1 //=-- lsan_allocator.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // See lsan_allocator.h for details.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "lsan_allocator.h"
15
16 #include "sanitizer_common/sanitizer_allocator.h"
17 #include "sanitizer_common/sanitizer_allocator_checks.h"
18 #include "sanitizer_common/sanitizer_allocator_interface.h"
19 #include "sanitizer_common/sanitizer_allocator_report.h"
20 #include "sanitizer_common/sanitizer_errno.h"
21 #include "sanitizer_common/sanitizer_internal_defs.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "lsan_common.h"
25
26 extern "C" void *memset(void *ptr, int value, uptr num);
27
28 namespace __lsan {
29 #if defined(__i386__) || defined(__arm__)
30 static const uptr kMaxAllowedMallocSize = 1UL << 30;
31 #elif defined(__mips64) || defined(__aarch64__)
32 static const uptr kMaxAllowedMallocSize = 4UL << 30;
33 #else
34 static const uptr kMaxAllowedMallocSize = 8UL << 30;
35 #endif
36
37 static Allocator allocator;
38
39 static uptr max_malloc_size;
40
InitializeAllocator()41 void InitializeAllocator() {
42 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
43 allocator.InitLinkerInitialized(
44 common_flags()->allocator_release_to_os_interval_ms);
45 if (common_flags()->max_allocation_size_mb)
46 max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
47 kMaxAllowedMallocSize);
48 else
49 max_malloc_size = kMaxAllowedMallocSize;
50 }
51
AllocatorThreadFinish()52 void AllocatorThreadFinish() {
53 allocator.SwallowCache(GetAllocatorCache());
54 }
55
Metadata(const void * p)56 static ChunkMetadata *Metadata(const void *p) {
57 return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
58 }
59
RegisterAllocation(const StackTrace & stack,void * p,uptr size)60 static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
61 if (!p) return;
62 ChunkMetadata *m = Metadata(p);
63 CHECK(m);
64 m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
65 m->stack_trace_id = StackDepotPut(stack);
66 m->requested_size = size;
67 atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
68 }
69
RegisterDeallocation(void * p)70 static void RegisterDeallocation(void *p) {
71 if (!p) return;
72 ChunkMetadata *m = Metadata(p);
73 CHECK(m);
74 atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
75 }
76
ReportAllocationSizeTooBig(uptr size,const StackTrace & stack)77 static void *ReportAllocationSizeTooBig(uptr size, const StackTrace &stack) {
78 if (AllocatorMayReturnNull()) {
79 Report("WARNING: LeakSanitizer failed to allocate 0x%zx bytes\n", size);
80 return nullptr;
81 }
82 ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
83 }
84
Allocate(const StackTrace & stack,uptr size,uptr alignment,bool cleared)85 void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
86 bool cleared) {
87 if (size == 0)
88 size = 1;
89 if (size > max_malloc_size)
90 return ReportAllocationSizeTooBig(size, stack);
91 void *p = allocator.Allocate(GetAllocatorCache(), size, alignment);
92 if (UNLIKELY(!p)) {
93 SetAllocatorOutOfMemory();
94 if (AllocatorMayReturnNull())
95 return nullptr;
96 ReportOutOfMemory(size, &stack);
97 }
98 // Do not rely on the allocator to clear the memory (it's slow).
