cookie_t)srs; \
409 }
410
411 #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \
412 mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \
413 cookie = (mac_tx_cookie_t)srs; \
414 *ret_mp = mp_chain; \
415 }
416
417 /*
418 * Drop the rx packet and advance to the next one in the chain.
419 */
420 static void
mac_rx_drop_pkt(mac_soft_ring_set_t * srs,mblk_t * mp)421 mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp)
422 {
423 mac_srs_rx_t *srs_rx = &srs->srs_rx;
424
425 ASSERT(mp->b_next == NULL);
426 mutex_enter(&srs->srs_lock);
427 MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1);
428 MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp));
429 mutex_exit(&srs->srs_lock);
430
431 srs_rx->sr_stat.mrs_sdrops++;
432 freemsg(mp);
433 }
434
435 /* DATAPATH RUNTIME ROUTINES */
436
437 /*
438 * mac_srs_fire
439 *
440 * Timer callback routine for waking up the SRS worker thread.
441 */
442 static void
mac_srs_fire(void * arg)443 mac_srs_fire(void *arg)
444 {
445 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg;
446
447 mutex_enter(&mac_srs->srs_lock);
448 if (mac_srs->srs_tid == 0) {
449 mutex_exit(&mac_srs->srs_lock);
450 return;
451 }
452
453 mac_srs->srs_tid = 0;
454 if (!(mac_srs->srs_state & SRS_PROC))
455 cv_signal(&mac_srs->srs_async);
456
457 mutex_exit(&mac_srs->srs_lock);
458 }
459
460 /*
461 * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack,
462 * and it is used on the TX path.
463 */
464 #define HASH_HINT(hint) \
465 ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8))
466
467
468 /*
469 * hash based on the src address and the port information.
470 */
471 #define HASH_ADDR(src, ports) \
472 (ntohl((src)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \
473 ((ports) >> 8) ^ (ports))
474
475 #define COMPUTE_INDEX(key, sz) (key % sz)
476
477 #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \
478 if ((tail) != NULL) { \
479 ASSERT((tail)->b_next == NULL); \
480 (tail)->b_next = (mp); \
481 } else { \
482 ASSERT((head) == NULL); \
483 (head) = (mp); \
484 } \
485 (tail) = (mp); \
486 (cnt)++; \
487 if ((bw_ctl)) \
488 (sz) += (sz0); \
489 }
490
491 #define MAC_FANOUT_DEFAULT 0
492 #define MAC_FANOUT_RND_ROBIN 1
493 int mac_fanout_type = MAC_FANOUT_DEFAULT;
494
495 #define MAX_SR_TYPES 3
496 /* fanout types for port based hashing */
497 enum pkt_type {
498 V4_TCP = 0,
499 V4_UDP,
500 OTH,
501 UNDEF
502 };
503
504 /*
505 * In general we do port based hashing to spread traffic over different
506 * softrings. The below tunable allows to override that behavior. Setting it
507 * to B_TRUE allows to do a fanout based on src ipv6 address. This behavior
508 * is also the applicable to ipv6 packets carrying multiple optional headers
509 * and other uncommon packet types.
510 */
511 boolean_t mac_src_ipv6_fanout = B_FALSE;
512
513 /*
514 * Pair of local and remote ports in the transport header
515 */
516 #define PORTS_SIZE 4
517
518 /*
519 * mac_rx_srs_proto_fanout
520 *
521 * This routine delivers packets destined to an SRS into one of the
522 * protocol soft rings.
523 *
524 * Given a chain of packets we need to split it up into multiple sub chains
525 * destined into TCP, UDP or OTH soft ring. Instead of entering
526 * the soft ring one packet at a time, we want to enter it in the form of a
527 * chain otherwise we get this start/stop behaviour where the worker thread
528 * goes to sleep and then next packets comes in forcing it to wake up etc.
529 */
530 static void
mac_rx_srs_proto_fanout(mac_soft_ring_set_t * mac_srs,mblk_t * head)531 mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
532 {
533 struct ether_header *ehp;
534 struct ether_vlan_header *evhp;
535 uint32_t sap;
536 ipha_t *ipha;
537 uint8_t *dstaddr;
538 size_t hdrsize;
539 mblk_t *mp;
540 mblk_t *headmp[MAX_SR_TYPES];
541 mblk_t *tailmp[MAX_SR_TYPES];
542 int cnt[MAX_SR_TYPES];
543 size_t sz[MAX_SR_TYPES];
544 size_t sz1;
545 boolean_t bw_ctl;
546 boolean_t hw_classified;
547 boolean_t dls_bypass;
548 boolean_t is_ether;
549 boolean_t is_unicast;
550 enum pkt_type type;
551 mac_client_impl_t *mcip = mac_srs->srs_mcip;
552
553 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
554 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
555
556 /*
557 * If we don't have a Rx ring, S/W classification would have done
558 * its job and its a packet meant for us. If we were polling on
559 * the default ring (i.e. there was a ring assigned to this SRS),
560 * then we need to make sure that the mac address really belongs
561 * to us.
562 */
563 hw_classified = mac_srs->srs_ring != NULL &&
564 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
565
566 /*
567 * Special clients (eg. VLAN, non ether, etc) need DLS
568 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
569 * such SRSs. Another way of disabling bypass is to set the
570 * MCIS_RX_BYPASS_DISABLE flag.
571 */
572 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
573 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
574
575 bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *));
576 bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *));
577 bzero(cnt, MAX_SR_TYPES * sizeof (int));
578 bzero(sz, MAX_SR_TYPES * sizeof (size_t));
579
580 /*
581 * We got a chain from SRS that we need to send to the soft rings.
582 * Since squeues for TCP & IPv4 sap poll their soft rings (for
583 * performance reasons), we need to separate out v4_tcp, v4_udp
584 * and the rest goes in other.
585 */
586 while (head != NULL) {
587 mp = head;
588 head = head->b_next;
589 mp->b_next = NULL;
590
591 type = OTH;
592 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
593
594 if (is_ether) {
595 /*
596 * At this point we can be sure the packet at least
597 * has an ether header.
598 */
599 if (sz1 < sizeof (struct ether_header)) {
600 mac_rx_drop_pkt(mac_srs, mp);
601 continue;
602 }
603 ehp = (struct ether_header *)mp->b_rptr;
604
605 /*
606 * Determine if this is a VLAN or non-VLAN packet.
607 */
608 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
609 evhp = (struct ether_vlan_header *)mp->b_rptr;
610 sap = ntohs(evhp->ether_type);
611 hdrsize = sizeof (struct ether_vlan_header);
612 /*
613 * Check if the VID of the packet, if any,
614 * belongs to this client.
615 */
616 if (!mac_client_check_flow_vid(mcip,
617 VLAN_ID(ntohs(evhp->ether_tci)))) {
618 mac_rx_drop_pkt(mac_srs, mp);
619 continue;
620 }
621 } else {
622 hdrsize = sizeof (struct ether_header);
623 }
624 is_unicast =
625 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
626 dstaddr = (uint8_t *)&ehp->ether_dhost;
627 } else {
628 mac_header_info_t mhi;
629
630 if (mac_header_info((mac_handle_t)mcip->mci_mip,
631 mp, &mhi) != 0) {
632 mac_rx_drop_pkt(mac_srs, mp);
633 continue;
634 }
635 hdrsize = mhi.mhi_hdrsize;
636 sap = mhi.mhi_bindsap;
637 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
638 dstaddr = (uint8_t *)mhi.mhi_daddr;
639 }
640
641 if (!dls_bypass) {
642 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
643 cnt[type], bw_ctl, sz[type], sz1, mp);
644 continue;
645 }
646
647 if (sap == ETHERTYPE_IP) {
648 /*
649 * If we are H/W classified, but we have promisc
650 * on, then we need to check for the unicast address.
651 */
652 if (hw_classified && mcip->mci_promisc_list != NULL) {
653 mac_address_t *map;
654
655 rw_enter(&mcip->mci_rw_lock, RW_READER);
656 map = mcip->mci_unicast;
657 if (bcmp(dstaddr, map->ma_addr,
658 map->ma_len) == 0)
659 type = UNDEF;
660 rw_exit(&mcip->mci_rw_lock);
661 } else if (is_unicast) {
662 type = UNDEF;
663 }
664 }
665
666 /*
667 * This needs to become a contract with the driver for
668 * the fast path.
669 *
670 * In the normal case the packet will have at least the L2
671 * header and the IP + Transport header in the same mblk.
672 * This is usually the case when the NIC driver sends up
673 * the packet. This is also true when the stack generates
674 * a packet that is looped back and when the stack uses the
675 * fastpath mechanism. The normal case is optimized for
676 * performance and may bypass DLS. All other cases go through
677 * the 'OTH' type path without DLS bypass.
678 */
679
680 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
681 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha))
682 type = OTH;
683
684 if (type == OTH) {
685 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type],
686 cnt[type], bw_ctl, sz[type], sz1, mp);
687 continue;
688 }
689
690 ASSERT(type == UNDEF);
691 /*
692 * We look for at least 4 bytes past the IP header to get
693 * the port information. If we get an IP fragment, we don't
694 * have the port information, and we use just the protocol
695 * information.
696 */
697 switch (ipha->ipha_protocol) {
698 case IPPROTO_TCP:
699 type = V4_TCP;
700 mp->b_rptr += hdrsize;
701 break;
702 case IPPROTO_UDP:
703 type = V4_UDP;
704 mp->b_rptr += hdrsize;
705 break;
706 default:
707 type = OTH;
708 break;
709 }
710
711 FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type],
712 bw_ctl, sz[type], sz1, mp);
713 }
714
715 for (type = V4_TCP; type < UNDEF; type++) {
716 if (headmp[type] != NULL) {
717 mac_soft_ring_t *softring;
718
719 ASSERT(tailmp[type]->b_next == NULL);
720 switch (type) {
721 case V4_TCP:
722 softring = mac_srs->srs_tcp_soft_rings[0];
723 break;
724 case V4_UDP:
725 softring = mac_srs->srs_udp_soft_rings[0];
726 break;
727 case OTH:
728 softring = mac_srs->srs_oth_soft_rings[0];
729 }
730 mac_rx_soft_ring_process(mcip, softring,
731 headmp[type], tailmp[type], cnt[type], sz[type]);
732 }
733 }
734 }
735
736 int fanout_unalligned = 0;
737
738 /*
739 * mac_rx_srs_long_fanout
740 *
741 * The fanout routine for IPv6
742 */
743 static int
mac_rx_srs_long_fanout(mac_soft_ring_set_t * mac_srs,mblk_t * mp,uint32_t sap,size_t hdrsize,enum pkt_type * type,uint_t * indx)744 mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp,
745 uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx)
746 {
747 ip6_t *ip6h;
748 uint8_t *whereptr;
749 uint_t hash;
750 uint16_t remlen;
751 uint8_t nexthdr;
752 uint16_t hdr_len;
753
754 if (sap == ETHERTYPE_IPV6) {
755 boolean_t modifiable = B_TRUE;
756
757 ASSERT(MBLKL(mp) >= hdrsize);
758
759 ip6h = (ip6_t *)(mp->b_rptr + hdrsize);
760 if ((unsigned char *)ip6h == mp->b_wptr) {
761 /*
762 * The first mblk_t only includes the mac header.
763 * Note that it is safe to change the mp pointer here,
764 * as the subsequent operation does not assume mp
765 * points to the start of the mac header.
766 */
767 mp = mp->b_cont;
768
769 /*
770 * Make sure ip6h holds the full ip6_t structure.
771 */
772 if (mp == NULL)
773 return (-1);
774
775 if (MBLKL(mp) < IPV6_HDR_LEN) {
776 modifiable = (DB_REF(mp) == 1);
777
778 if (modifiable &&
779 !pullupmsg(mp, IPV6_HDR_LEN)) {
780 return (-1);
781 }
782 }
783
784 ip6h = (ip6_t *)mp->b_rptr;
785 }
786
787 if (!modifiable || !(OK_32PTR((char *)ip6h)) ||
788 ((unsigned char *)ip6h + IPV6_HDR_LEN > mp->b_wptr)) {
789 /*
790 * If either ip6h is not alligned, or ip6h does not
791 * hold the complete ip6_t structure (a pullupmsg()
792 * is not an option since it would result in an
793 * unalligned ip6h), fanout to the default ring. Note
794 * that this may cause packets reordering.
795 */
796 *indx = 0;
797 *type = OTH;
798 fanout_unalligned++;
799 return (0);
800 }
801
802 remlen = ntohs(ip6h->ip6_plen);
803 nexthdr = ip6h->ip6_nxt;
804
805 if (remlen < MIN_EHDR_LEN)
806 return (-1);
807 /*
808 * Do src based fanout if below tunable is set to B_TRUE or
809 * when mac_ip_hdr_length_v6() fails because of malformed
810 * packets or because mblk's need to be concatenated using
811 * pullupmsg().
812 */
813 if (mac_src_ipv6_fanout || !mac_ip_hdr_length_v6(ip6h,
814 mp->b_wptr, &hdr_len, &nexthdr, NULL)) {
815 goto src_based_fanout;
816 }
817 whereptr = (uint8_t *)ip6h + hdr_len;
818
819 /* If the transport is one of below, we do port based fanout */
820 switch (nexthdr) {
821 case IPPROTO_TCP:
822 case IPPROTO_UDP:
823 case IPPROTO_SCTP:
824 case IPPROTO_ESP:
825 /*
826 * If the ports in the transport header is not part of
827 * the mblk, do src_based_fanout, instead of calling
828 * pullupmsg().
829 */
830 if (mp->b_cont != NULL &&
831 whereptr + PORTS_SIZE > mp->b_wptr) {
832 goto src_based_fanout;
833 }
834 break;
835 default:
836 break;
837 }
838
839 switch (nexthdr) {
840 case IPPROTO_TCP:
841 hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src),
842 *(uint32_t *)whereptr);
843 *indx = COMPUTE_INDEX(hash,
844 mac_srs->srs_tcp_ring_count);
845 *type = OTH;
846 break;
847
848 case IPPROTO_UDP:
849 case IPPROTO_SCTP:
850 case IPPROTO_ESP:
851 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
852 hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src),
853 *(uint32_t *)whereptr);
854 *indx = COMPUTE_INDEX(hash,
855 mac_srs->srs_udp_ring_count);
856 } else {
857 *indx = mac_srs->srs_ind %
858 mac_srs->srs_udp_ring_count;
859 mac_srs->srs_ind++;
860 }
861 *type = OTH;
862 break;
863
864 /* For all other protocol, do source based fanout */
865 default:
866 goto src_based_fanout;
867 }
868 } else {
869 *indx = 0;
870 *type = OTH;
871 }
872 return (0);
873
874 src_based_fanout:
875 hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src), (uint32_t)0);
876 *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count);
877 *type = OTH;
878 return (0);
879 }
880
881 /*
882 * mac_rx_srs_fanout
883 *
884 * This routine delivers packets destined to an SRS into a soft ring member
885 * of the set.
886 *
887 * Given a chain of packets we need to split it up into multiple sub chains
888 * destined for one of the TCP, UDP or OTH soft rings. Instead of entering
889 * the soft ring one packet at a time, we want to enter it in the form of a
890 * chain otherwise we get this start/stop behaviour where the worker thread
891 * goes to sleep and then next packets comes in forcing it to wake up etc.
892 *
893 * Note:
894 * Since we know what is the maximum fanout possible, we create a 2D array
895 * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz
896 * variables so that we can enter the softrings with chain. We need the
897 * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc
898 * for each packet would be expensive). If we ever want to have the
899 * ability to have unlimited fanout, we should probably declare a head,
900 * tail, cnt, sz with each soft ring (a data struct which contains a softring
901 * along with these members) and create an array of this uber struct so we
902 * don't have to do kmem_alloc.
