xref: /llvm-project/llvm/include/llvm/IR/Type.h (revision 294c5cb2bea88fa048e00757188749f074c5b09f)
1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Type class.  For more "Type"
10 // stuff, look in DerivedTypes.h.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_TYPE_H
15 #define LLVM_IR_TYPE_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/Support/CBindingWrapping.h"
19 #include "llvm/Support/Casting.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TypeSize.h"
23 #include <cassert>
24 #include <cstdint>
25 #include <iterator>
26 
27 namespace llvm {
28 
29 class IntegerType;
30 struct fltSemantics;
31 class LLVMContext;
32 class PointerType;
33 class raw_ostream;
34 class StringRef;
35 template <typename PtrType> class SmallPtrSetImpl;
36 
37 /// The instances of the Type class are immutable: once they are created,
38 /// they are never changed.  Also note that only one instance of a particular
39 /// type is ever created.  Thus seeing if two types are equal is a matter of
40 /// doing a trivial pointer comparison. To enforce that no two equal instances
41 /// are created, Type instances can only be created via static factory methods
42 /// in class Type and in derived classes.  Once allocated, Types are never
43 /// free'd.
44 ///
45 class Type {
46 public:
47   //===--------------------------------------------------------------------===//
48   /// Definitions of all of the base types for the Type system.  Based on this
49   /// value, you can cast to a class defined in DerivedTypes.h.
50   /// Note: If you add an element to this, you need to add an element to the
51   /// Type::getPrimitiveType function, or else things will break!
52   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53   ///
54   enum TypeID {
55     // PrimitiveTypes
56     HalfTyID = 0,  ///< 16-bit floating point type
57     BFloatTyID,    ///< 16-bit floating point type (7-bit significand)
58     FloatTyID,     ///< 32-bit floating point type
59     DoubleTyID,    ///< 64-bit floating point type
60     X86_FP80TyID,  ///< 80-bit floating point type (X87)
61     FP128TyID,     ///< 128-bit floating point type (112-bit significand)
62     PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
63     VoidTyID,      ///< type with no size
64     LabelTyID,     ///< Labels
65     MetadataTyID,  ///< Metadata
66     X86_AMXTyID,   ///< AMX vectors (8192 bits, X86 specific)
67     TokenTyID,     ///< Tokens
68 
69     // Derived types... see DerivedTypes.h file.
70     IntegerTyID,        ///< Arbitrary bit width integers
71     FunctionTyID,       ///< Functions
72     PointerTyID,        ///< Pointers
73     StructTyID,         ///< Structures
74     ArrayTyID,          ///< Arrays
75     FixedVectorTyID,    ///< Fixed width SIMD vector type
76     ScalableVectorTyID, ///< Scalable SIMD vector type
77     TypedPointerTyID,   ///< Typed pointer used by some GPU targets
78     TargetExtTyID,      ///< Target extension type
79   };
80 
81 private:
82   /// This refers to the LLVMContext in which this type was uniqued.
83   LLVMContext &Context;
84 
85   TypeID   ID : 8;            // The current base type of this type.
86   unsigned SubclassData : 24; // Space for subclasses to store data.
87                               // Note that this should be synchronized with
88                               // MAX_INT_BITS value in IntegerType class.
89 
90 protected:
91   friend class LLVMContextImpl;
92 
93   explicit Type(LLVMContext &C, TypeID tid)
94     : Context(C), ID(tid), SubclassData(0) {}
95   ~Type() = default;
96 
97   unsigned getSubclassData() const { return SubclassData; }
98 
99   void setSubclassData(unsigned val) {
100     SubclassData = val;
101     // Ensure we don't have any accidental truncation.
102     assert(getSubclassData() == val && "Subclass data too large for field");
103   }
104 
105   /// Keeps track of how many Type*'s there are in the ContainedTys list.
106   unsigned NumContainedTys = 0;
107 
108   /// A pointer to the array of Types contained by this Type. For example, this
109   /// includes the arguments of a function type, the elements of a structure,
110   /// the pointee of a pointer, the element type of an array, etc. This pointer
111   /// may be 0 for types that don't contain other types (Integer, Double,
112   /// Float).
