1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the Type class. For more "Type" 10 // stuff, look in DerivedTypes.h. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_IR_TYPE_H 15 #define LLVM_IR_TYPE_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/Support/CBindingWrapping.h" 19 #include "llvm/Support/Casting.h" 20 #include "llvm/Support/Compiler.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TypeSize.h" 23 #include <cassert> 24 #include <cstdint> 25 #include <iterator> 26 27 namespace llvm { 28 29 class IntegerType; 30 struct fltSemantics; 31 class LLVMContext; 32 class PointerType; 33 class raw_ostream; 34 class StringRef; 35 template <typename PtrType> class SmallPtrSetImpl; 36 37 /// The instances of the Type class are immutable: once they are created, 38 /// they are never changed. Also note that only one instance of a particular 39 /// type is ever created. Thus seeing if two types are equal is a matter of 40 /// doing a trivial pointer comparison. To enforce that no two equal instances 41 /// are created, Type instances can only be created via static factory methods 42 /// in class Type and in derived classes. Once allocated, Types are never 43 /// free'd. 44 /// 45 class Type { 46 public: 47 //===--------------------------------------------------------------------===// 48 /// Definitions of all of the base types for the Type system. Based on this 49 /// value, you can cast to a class defined in DerivedTypes.h. 50 /// Note: If you add an element to this, you need to add an element to the 51 /// Type::getPrimitiveType function, or else things will break! 52 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. 53 /// 54 enum TypeID { 55 // PrimitiveTypes 56 HalfTyID = 0, ///< 16-bit floating point type 57 BFloatTyID, ///< 16-bit floating point type (7-bit significand) 58 FloatTyID, ///< 32-bit floating point type 59 DoubleTyID, ///< 64-bit floating point type 60 X86_FP80TyID, ///< 80-bit floating point type (X87) 61 FP128TyID, ///< 128-bit floating point type (112-bit significand) 62 PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) 63 VoidTyID, ///< type with no size 64 LabelTyID, ///< Labels 65 MetadataTyID, ///< Metadata 66 X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) 67 TokenTyID, ///< Tokens 68 69 // Derived types... see DerivedTypes.h file. 70 IntegerTyID, ///< Arbitrary bit width integers 71 FunctionTyID, ///< Functions 72 PointerTyID, ///< Pointers 73 StructTyID, ///< Structures 74 ArrayTyID, ///< Arrays 75 FixedVectorTyID, ///< Fixed width SIMD vector type 76 ScalableVectorTyID, ///< Scalable SIMD vector type 77 TypedPointerTyID, ///< Typed pointer used by some GPU targets 78 TargetExtTyID, ///< Target extension type 79 }; 80 81 private: 82 /// This refers to the LLVMContext in which this type was uniqued. 83 LLVMContext &Context; 84 85 TypeID ID : 8; // The current base type of this type. 86 unsigned SubclassData : 24; // Space for subclasses to store data. 87 // Note that this should be synchronized with 88 // MAX_INT_BITS value in IntegerType class. 89 90 protected: 91 friend class LLVMContextImpl; 92 93 explicit Type(LLVMContext &C, TypeID tid) 94 : Context(C), ID(tid), SubclassData(0) {} 95 ~Type() = default; 96 97 unsigned getSubclassData() const { return SubclassData; } 98 99 void setSubclassData(unsigned val) { 100 SubclassData = val; 101 // Ensure we don't have any accidental truncation. 102 assert(getSubclassData() == val && "Subclass data too large for field"); 103 } 104 105 /// Keeps track of how many Type*'s there are in the ContainedTys list. 106 unsigned NumContainedTys = 0; 107 108 /// A pointer to the array of Types contained by this Type. For example, this 109 /// includes the arguments of a function type, the elements of a structure, 110 /// the pointee of a pointer, the element type of an array, etc. This pointer 111 /// may be 0 for types that don't contain other types (Integer, Double, 112 /// Float). 