903 */
904 int fanout_oth1 = 0;
905 int fanout_oth2 = 0;
906 int fanout_oth3 = 0;
907 int fanout_oth4 = 0;
908 int fanout_oth5 = 0;
909
910 static void
mac_rx_srs_fanout(mac_soft_ring_set_t * mac_srs,mblk_t * head)911 mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head)
912 {
913 struct ether_header *ehp;
914 struct ether_vlan_header *evhp;
915 uint32_t sap;
916 ipha_t *ipha;
917 uint8_t *dstaddr;
918 uint_t indx;
919 size_t ports_offset;
920 size_t ipha_len;
921 size_t hdrsize;
922 uint_t hash;
923 mblk_t *mp;
924 mblk_t *headmp[MAX_SR_TYPES][MAX_SR_FANOUT];
925 mblk_t *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT];
926 int cnt[MAX_SR_TYPES][MAX_SR_FANOUT];
927 size_t sz[MAX_SR_TYPES][MAX_SR_FANOUT];
928 size_t sz1;
929 boolean_t bw_ctl;
930 boolean_t hw_classified;
931 boolean_t dls_bypass;
932 boolean_t is_ether;
933 boolean_t is_unicast;
934 int fanout_cnt;
935 enum pkt_type type;
936 mac_client_impl_t *mcip = mac_srs->srs_mcip;
937
938 is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER);
939 bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0);
940
941 /*
942 * If we don't have a Rx ring, S/W classification would have done
943 * its job and its a packet meant for us. If we were polling on
944 * the default ring (i.e. there was a ring assigned to this SRS),
945 * then we need to make sure that the mac address really belongs
946 * to us.
947 */
948 hw_classified = mac_srs->srs_ring != NULL &&
949 mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER;
950
951 /*
952 * Special clients (eg. VLAN, non ether, etc) need DLS
953 * processing in the Rx path. SRST_DLS_BYPASS will be clear for
954 * such SRSs. Another way of disabling bypass is to set the
955 * MCIS_RX_BYPASS_DISABLE flag.
956 */
957 dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) &&
958 ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0);
959
960 /*
961 * Since the softrings are never destroyed and we always
962 * create equal number of softrings for TCP, UDP and rest,
963 * its OK to check one of them for count and use it without
964 * any lock. In future, if soft rings get destroyed because
965 * of reduction in fanout, we will need to ensure that happens
966 * behind the SRS_PROC.
967 */
968 fanout_cnt = mac_srs->srs_tcp_ring_count;
969
970 bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
971 bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *));
972 bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int));
973 bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t));
974
975 /*
976 * We got a chain from SRS that we need to send to the soft rings.
977 * Since squeues for TCP & IPv4 sap poll their soft rings (for
978 * performance reasons), we need to separate out v4_tcp, v4_udp
979 * and the rest goes in other.
980 */
981 while (head != NULL) {
982 mp = head;
983 head = head->b_next;
984 mp->b_next = NULL;
985
986 type = OTH;
987 sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
988
989 if (is_ether) {
990 /*
991 * At this point we can be sure the packet at least
992 * has an ether header.
993 */
994 if (sz1 < sizeof (struct ether_header)) {
995 mac_rx_drop_pkt(mac_srs, mp);
996 continue;
997 }
998 ehp = (struct ether_header *)mp->b_rptr;
999
1000 /*
1001 * Determine if this is a VLAN or non-VLAN packet.
1002 */
1003 if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) {
1004 evhp = (struct ether_vlan_header *)mp->b_rptr;
1005 sap = ntohs(evhp->ether_type);
1006 hdrsize = sizeof (struct ether_vlan_header);
1007 /*
1008 * Check if the VID of the packet, if any,
1009 * belongs to this client.
1010 */
1011 if (!mac_client_check_flow_vid(mcip,
1012 VLAN_ID(ntohs(evhp->ether_tci)))) {
1013 mac_rx_drop_pkt(mac_srs, mp);
1014 continue;
1015 }
1016 } else {
1017 hdrsize = sizeof (struct ether_header);
1018 }
1019 is_unicast =
1020 ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0);
1021 dstaddr = (uint8_t *)&ehp->ether_dhost;
1022 } else {
1023 mac_header_info_t mhi;
1024
1025 if (mac_header_info((mac_handle_t)mcip->mci_mip,
1026 mp, &mhi) != 0) {
1027 mac_rx_drop_pkt(mac_srs, mp);
1028 continue;
1029 }
1030 hdrsize = mhi.mhi_hdrsize;
1031 sap = mhi.mhi_bindsap;
1032 is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST);
1033 dstaddr = (uint8_t *)mhi.mhi_daddr;
1034 }
1035
1036 if (!dls_bypass) {
1037 if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
1038 hdrsize, &type, &indx) == -1) {
1039 mac_rx_drop_pkt(mac_srs, mp);
1040 continue;
1041 }
1042
1043 FANOUT_ENQUEUE_MP(headmp[type][indx],
1044 tailmp[type][indx], cnt[type][indx], bw_ctl,
1045 sz[type][indx], sz1, mp);
1046 continue;
1047 }
1048
1049
1050 /*
1051 * If we are using the default Rx ring where H/W or S/W
1052 * classification has not happened, we need to verify if
1053 * this unicast packet really belongs to us.
1054 */
1055 if (sap == ETHERTYPE_IP) {
1056 /*
1057 * If we are H/W classified, but we have promisc
1058 * on, then we need to check for the unicast address.
1059 */
1060 if (hw_classified && mcip->mci_promisc_list != NULL) {
1061 mac_address_t *map;
1062
1063 rw_enter(&mcip->mci_rw_lock, RW_READER);
1064 map = mcip->mci_unicast;
1065 if (bcmp(dstaddr, map->ma_addr,
1066 map->ma_len) == 0)
1067 type = UNDEF;
1068 rw_exit(&mcip->mci_rw_lock);
1069 } else if (is_unicast) {
1070 type = UNDEF;
1071 }
1072 }
1073
1074 /*
1075 * This needs to become a contract with the driver for
1076 * the fast path.
1077 */
1078
1079 ipha = (ipha_t *)(mp->b_rptr + hdrsize);
1080 if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) {
1081 type = OTH;
1082 fanout_oth1++;
1083 }
1084
1085 if (type != OTH) {
1086 uint16_t frag_offset_flags;
1087
1088 switch (ipha->ipha_protocol) {
1089 case IPPROTO_TCP:
1090 case IPPROTO_UDP:
1091 case IPPROTO_SCTP:
1092 case IPPROTO_ESP:
1093 ipha_len = IPH_HDR_LENGTH(ipha);
1094 if ((uchar_t *)ipha + ipha_len + PORTS_SIZE >
1095 mp->b_wptr) {
1096 type = OTH;
1097 break;
1098 }
1099 frag_offset_flags =
1100 ntohs(ipha->ipha_fragment_offset_and_flags);
1101 if ((frag_offset_flags &
1102 (IPH_MF | IPH_OFFSET)) != 0) {
1103 type = OTH;
1104 fanout_oth3++;
1105 break;
1106 }
1107 ports_offset = hdrsize + ipha_len;
1108 break;
1109 default:
1110 type = OTH;
1111 fanout_oth4++;
1112 break;
1113 }
1114 }
1115
1116 if (type == OTH) {
1117 if (mac_rx_srs_long_fanout(mac_srs, mp, sap,
1118 hdrsize, &type, &indx) == -1) {
1119 mac_rx_drop_pkt(mac_srs, mp);
1120 continue;
1121 }
1122
1123 FANOUT_ENQUEUE_MP(headmp[type][indx],
1124 tailmp[type][indx], cnt[type][indx], bw_ctl,
1125 sz[type][indx], sz1, mp);
1126 continue;
1127 }
1128
1129 ASSERT(type == UNDEF);
1130
1131 /*
1132 * XXX-Sunay: We should hold srs_lock since ring_count
1133 * below can change. But if we are always called from
1134 * mac_rx_srs_drain and SRS_PROC is set, then we can
1135 * enforce that ring_count can't be changed i.e.
1136 * to change fanout type or ring count, the calling
1137 * thread needs to be behind SRS_PROC.
1138 */
1139 switch (ipha->ipha_protocol) {
1140 case IPPROTO_TCP:
1141 /*
1142 * Note that for ESP, we fanout on SPI and it is at the
1143 * same offset as the 2x16-bit ports. So it is clumped
1144 * along with TCP, UDP and SCTP.
1145 */
1146 hash = HASH_ADDR(ipha->ipha_src,
1147 *(uint32_t *)(mp->b_rptr + ports_offset));
1148 indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count);
1149 type = V4_TCP;
1150 mp->b_rptr += hdrsize;
1151 break;
1152 case IPPROTO_UDP:
1153 case IPPROTO_SCTP:
1154 case IPPROTO_ESP:
1155 if (mac_fanout_type == MAC_FANOUT_DEFAULT) {
1156 hash = HASH_ADDR(ipha->ipha_src,
1157 *(uint32_t *)(mp->b_rptr + ports_offset));
1158 indx = COMPUTE_INDEX(hash,
1159 mac_srs->srs_udp_ring_count);
1160 } else {
1161 indx = mac_srs->srs_ind %
1162 mac_srs->srs_udp_ring_count;
1163 mac_srs->srs_ind++;
1164 }
1165 type = V4_UDP;
1166 mp->b_rptr += hdrsize;
1167 break;
1168 default:
1169 indx = 0;
1170 type = OTH;
1171 }
1172
1173 FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx],
1174 cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp);
1175 }
1176
1177 for (type = V4_TCP; type < UNDEF; type++) {
1178 int i;
1179
1180 for (i = 0; i < fanout_cnt; i++) {
1181 if (headmp[type][i] != NULL) {
1182 mac_soft_ring_t *softring;
1183
1184 ASSERT(tailmp[type][i]->b_next == NULL);
1185 switch (type) {
1186 case V4_TCP:
1187 softring =
1188 mac_srs->srs_tcp_soft_rings[i];
1189 break;
1190 case V4_UDP:
1191 softring =
1192 mac_srs->srs_udp_soft_rings[i];
1193 break;
1194 case OTH:
1195 softring =
1196 mac_srs->srs_oth_soft_rings[i];
1197 break;
1198 }
1199 mac_rx_soft_ring_process(mcip,
1200 softring, headmp[type][i], tailmp[type][i],
1201 cnt[type][i], sz[type][i]);
1202 }
1203 }
1204 }
1205 }
1206
1207 #define SRS_BYTES_TO_PICKUP 150000
1208 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP;
1209
1210 /*
1211 * mac_rx_srs_poll_ring
1212 *
1213 * This SRS Poll thread uses this routine to poll the underlying hardware
1214 * Rx ring to get a chain of packets. It can inline process that chain
1215 * if mac_latency_optimize is set (default) or signal the SRS worker thread
1216 * to do the remaining processing.
1217 *
1218 * Since packets come in the system via interrupt or poll path, we also
1219 * update the stats and deal with promiscous clients here.
1220 */
1221 void
mac_rx_srs_poll_ring(mac_soft_ring_set_t * mac_srs)1222 mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs)
1223 {
1224 kmutex_t *lock = &mac_srs->srs_lock;
1225 kcondvar_t *async = &mac_srs->srs_cv;
1226 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
1227 mblk_t *head, *tail, *mp;
1228 callb_cpr_t cprinfo;
1229 ssize_t bytes_to_pickup;
1230 size_t sz;
1231 int count;
1232 mac_client_impl_t *smcip;
1233
1234 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll");
1235 mutex_enter(lock);
1236
1237 start:
1238 for (;;) {
1239 if (mac_srs->srs_state & SRS_PAUSE)
1240 goto done;
1241
1242 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1243 cv_wait(async, lock);
1244 CALLB_CPR_SAFE_END(&cprinfo, lock);
1245
1246 if (mac_srs->srs_state & SRS_PAUSE)
1247 goto done;
1248
1249 check_again:
1250 if (mac_srs->srs_type & SRST_BW_CONTROL) {
1251 /*
1252 * We pick as many bytes as we are allowed to queue.
1253 * Its possible that we will exceed the total
1254 * packets queued in case this SRS is part of the
1255 * Rx ring group since > 1 poll thread can be pulling
1256 * upto the max allowed packets at the same time
1257 * but that should be OK.
1258 */
1259 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1260 bytes_to_pickup =
1261 mac_srs->srs_bw->mac_bw_drop_threshold -
1262 mac_srs->srs_bw->mac_bw_sz;
1263 /*
1264 * We shouldn't have been signalled if we
1265 * have 0 or less bytes to pick but since
1266 * some of the bytes accounting is driver
1267 * dependant, we do the safety check.
1268 */
1269 if (bytes_to_pickup < 0)
1270 bytes_to_pickup = 0;
1271 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1272 } else {
1273 /*
1274 * ToDO: Need to change the polling API
1275 * to add a packet count and a flag which
1276 * tells the driver whether we want packets
1277 * based on a count, or bytes, or all the
1278 * packets queued in the driver/HW. This
1279 * way, we never have to check the limits
1280 * on poll path. We truly let only as many
1281 * packets enter the system as we are willing
1282 * to process or queue.
1283 *
1284 * Something along the lines of
1285 * pkts_to_pickup = mac_soft_ring_max_q_cnt -
1286 * mac_srs->srs_poll_pkt_cnt
1287 */
1288
1289 /*
1290 * Since we are not doing B/W control, pick
1291 * as many packets as allowed.
1292 */
1293 bytes_to_pickup = max_bytes_to_pickup;
1294 }
1295
1296 /* Poll the underlying Hardware */
1297 mutex_exit(lock);
1298 head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup);
1299 mutex_enter(lock);
1300
1301 ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
1302 SRS_POLL_THR_OWNER);
1303
1304 mp = tail = head;
1305 count = 0;
1306 sz = 0;
1307 while (mp != NULL) {
1308 tail = mp;
1309 sz += msgdsize(mp);
1310 mp = mp->b_next;
1311 count++;
1312 }
1313
1314 if (head != NULL) {
1315 tail->b_next = NULL;
1316 smcip = mac_srs->srs_mcip;
1317
1318 SRS_RX_STAT_UPDATE(mac_srs, pollbytes, sz);
1319 SRS_RX_STAT_UPDATE(mac_srs, pollcnt, count);
1320
1321 /*
1322 * If there are any promiscuous mode callbacks
1323 * defined for this MAC client, pass them a copy
1324 * if appropriate and also update the counters.
1325 */
1326 if (smcip != NULL) {
1327 if (smcip->mci_mip->mi_promisc_list != NULL) {
1328 mutex_exit(lock);
1329 mac_promisc_dispatch(smcip->mci_mip,
1330 head, NULL);
1331 mutex_enter(lock);
1332 }
1333 }
1334 if (mac_srs->srs_type & SRST_BW_CONTROL) {
1335 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1336 mac_srs->srs_bw->mac_bw_polled += sz;
1337 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1338 }
1339 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail,
1340 count, sz);
1341 if (count <= 10)
1342 srs_rx->sr_stat.mrs_chaincntundr10++;
1343 else if (count > 10 && count <= 50)
1344 srs_rx->sr_stat.mrs_chaincnt10to50++;
1345 else
1346 srs_rx->sr_stat.mrs_chaincntover50++;
1347 }
1348
1349 /*
1350 * We are guaranteed that SRS_PROC will be set if we
1351 * are here. Also, poll thread gets to run only if
1352 * the drain was being done by a worker thread although
1353 * its possible that worker thread is still running
1354 * and poll thread was sent down to keep the pipeline
1355 * going instead of doing a complete drain and then
1356 * trying to poll the NIC.
1357 *
1358 * So we need to check SRS_WORKER flag to make sure
1359 * that the worker thread is not processing the queue
1360 * in parallel to us. The flags and conditions are
1361 * protected by the srs_lock to prevent any race. We
1362 * ensure that we don't drop the srs_lock from now
1363 * till the end and similarly we don't drop the srs_lock
1364 * in mac_rx_srs_drain() till similar condition check
1365 * are complete. The mac_rx_srs_drain() needs to ensure
1366 * that SRS_WORKER flag remains set as long as its
1367 * processing the queue.
1368 */
1369 if (!(mac_srs->srs_state & SRS_WORKER) &&
1370 (mac_srs->srs_first != NULL)) {
1371 /*
1372 * We have packets to process and worker thread
1373 * is not running. Check to see if poll thread is
1374 * allowed to process.
1375 */
1376 if (mac_srs->srs_state & SRS_LATENCY_OPT) {
1377 mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC);
1378 if (!(mac_srs->srs_state & SRS_PAUSE) &&
1379 srs_rx->sr_poll_pkt_cnt <=
1380 srs_rx->sr_lowat) {
1381 srs_rx->sr_poll_again++;
1382 goto check_again;
1383 }
1384 /*
1385 * We are already above low water mark
1386 * so stay in the polling mode but no
1387 * need to poll. Once we dip below
1388 * the polling threshold, the processing
1389 * thread (soft ring) will signal us
1390 * to poll again (MAC_UPDATE_SRS_COUNT)
1391 */
1392 srs_rx->sr_poll_drain_no_poll++;
1393 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
1394 /*
1395 * In B/W control case, its possible
1396 * that the backlog built up due to
1397 * B/W limit being reached and packets
1398 * are queued only in SRS. In this case,
1399 * we should schedule worker thread
1400 * since no one else will wake us up.