99 if (cleared && allocator.FromPrimary(p))
100 memset(p, 0, size);
101 RegisterAllocation(stack, p, size);
102 if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(p, size);
103 RunMallocHooks(p, size);
104 return p;
105 }
106
Calloc(uptr nmemb,uptr size,const StackTrace & stack)107 static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) {
108 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
109 if (AllocatorMayReturnNull())
110 return nullptr;
111 ReportCallocOverflow(nmemb, size, &stack);
112 }
113 size *= nmemb;
114 return Allocate(stack, size, 1, true);
115 }
116
Deallocate(void * p)117 void Deallocate(void *p) {
118 if (&__sanitizer_free_hook) __sanitizer_free_hook(p);
119 RunFreeHooks(p);
120 RegisterDeallocation(p);
121 allocator.Deallocate(GetAllocatorCache(), p);
122 }
123
Reallocate(const StackTrace & stack,void * p,uptr new_size,uptr alignment)124 void *Reallocate(const StackTrace &stack, void *p, uptr new_size,
125 uptr alignment) {
126 if (new_size > max_malloc_size) {
127 ReportAllocationSizeTooBig(new_size, stack);
128 return nullptr;
129 }
130 RegisterDeallocation(p);
131 void *new_p =
132 allocator.Reallocate(GetAllocatorCache(), p, new_size, alignment);
133 if (new_p)
134 RegisterAllocation(stack, new_p, new_size);
135 else if (new_size != 0)
136 RegisterAllocation(stack, p, new_size);
137 return new_p;
138 }
139
GetAllocatorCacheRange(uptr * begin,uptr * end)140 void GetAllocatorCacheRange(uptr *begin, uptr *end) {
141 *begin = (uptr)GetAllocatorCache();
142 *end = *begin + sizeof(AllocatorCache);
143 }
144
GetMallocUsableSize(const void * p)145 uptr GetMallocUsableSize(const void *p) {
146 ChunkMetadata *m = Metadata(p);
147 if (!m) return 0;
148 return m->requested_size;
149 }
150
lsan_posix_memalign(void ** memptr,uptr alignment,uptr size,const StackTrace & stack)151 int lsan_posix_memalign(void **memptr, uptr alignment, uptr size,
152 const StackTrace &stack) {
153 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
154 if (AllocatorMayReturnNull())
155 return errno_EINVAL;
156 ReportInvalidPosixMemalignAlignment(alignment, &stack);
157 }
158 void *ptr = Allocate(stack, size, alignment, kAlwaysClearMemory);
159 if (UNLIKELY(!ptr))
160 // OOM error is already taken care of by Allocate.
161 return errno_ENOMEM;
162 CHECK(IsAligned((uptr)ptr, alignment));
163 *memptr = ptr;
164 return 0;
165 }
166
lsan_aligned_alloc(uptr alignment,uptr size,const StackTrace & stack)167 void *lsan_aligned_alloc(uptr alignment, uptr size, const StackTrace &stack) {
168 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
169 errno = errno_EINVAL;
170 if (AllocatorMayReturnNull())
171 return nullptr;
172 ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
173 }
174 return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
175 }
176
lsan_memalign(uptr alignment,uptr size,const StackTrace & stack)177 void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) {
178 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
179 errno = errno_EINVAL;
180 if (AllocatorMayReturnNull())
181 return nullptr;
182 ReportInvalidAllocationAlignment(alignment, &stack);
183 }
184 return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
185 }
186
lsan_malloc(uptr size,const StackTrace & stack)187 void *lsan_malloc(uptr size, const StackTrace &stack) {
188 return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory));
189 }
190
lsan_free(void * p)191 void lsan_free(void *p) {
192 Deallocate(p);
193 }
194
lsan_realloc(void * p,uptr size,const StackTrace & stack)195 void *lsan_realloc(void *p, uptr size, const StackTrace &stack) {
196 return SetErrnoOnNull(Reallocate(stack, p, size, 1));
197 }
198
lsan_reallocarray(void * ptr,uptr nmemb,uptr size,const StackTrace & stack)199 void *lsan_reallocarray(void *ptr, uptr nmemb, uptr size,
200 const StackTrace &stack) {
201 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
202 errno = errno_ENOMEM;
203 if (AllocatorMayReturnNull())
204 return nullptr;
205 ReportReallocArrayOverflow(nmemb, size, &stack);
206 }
207 return lsan_realloc(ptr, nmemb * size, stack);
208 }
209
lsan_calloc(uptr nmemb,uptr size,const StackTrace & stack)210 void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) {
211 return SetErrnoOnNull(Calloc(nmemb, size, stack));
212 }
213
lsan_valloc(uptr size,const StackTrace & stack)214 void *lsan_valloc(uptr size, const StackTrace &stack) {
215 return SetErrnoOnNull(
216 Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory));
217 }
218
lsan_pvalloc(uptr size,const StackTrace & stack)219 void *lsan_pvalloc(uptr size, const StackTrace &stack) {
220 uptr PageSize = GetPageSizeCached();
221 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
222 errno = errno_ENOMEM;
223 if (AllocatorMayReturnNull())
224 return nullptr;
225 ReportPvallocOverflow(size, &stack);
226 }
227 // pvalloc(0) should allocate one page.