113 Type * const *ContainedTys = nullptr; 114 115 public: 116 /// Print the current type. 117 /// Omit the type details if \p NoDetails == true. 118 /// E.g., let %st = type { i32, i16 } 119 /// When \p NoDetails is true, we only print %st. 120 /// Put differently, \p NoDetails prints the type as if 121 /// inlined with the operands when printing an instruction. 122 void print(raw_ostream &O, bool IsForDebug = false, 123 bool NoDetails = false) const; 124 125 void dump() const; 126 127 /// Return the LLVMContext in which this type was uniqued. 128 LLVMContext &getContext() const { return Context; } 129 130 //===--------------------------------------------------------------------===// 131 // Accessors for working with types. 132 // 133 134 /// Return the type id for the type. This will return one of the TypeID enum 135 /// elements defined above. 136 TypeID getTypeID() const { return ID; } 137 138 /// Return true if this is 'void'. 139 bool isVoidTy() const { return getTypeID() == VoidTyID; } 140 141 /// Return true if this is 'half', a 16-bit IEEE fp type. 142 bool isHalfTy() const { return getTypeID() == HalfTyID; } 143 144 /// Return true if this is 'bfloat', a 16-bit bfloat type. 145 bool isBFloatTy() const { return getTypeID() == BFloatTyID; } 146 147 /// Return true if this is a 16-bit float type. 148 bool is16bitFPTy() const { 149 return getTypeID() == BFloatTyID || getTypeID() == HalfTyID; 150 } 151 152 /// Return true if this is 'float', a 32-bit IEEE fp type. 153 bool isFloatTy() const { return getTypeID() == FloatTyID; } 154 155 /// Return true if this is 'double', a 64-bit IEEE fp type. 156 bool isDoubleTy() const { return getTypeID() == DoubleTyID; } 157 158 /// Return true if this is x86 long double. 159 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } 160 161 /// Return true if this is 'fp128'. 162 bool isFP128Ty() const { return getTypeID() == FP128TyID; } 163 164 /// Return true if this is powerpc long double. 165 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } 166 167 /// Return true if this is a well-behaved IEEE-like type, which has a IEEE 168 /// compatible layout as defined by APFloat::isIEEE(), and does not have 169 /// non-IEEE values, such as x86_fp80's unnormal values. 170 bool isIEEELikeFPTy() const { 171 switch (getTypeID()) { 172 case DoubleTyID: 173 case FloatTyID: 174 case HalfTyID: 175 case BFloatTyID: 176 case FP128TyID: 177 return true; 178 default: 179 return false; 180 } 181 } 182 183 /// Return true if this is one of the floating-point types 184 bool isFloatingPointTy() const { 185 return isIEEELikeFPTy() || getTypeID() == X86_FP80TyID || 186 getTypeID() == PPC_FP128TyID; 187 } 188 189 /// Returns true if this is a floating-point type that is an unevaluated sum 190 /// of multiple floating-point units. 191 /// An example of such a type is ppc_fp128, also known as double-double, which 192 /// consists of two IEEE 754 doubles. 193 bool isMultiUnitFPType() const { 194 return getTypeID() == PPC_FP128TyID; 195 } 196 197 const fltSemantics &getFltSemantics() const; 198 199 /// Return true if this is X86 AMX. 200 bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } 201 202 /// Return true if this is a target extension type. 203 bool isTargetExtTy() const { return getTypeID() == TargetExtTyID; } 204 205 /// Return true if this is a target extension type with a scalable layout. 206 bool isScalableTargetExtTy() const; 207 208 /// Return true if this is a type whose size is a known multiple of vscale. 209 bool isScalableTy(SmallPtrSetImpl<const Type *> &Visited) const; 210 bool isScalableTy() const; 211 212 /// Return true if this type is or contains a target extension type that 213 /// disallows being used as a global. 214 bool 215 containsNonGlobalTargetExtType(SmallPtrSetImpl<const Type *> &Visited) const; 216 bool containsNonGlobalTargetExtType() const; 217 218 /// Return true if this type is or contains a target extension type that 219 /// disallows being used as a local. 220 bool 221 containsNonLocalTargetExtType(SmallPtrSetImpl<const Type *> &Visited) const; 222 bool containsNonLocalTargetExtType() const; 223 224 /// Return true if this is a FP type or a vector of FP. 225 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } 226 227 /// Return true if this is 'label'. 