1401 */
1402 if ((mac_srs->srs_type & SRST_BW_CONTROL) &&
1403 (mac_srs->srs_tid == NULL)) {
1404 mac_srs->srs_tid =
1405 timeout(mac_srs_fire, mac_srs, 1);
1406 srs_rx->sr_poll_worker_wakeup++;
1407 }
1408 } else {
1409 /*
1410 * Wakeup the worker thread for more processing.
1411 * We optimize for throughput in this case.
1412 */
1413 mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS);
1414 MAC_SRS_WORKER_WAKEUP(mac_srs);
1415 srs_rx->sr_poll_sig_worker++;
1416 }
1417 } else if ((mac_srs->srs_first == NULL) &&
1418 !(mac_srs->srs_state & SRS_WORKER)) {
1419 /*
1420 * There is nothing queued in SRS and
1421 * no worker thread running. Plus we
1422 * didn't get anything from the H/W
1423 * as well (head == NULL);
1424 */
1425 ASSERT(head == NULL);
1426 mac_srs->srs_state &=
1427 ~(SRS_PROC|SRS_GET_PKTS);
1428
1429 /*
1430 * If we have a packets in soft ring, don't allow
1431 * more packets to come into this SRS by keeping the
1432 * interrupts off but not polling the H/W. The
1433 * poll thread will get signaled as soon as
1434 * srs_poll_pkt_cnt dips below poll threshold.
1435 */
1436 if (srs_rx->sr_poll_pkt_cnt == 0) {
1437 srs_rx->sr_poll_intr_enable++;
1438 MAC_SRS_POLLING_OFF(mac_srs);
1439 } else {
1440 /*
1441 * We know nothing is queued in SRS
1442 * since we are here after checking
1443 * srs_first is NULL. The backlog
1444 * is entirely due to packets queued
1445 * in Soft ring which will wake us up
1446 * and get the interface out of polling
1447 * mode once the backlog dips below
1448 * sr_poll_thres.
1449 */
1450 srs_rx->sr_poll_no_poll++;
1451 }
1452 } else {
1453 /*
1454 * Worker thread is already running.
1455 * Nothing much to do. If the polling
1456 * was enabled, worker thread will deal
1457 * with that.
1458 */
1459 mac_srs->srs_state &= ~SRS_GET_PKTS;
1460 srs_rx->sr_poll_goto_sleep++;
1461 }
1462 }
1463 done:
1464 mac_srs->srs_state |= SRS_POLL_THR_QUIESCED;
1465 cv_signal(&mac_srs->srs_async);
1466 /*
1467 * If this is a temporary quiesce then wait for the restart signal
1468 * from the srs worker. Then clear the flags and signal the srs worker
1469 * to ensure a positive handshake and go back to start.
1470 */
1471 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART)))
1472 cv_wait(async, lock);
1473 if (mac_srs->srs_state & SRS_POLL_THR_RESTART) {
1474 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
1475 mac_srs->srs_state &=
1476 ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART);
1477 cv_signal(&mac_srs->srs_async);
1478 goto start;
1479 } else {
1480 mac_srs->srs_state |= SRS_POLL_THR_EXITED;
1481 cv_signal(&mac_srs->srs_async);
1482 CALLB_CPR_EXIT(&cprinfo);
1483 thread_exit();
1484 }
1485 }
1486
1487 /*
1488 * mac_srs_pick_chain
1489 *
1490 * In Bandwidth control case, checks how many packets can be processed
1491 * and return them in a sub chain.
1492 */
1493 static mblk_t *
mac_srs_pick_chain(mac_soft_ring_set_t * mac_srs,mblk_t ** chain_tail,size_t * chain_sz,int * chain_cnt)1494 mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail,
1495 size_t *chain_sz, int *chain_cnt)
1496 {
1497 mblk_t *head = NULL;
1498 mblk_t *tail = NULL;
1499 size_t sz;
1500 size_t tsz = 0;
1501 int cnt = 0;
1502 mblk_t *mp;
1503
1504 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
1505 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1506 if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <=
1507 mac_srs->srs_bw->mac_bw_limit) ||
1508 (mac_srs->srs_bw->mac_bw_limit == 0)) {
1509 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1510 head = mac_srs->srs_first;
1511 mac_srs->srs_first = NULL;
1512 *chain_tail = mac_srs->srs_last;
1513 mac_srs->srs_last = NULL;
1514 *chain_sz = mac_srs->srs_size;
1515 *chain_cnt = mac_srs->srs_count;
1516 mac_srs->srs_count = 0;
1517 mac_srs->srs_size = 0;
1518 return (head);
1519 }
1520
1521 /*
1522 * Can't clear the entire backlog.
1523 * Need to find how many packets to pick
1524 */
1525 ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock));
1526 while ((mp = mac_srs->srs_first) != NULL) {
1527 sz = msgdsize(mp);
1528 if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) >
1529 mac_srs->srs_bw->mac_bw_limit) {
1530 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED))
1531 mac_srs->srs_bw->mac_bw_state |=
1532 SRS_BW_ENFORCED;
1533 break;
1534 }
1535
1536 /*
1537 * The _size & cnt is decremented from the softrings
1538 * when they send up the packet for polling to work
1539 * properly.
1540 */
1541 tsz += sz;
1542 cnt++;
1543 mac_srs->srs_count--;
1544 mac_srs->srs_size -= sz;
1545 if (tail != NULL)
1546 tail->b_next = mp;
1547 else
1548 head = mp;
1549 tail = mp;
1550 mac_srs->srs_first = mac_srs->srs_first->b_next;
1551 }
1552 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1553 if (mac_srs->srs_first == NULL)
1554 mac_srs->srs_last = NULL;
1555
1556 if (tail != NULL)
1557 tail->b_next = NULL;
1558 *chain_tail = tail;
1559 *chain_cnt = cnt;
1560 *chain_sz = tsz;
1561
1562 return (head);
1563 }
1564
1565 /*
1566 * mac_rx_srs_drain
1567 *
1568 * The SRS drain routine. Gets to run to clear the queue. Any thread
1569 * (worker, interrupt, poll) can call this based on processing model.
1570 * The first thing we do is disable interrupts if possible and then
1571 * drain the queue. we also try to poll the underlying hardware if
1572 * there is a dedicated hardware Rx ring assigned to this SRS.
1573 *
1574 * There is a equivalent drain routine in bandwidth control mode
1575 * mac_rx_srs_drain_bw. There is some code duplication between the two
1576 * routines but they are highly performance sensitive and are easier
1577 * to read/debug if they stay separate. Any code changes here might
1578 * also apply to mac_rx_srs_drain_bw as well.
1579 */
1580 void
mac_rx_srs_drain(mac_soft_ring_set_t * mac_srs,uint_t proc_type)1581 mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
1582 {
1583 mblk_t *head;
1584 mblk_t *tail;
1585 timeout_id_t tid;
1586 int cnt = 0;
1587 mac_client_impl_t *mcip = mac_srs->srs_mcip;
1588 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
1589
1590 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
1591 ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL));
1592
1593 /* If we are blanked i.e. can't do upcalls, then we are done */
1594 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
1595 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
1596 (mac_srs->srs_state & SRS_PAUSE));
1597 goto out;
1598 }
1599
1600 if (mac_srs->srs_first == NULL)
1601 goto out;
1602
1603 if (!(mac_srs->srs_state & SRS_LATENCY_OPT) &&
1604 (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) {
1605 /*
1606 * In the normal case, the SRS worker thread does no
1607 * work and we wait for a backlog to build up before
1608 * we switch into polling mode. In case we are
1609 * optimizing for throughput, we use the worker thread
1610 * as well. The goal is to let worker thread process
1611 * the queue and poll thread to feed packets into
1612 * the queue. As such, we should signal the poll
1613 * thread to try and get more packets.
1614 *
1615 * We could have pulled this check in the POLL_RING
1616 * macro itself but keeping it explicit here makes
1617 * the architecture more human understandable.
1618 */
1619 MAC_SRS_POLL_RING(mac_srs);
1620 }
1621
1622 again:
1623 head = mac_srs->srs_first;
1624 mac_srs->srs_first = NULL;
1625 tail = mac_srs->srs_last;
1626 mac_srs->srs_last = NULL;
1627 cnt = mac_srs->srs_count;
1628 mac_srs->srs_count = 0;
1629
1630 ASSERT(head != NULL);
1631 ASSERT(tail != NULL);
1632
1633 if ((tid = mac_srs->srs_tid) != 0)
1634 mac_srs->srs_tid = 0;
1635
1636 mac_srs->srs_state |= (SRS_PROC|proc_type);
1637
1638
1639 /*
1640 * mcip is NULL for broadcast and multicast flows. The promisc
1641 * callbacks for broadcast and multicast packets are delivered from
1642 * mac_rx() and we don't need to worry about that case in this path
1643 */
1644 if (mcip != NULL) {
1645 if (mcip->mci_promisc_list != NULL) {
1646 mutex_exit(&mac_srs->srs_lock);
1647 mac_promisc_client_dispatch(mcip, head);
1648 mutex_enter(&mac_srs->srs_lock);
1649 }
1650 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
1651 mutex_exit(&mac_srs->srs_lock);
1652 mac_protect_intercept_dhcp(mcip, head);
1653 mutex_enter(&mac_srs->srs_lock);
1654 }
1655 }
1656
1657 /*
1658 * Check if SRS itself is doing the processing
1659 * This direct path does not apply when subflows are present. In this
1660 * case, packets need to be dispatched to a soft ring according to the
1661 * flow's bandwidth and other resources contraints.
1662 */
1663 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
1664 mac_direct_rx_t proc;
1665 void *arg1;
1666 mac_resource_handle_t arg2;
1667
1668 /*
1669 * This is the case when a Rx is directly
1670 * assigned and we have a fully classified
1671 * protocol chain. We can deal with it in
1672 * one shot.
1673 */
1674 proc = srs_rx->sr_func;
1675 arg1 = srs_rx->sr_arg1;
1676 arg2 = srs_rx->sr_arg2;
1677
1678 mac_srs->srs_state |= SRS_CLIENT_PROC;
1679 mutex_exit(&mac_srs->srs_lock);
1680 if (tid != 0) {
1681 (void) untimeout(tid);
1682 tid = 0;
1683 }
1684
1685 proc(arg1, arg2, head, NULL);
1686 /*
1687 * Decrement the size and count here itelf
1688 * since the packet has been processed.
1689 */
1690 mutex_enter(&mac_srs->srs_lock);
1691 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
1692 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
1693 cv_signal(&mac_srs->srs_client_cv);
1694 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
1695 } else {
1696 /* Some kind of softrings based fanout is required */
1697 mutex_exit(&mac_srs->srs_lock);
1698 if (tid != 0) {
1699 (void) untimeout(tid);
1700 tid = 0;
1701 }
1702
1703 /*
1704 * Since the fanout routines can deal with chains,
1705 * shoot the entire chain up.
1706 */
1707 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
1708 mac_rx_srs_fanout(mac_srs, head);
1709 else
1710 mac_rx_srs_proto_fanout(mac_srs, head);
1711 mutex_enter(&mac_srs->srs_lock);
1712 }
1713
1714 if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) &&
1715 (mac_srs->srs_first != NULL)) {
1716 /*
1717 * More packets arrived while we were clearing the
1718 * SRS. This can be possible because of one of
1719 * three conditions below:
1720 * 1) The driver is using multiple worker threads
1721 * to send the packets to us.
1722 * 2) The driver has a race in switching
1723 * between interrupt and polling mode or
1724 * 3) Packets are arriving in this SRS via the
1725 * S/W classification as well.
1726 *
1727 * We should switch to polling mode and see if we
1728 * need to send the poll thread down. Also, signal
1729 * the worker thread to process whats just arrived.
1730 */
1731 MAC_SRS_POLLING_ON(mac_srs);
1732 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) {
1733 srs_rx->sr_drain_poll_sig++;
1734 MAC_SRS_POLL_RING(mac_srs);
1735 }
1736
1737 /*
1738 * If we didn't signal the poll thread, we need
1739 * to deal with the pending packets ourselves.
1740 */
1741 if (proc_type == SRS_WORKER) {
1742 srs_rx->sr_drain_again++;
1743 goto again;
1744 } else {
1745 srs_rx->sr_drain_worker_sig++;
1746 cv_signal(&mac_srs->srs_async);
1747 }
1748 }
1749
1750 out:
1751 if (mac_srs->srs_state & SRS_GET_PKTS) {
1752 /*
1753 * Poll thread is already running. Leave the
1754 * SRS_RPOC set and hand over the control to
1755 * poll thread.
1756 */
1757 mac_srs->srs_state &= ~proc_type;
1758 srs_rx->sr_drain_poll_running++;
1759 return;
1760 }
1761
1762 /*
1763 * Even if there are no packets queued in SRS, we
1764 * need to make sure that the shared counter is
1765 * clear and any associated softrings have cleared
1766 * all the backlog. Otherwise, leave the interface
1767 * in polling mode and the poll thread will get
1768 * signalled once the count goes down to zero.
1769 *
1770 * If someone is already draining the queue (SRS_PROC is
1771 * set) when the srs_poll_pkt_cnt goes down to zero,
1772 * then it means that drain is already running and we
1773 * will turn off polling at that time if there is
1774 * no backlog.
1775 *
1776 * As long as there are packets queued either
1777 * in soft ring set or its soft rings, we will leave
1778 * the interface in polling mode (even if the drain
1779 * was done being the interrupt thread). We signal
1780 * the poll thread as well if we have dipped below
1781 * low water mark.
1782 *
1783 * NOTE: We can't use the MAC_SRS_POLLING_ON macro
1784 * since that turn polling on only for worker thread.
1785 * Its not worth turning polling on for interrupt
1786 * thread (since NIC will not issue another interrupt)
1787 * unless a backlog builds up.
1788 */
1789 if ((srs_rx->sr_poll_pkt_cnt > 0) &&
1790 (mac_srs->srs_state & SRS_POLLING_CAPAB)) {
1791 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
1792 srs_rx->sr_drain_keep_polling++;
1793 MAC_SRS_POLLING_ON(mac_srs);
1794 if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)
1795 MAC_SRS_POLL_RING(mac_srs);
1796 return;
1797 }
1798
1799 /* Nothing else to do. Get out of poll mode */
1800 MAC_SRS_POLLING_OFF(mac_srs);
1801 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
1802 srs_rx->sr_drain_finish_intr++;
1803 }
1804
1805 /*
1806 * mac_rx_srs_drain_bw
1807 *
1808 * The SRS BW drain routine. Gets to run to clear the queue. Any thread
1809 * (worker, interrupt, poll) can call this based on processing model.
1810 * The first thing we do is disable interrupts if possible and then
1811 * drain the queue. we also try to poll the underlying hardware if
1812 * there is a dedicated hardware Rx ring assigned to this SRS.
1813 *
1814 * There is a equivalent drain routine in non bandwidth control mode
1815 * mac_rx_srs_drain. There is some code duplication between the two
1816 * routines but they are highly performance sensitive and are easier
1817 * to read/debug if they stay separate. Any code changes here might
1818 * also apply to mac_rx_srs_drain as well.
1819 */
1820 void
mac_rx_srs_drain_bw(mac_soft_ring_set_t * mac_srs,uint_t proc_type)1821 mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
1822 {
1823 mblk_t *head;
1824 mblk_t *tail;
1825 timeout_id_t tid;
1826 size_t sz = 0;
1827 int cnt = 0;
1828 mac_client_impl_t *mcip = mac_srs->srs_mcip;
1829 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
1830 clock_t now;
1831
1832 ASSERT(MUTEX_HELD(&mac_srs->srs_lock));
1833 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
1834 again:
1835 /* Check if we are doing B/W control */
1836 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1837 now = ddi_get_lbolt();
1838 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
1839 mac_srs->srs_bw->mac_bw_curr_time = now;
1840 mac_srs->srs_bw->mac_bw_used = 0;
1841 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
1842 mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED;
1843 } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) {
1844 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1845 goto done;
1846 } else if (mac_srs->srs_bw->mac_bw_used >
1847 mac_srs->srs_bw->mac_bw_limit) {
1848 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
1849 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1850 goto done;
1851 }
1852 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1853
1854 /* If we are blanked i.e. can't do upcalls, then we are done */
1855 if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) {
1856 ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) ||
1857 (mac_srs->srs_state & SRS_PAUSE));
1858 goto done;
1859 }
1860
1861 sz = 0;
1862 cnt = 0;
1863 if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) {
1864 /*
1865 * We couldn't pick up a single packet.