228 size = size ? RoundUpTo(size, PageSize) : PageSize;
229 return SetErrnoOnNull(Allocate(stack, size, PageSize, kAlwaysClearMemory));
230 }
231
lsan_mz_size(const void * p)232 uptr lsan_mz_size(const void *p) {
233 return GetMallocUsableSize(p);
234 }
235
236 ///// Interface to the common LSan module. /////
237
LockAllocator()238 void LockAllocator() {
239 allocator.ForceLock();
240 }
241
UnlockAllocator()242 void UnlockAllocator() {
243 allocator.ForceUnlock();
244 }
245
GetAllocatorGlobalRange(uptr * begin,uptr * end)246 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
247 *begin = (uptr)&allocator;
248 *end = *begin + sizeof(allocator);
249 }
250
PointsIntoChunk(void * p)251 uptr PointsIntoChunk(void* p) {
252 uptr addr = reinterpret_cast<uptr>(p);
253 uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
254 if (!chunk) return 0;
255 // LargeMmapAllocator considers pointers to the meta-region of a chunk to be
256 // valid, but we don't want that.
257 if (addr < chunk) return 0;
258 ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
259 CHECK(m);
260 if (!m->allocated)
261 return 0;
262 if (addr < chunk + m->requested_size)
263 return chunk;
264 if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr))
265 return chunk;
266 return 0;
267 }
268
GetUserBegin(uptr chunk)269 uptr GetUserBegin(uptr chunk) {
270 return chunk;
271 }
272
LsanMetadata(uptr chunk)273 LsanMetadata::LsanMetadata(uptr chunk) {
274 metadata_ = Metadata(reinterpret_cast<void *>(chunk));
275 CHECK(metadata_);
276 }
277
allocated() const278 bool LsanMetadata::allocated() const {
279 return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated;
280 }
281
tag() const282 ChunkTag LsanMetadata::tag() const {
283 return reinterpret_cast<ChunkMetadata *>(metadata_)->tag;
284 }
285
set_tag(ChunkTag value)286 void LsanMetadata::set_tag(ChunkTag value) {
287 reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value;
288 }
289
requested_size() const290 uptr LsanMetadata::requested_size() const {
291 return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size;
292 }
293
stack_trace_id() const294 u32 LsanMetadata::stack_trace_id() const {
295 return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
296 }
297
ForEachChunk(ForEachChunkCallback callback,void * arg)298 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
299 allocator.ForEachChunk(callback, arg);
300 }
301
IgnoreObjectLocked(const void * p)302 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
303 void *chunk = allocator.GetBlockBegin(p);
304 if (!chunk || p < chunk) return kIgnoreObjectInvalid;
305 ChunkMetadata *m = Metadata(chunk);
306 CHECK(m);
307 if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) {
308 if (m->tag == kIgnored)
309 return kIgnoreObjectAlreadyIgnored;
310 m->tag = kIgnored;
311 return kIgnoreObjectSuccess;
312 } else {
313 return kIgnoreObjectInvalid;
314 }
315 }
316
GetAdditionalThreadContextPtrs(ThreadContextBase * tctx,void * ptrs)317 void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
318 // This function can be used to treat memory reachable from `tctx` as live.
319 // This is useful for threads that have been created but not yet started.
320
321 // This is currently a no-op because the LSan `pthread_create()` interceptor
322 // blocks until the child thread starts which keeps the thread's `arg` pointer
323 // live.
324 }
325
326 } // namespace __lsan
327
328 using namespace __lsan;
329
330 extern "C" {
331 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_current_allocated_bytes()332 uptr __sanitizer_get_current_allocated_bytes() {
333 uptr stats[AllocatorStatCount];
334 allocator.GetStats(stats);
335 return stats[AllocatorStatAllocated];
336 }
337
338 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_heap_size()339 uptr __sanitizer_get_heap_size() {
340 uptr stats[AllocatorStatCount];
341 allocator.GetStats(stats);
342 return stats[AllocatorStatMapped];
343 }
344
345 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_free_bytes()346 uptr __sanitizer_get_free_bytes() { return 0; }
347
348 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_unmapped_bytes()349 uptr __sanitizer_get_unmapped_bytes() { return 0; }
350
351 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_estimated_allocated_size(uptr size)352 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
353
354 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_ownership(const void * p)355 int __sanitizer_get_ownership(const void *p) { return Metadata(p) != nullptr; }
356
357 SANITIZER_INTERFACE_ATTRIBUTE
__sanitizer_get_allocated_size(const void * p)358 uptr __sanitizer_get_allocated_size(const void *p) {
359 return GetMallocUsableSize(p);
360 }
361
362 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
363 // Provide default (no-op) implementation of malloc hooks.
364 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_malloc_hook(void * ptr,uptr size)365 void __sanitizer_malloc_hook(void *ptr, uptr size) {
366 (void)ptr;
367 (void)size;
368 }
369 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__sanitizer_free_hook(void * ptr)370 void __sanitizer_free_hook(void *ptr) {
371 (void)ptr;
372 }
373 #endif
374 } // extern "C"
375