228 bool isLabelTy() const { return getTypeID() == LabelTyID; } 229 230 /// Return true if this is 'metadata'. 231 bool isMetadataTy() const { return getTypeID() == MetadataTyID; } 232 233 /// Return true if this is 'token'. 234 bool isTokenTy() const { return getTypeID() == TokenTyID; } 235 236 /// True if this is an instance of IntegerType. 237 bool isIntegerTy() const { return getTypeID() == IntegerTyID; } 238 239 /// Return true if this is an IntegerType of the given width. 240 bool isIntegerTy(unsigned Bitwidth) const; 241 242 /// Return true if this is an integer type or a vector of integer types. 243 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } 244 245 /// Return true if this is an integer type or a vector of integer types of 246 /// the given width. 247 bool isIntOrIntVectorTy(unsigned BitWidth) const { 248 return getScalarType()->isIntegerTy(BitWidth); 249 } 250 251 /// Return true if this is an integer type or a pointer type. 252 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } 253 254 /// True if this is an instance of FunctionType. 255 bool isFunctionTy() const { return getTypeID() == FunctionTyID; } 256 257 /// True if this is an instance of StructType. 258 bool isStructTy() const { return getTypeID() == StructTyID; } 259 260 /// True if this is an instance of ArrayType. 261 bool isArrayTy() const { return getTypeID() == ArrayTyID; } 262 263 /// True if this is an instance of PointerType. 264 bool isPointerTy() const { return getTypeID() == PointerTyID; } 265 266 /// Return true if this is a pointer type or a vector of pointer types. 267 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } 268 269 /// True if this is an instance of VectorType. 270 inline bool isVectorTy() const { 271 return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; 272 } 273 274 // True if this is an instance of TargetExtType of RISC-V vector tuple. 275 bool isRISCVVectorTupleTy() const; 276 277 /// Return true if this type could be converted with a lossless BitCast to 278 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the 279 /// same size only where no re-interpretation of the bits is done. 280 /// Determine if this type could be losslessly bitcast to Ty 281 bool canLosslesslyBitCastTo(Type *Ty) const; 282 283 /// Return true if this type is empty, that is, it has no elements or all of 284 /// its elements are empty. 285 bool isEmptyTy() const; 286 287 /// Return true if the type is "first class", meaning it is a valid type for a 288 /// Value. 289 bool isFirstClassType() const { 290 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; 291 } 292 293 /// Return true if the type is a valid type for a register in codegen. This 294 /// includes all first-class types except struct and array types. 295 bool isSingleValueType() const { 296 return isFloatingPointTy() || isIntegerTy() || isPointerTy() || 297 isVectorTy() || isX86_AMXTy() || isTargetExtTy(); 298 } 299 300 /// Return true if the type is an aggregate type. This means it is valid as 301 /// the first operand of an insertvalue or extractvalue instruction. This 302 /// includes struct and array types, but does not include vector types. 303 bool isAggregateType() const { 304 return getTypeID() == StructTyID || getTypeID() == ArrayTyID; 305 } 306 307 /// Return true if it makes sense to take the size of this type. To get the 308 /// actual size for a particular target, it is reasonable to use the 309 /// DataLayout subsystem to do this. 310 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { 311 // If it's a primitive, it is always sized. 312 if (getTypeID() == IntegerTyID || isFloatingPointTy() || 313 getTypeID() == PointerTyID || getTypeID() == X86_AMXTyID) 314 return true; 315 // If it is not something that can have a size (e.g. a function or label), 316 // it doesn't have a size. 317 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && 318 !isVectorTy() && getTypeID() != TargetExtTyID) 319 return false; 320 // Otherwise we have to try harder to decide. 