1866 */
1867 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1868 if ((mac_srs->srs_bw->mac_bw_used == 0) &&
1869 (mac_srs->srs_size != 0) &&
1870 !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
1871 /*
1872 * Seems like configured B/W doesn't
1873 * even allow processing of 1 packet
1874 * per tick.
1875 *
1876 * XXX: raise the limit to processing
1877 * at least 1 packet per tick.
1878 */
1879 mac_srs->srs_bw->mac_bw_limit +=
1880 mac_srs->srs_bw->mac_bw_limit;
1881 mac_srs->srs_bw->mac_bw_drop_threshold +=
1882 mac_srs->srs_bw->mac_bw_drop_threshold;
1883 cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) "
1884 "raised B/W limit to %d since not even a "
1885 "single packet can be processed per "
1886 "tick %d\n", (void *)mac_srs,
1887 (int)mac_srs->srs_bw->mac_bw_limit,
1888 (int)msgdsize(mac_srs->srs_first));
1889 }
1890 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1891 goto done;
1892 }
1893
1894 ASSERT(head != NULL);
1895 ASSERT(tail != NULL);
1896
1897 /* zero bandwidth: drop all and return to interrupt mode */
1898 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
1899 if (mac_srs->srs_bw->mac_bw_limit == 0) {
1900 srs_rx->sr_stat.mrs_sdrops += cnt;
1901 ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz);
1902 mac_srs->srs_bw->mac_bw_sz -= sz;
1903 mac_srs->srs_bw->mac_bw_drop_bytes += sz;
1904 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1905 mac_pkt_drop(NULL, NULL, head, B_FALSE);
1906 goto leave_poll;
1907 } else {
1908 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
1909 }
1910
1911 if ((tid = mac_srs->srs_tid) != 0)
1912 mac_srs->srs_tid = 0;
1913
1914 mac_srs->srs_state |= (SRS_PROC|proc_type);
1915 MAC_SRS_WORKER_POLLING_ON(mac_srs);
1916
1917 /*
1918 * mcip is NULL for broadcast and multicast flows. The promisc
1919 * callbacks for broadcast and multicast packets are delivered from
1920 * mac_rx() and we don't need to worry about that case in this path
1921 */
1922 if (mcip != NULL) {
1923 if (mcip->mci_promisc_list != NULL) {
1924 mutex_exit(&mac_srs->srs_lock);
1925 mac_promisc_client_dispatch(mcip, head);
1926 mutex_enter(&mac_srs->srs_lock);
1927 }
1928 if (MAC_PROTECT_ENABLED(mcip, MPT_IPNOSPOOF)) {
1929 mutex_exit(&mac_srs->srs_lock);
1930 mac_protect_intercept_dhcp(mcip, head);
1931 mutex_enter(&mac_srs->srs_lock);
1932 }
1933 }
1934
1935 /*
1936 * Check if SRS itself is doing the processing
1937 * This direct path does not apply when subflows are present. In this
1938 * case, packets need to be dispatched to a soft ring according to the
1939 * flow's bandwidth and other resources contraints.
1940 */
1941 if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) {
1942 mac_direct_rx_t proc;
1943 void *arg1;
1944 mac_resource_handle_t arg2;
1945
1946 /*
1947 * This is the case when a Rx is directly
1948 * assigned and we have a fully classified
1949 * protocol chain. We can deal with it in
1950 * one shot.
1951 */
1952 proc = srs_rx->sr_func;
1953 arg1 = srs_rx->sr_arg1;
1954 arg2 = srs_rx->sr_arg2;
1955
1956 mac_srs->srs_state |= SRS_CLIENT_PROC;
1957 mutex_exit(&mac_srs->srs_lock);
1958 if (tid != 0) {
1959 (void) untimeout(tid);
1960 tid = 0;
1961 }
1962
1963 proc(arg1, arg2, head, NULL);
1964 /*
1965 * Decrement the size and count here itelf
1966 * since the packet has been processed.
1967 */
1968 mutex_enter(&mac_srs->srs_lock);
1969 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
1970 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
1971
1972 if (mac_srs->srs_state & SRS_CLIENT_WAIT)
1973 cv_signal(&mac_srs->srs_client_cv);
1974 mac_srs->srs_state &= ~SRS_CLIENT_PROC;
1975 } else {
1976 /* Some kind of softrings based fanout is required */
1977 mutex_exit(&mac_srs->srs_lock);
1978 if (tid != 0) {
1979 (void) untimeout(tid);
1980 tid = 0;
1981 }
1982
1983 /*
1984 * Since the fanout routines can deal with chains,
1985 * shoot the entire chain up.
1986 */
1987 if (mac_srs->srs_type & SRST_FANOUT_SRC_IP)
1988 mac_rx_srs_fanout(mac_srs, head);
1989 else
1990 mac_rx_srs_proto_fanout(mac_srs, head);
1991 mutex_enter(&mac_srs->srs_lock);
1992 }
1993
1994 /*
1995 * Send the poll thread to pick up any packets arrived
1996 * so far. This also serves as the last check in case
1997 * nothing else is queued in the SRS. The poll thread
1998 * is signalled only in the case the drain was done
1999 * by the worker thread and SRS_WORKER is set. The
2000 * worker thread can run in parallel as long as the
2001 * SRS_WORKER flag is set. We we have nothing else to
2002 * process, we can exit while leaving SRS_PROC set
2003 * which gives the poll thread control to process and
2004 * cleanup once it returns from the NIC.
2005 *
2006 * If we have nothing else to process, we need to
2007 * ensure that we keep holding the srs_lock till
2008 * all the checks below are done and control is
2009 * handed to the poll thread if it was running.
2010 */
2011 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2012 if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2013 if (mac_srs->srs_first != NULL) {
2014 if (proc_type == SRS_WORKER) {
2015 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2016 if (srs_rx->sr_poll_pkt_cnt <=
2017 srs_rx->sr_lowat)
2018 MAC_SRS_POLL_RING(mac_srs);
2019 goto again;
2020 } else {
2021 cv_signal(&mac_srs->srs_async);
2022 }
2023 }
2024 }
2025 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2026
2027 done:
2028
2029 if (mac_srs->srs_state & SRS_GET_PKTS) {
2030 /*
2031 * Poll thread is already running. Leave the
2032 * SRS_RPOC set and hand over the control to
2033 * poll thread.
2034 */
2035 mac_srs->srs_state &= ~proc_type;
2036 return;
2037 }
2038
2039 /*
2040 * If we can't process packets because we have exceeded
2041 * B/W limit for this tick, just set the timeout
2042 * and leave.
2043 *
2044 * Even if there are no packets queued in SRS, we
2045 * need to make sure that the shared counter is
2046 * clear and any associated softrings have cleared
2047 * all the backlog. Otherwise, leave the interface
2048 * in polling mode and the poll thread will get
2049 * signalled once the count goes down to zero.
2050 *
2051 * If someone is already draining the queue (SRS_PROC is
2052 * set) when the srs_poll_pkt_cnt goes down to zero,
2053 * then it means that drain is already running and we
2054 * will turn off polling at that time if there is
2055 * no backlog. As long as there are packets queued either
2056 * is soft ring set or its soft rings, we will leave
2057 * the interface in polling mode.
2058 */
2059 mutex_enter(&mac_srs->srs_bw->mac_bw_lock);
2060 if ((mac_srs->srs_state & SRS_POLLING_CAPAB) &&
2061 ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) ||
2062 (srs_rx->sr_poll_pkt_cnt > 0))) {
2063 MAC_SRS_POLLING_ON(mac_srs);
2064 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2065 if ((mac_srs->srs_first != NULL) &&
2066 (mac_srs->srs_tid == NULL))
2067 mac_srs->srs_tid = timeout(mac_srs_fire,
2068 mac_srs, 1);
2069 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2070 return;
2071 }
2072 mutex_exit(&mac_srs->srs_bw->mac_bw_lock);
2073
2074 leave_poll:
2075
2076 /* Nothing else to do. Get out of poll mode */
2077 MAC_SRS_POLLING_OFF(mac_srs);
2078 mac_srs->srs_state &= ~(SRS_PROC|proc_type);
2079 }
2080
2081 /*
2082 * mac_srs_worker
2083 *
2084 * The SRS worker routine. Drains the queue when no one else is
2085 * processing it.
2086 */
2087 void
mac_srs_worker(mac_soft_ring_set_t * mac_srs)2088 mac_srs_worker(mac_soft_ring_set_t *mac_srs)
2089 {
2090 kmutex_t *lock = &mac_srs->srs_lock;
2091 kcondvar_t *async = &mac_srs->srs_async;
2092 callb_cpr_t cprinfo;
2093 boolean_t bw_ctl_flag;
2094
2095 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker");
2096 mutex_enter(lock);
2097
2098 start:
2099 for (;;) {
2100 bw_ctl_flag = B_FALSE;
2101 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2102 MAC_SRS_BW_LOCK(mac_srs);
2103 MAC_SRS_CHECK_BW_CONTROL(mac_srs);
2104 if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)
2105 bw_ctl_flag = B_TRUE;
2106 MAC_SRS_BW_UNLOCK(mac_srs);
2107 }
2108 /*
2109 * The SRS_BW_ENFORCED flag may change since we have dropped
2110 * the mac_bw_lock. However the drain function can handle both
2111 * a drainable SRS or a bandwidth controlled SRS, and the
2112 * effect of scheduling a timeout is to wakeup the worker
2113 * thread which in turn will call the drain function. Since
2114 * we release the srs_lock atomically only in the cv_wait there
2115 * isn't a fear of waiting for ever.
2116 */
2117 while (((mac_srs->srs_state & SRS_PROC) ||
2118 (mac_srs->srs_first == NULL) || bw_ctl_flag ||
2119 (mac_srs->srs_state & SRS_TX_BLOCKED)) &&
2120 !(mac_srs->srs_state & SRS_PAUSE)) {
2121 /*
2122 * If we have packets queued and we are here
2123 * because B/W control is in place, we better
2124 * schedule the worker wakeup after 1 tick
2125 * to see if bandwidth control can be relaxed.
2126 */
2127 if (bw_ctl_flag && mac_srs->srs_tid == NULL) {
2128 /*
2129 * We need to ensure that a timer is already
2130 * scheduled or we force schedule one for
2131 * later so that we can continue processing
2132 * after this quanta is over.
2133 */
2134 mac_srs->srs_tid = timeout(mac_srs_fire,
2135 mac_srs, 1);
2136 }
2137 wait:
2138 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2139 cv_wait(async, lock);
2140 CALLB_CPR_SAFE_END(&cprinfo, lock);
2141
2142 if (mac_srs->srs_state & SRS_PAUSE)
2143 goto done;
2144 if (mac_srs->srs_state & SRS_PROC)
2145 goto wait;
2146
2147 if (mac_srs->srs_first != NULL &&
2148 mac_srs->srs_type & SRST_BW_CONTROL) {
2149 MAC_SRS_BW_LOCK(mac_srs);
2150 if (mac_srs->srs_bw->mac_bw_state &
2151 SRS_BW_ENFORCED) {
2152 MAC_SRS_CHECK_BW_CONTROL(mac_srs);
2153 }
2154 bw_ctl_flag = mac_srs->srs_bw->mac_bw_state &
2155 SRS_BW_ENFORCED;
2156 MAC_SRS_BW_UNLOCK(mac_srs);
2157 }
2158 }
2159
2160 if (mac_srs->srs_state & SRS_PAUSE)
2161 goto done;
2162 mac_srs->srs_drain_func(mac_srs, SRS_WORKER);
2163 }
2164 done:
2165 /*
2166 * The Rx SRS quiesce logic first cuts off packet supply to the SRS
2167 * from both hard and soft classifications and waits for such threads
2168 * to finish before signaling the worker. So at this point the only
2169 * thread left that could be competing with the worker is the poll
2170 * thread. In the case of Tx, there shouldn't be any thread holding
2171 * SRS_PROC at this point.
2172 */
2173 if (!(mac_srs->srs_state & SRS_PROC)) {
2174 mac_srs->srs_state |= SRS_PROC;
2175 } else {
2176 ASSERT((mac_srs->srs_type & SRST_TX) == 0);
2177 /*
2178 * Poll thread still owns the SRS and is still running
2179 */
2180 ASSERT((mac_srs->srs_poll_thr == NULL) ||
2181 ((mac_srs->srs_state & SRS_POLL_THR_OWNER) ==
2182 SRS_POLL_THR_OWNER));
2183 }
2184 mac_srs_worker_quiesce(mac_srs);
2185 /*
2186 * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator
2187 * of the quiesce operation
2188 */
2189 while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART)))
2190 cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock);
2191
2192 if (mac_srs->srs_state & SRS_RESTART) {
2193 ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED));
2194 mac_srs_worker_restart(mac_srs);
2195 mac_srs->srs_state &= ~SRS_PROC;
2196 goto start;
2197 }
2198
2199 if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE))
2200 mac_srs_worker_quiesce(mac_srs);
2201
2202 mac_srs->srs_state &= ~SRS_PROC;
2203 /* The macro drops the srs_lock */
2204 CALLB_CPR_EXIT(&cprinfo);
2205 thread_exit();
2206 }
2207
2208 /*
2209 * mac_rx_srs_subflow_process
2210 *
2211 * Receive side routine called from interrupt path when there are
2212 * sub flows present on this SRS.
2213 */
2214 /* ARGSUSED */
2215 void
mac_rx_srs_subflow_process(void * arg,mac_resource_handle_t srs,mblk_t * mp_chain,boolean_t loopback)2216 mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs,
2217 mblk_t *mp_chain, boolean_t loopback)
2218 {
2219 flow_entry_t *flent = NULL;
2220 flow_entry_t *prev_flent = NULL;
2221 mblk_t *mp = NULL;
2222 mblk_t *tail = NULL;
2223 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
2224 mac_client_impl_t *mcip;
2225
2226 mcip = mac_srs->srs_mcip;
2227 ASSERT(mcip != NULL);
2228
2229 /*
2230 * We need to determine the SRS for every packet
2231 * by walking the flow table, if we don't get any,
2232 * then we proceed using the SRS we came with.
2233 */
2234 mp = tail = mp_chain;
2235 while (mp != NULL) {
2236
2237 /*
2238 * We will increment the stats for the mactching subflow.
2239 * when we get the bytes/pkt count for the classified packets
2240 * later in mac_rx_srs_process.
2241 */
2242 (void) mac_flow_lookup(mcip->mci_subflow_tab, mp,
2243 FLOW_INBOUND, &flent);
2244
2245 if (mp == mp_chain || flent == prev_flent) {
2246 if (prev_flent != NULL)
2247 FLOW_REFRELE(prev_flent);
2248 prev_flent = flent;
2249 flent = NULL;
2250 tail = mp;
2251 mp = mp->b_next;
2252 continue;
2253 }
2254 tail->b_next = NULL;
2255 /*
2256 * A null indicates, this is for the mac_srs itself.
2257 * XXX-venu : probably assert for fe_rx_srs_cnt == 0.
2258 */
2259 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
2260 mac_rx_srs_process(arg,
2261 (mac_resource_handle_t)mac_srs, mp_chain,
2262 loopback);
2263 } else {
2264 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
2265 prev_flent->fe_cb_arg2, mp_chain, loopback);
2266 FLOW_REFRELE(prev_flent);
2267 }
2268 prev_flent = flent;
2269 flent = NULL;
2270 mp_chain = mp;
2271 tail = mp;
2272 mp = mp->b_next;
2273 }
2274 /* Last chain */
2275 ASSERT(mp_chain != NULL);
2276 if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) {
2277 mac_rx_srs_process(arg,
2278 (mac_resource_handle_t)mac_srs, mp_chain, loopback);
2279 } else {
2280 (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1,
2281 prev_flent->fe_cb_arg2, mp_chain, loopback);
2282 FLOW_REFRELE(prev_flent);
2283 }
2284 }
2285
2286 /*
2287 * mac_rx_srs_process
2288 *
2289 * Receive side routine called from the interrupt path.
2290 *
2291 * loopback is set to force a context switch on the loopback
2292 * path between MAC clients.
2293 */
2294 /* ARGSUSED */
2295 void
mac_rx_srs_process(void * arg,mac_resource_handle_t srs,mblk_t * mp_chain,boolean_t loopback)2296 mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain,
2297 boolean_t loopback)
2298 {
2299 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs;
2300 mblk_t *mp, *tail, *head;
2301 int count = 0;
2302 int count1;
2303 size_t sz = 0;
2304 size_t chain_sz, sz1;
2305 mac_bw_ctl_t *mac_bw;
2306 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx;
2307
2308 /*
2309 * Set the tail, count and sz. We set the sz irrespective
2310 * of whether we are doing B/W control or not for the
2311 * purpose of updating the stats.
2312 */
2313 mp = tail = mp_chain;
2314 while (mp != NULL) {
2315 tail = mp;
2316 count++;
2317 sz += msgdsize(mp);
2318 mp = mp->b_next;
2319 }
2320
2321 mutex_enter(&mac_srs->srs_lock);
2322
2323 if (loopback) {
2324 SRS_RX_STAT_UPDATE(mac_srs, lclbytes, sz);
2325 SRS_RX_STAT_UPDATE(mac_srs, lclcnt, count);
2326
2327 } else {
2328 SRS_RX_STAT_UPDATE(mac_srs, intrbytes, sz);
2329 SRS_RX_STAT_UPDATE(mac_srs, intrcnt, count);
2330 }
2331
2332 /*
2333 * If the SRS in already being processed; has been blanked;
2334 * can be processed by worker thread only; or the B/W limit
2335 * has been reached, then queue the chain and check if
2336 * worker thread needs to be awakend.
2337 */
2338 if (mac_srs->srs_type & SRST_BW_CONTROL) {
2339 mac_bw = mac_srs->srs_bw;
2340 ASSERT(mac_bw != NULL);
2341 mutex_enter(&mac_bw->mac_bw_lock);
2342 mac_bw->mac_bw_intr += sz;
2343 if (mac_bw->mac_bw_limit == 0) {
2344 /* zero bandwidth: drop all */
2345 srs_rx->sr_stat.mrs_sdrops += count;
2346 mac_bw->mac_bw_drop_bytes += sz;
2347 mutex_exit(&mac_bw->mac_bw_lock);
2348 mutex_exit(&mac_srs->srs_lock);
2349 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
2350 return;
2351 } else {
2352 if ((mac_bw->mac_bw_sz + sz) <=
2353 mac_bw->mac_bw_drop_threshold) {
2354 mutex_exit(&mac_bw->mac_bw_lock);
2355 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain,
2356 tail, count, sz);
2357 } else {
2358 mp = mp_chain;
2359 chain_sz = 0;
2360 count1 = 0;
2361 tail = NULL;
2362 head = NULL;
2363 while (mp != NULL) {
2364 sz1 = msgdsize(mp);
2365 if (mac_bw->mac_bw_sz + chain_sz + sz1 >
2366 mac_bw->mac_bw_drop_threshold)
2367 break;
2368 chain_sz += sz1;
2369 count1++;
2370 tail = mp;
2371 mp = mp->b_next;
2372 }
2373 mutex_exit(&mac_bw->mac_bw_lock);
2374 if (tail != NULL) {
2375 head = tail->b_next;
2376 tail->b_next = NULL;
2377 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs,
2378 mp_chain, tail, count1, chain_sz);
2379 sz -= chain_sz;
2380 count -= count1;
2381 } else {
2382 /* Can't pick up any */
2383 head = mp_chain;
2384 }
2385 if (head != NULL) {
2386 /* Drop any packet over the threshold */
2387 srs_rx->sr_stat.mrs_sdrops += count;
2388 mutex_enter(&mac_bw->mac_bw_lock);
2389 mac_bw->mac_bw_drop_bytes += sz;
2390 mutex_exit(&mac_bw->mac_bw_lock);
2391 freemsgchain(head);
2392 }
2393 }
2394 MAC_SRS_WORKER_WAKEUP(mac_srs);
2395 mutex_exit(&mac_srs->srs_lock);
2396 return;
2397 }
2398 }
2399
2400 /*
2401 * If the total number of packets queued in the SRS and
2402 * its associated soft rings exceeds the max allowed,
2403 * then drop the chain. If we are polling capable, this
2404 * shouldn't be happening.
2405 */
2406 if (!(mac_srs->srs_type & SRST_BW_CONTROL) &&
2407 (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) {
2408 mac_bw = mac_srs->srs_bw;
2409 srs_rx->sr_stat.mrs_sdrops += count;
2410 mutex_enter(&mac_bw->mac_bw_lock);
2411 mac_bw->mac_bw_drop_bytes += sz;
2412 mutex_exit(&mac_bw->mac_bw_lock);
2413 freemsgchain(mp_chain);
2414 mutex_exit(&mac_srs->srs_lock);
2415 return;
2416 }
2417
2418 MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz);
2419
2420 if (!(mac_srs->srs_state & SRS_PROC)) {
2421 /*
2422 * If we are coming via loopback or if we are not
2423 * optimizing for latency, we should signal the
2424 * worker thread.
2425 */
2426 if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT)) {
2427 /*
2428 * For loopback, We need to let the worker take
2429 * over as we don't want to continue in the same
2430 * thread even if we can. This could lead to stack
2431 * overflows and may also end up using
2432 * resources (cpu) incorrectly.
2433 */
2434 cv_signal(&mac_srs->srs_async);
2435 } else {
2436 /*
2437 * Seems like no one is processing the SRS and
2438 * there is no backlog. We also inline process
2439 * our packet if its a single packet in non
2440 * latency optimized case (in latency optimized
2441 * case, we inline process chains of any size).
2442 */
2443 mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST);
2444 }
2445 }
2446 mutex_exit(&mac_srs->srs_lock);
2447 }
2448
2449 /* TX SIDE ROUTINES (RUNTIME) */
2450
2451 /*
2452 * mac_tx_srs_no_desc
2453 *
2454 * This routine is called by Tx single ring default mode
2455 * when Tx ring runs out of descs.
2456 */
2457 mac_tx_cookie_t
mac_tx_srs_no_desc(mac_soft_ring_set_t * mac_srs,mblk_t * mp_chain,uint16_t flag,mblk_t ** ret_mp)2458 mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2459 uint16_t flag, mblk_t **ret_mp)
2460 {
2461 mac_tx_cookie_t cookie = NULL;
2462 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
2463 boolean_t wakeup_worker = B_TRUE;
2464 uint32_t tx_mode = srs_tx->st_mode;
2465 int cnt, sz;
2466 mblk_t *tail;
2467
2468 ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW);
2469 if (flag & MAC_DROP_ON_NO_DESC) {
2470 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
2471 } else {
2472 if (mac_srs->srs_first != NULL)
2473 wakeup_worker = B_FALSE;
2474 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
2475 if (flag & MAC_TX_NO_ENQUEUE) {
2476 /*
2477 * If TX_QUEUED is not set, queue the
2478 * packet and let mac_tx_srs_drain()
2479 * set the TX_BLOCKED bit for the
2480 * reasons explained above. Otherwise,
2481 * return the mblks.
2482 */
2483 if (wakeup_worker) {
2484 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2485 mp_chain, tail, cnt, sz);
2486 } else {
2487 MAC_TX_SET_NO_ENQUEUE(mac_srs,
2488 mp_chain, ret_mp, cookie);
2489 }
2490 } else {
2491 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
2492 tail, cnt, sz, cookie);
2493 }
2494 if (wakeup_worker)
2495 cv_signal(&mac_srs->srs_async);
2496 }
2497 return (cookie);
2498 }
2499
2500 /*
2501 * mac_tx_srs_enqueue
2502 *
2503 * This routine is called when Tx SRS is operating in either serializer
2504 * or bandwidth mode. In serializer mode, a packet will get enqueued
2505 * when a thread cannot enter SRS exclusively. In bandwidth mode,
2506 * packets gets queued if allowed byte-count limit for a tick is
2507 * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and
2508 * MAC_TX_NO_ENQUEUE is set is different than when operaing in either
2509 * the default mode or fanout mode. Here packets get dropped or
2510 * returned back to the caller only after hi-watermark worth of data
2511 * is queued.
2512 */
2513 static mac_tx_cookie_t
mac_tx_srs_enqueue(mac_soft_ring_set_t * mac_srs,mblk_t * mp_chain,uint16_t flag,uintptr_t fanout_hint,mblk_t ** ret_mp)2514 mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2515 uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp)
2516 {
2517 mac_tx_cookie_t cookie = NULL;
2518 int cnt, sz;
2519 mblk_t *tail;
2520 boolean_t wakeup_worker = B_TRUE;
2521
2522 /*
2523 * Ignore fanout hint if we don't have multiple tx rings.
2524 */
2525 if (!MAC_TX_SOFT_RINGS(mac_srs))
2526 fanout_hint = 0;
2527
2528 if (mac_srs->srs_first != NULL)
2529 wakeup_worker = B_FALSE;
2530 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
2531 if (flag & MAC_DROP_ON_NO_DESC) {
2532 if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) {
2533 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
2534 } else {
2535 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2536 mp_chain, tail, cnt, sz);
2537 }
2538 } else if (flag & MAC_TX_NO_ENQUEUE) {
2539 if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) ||
2540 (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) {
2541 MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain,
2542 ret_mp, cookie);
2543 } else {
2544 mp_chain->b_prev = (mblk_t *)fanout_hint;
2545 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2546 mp_chain, tail, cnt, sz);
2547 }
2548 } else {
2549 /*
2550 * If you are BW_ENFORCED, just enqueue the
2551 * packet. srs_worker will drain it at the
2552 * prescribed rate. Before enqueueing, save
2553 * the fanout hint.
2554 */
2555 mp_chain->b_prev = (mblk_t *)fanout_hint;
2556 MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain,
2557 tail, cnt, sz, cookie);
2558 }
2559 if (wakeup_worker)
2560 cv_signal(&mac_srs->srs_async);
2561 return (cookie);
2562 }
2563
2564 /*
2565 * There are seven tx modes:
2566 *
2567 * 1) Default mode (SRS_TX_DEFAULT)
2568 * 2) Serialization mode (SRS_TX_SERIALIZE)
2569 * 3) Fanout mode (SRS_TX_FANOUT)
2570 * 4) Bandwdith mode (SRS_TX_BW)
2571 * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT)
2572 * 6) aggr Tx mode (SRS_TX_AGGR)
2573 * 7) aggr Tx bw mode (SRS_TX_BW_AGGR)
2574 *
2575 * The tx mode in which an SRS operates is decided in mac_tx_srs_setup()
2576 * based on the number of Tx rings requested for an SRS and whether
2577 * bandwidth control is requested or not.
2578 *
2579 * The default mode (i.e., no fanout/no bandwidth) is used when the
2580 * underlying NIC does not have Tx rings or just one Tx ring. In this mode,
2581 * the SRS acts as a pass-thru. Packets will go directly to mac_tx_send().
2582 * When the underlying Tx ring runs out of Tx descs, it starts queueing up
2583 * packets in SRS. When flow-control is relieved, the srs_worker drains
2584 * the queued packets and informs blocked clients to restart sending
2585 * packets.
2586 *
2587 * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. This
2588 * mode is used when the link has no Tx rings or only one Tx ring.
2589 *
2590 * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple
2591 * Tx rings. Each Tx ring will have a soft ring associated with it.
2592 * These soft rings will be hung off the Tx SRS. Queueing if it happens
2593 * due to lack of Tx desc will be in individual soft ring (and not srs)
2594 * associated with Tx ring.
2595 *
2596 * In the TX_BW mode, tx srs will allow packets to go down to Tx ring
2597 * only if bw is available. Otherwise the packets will be queued in
2598 * SRS. If fanout to multiple Tx rings is configured, the packets will
2599 * be fanned out among the soft rings associated with the Tx rings.
2600 *
2601 * In SRS_TX_AGGR mode, mac_tx_aggr_mode() routine is called. This routine
2602 * invokes an aggr function, aggr_find_tx_ring(), to find a pseudo Tx ring
2603 * belonging to a port on which the packet has to be sent. Aggr will
2604 * always have a pseudo Tx ring associated with it even when it is an
2605 * aggregation over a single NIC that has no Tx rings. Even in such a
2606 * case, the single pseudo Tx ring will have a soft ring associated with
2607 * it and the soft ring will hang off the SRS.
2608 *
2609 * If a bandwidth is specified for an aggr, SRS_TX_BW_AGGR mode is used.
2610 * In this mode, the bandwidth is first applied on the outgoing packets
2611 * and later mac_tx_addr_mode() function is called to send the packet out
2612 * of one of the pseudo Tx rings.
2613 *
2614 * Four flags are used in srs_state for indicating flow control
2615 * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT.
2616 * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the
2617 * driver below.
2618 * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat
2619 * and flow-control pressure is applied back to clients. The clients expect
2620 * wakeup when flow-control is relieved.
2621 * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk
2622 * got returned back to client either due to lack of Tx descs or due to bw
2623 * control reasons. The clients expect a wakeup when condition is relieved.
2624 *
2625 * The fourth argument to mac_tx() is the flag. Normally it will be 0 but
2626 * some clients set the following values too: MAC_DROP_ON_NO_DESC,
2627 * MAC_TX_NO_ENQUEUE
2628 * Mac clients that do not want packets to be enqueued in the mac layer set
2629 * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or
2630 * Tx soft rings but instead get dropped when the NIC runs out of desc. The
2631 * behaviour of this flag is different when the Tx is running in serializer
2632 * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet
2633 * get dropped when Tx high watermark is reached.
2634 * There are some mac clients like vsw, aggr that want the mblks to be
2635 * returned back to clients instead of being queued in Tx SRS (or Tx soft
2636 * rings) under flow-control (i.e., out of desc or exceeding bw limits)
2637 * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set.
2638 * In the default and Tx fanout mode, the un-transmitted mblks will be
2639 * returned back to the clients when the driver runs out of Tx descs.
2640 * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or
2641 * soft ring) so that the clients can be woken up when Tx desc become
2642 * available. When running in serializer or bandwidth mode mode,
2643 * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached.
2644 */
2645
2646 mac_tx_func_t
mac_tx_get_func(uint32_t mode)2647 mac_tx_get_func(uint32_t mode)
2648 {
2649 return (mac_tx_mode_list[mode].mac_tx_func);
2650 }
2651
2652 /* ARGSUSED */
2653 static mac_tx_cookie_t
mac_tx_single_ring_mode(mac_soft_ring_set_t * mac_srs,mblk_t * mp_chain,uintptr_t fanout_hint,uint16_t flag,mblk_t ** ret_mp)2654 mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2655 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2656 {
2657 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
2658 mac_tx_stats_t stats;
2659 mac_tx_cookie_t cookie = NULL;
2660
2661 ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT);
2662
2663 /* Regular case with a single Tx ring */
2664 /*
2665 * SRS_TX_BLOCKED is set when underlying NIC runs
2666 * out of Tx descs and messages start getting
2667 * queued. It won't get reset until
2668 * tx_srs_drain() completely drains out the
2669 * messages.
2670 */
2671 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
2672 /* Tx descs/resources not available */
2673 mutex_enter(&mac_srs->srs_lock);
2674 if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) {
2675 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain,
2676 flag, ret_mp);
2677 mutex_exit(&mac_srs->srs_lock);
2678 return (cookie);
2679 }
2680 /*
2681 * While we were computing mblk count, the
2682 * flow control condition got relieved.
2683 * Continue with the transmission.
2684 */
2685 mutex_exit(&mac_srs->srs_lock);
2686 }
2687
2688 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
2689 mp_chain, &stats);
2690
2691 /*
2692 * Multiple threads could be here sending packets.
2693 * Under such conditions, it is not possible to
2694 * automically set SRS_TX_BLOCKED bit to indicate
2695 * out of tx desc condition. To atomically set
2696 * this, we queue the returned packet and do
2697 * the setting of SRS_TX_BLOCKED in
2698 * mac_tx_srs_drain().