321 return isSizedDerivedType(Visited); 322 } 323 324 /// Return the basic size of this type if it is a primitive type. These are 325 /// fixed by LLVM and are not target-dependent. 326 /// This will return zero if the type does not have a size or is not a 327 /// primitive type. 328 /// 329 /// If this is a scalable vector type, the scalable property will be set and 330 /// the runtime size will be a positive integer multiple of the base size. 331 /// 332 /// Note that this may not reflect the size of memory allocated for an 333 /// instance of the type or the number of bytes that are written when an 334 /// instance of the type is stored to memory. The DataLayout class provides 335 /// additional query functions to provide this information. 336 /// 337 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY; 338 339 /// If this is a vector type, return the getPrimitiveSizeInBits value for the 340 /// element type. Otherwise return the getPrimitiveSizeInBits value for this 341 /// type. 342 unsigned getScalarSizeInBits() const LLVM_READONLY; 343 344 /// Return the width of the mantissa of this type. This is only valid on 345 /// floating-point types. If the FP type does not have a stable mantissa (e.g. 346 /// ppc long double), this method returns -1. 347 int getFPMantissaWidth() const; 348 349 /// Return whether the type is IEEE compatible, as defined by the eponymous 350 /// method in APFloat. 351 bool isIEEE() const; 352 353 /// If this is a vector type, return the element type, otherwise return 354 /// 'this'. 355 inline Type *getScalarType() const { 356 if (isVectorTy()) 357 return getContainedType(0); 358 return const_cast<Type *>(this); 359 } 360 361 //===--------------------------------------------------------------------===// 362 // Type Iteration support. 363 // 364 using subtype_iterator = Type * const *; 365 366 subtype_iterator subtype_begin() const { return ContainedTys; } 367 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} 368 ArrayRef<Type*> subtypes() const { 369 return ArrayRef(subtype_begin(), subtype_end()); 370 } 371 372 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; 373 374 subtype_reverse_iterator subtype_rbegin() const { 375 return subtype_reverse_iterator(subtype_end()); 376 } 377 subtype_reverse_iterator subtype_rend() const { 378 return subtype_reverse_iterator(subtype_begin()); 379 } 380 381 /// This method is used to implement the type iterator (defined at the end of 382 /// the file). For derived types, this returns the types 'contained' in the 383 /// derived type. 384 Type *getContainedType(unsigned i) const { 385 assert(i < NumContainedTys && "Index out of range!"); 386 return ContainedTys[i]; 387 } 388 389 /// Return the number of types in the derived type. 390 unsigned getNumContainedTypes() const { return NumContainedTys; } 391 392 //===--------------------------------------------------------------------===// 393 // Helper methods corresponding to subclass methods. This forces a cast to 394 // the specified subclass and calls its accessor. "getArrayNumElements" (for 395 // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is 396 // only intended to cover the core methods that are frequently used, helper 397 // methods should not be added here. 398 399 inline unsigned getIntegerBitWidth() const; 400 401 inline Type *getFunctionParamType(unsigned i) const; 402 inline unsigned getFunctionNumParams() const; 403 inline bool isFunctionVarArg() const; 404 405 inline StringRef getStructName() const; 406 inline unsigned getStructNumElements() const; 407 inline Type *getStructElementType(unsigned N) const; 408 409 inline uint64_t getArrayNumElements() const; 410 411 Type *getArrayElementType() const { 412 assert(getTypeID() == ArrayTyID); 413 return ContainedTys[0]; 414 } 415 416 inline StringRef getTargetExtName() const; 417 418 /// Given vector type, change the element type, 419 /// whilst keeping the old number of elements. 420 /// For non-vectors simply returns \p EltTy. 