2699 */
2700 if (mp_chain != NULL) {
2701 mutex_enter(&mac_srs->srs_lock);
2702 cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp);
2703 mutex_exit(&mac_srs->srs_lock);
2704 return (cookie);
2705 }
2706 SRS_TX_STATS_UPDATE(mac_srs, &stats);
2707
2708 return (NULL);
2709 }
2710
2711 /*
2712 * mac_tx_serialize_mode
2713 *
2714 * This is an experimental mode implemented as per the request of PAE.
2715 * In this mode, all callers attempting to send a packet to the NIC
2716 * will get serialized. Only one thread at any time will access the
2717 * NIC to send the packet out.
2718 */
2719 /* ARGSUSED */
2720 static mac_tx_cookie_t
mac_tx_serializer_mode(mac_soft_ring_set_t * mac_srs,mblk_t * mp_chain,uintptr_t fanout_hint,uint16_t flag,mblk_t ** ret_mp)2721 mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2722 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2723 {
2724 mac_tx_stats_t stats;
2725 mac_tx_cookie_t cookie = NULL;
2726 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
2727
2728 /* Single ring, serialize below */
2729 ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE);
2730 mutex_enter(&mac_srs->srs_lock);
2731 if ((mac_srs->srs_first != NULL) ||
2732 (mac_srs->srs_state & SRS_PROC)) {
2733 /*
2734 * In serialization mode, queue all packets until
2735 * TX_HIWAT is set.
2736 * If drop bit is set, drop if TX_HIWAT is set.
2737 * If no_enqueue is set, still enqueue until hiwat
2738 * is set and return mblks after TX_HIWAT is set.
2739 */
2740 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain,
2741 flag, NULL, ret_mp);
2742 mutex_exit(&mac_srs->srs_lock);
2743 return (cookie);
2744 }
2745 /*
2746 * No packets queued, nothing on proc and no flow
2747 * control condition. Fast-path, ok. Do inline
2748 * processing.
2749 */
2750 mac_srs->srs_state |= SRS_PROC;
2751 mutex_exit(&mac_srs->srs_lock);
2752
2753 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
2754 mp_chain, &stats);
2755
2756 mutex_enter(&mac_srs->srs_lock);
2757 mac_srs->srs_state &= ~SRS_PROC;
2758 if (mp_chain != NULL) {
2759 cookie = mac_tx_srs_enqueue(mac_srs,
2760 mp_chain, flag, NULL, ret_mp);
2761 }
2762 if (mac_srs->srs_first != NULL) {
2763 /*
2764 * We processed inline our packet and a new
2765 * packet/s got queued while we were
2766 * processing. Wakeup srs worker
2767 */
2768 cv_signal(&mac_srs->srs_async);
2769 }
2770 mutex_exit(&mac_srs->srs_lock);
2771
2772 if (cookie == NULL)
2773 SRS_TX_STATS_UPDATE(mac_srs, &stats);
2774
2775 return (cookie);
2776 }
2777
2778 /*
2779 * mac_tx_fanout_mode
2780 *
2781 * In this mode, the SRS will have access to multiple Tx rings to send
2782 * the packet out. The fanout hint that is passed as an argument is
2783 * used to find an appropriate ring to fanout the traffic. Each Tx
2784 * ring, in turn, will have a soft ring associated with it. If a Tx
2785 * ring runs out of Tx desc's the returned packet will be queued in
2786 * the soft ring associated with that Tx ring. The srs itself will not
2787 * queue any packets.
2788 */
2789
2790 #define MAC_TX_SOFT_RING_PROCESS(chain) { \
2791 index = COMPUTE_INDEX(hash, mac_srs->srs_tx_ring_count), \
2792 softring = mac_srs->srs_tx_soft_rings[index]; \
2793 cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \
2794 DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \
2795 }
2796
2797 static mac_tx_cookie_t
mac_tx_fanout_mode(mac_soft_ring_set_t * mac_srs,mblk_t * mp_chain,uintptr_t fanout_hint,uint16_t flag,mblk_t ** ret_mp)2798 mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2799 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2800 {
2801 mac_soft_ring_t *softring;
2802 uint64_t hash;
2803 uint_t index;
2804 mac_tx_cookie_t cookie = NULL;
2805
2806 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
2807 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT);
2808 if (fanout_hint != 0) {
2809 /*
2810 * The hint is specified by the caller, simply pass the
2811 * whole chain to the soft ring.
2812 */
2813 hash = HASH_HINT(fanout_hint);
2814 MAC_TX_SOFT_RING_PROCESS(mp_chain);
2815 } else {
2816 mblk_t *last_mp, *cur_mp, *sub_chain;
2817 uint64_t last_hash = 0;
2818 uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media;
2819
2820 /*
2821 * Compute the hash from the contents (headers) of the
2822 * packets of the mblk chain. Split the chains into
2823 * subchains of the same conversation.
2824 *
2825 * Since there may be more than one ring used for
2826 * sub-chains of the same call, and since the caller
2827 * does not maintain per conversation state since it
2828 * passed a zero hint, unsent subchains will be
2829 * dropped.
2830 */
2831
2832 flag |= MAC_DROP_ON_NO_DESC;
2833 ret_mp = NULL;
2834
2835 ASSERT(ret_mp == NULL);
2836
2837 sub_chain = NULL;
2838 last_mp = NULL;
2839
2840 for (cur_mp = mp_chain; cur_mp != NULL;
2841 cur_mp = cur_mp->b_next) {
2842 hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4,
2843 B_TRUE);
2844 if (last_hash != 0 && hash != last_hash) {
2845 /*
2846 * Starting a different subchain, send current
2847 * chain out.
2848 */
2849 ASSERT(last_mp != NULL);
2850 last_mp->b_next = NULL;
2851 MAC_TX_SOFT_RING_PROCESS(sub_chain);
2852 sub_chain = NULL;
2853 }
2854
2855 /* add packet to subchain */
2856 if (sub_chain == NULL)
2857 sub_chain = cur_mp;
2858 last_mp = cur_mp;
2859 last_hash = hash;
2860 }
2861
2862 if (sub_chain != NULL) {
2863 /* send last subchain */
2864 ASSERT(last_mp != NULL);
2865 last_mp->b_next = NULL;
2866 MAC_TX_SOFT_RING_PROCESS(sub_chain);
2867 }
2868
2869 cookie = NULL;
2870 }
2871
2872 return (cookie);
2873 }
2874
2875 /*
2876 * mac_tx_bw_mode
2877 *
2878 * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring
2879 * only if bw is available. Otherwise the packets will be queued in
2880 * SRS. If the SRS has multiple Tx rings, then packets will get fanned
2881 * out to a Tx rings.
2882 */
2883 static mac_tx_cookie_t
mac_tx_bw_mode(mac_soft_ring_set_t * mac_srs,mblk_t * mp_chain,uintptr_t fanout_hint,uint16_t flag,mblk_t ** ret_mp)2884 mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
2885 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
2886 {
2887 int cnt, sz;
2888 mblk_t *tail;
2889 mac_tx_cookie_t cookie = NULL;
2890 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
2891 clock_t now;
2892
2893 ASSERT(TX_BANDWIDTH_MODE(mac_srs));
2894 ASSERT(mac_srs->srs_type & SRST_BW_CONTROL);
2895 mutex_enter(&mac_srs->srs_lock);
2896 if (mac_srs->srs_bw->mac_bw_limit == 0) {
2897 /*
2898 * zero bandwidth, no traffic is sent: drop the packets,
2899 * or return the whole chain if the caller requests all
2900 * unsent packets back.
2901 */
2902 if (flag & MAC_TX_NO_ENQUEUE) {
2903 cookie = (mac_tx_cookie_t)mac_srs;
2904 *ret_mp = mp_chain;
2905 } else {
2906 MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie);
2907 }
2908 mutex_exit(&mac_srs->srs_lock);
2909 return (cookie);
2910 } else if ((mac_srs->srs_first != NULL) ||
2911 (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) {
2912 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
2913 fanout_hint, ret_mp);
2914 mutex_exit(&mac_srs->srs_lock);
2915 return (cookie);
2916 }
2917 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
2918 now = ddi_get_lbolt();
2919 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
2920 mac_srs->srs_bw->mac_bw_curr_time = now;
2921 mac_srs->srs_bw->mac_bw_used = 0;
2922 } else if (mac_srs->srs_bw->mac_bw_used >
2923 mac_srs->srs_bw->mac_bw_limit) {
2924 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
2925 MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs,
2926 mp_chain, tail, cnt, sz);
2927 /*
2928 * Wakeup worker thread. Note that worker
2929 * thread has to be woken up so that it
2930 * can fire up the timer to be woken up
2931 * on the next tick. Also once
2932 * BW_ENFORCED is set, it can only be
2933 * reset by srs_worker thread. Until then
2934 * all packets will get queued up in SRS
2935 * and hence this this code path won't be
2936 * entered until BW_ENFORCED is reset.
2937 */
2938 cv_signal(&mac_srs->srs_async);
2939 mutex_exit(&mac_srs->srs_lock);
2940 return (cookie);
2941 }
2942
2943 mac_srs->srs_bw->mac_bw_used += sz;
2944 mutex_exit(&mac_srs->srs_lock);
2945
2946 if (srs_tx->st_mode == SRS_TX_BW_FANOUT) {
2947 mac_soft_ring_t *softring;
2948 uint_t indx, hash;
2949
2950 hash = HASH_HINT(fanout_hint);
2951 indx = COMPUTE_INDEX(hash,
2952 mac_srs->srs_tx_ring_count);
2953 softring = mac_srs->srs_tx_soft_rings[indx];
2954 return (mac_tx_soft_ring_process(softring, mp_chain, flag,
2955 ret_mp));
2956 } else if (srs_tx->st_mode == SRS_TX_BW_AGGR) {
2957 return (mac_tx_aggr_mode(mac_srs, mp_chain,
2958 fanout_hint, flag, ret_mp));
2959 } else {
2960 mac_tx_stats_t stats;
2961
2962 mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
2963 mp_chain, &stats);
2964
2965 if (mp_chain != NULL) {
2966 mutex_enter(&mac_srs->srs_lock);
2967 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
2968 if (mac_srs->srs_bw->mac_bw_used > sz)
2969 mac_srs->srs_bw->mac_bw_used -= sz;
2970 else
2971 mac_srs->srs_bw->mac_bw_used = 0;
2972 cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag,
2973 fanout_hint, ret_mp);
2974 mutex_exit(&mac_srs->srs_lock);
2975 return (cookie);
2976 }
2977 SRS_TX_STATS_UPDATE(mac_srs, &stats);
2978
2979 return (NULL);
2980 }
2981 }
2982
2983 /*
2984 * mac_tx_aggr_mode
2985 *
2986 * This routine invokes an aggr function, aggr_find_tx_ring(), to find
2987 * a (pseudo) Tx ring belonging to a port on which the packet has to
2988 * be sent. aggr_find_tx_ring() first finds the outgoing port based on
2989 * L2/L3/L4 policy and then uses the fanout_hint passed to it to pick
2990 * a Tx ring from the selected port.
2991 *
2992 * Note that a port can be deleted from the aggregation. In such a case,
2993 * the aggregation layer first separates the port from the rest of the
2994 * ports making sure that port (and thus any Tx rings associated with
2995 * it) won't get selected in the call to aggr_find_tx_ring() function.
2996 * Later calls are made to mac_group_rem_ring() passing pseudo Tx ring
2997 * handles one by one which in turn will quiesce the Tx SRS and remove
2998 * the soft ring associated with the pseudo Tx ring. Unlike Rx side
2999 * where a cookie is used to protect against mac_rx_ring() calls on
3000 * rings that have been removed, no such cookie is needed on the Tx
3001 * side as the pseudo Tx ring won't be available anymore to
3002 * aggr_find_tx_ring() once the port has been removed.
3003 */
3004 static mac_tx_cookie_t
mac_tx_aggr_mode(mac_soft_ring_set_t * mac_srs,mblk_t * mp_chain,uintptr_t fanout_hint,uint16_t flag,mblk_t ** ret_mp)3005 mac_tx_aggr_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain,
3006 uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp)
3007 {
3008 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3009 mac_tx_ring_fn_t find_tx_ring_fn;
3010 mac_ring_handle_t ring = NULL;
3011 void *arg;
3012 mac_soft_ring_t *sringp;
3013
3014 find_tx_ring_fn = srs_tx->st_capab_aggr.mca_find_tx_ring_fn;
3015 arg = srs_tx->st_capab_aggr.mca_arg;
3016 if (find_tx_ring_fn(arg, mp_chain, fanout_hint, &ring) == NULL)
3017 return (NULL);
3018 sringp = srs_tx->st_soft_rings[((mac_ring_t *)ring)->mr_index];
3019 return (mac_tx_soft_ring_process(sringp, mp_chain, flag, ret_mp));
3020 }
3021
3022 void
mac_tx_invoke_callbacks(mac_client_impl_t * mcip,mac_tx_cookie_t cookie)3023 mac_tx_invoke_callbacks(mac_client_impl_t *mcip, mac_tx_cookie_t cookie)
3024 {
3025 mac_cb_t *mcb;
3026 mac_tx_notify_cb_t *mtnfp;
3027
3028 /* Wakeup callback registered clients */
3029 MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info);
3030 for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL;
3031 mcb = mcb->mcb_nextp) {
3032 mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp;
3033 mtnfp->mtnf_fn(mtnfp->mtnf_arg, cookie);
3034 }
3035 MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info,
3036 &mcip->mci_tx_notify_cb_list);
3037 }
3038
3039 /* ARGSUSED */
3040 void
mac_tx_srs_drain(mac_soft_ring_set_t * mac_srs,uint_t proc_type)3041 mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type)
3042 {
3043 mblk_t *head, *tail;
3044 size_t sz;
3045 uint32_t tx_mode;
3046 uint_t saved_pkt_count;
3047 mac_tx_stats_t stats;
3048 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3049 clock_t now;
3050
3051 saved_pkt_count = 0;
3052 ASSERT(mutex_owned(&mac_srs->srs_lock));
3053 ASSERT(!(mac_srs->srs_state & SRS_PROC));
3054
3055 mac_srs->srs_state |= SRS_PROC;
3056
3057 tx_mode = srs_tx->st_mode;
3058 if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) {
3059 if (mac_srs->srs_first != NULL) {
3060 head = mac_srs->srs_first;
3061 tail = mac_srs->srs_last;
3062 saved_pkt_count = mac_srs->srs_count;
3063 mac_srs->srs_first = NULL;
3064 mac_srs->srs_last = NULL;
3065 mac_srs->srs_count = 0;
3066 mutex_exit(&mac_srs->srs_lock);
3067
3068 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3069 head, &stats);
3070
3071 mutex_enter(&mac_srs->srs_lock);
3072 if (head != NULL) {
3073 /* Device out of tx desc, set block */
3074 if (head->b_next == NULL)
3075 VERIFY(head == tail);
3076 tail->b_next = mac_srs->srs_first;
3077 mac_srs->srs_first = head;
3078 mac_srs->srs_count +=
3079 (saved_pkt_count - stats.mts_opackets);
3080 if (mac_srs->srs_last == NULL)
3081 mac_srs->srs_last = tail;
3082 MAC_TX_SRS_BLOCK(mac_srs, head);
3083 } else {
3084 srs_tx->st_woken_up = B_FALSE;
3085 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3086 }
3087 }
3088 } else if (tx_mode == SRS_TX_BW) {
3089 /*
3090 * We are here because the timer fired and we have some data
3091 * to tranmit. Also mac_tx_srs_worker should have reset
3092 * SRS_BW_ENFORCED flag
3093 */
3094 ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED));
3095 head = tail = mac_srs->srs_first;
3096 while (mac_srs->srs_first != NULL) {
3097 tail = mac_srs->srs_first;
3098 tail->b_prev = NULL;
3099 mac_srs->srs_first = tail->b_next;
3100 if (mac_srs->srs_first == NULL)
3101 mac_srs->srs_last = NULL;
3102 mac_srs->srs_count--;
3103 sz = msgdsize(tail);
3104 mac_srs->srs_size -= sz;
3105 saved_pkt_count++;
3106 MAC_TX_UPDATE_BW_INFO(mac_srs, sz);
3107
3108 if (mac_srs->srs_bw->mac_bw_used <
3109 mac_srs->srs_bw->mac_bw_limit)
3110 continue;
3111
3112 now = ddi_get_lbolt();
3113 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3114 mac_srs->srs_bw->mac_bw_curr_time = now;
3115 mac_srs->srs_bw->mac_bw_used = sz;
3116 continue;
3117 }
3118 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3119 break;
3120 }
3121
3122 ASSERT((head == NULL && tail == NULL) ||
3123 (head != NULL && tail != NULL));
3124 if (tail != NULL) {
3125 tail->b_next = NULL;
3126 mutex_exit(&mac_srs->srs_lock);
3127
3128 head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2,
3129 head, &stats);
3130
3131 mutex_enter(&mac_srs->srs_lock);
3132 if (head != NULL) {
3133 uint_t size_sent;
3134
3135 /* Device out of tx desc, set block */
3136 if (head->b_next == NULL)
3137 VERIFY(head == tail);
3138 tail->b_next = mac_srs->srs_first;
3139 mac_srs->srs_first = head;
3140 mac_srs->srs_count +=
3141 (saved_pkt_count - stats.mts_opackets);
3142 if (mac_srs->srs_last == NULL)
3143 mac_srs->srs_last = tail;
3144 size_sent = sz - stats.mts_obytes;
3145 mac_srs->srs_size += size_sent;
3146 mac_srs->srs_bw->mac_bw_sz += size_sent;
3147 if (mac_srs->srs_bw->mac_bw_used > size_sent) {
3148 mac_srs->srs_bw->mac_bw_used -=
3149 size_sent;
3150 } else {
3151 mac_srs->srs_bw->mac_bw_used = 0;
3152 }
3153 MAC_TX_SRS_BLOCK(mac_srs, head);
3154 } else {
3155 srs_tx->st_woken_up = B_FALSE;
3156 SRS_TX_STATS_UPDATE(mac_srs, &stats);
3157 }
3158 }
3159 } else if (tx_mode == SRS_TX_BW_FANOUT || tx_mode == SRS_TX_BW_AGGR) {
3160 mblk_t *prev;
3161 uint64_t hint;
3162
3163 /*
3164 * We are here because the timer fired and we
3165 * have some quota to tranmit.
3166 */
3167 prev = NULL;
3168 head = tail = mac_srs->srs_first;
3169 while (mac_srs->srs_first != NULL) {
3170 tail = mac_srs->srs_first;
3171 mac_srs->srs_first = tail->b_next;
3172 if (mac_srs->srs_first == NULL)
3173 mac_srs->srs_last = NULL;
3174 mac_srs->srs_count--;
3175 sz = msgdsize(tail);
3176 mac_srs->srs_size -= sz;
3177 mac_srs->srs_bw->mac_bw_used += sz;
3178 if (prev == NULL)
3179 hint = (ulong_t)tail->b_prev;
3180 if (hint != (ulong_t)tail->b_prev) {
3181 prev->b_next = NULL;
3182 mutex_exit(&mac_srs->srs_lock);
3183 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
3184 head = tail;
3185 hint = (ulong_t)tail->b_prev;
3186 mutex_enter(&mac_srs->srs_lock);
3187 }
3188
3189 prev = tail;
3190 tail->b_prev = NULL;
3191 if (mac_srs->srs_bw->mac_bw_used <
3192 mac_srs->srs_bw->mac_bw_limit)
3193 continue;
3194
3195 now = ddi_get_lbolt();
3196 if (mac_srs->srs_bw->mac_bw_curr_time != now) {
3197 mac_srs->srs_bw->mac_bw_curr_time = now;
3198 mac_srs->srs_bw->mac_bw_used = 0;
3199 continue;
3200 }
3201 mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED;
3202 break;
3203 }
3204 ASSERT((head == NULL && tail == NULL) ||
3205 (head != NULL && tail != NULL));
3206 if (tail != NULL) {
3207 tail->b_next = NULL;
3208 mutex_exit(&mac_srs->srs_lock);
3209 TX_SRS_TO_SOFT_RING(mac_srs, head, hint);
3210 mutex_enter(&mac_srs->srs_lock);
3211 }
3212 }
3213 /*
3214 * SRS_TX_FANOUT case not considered here because packets
3215 * won't be queued in the SRS for this case. Packets will
3216 * be sent directly to soft rings underneath and if there
3217 * is any queueing at all, it would be in Tx side soft
3218 * rings.
3219 */
3220
3221 /*
3222 * When srs_count becomes 0, reset SRS_TX_HIWAT and
3223 * SRS_TX_WAKEUP_CLIENT and wakeup registered clients.
3224 */
3225 if (mac_srs->srs_count == 0 && (mac_srs->srs_state &
3226 (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) {
3227 mac_client_impl_t *mcip = mac_srs->srs_mcip;
3228 boolean_t wakeup_required = B_FALSE;
3229
3230 if (mac_srs->srs_state &
3231 (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) {
3232 wakeup_required = B_TRUE;
3233 }
3234 mac_srs->srs_state &= ~(SRS_TX_HIWAT |
3235 SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED);
3236 mutex_exit(&mac_srs->srs_lock);
3237 if (wakeup_required) {
3238 mac_tx_invoke_callbacks(mcip, (mac_tx_cookie_t)mac_srs);
3239 /*
3240 * If the client is not the primary MAC client, then we
3241 * need to send the notification to the clients upper
3242 * MAC, i.e. mci_upper_mip.
3243 */
3244 mac_tx_notify(mcip->mci_upper_mip != NULL ?
3245 mcip->mci_upper_mip : mcip->mci_mip);
3246 }
3247 mutex_enter(&mac_srs->srs_lock);
3248 }
3249 mac_srs->srs_state &= ~SRS_PROC;
3250 }
3251
3252 /*
3253 * Given a packet, get the flow_entry that identifies the flow
3254 * to which that packet belongs. The flow_entry will contain
3255 * the transmit function to be used to send the packet. If the
3256 * function returns NULL, the packet should be sent using the
3257 * underlying NIC.
3258 */
3259 static flow_entry_t *
mac_tx_classify(mac_impl_t * mip,mblk_t * mp)3260 mac_tx_classify(mac_impl_t *mip, mblk_t *mp)
3261 {
3262 flow_entry_t *flent = NULL;
3263 mac_client_impl_t *mcip;
3264 int err;
3265
3266 /*
3267 * Do classification on the packet.
3268 */
3269 err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent);
3270 if (err != 0)
3271 return (NULL);
3272
3273 /*
3274 * This flent might just be an additional one on the MAC client,
3275 * i.e. for classification purposes (different fdesc), however
3276 * the resources, SRS et. al., are in the mci_flent, so if
3277 * this isn't the mci_flent, we need to get it.
3278 */
3279 if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) {
3280 FLOW_REFRELE(flent);
3281 flent = mcip->mci_flent;
3282 FLOW_TRY_REFHOLD(flent, err);
3283 if (err != 0)
3284 return (NULL);
3285 }
3286
3287 return (flent);
3288 }
3289
3290 /*
3291 * This macro is only meant to be used by mac_tx_send().
3292 */
3293 #define CHECK_VID_AND_ADD_TAG(mp) { \
3294 if (vid_check) { \
3295 int err = 0; \
3296 \
3297 MAC_VID_CHECK(src_mcip, (mp), err); \
3298 if (err != 0) { \
3299 freemsg((mp)); \
3300 (mp) = next; \
3301 oerrors++; \
3302 continue; \
3303 } \
3304 } \
3305 if (add_tag) { \
3306 (mp) = mac_add_vlan_tag((mp), 0, vid); \
3307 if ((mp) == NULL) { \
3308 (mp) = next; \
3309 oerrors++; \
3310 continue; \
3311 } \
3312 } \
3313 }
3314
3315 mblk_t *
mac_tx_send(mac_client_handle_t mch,mac_ring_handle_t ring,mblk_t * mp_chain,mac_tx_stats_t * stats)3316 mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain,
3317 mac_tx_stats_t *stats)
3318 {
3319 mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch;
3320 mac_impl_t *mip = src_mcip->mci_mip;
3321 uint_t obytes = 0, opackets = 0, oerrors = 0;
3322 mblk_t *mp = NULL, *next;
3323 boolean_t vid_check, add_tag;
3324 uint16_t vid = 0;
3325
3326 if (mip->mi_nclients > 1) {
3327 vid_check = MAC_VID_CHECK_NEEDED(src_mcip);
3328 add_tag = MAC_TAG_NEEDED(src_mcip);
3329 if (add_tag)
3330 vid = mac_client_vid(mch);
3331 } else {
3332 ASSERT(mip->mi_nclients == 1);
3333 vid_check = add_tag = B_FALSE;
3334 }
3335
3336 /*
3337 * Fastpath: if there's only one client, we simply send
3338 * the packet down to the underlying NIC.
3339 */
3340 if (mip->mi_nactiveclients == 1) {
3341 DTRACE_PROBE2(fastpath,
3342 mac_client_impl_t *, src_mcip, mblk_t *, mp_chain);
3343
3344 mp = mp_chain;
3345 while (mp != NULL) {
3346 next = mp->b_next;
3347 mp->b_next = NULL;
3348 opackets++;
3349 obytes += (mp->b_cont == NULL ? MBLKL(mp) :
3350 msgdsize(mp));
3351
3352 CHECK_VID_AND_ADD_TAG(mp);
3353 MAC_TX(mip, ring, mp, src_mcip);
3354
3355 /*
3356 * If the driver is out of descriptors and does a
3357 * partial send it will return a chain of unsent
3358 * mblks. Adjust the accounting stats.
3359 */
3360 if (mp != NULL) {
3361 opackets--;
3362 obytes -= msgdsize(mp);
3363 mp->b_next = next;
3364 break;
3365 }
3366 mp = next;
3367 }
3368 goto done;
3369 }
3370
3371 /*
3372 * No fastpath, we either have more than one MAC client
3373 * defined on top of the same MAC, or one or more MAC
3374 * client promiscuous callbacks.
3375 */
3376 DTRACE_PROBE3(slowpath, mac_client_impl_t *,
3377 src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain);
3378
3379 mp = mp_chain;
3380 while (mp != NULL) {
3381 flow_entry_t *dst_flow_ent;
3382 void *flow_cookie;
3383 size_t pkt_size;
3384 mblk_t *mp1;
3385
3386 next = mp->b_next;
3387 mp->b_next = NULL;
3388 opackets++;
3389 pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp));
3390 obytes += pkt_size;
3391 CHECK_VID_AND_ADD_TAG(mp);
3392
3393 /*
3394 * Find the destination.
3395 */
3396 dst_flow_ent = mac_tx_classify(mip, mp);
3397
3398 if (dst_flow_ent != NULL) {
3399 size_t hdrsize;
3400 int err = 0;
3401
3402 if (mip->mi_info.mi_nativemedia == DL_ETHER) {
3403 struct ether_vlan_header *evhp =
3404 (struct ether_vlan_header *)mp->b_rptr;
3405
3406 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN)
3407 hdrsize = sizeof (*evhp);
3408 else
3409 hdrsize = sizeof (struct ether_header);
3410 } else {
3411 mac_header_info_t mhi;
3412
3413 err = mac_header_info((mac_handle_t)mip,
3414 mp, &mhi);
3415 if (err == 0)
3416 hdrsize = mhi.mhi_hdrsize;
3417 }
3418
3419 /*
3420 * Got a matching flow. It's either another
3421 * MAC client, or a broadcast/multicast flow.
3422 * Make sure the packet size is within the
3423 * allowed size. If not drop the packet and
3424 * move to next packet.
3425 */
3426 if (err != 0 ||
3427 (pkt_size - hdrsize) > mip->mi_sdu_max) {
3428 oerrors++;
3429 DTRACE_PROBE2(loopback__drop, size_t, pkt_size,
3430 mblk_t *, mp);
3431 freemsg(mp);
3432 mp = next;
3433 FLOW_REFRELE(dst_flow_ent);
3434 continue;
3435 }
3436 flow_cookie = mac_flow_get_client_cookie(dst_flow_ent);
3437 if (flow_cookie != NULL) {
3438 /*
3439 * The vnic_bcast_send function expects
3440 * to receive the sender MAC client
3441 * as value for arg2.
3442 */
3443 mac_bcast_send(flow_cookie, src_mcip, mp,
3444 B_TRUE);
3445 } else {
3446 /*
3447 * loopback the packet to a local MAC
3448 * client. We force a context switch
3449 * if both source and destination MAC
3450 * clients are used by IP, i.e.
3451 * bypass is set.
3452 */
3453 boolean_t do_switch;
3454 mac_client_impl_t *dst_mcip =
3455 dst_flow_ent->fe_mcip;
3456
3457 /*
3458 * Check if there are promiscuous mode
3459 * callbacks defined. This check is
3460 * done here in the 'else' case and
3461 * not in other cases because this
3462 * path is for local loopback
3463 * communication which does not go
3464 * through MAC_TX(). For paths that go
3465 * through MAC_TX(), the promisc_list
3466 * check is done inside the MAC_TX()
3467 * macro.
3468 */
3469 if (mip->mi_promisc_list != NULL)
3470 mac_promisc_dispatch(mip, mp, src_mcip);
3471
3472 do_switch = ((src_mcip->mci_state_flags &
3473 dst_mcip->mci_state_flags &
3474 MCIS_CLIENT_POLL_CAPABLE) != 0);
3475
3476 if ((mp1 = mac_fix_cksum(mp)) != NULL) {
3477 (dst_flow_ent->fe_cb_fn)(
3478 dst_flow_ent->fe_cb_arg1,
3479 dst_flow_ent->fe_cb_arg2,
3480 mp1, do_switch);
3481 }
3482 }
3483 FLOW_REFRELE(dst_flow_ent);
3484 } else {
3485 /*
3486 * Unknown destination, send via the underlying
3487 * NIC.
3488 */
3489 MAC_TX(mip, ring, mp, src_mcip);
3490 if (mp != NULL) {
3491 /*
3492 * Adjust for the last packet that
3493 * could not be transmitted
3494 */
3495 opackets--;
3496 obytes -= pkt_size;
3497 mp->b_next = next;
3498 break;
3499 }
3500 }
3501 mp = next;
3502 }
3503
3504 done:
3505 stats->mts_obytes = obytes;
3506 stats->mts_opackets = opackets;
3507 stats->mts_oerrors = oerrors;
3508 return (mp);
3509 }
3510
3511 /*
3512 * mac_tx_srs_ring_present
3513 *
3514 * Returns whether the specified ring is part of the specified SRS.
3515 */
3516 boolean_t
mac_tx_srs_ring_present(mac_soft_ring_set_t * srs,mac_ring_t * tx_ring)3517 mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
3518 {
3519 int i;
3520 mac_soft_ring_t *soft_ring;
3521
3522 if (srs->srs_tx.st_arg2 == tx_ring)
3523 return (B_TRUE);
3524
3525 for (i = 0; i < srs->srs_tx_ring_count; i++) {
3526 soft_ring = srs->srs_tx_soft_rings[i];
3527 if (soft_ring->s_ring_tx_arg2 == tx_ring)
3528 return (B_TRUE);
3529 }
3530
3531 return (B_FALSE);
3532 }
3533
3534 /*
3535 * mac_tx_srs_get_soft_ring
3536 *
3537 * Returns the TX soft ring associated with the given ring, if present.
3538 */
3539 mac_soft_ring_t *
mac_tx_srs_get_soft_ring(mac_soft_ring_set_t * srs,mac_ring_t * tx_ring)3540 mac_tx_srs_get_soft_ring(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring)
3541 {
3542 int i;
3543 mac_soft_ring_t *soft_ring;
3544
3545 if (srs->srs_tx.st_arg2 == tx_ring)
3546 return (NULL);
3547
3548 for (i = 0; i < srs->srs_tx_ring_count; i++) {
3549 soft_ring = srs->srs_tx_soft_rings[i];
3550 if (soft_ring->s_ring_tx_arg2 == tx_ring)
3551 return (soft_ring);
3552 }
3553
3554 return (NULL);
3555 }
3556
3557 /*
3558 * mac_tx_srs_wakeup
3559 *
3560 * Called when Tx desc become available. Wakeup the appropriate worker
3561 * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the
3562 * state field.