421 inline Type *getWithNewType(Type *EltTy) const; 422 423 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, 424 /// whilst keeping the old number of lanes. 425 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; 426 427 /// Given scalar/vector integer type, returns a type with elements twice as 428 /// wide as in the original type. For vectors, preserves element count. 429 inline Type *getExtendedType() const; 430 431 /// Get the address space of this pointer or pointer vector type. 432 inline unsigned getPointerAddressSpace() const; 433 434 //===--------------------------------------------------------------------===// 435 // Static members exported by the Type class itself. Useful for getting 436 // instances of Type. 437 // 438 439 /// Return a type based on an identifier. 440 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); 441 442 //===--------------------------------------------------------------------===// 443 // These are the builtin types that are always available. 444 // 445 static Type *getVoidTy(LLVMContext &C); 446 static Type *getLabelTy(LLVMContext &C); 447 static Type *getHalfTy(LLVMContext &C); 448 static Type *getBFloatTy(LLVMContext &C); 449 static Type *getFloatTy(LLVMContext &C); 450 static Type *getDoubleTy(LLVMContext &C); 451 static Type *getMetadataTy(LLVMContext &C); 452 static Type *getX86_FP80Ty(LLVMContext &C); 453 static Type *getFP128Ty(LLVMContext &C); 454 static Type *getPPC_FP128Ty(LLVMContext &C); 455 static Type *getX86_AMXTy(LLVMContext &C); 456 static Type *getTokenTy(LLVMContext &C); 457 static IntegerType *getIntNTy(LLVMContext &C, unsigned N); 458 static IntegerType *getInt1Ty(LLVMContext &C); 459 static IntegerType *getInt8Ty(LLVMContext &C); 460 static IntegerType *getInt16Ty(LLVMContext &C); 461 static IntegerType *getInt32Ty(LLVMContext &C); 462 static IntegerType *getInt64Ty(LLVMContext &C); 463 static IntegerType *getInt128Ty(LLVMContext &C); 464 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { 465 int noOfBits = sizeof(ScalarTy) * CHAR_BIT; 466 if (std::is_integral<ScalarTy>::value) { 467 return (Type*) Type::getIntNTy(C, noOfBits); 468 } else if (std::is_floating_point<ScalarTy>::value) { 469 switch (noOfBits) { 470 case 32: 471 return Type::getFloatTy(C); 472 case 64: 473 return Type::getDoubleTy(C); 474 } 475 } 476 llvm_unreachable("Unsupported type in Type::getScalarTy"); 477 } 478 static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S); 479 480 //===--------------------------------------------------------------------===// 481 // Convenience methods for getting pointer types. 482 // 483 static Type *getWasm_ExternrefTy(LLVMContext &C); 484 static Type *getWasm_FuncrefTy(LLVMContext &C); 485 486 /// Return a pointer to the current type. This is equivalent to 487 /// PointerType::get(Ctx, AddrSpace). 488 /// TODO: Remove this after opaque pointer transition is complete. 489 LLVM_DEPRECATED("Use PointerType::get instead", "PointerType::get") 490 PointerType *getPointerTo(unsigned AddrSpace = 0) const; 491 492 private: 493 /// Derived types like structures and arrays are sized iff all of the members 494 /// of the type are sized as well. Since asking for their size is relatively 495 /// uncommon, move this operation out-of-line. 496 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; 497 }; 498 499 // Printing of types. 500 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { 501 T.print(OS); 502 return OS; 503 } 504 505 // allow isa<PointerType>(x) to work without DerivedTypes.h included. 506 template <> struct isa_impl<PointerType, Type> { 507 static inline bool doit(const Type &Ty) { 508 return Ty.getTypeID() == Type::PointerTyID; 509 } 510 }; 511 512 // Create wrappers for C Binding types (see CBindingWrapping.h). 513 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef) 514 515 /* Specialized opaque type conversions. 516 */ 517 inline Type **unwrap(LLVMTypeRef* Tys) { 518 return reinterpret_cast<Type**>(Tys); 519 } 520 521 inline LLVMTypeRef *wrap(Type **Tys) { 522 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); 523 } 524 525 } // end namespace llvm 526 527 #endif // LLVM_IR_TYPE_H 528