3563 */
3564 void
mac_tx_srs_wakeup(mac_soft_ring_set_t * mac_srs,mac_ring_handle_t ring)3565 mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring)
3566 {
3567 int i;
3568 mac_soft_ring_t *sringp;
3569 mac_srs_tx_t *srs_tx = &mac_srs->srs_tx;
3570
3571 mutex_enter(&mac_srs->srs_lock);
3572 /*
3573 * srs_tx_ring_count == 0 is the single ring mode case. In
3574 * this mode, there will not be Tx soft rings associated
3575 * with the SRS.
3576 */
3577 if (!MAC_TX_SOFT_RINGS(mac_srs)) {
3578 if (srs_tx->st_arg2 == ring &&
3579 mac_srs->srs_state & SRS_TX_BLOCKED) {
3580 mac_srs->srs_state &= ~SRS_TX_BLOCKED;
3581 srs_tx->st_stat.mts_unblockcnt++;
3582 cv_signal(&mac_srs->srs_async);
3583 }
3584 /*
3585 * A wakeup can come before tx_srs_drain() could
3586 * grab srs lock and set SRS_TX_BLOCKED. So
3587 * always set woken_up flag when we come here.
3588 */
3589 srs_tx->st_woken_up = B_TRUE;
3590 mutex_exit(&mac_srs->srs_lock);
3591 return;
3592 }
3593
3594 /*
3595 * If you are here, it is for FANOUT, BW_FANOUT,
3596 * AGGR_MODE or AGGR_BW_MODE case
3597 */
3598 for (i = 0; i < mac_srs->srs_tx_ring_count; i++) {
3599 sringp = mac_srs->srs_tx_soft_rings[i];
3600 mutex_enter(&sringp->s_ring_lock);
3601 if (sringp->s_ring_tx_arg2 == ring) {
3602 if (sringp->s_ring_state & S_RING_BLOCK) {
3603 sringp->s_ring_state &= ~S_RING_BLOCK;
3604 sringp->s_st_stat.mts_unblockcnt++;
3605 cv_signal(&sringp->s_ring_async);
3606 }
3607 sringp->s_ring_tx_woken_up = B_TRUE;
3608 }
3609 mutex_exit(&sringp->s_ring_lock);
3610 }
3611 mutex_exit(&mac_srs->srs_lock);
3612 }
3613
3614 /*
3615 * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash
3616 * the blocked clients again.
3617 */
3618 void
mac_tx_notify(mac_impl_t * mip)3619 mac_tx_notify(mac_impl_t *mip)
3620 {
3621 i_mac_notify(mip, MAC_NOTE_TX);
3622 }
3623
3624 /*
3625 * RX SOFTRING RELATED FUNCTIONS
3626 *
3627 * These functions really belong in mac_soft_ring.c and here for
3628 * a short period.
3629 */
3630
3631 #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
3632 /* \
3633 * Enqueue our mblk chain. \
3634 */ \
3635 ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \
3636 \
3637 if ((ringp)->s_ring_last != NULL) \
3638 (ringp)->s_ring_last->b_next = (mp); \
3639 else \
3640 (ringp)->s_ring_first = (mp); \
3641 (ringp)->s_ring_last = (tail); \
3642 (ringp)->s_ring_count += (cnt); \
3643 ASSERT((ringp)->s_ring_count > 0); \
3644 if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \
3645 (ringp)->s_ring_size += sz; \
3646 } \
3647 }
3648
3649 /*
3650 * Default entry point to deliver a packet chain to a MAC client.
3651 * If the MAC client has flows, do the classification with these
3652 * flows as well.
3653 */
3654 /* ARGSUSED */
3655 void
mac_rx_deliver(void * arg1,mac_resource_handle_t mrh,mblk_t * mp_chain,mac_header_info_t * arg3)3656 mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain,
3657 mac_header_info_t *arg3)
3658 {
3659 mac_client_impl_t *mcip = arg1;
3660
3661 if (mcip->mci_nvids == 1 &&
3662 !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) {
3663 /*
3664 * If the client has exactly one VID associated with it
3665 * and striping of VLAN header is not disabled,
3666 * remove the VLAN tag from the packet before
3667 * passing it on to the client's receive callback.
3668 * Note that this needs to be done after we dispatch
3669 * the packet to the promiscuous listeners of the
3670 * client, since they expect to see the whole
3671 * frame including the VLAN headers.
3672 */
3673 mp_chain = mac_strip_vlan_tag_chain(mp_chain);
3674 }
3675
3676 mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE);
3677 }
3678
3679 /*
3680 * mac_rx_soft_ring_process
3681 *
3682 * process a chain for a given soft ring. The number of packets queued
3683 * in the SRS and its associated soft rings (including this one) is
3684 * very small (tracked by srs_poll_pkt_cnt), then allow the entering
3685 * thread (interrupt or poll thread) to do inline processing. This
3686 * helps keep the latency down under low load.
3687 *
3688 * The proc and arg for each mblk is already stored in the mblk in
3689 * appropriate places.
3690 */
3691 /* ARGSUSED */
3692 void
mac_rx_soft_ring_process(mac_client_impl_t * mcip,mac_soft_ring_t * ringp,mblk_t * mp_chain,mblk_t * tail,int cnt,size_t sz)3693 mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp,
3694 mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz)
3695 {
3696 mac_direct_rx_t proc;
3697 void *arg1;
3698 mac_resource_handle_t arg2;
3699 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
3700
3701 ASSERT(ringp != NULL);
3702 ASSERT(mp_chain != NULL);
3703 ASSERT(tail != NULL);
3704 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
3705
3706 mutex_enter(&ringp->s_ring_lock);
3707 ringp->s_ring_total_inpkt += cnt;
3708 ringp->s_ring_total_rbytes += sz;
3709 if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) &&
3710 !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) {
3711 /* If on processor or blanking on, then enqueue and return */
3712 if (ringp->s_ring_state & S_RING_BLANK ||
3713 ringp->s_ring_state & S_RING_PROC) {
3714 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
3715 mutex_exit(&ringp->s_ring_lock);
3716 return;
3717 }
3718 proc = ringp->s_ring_rx_func;
3719 arg1 = ringp->s_ring_rx_arg1;
3720 arg2 = ringp->s_ring_rx_arg2;
3721 /*
3722 * See if anything is already queued. If we are the
3723 * first packet, do inline processing else queue the
3724 * packet and do the drain.
3725 */
3726 if (ringp->s_ring_first == NULL) {
3727 /*
3728 * Fast-path, ok to process and nothing queued.
3729 */
3730 ringp->s_ring_run = curthread;
3731 ringp->s_ring_state |= (S_RING_PROC);
3732
3733 mutex_exit(&ringp->s_ring_lock);
3734
3735 /*
3736 * We are the chain of 1 packet so
3737 * go through this fast path.
3738 */
3739 ASSERT(mp_chain->b_next == NULL);
3740
3741 (*proc)(arg1, arg2, mp_chain, NULL);
3742
3743 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
3744 /*
3745 * If we have a soft ring set which is doing
3746 * bandwidth control, we need to decrement
3747 * srs_size and count so it the SRS can have a
3748 * accurate idea of what is the real data
3749 * queued between SRS and its soft rings. We
3750 * decrement the counters only when the packet
3751 * gets processed by both SRS and the soft ring.
3752 */
3753 mutex_enter(&mac_srs->srs_lock);
3754 MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt);
3755 MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz);
3756 mutex_exit(&mac_srs->srs_lock);
3757
3758 mutex_enter(&ringp->s_ring_lock);
3759 ringp->s_ring_run = NULL;
3760 ringp->s_ring_state &= ~S_RING_PROC;
3761 if (ringp->s_ring_state & S_RING_CLIENT_WAIT)
3762 cv_signal(&ringp->s_ring_client_cv);
3763
3764 if ((ringp->s_ring_first == NULL) ||
3765 (ringp->s_ring_state & S_RING_BLANK)) {
3766 /*
3767 * We processed inline our packet and
3768 * nothing new has arrived or our
3769 * receiver doesn't want to receive
3770 * any packets. We are done.
3771 */
3772 mutex_exit(&ringp->s_ring_lock);
3773 return;
3774 }
3775 } else {
3776 SOFT_RING_ENQUEUE_CHAIN(ringp,
3777 mp_chain, tail, cnt, sz);
3778 }
3779
3780 /*
3781 * We are here because either we couldn't do inline
3782 * processing (because something was already
3783 * queued), or we had a chain of more than one
3784 * packet, or something else arrived after we were
3785 * done with inline processing.
3786 */
3787 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
3788 ASSERT(ringp->s_ring_first != NULL);
3789
3790 ringp->s_ring_drain_func(ringp);
3791 mutex_exit(&ringp->s_ring_lock);
3792 return;
3793 } else {
3794 /* ST_RING_WORKER_ONLY case */
3795 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
3796 mac_soft_ring_worker_wakeup(ringp);
3797 mutex_exit(&ringp->s_ring_lock);
3798 }
3799 }
3800
3801 /*
3802 * TX SOFTRING RELATED FUNCTIONS
3803 *
3804 * These functions really belong in mac_soft_ring.c and here for
3805 * a short period.
3806 */
3807
3808 #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \
3809 ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \
3810 ringp->s_ring_state |= S_RING_ENQUEUED; \
3811 SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \
3812 }
3813
3814 /*
3815 * mac_tx_sring_queued
3816 *
3817 * When we are out of transmit descriptors and we already have a
3818 * queue that exceeds hiwat (or the client called us with
3819 * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the
3820 * soft ring pointer as the opaque cookie for the client enable
3821 * flow control.
3822 */
3823 static mac_tx_cookie_t
mac_tx_sring_enqueue(mac_soft_ring_t * ringp,mblk_t * mp_chain,uint16_t flag,mblk_t ** ret_mp)3824 mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag,
3825 mblk_t **ret_mp)
3826 {
3827 int cnt;
3828 size_t sz;
3829 mblk_t *tail;
3830 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
3831 mac_tx_cookie_t cookie = NULL;
3832 boolean_t wakeup_worker = B_TRUE;
3833
3834 ASSERT(MUTEX_HELD(&ringp->s_ring_lock));
3835 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3836 if (flag & MAC_DROP_ON_NO_DESC) {
3837 mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE);
3838 /* increment freed stats */
3839 ringp->s_ring_drops += cnt;
3840 cookie = (mac_tx_cookie_t)ringp;
3841 } else {
3842 if (ringp->s_ring_first != NULL)
3843 wakeup_worker = B_FALSE;
3844
3845 if (flag & MAC_TX_NO_ENQUEUE) {
3846 /*
3847 * If QUEUED is not set, queue the packet
3848 * and let mac_tx_soft_ring_drain() set
3849 * the TX_BLOCKED bit for the reasons
3850 * explained above. Otherwise, return the
3851 * mblks.
3852 */
3853 if (wakeup_worker) {
3854 TX_SOFT_RING_ENQUEUE_CHAIN(ringp,
3855 mp_chain, tail, cnt, sz);
3856 } else {
3857 ringp->s_ring_state |= S_RING_WAKEUP_CLIENT;
3858 cookie = (mac_tx_cookie_t)ringp;
3859 *ret_mp = mp_chain;
3860 }
3861 } else {
3862 boolean_t enqueue = B_TRUE;
3863
3864 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
3865 /*
3866 * flow-controlled. Store ringp in cookie
3867 * so that it can be returned as
3868 * mac_tx_cookie_t to client
3869 */
3870 ringp->s_ring_state |= S_RING_TX_HIWAT;
3871 cookie = (mac_tx_cookie_t)ringp;
3872 ringp->s_ring_hiwat_cnt++;
3873 if (ringp->s_ring_count >
3874 ringp->s_ring_tx_max_q_cnt) {
3875 /* increment freed stats */
3876 ringp->s_ring_drops += cnt;
3877 /*
3878 * b_prev may be set to the fanout hint
3879 * hence can't use freemsg directly
3880 */
3881 mac_pkt_drop(NULL, NULL,
3882 mp_chain, B_FALSE);
3883 DTRACE_PROBE1(tx_queued_hiwat,
3884 mac_soft_ring_t *, ringp);
3885 enqueue = B_FALSE;
3886 }
3887 }
3888 if (enqueue) {
3889 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain,
3890 tail, cnt, sz);
3891 }
3892 }
3893 if (wakeup_worker)
3894 cv_signal(&ringp->s_ring_async);
3895 }
3896 return (cookie);
3897 }
3898
3899
3900 /*
3901 * mac_tx_soft_ring_process
3902 *
3903 * This routine is called when fanning out outgoing traffic among
3904 * multipe Tx rings.
3905 * Note that a soft ring is associated with a h/w Tx ring.
3906 */
3907 mac_tx_cookie_t
mac_tx_soft_ring_process(mac_soft_ring_t * ringp,mblk_t * mp_chain,uint16_t flag,mblk_t ** ret_mp)3908 mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain,
3909 uint16_t flag, mblk_t **ret_mp)
3910 {
3911 mac_soft_ring_set_t *mac_srs = ringp->s_ring_set;
3912 int cnt;
3913 size_t sz;
3914 mblk_t *tail;
3915 mac_tx_cookie_t cookie = NULL;
3916
3917 ASSERT(ringp != NULL);
3918 ASSERT(mp_chain != NULL);
3919 ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock));
3920 /*
3921 * The following modes can come here: SRS_TX_BW_FANOUT,
3922 * SRS_TX_FANOUT, SRS_TX_AGGR, SRS_TX_BW_AGGR.
3923 */
3924 ASSERT(MAC_TX_SOFT_RINGS(mac_srs));
3925 ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT ||
3926 mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT ||
3927 mac_srs->srs_tx.st_mode == SRS_TX_AGGR ||
3928 mac_srs->srs_tx.st_mode == SRS_TX_BW_AGGR);
3929
3930 if (ringp->s_ring_type & ST_RING_WORKER_ONLY) {
3931 /* Serialization mode */
3932
3933 mutex_enter(&ringp->s_ring_lock);
3934 if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) {
3935 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
3936 flag, ret_mp);
3937 mutex_exit(&ringp->s_ring_lock);
3938 return (cookie);
3939 }
3940 MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz);
3941 TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz);
3942 if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) {
3943 /*
3944 * If ring is blocked due to lack of Tx
3945 * descs, just return. Worker thread
3946 * will get scheduled when Tx desc's
3947 * become available.
3948 */
3949 mutex_exit(&ringp->s_ring_lock);
3950 return (cookie);
3951 }
3952 mac_soft_ring_worker_wakeup(ringp);
3953 mutex_exit(&ringp->s_ring_lock);
3954 return (cookie);
3955 } else {
3956 /* Default fanout mode */
3957 /*
3958 * S_RING_BLOCKED is set when underlying NIC runs
3959 * out of Tx descs and messages start getting
3960 * queued. It won't get reset until
3961 * tx_srs_drain() completely drains out the
3962 * messages.
3963 */
3964 mac_tx_stats_t stats;
3965
3966 if (ringp->s_ring_state & S_RING_ENQUEUED) {
3967 /* Tx descs/resources not available */
3968 mutex_enter(&ringp->s_ring_lock);
3969 if (ringp->s_ring_state & S_RING_ENQUEUED) {
3970 cookie = mac_tx_sring_enqueue(ringp, mp_chain,
3971 flag, ret_mp);
3972 mutex_exit(&ringp->s_ring_lock);
3973 return (cookie);
3974 }
3975 /*
3976 * While we were computing mblk count, the
3977 * flow control condition got relieved.
3978 * Continue with the transmission.
3979 */
3980 mutex_exit(&ringp->s_ring_lock);
3981 }
3982
3983 mp_chain = mac_tx_send(ringp->s_ring_tx_arg1,
3984 ringp->s_ring_tx_arg2, mp_chain, &stats);
3985
3986 /*
3987 * Multiple threads could be here sending packets.
3988 * Under such conditions, it is not possible to
3989 * automically set S_RING_BLOCKED bit to indicate
3990 * out of tx desc condition. To atomically set
3991 * this, we queue the returned packet and do
3992 * the setting of S_RING_BLOCKED in
3993 * mac_tx_soft_ring_drain().
3994 */
3995 if (mp_chain != NULL) {
3996 mutex_enter(&ringp->s_ring_lock);
3997 cookie =
3998 mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp);
3999 mutex_exit(&ringp->s_ring_lock);
4000 return (cookie);
4001 }
4002 SRS_TX_STATS_UPDATE(mac_srs, &stats);
4003 SOFTRING_TX_STATS_UPDATE(ringp, &stats);
4004
4005 return (NULL);
4006 }
4007 }
4008