113   Type * const *ContainedTys = nullptr;
114 
115 public:
116   /// Print the current type.
117   /// Omit the type details if \p NoDetails == true.
118   /// E.g., let %st = type { i32, i16 }
119   /// When \p NoDetails is true, we only print %st.
120   /// Put differently, \p NoDetails prints the type as if
121   /// inlined with the operands when printing an instruction.
122   void print(raw_ostream &O, bool IsForDebug = false,
123              bool NoDetails = false) const;
124 
125   void dump() const;
126 
127   /// Return the LLVMContext in which this type was uniqued.
128   LLVMContext &getContext() const { return Context; }
129 
130   //===--------------------------------------------------------------------===//
131   // Accessors for working with types.
132   //
133 
134   /// Return the type id for the type. This will return one of the TypeID enum
135   /// elements defined above.
136   TypeID getTypeID() const { return ID; }
137 
138   /// Return true if this is 'void'.
139   bool isVoidTy() const { return getTypeID() == VoidTyID; }
140 
141   /// Return true if this is 'half', a 16-bit IEEE fp type.
142   bool isHalfTy() const { return getTypeID() == HalfTyID; }
143 
144   /// Return true if this is 'bfloat', a 16-bit bfloat type.
145   bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
146 
147   /// Return true if this is a 16-bit float type.
148   bool is16bitFPTy() const {
149     return getTypeID() == BFloatTyID || getTypeID() == HalfTyID;
150   }
151 
152   /// Return true if this is 'float', a 32-bit IEEE fp type.
153   bool isFloatTy() const { return getTypeID() == FloatTyID; }
154 
155   /// Return true if this is 'double', a 64-bit IEEE fp type.
156   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
157 
158   /// Return true if this is x86 long double.
159   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
160 
161   /// Return true if this is 'fp128'.
162   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
163 
164   /// Return true if this is powerpc long double.
165   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
166 
167   /// Return true if this is a well-behaved IEEE-like type, which has a IEEE
168   /// compatible layout as defined by APFloat::isIEEE(), and does not have
169   /// non-IEEE values, such as x86_fp80's unnormal values.
170   bool isIEEELikeFPTy() const {
171     switch (getTypeID()) {
172     case DoubleTyID:
173     case FloatTyID:
174     case HalfTyID:
175     case BFloatTyID:
176     case FP128TyID:
177       return true;
178     default:
179       return false;
180     }
181   }
182 
183   /// Return true if this is one of the floating-point types
184   bool isFloatingPointTy() const {
185     return isIEEELikeFPTy() || getTypeID() == X86_FP80TyID ||
186            getTypeID() == PPC_FP128TyID;
187   }
188 
189   /// Returns true if this is a floating-point type that is an unevaluated sum
190   /// of multiple floating-point units.
191   /// An example of such a type is ppc_fp128, also known as double-double, which
192   /// consists of two IEEE 754 doubles.
193   bool isMultiUnitFPType() const {
194     return getTypeID() == PPC_FP128TyID;
195   }
196 
197   const fltSemantics &getFltSemantics() const;
198 
199   /// Return true if this is X86 AMX.
200   bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
201 
202   /// Return true if this is a target extension type.
203   bool isTargetExtTy() const { return getTypeID() == TargetExtTyID; }
204 
205   /// Return true if this is a target extension type with a scalable layout.
206   bool isScalableTargetExtTy() const;
207 
208   /// Return true if this is a type whose size is a known multiple of vscale.
209   bool isScalableTy(SmallPtrSetImpl<const Type *> &Visited) const;
210   bool isScalableTy() const;
211 
212   /// Return true if this type is or contains a target extension type that
213   /// disallows being used as a global.
214   bool
215   containsNonGlobalTargetExtType(SmallPtrSetImpl<const Type *> &Visited) const;
216   bool containsNonGlobalTargetExtType() const;
217 
218   /// Return true if this type is or contains a target extension type that
219   /// disallows being used as a local.
220   bool
221   containsNonLocalTargetExtType(SmallPtrSetImpl<const Type *> &Visited) const;
222   bool containsNonLocalTargetExtType() const;
223 
224   /// Return true if this is a FP type or a vector of FP.
225   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
226 
227   /// Return true if this is 'label'.
228   bool isLabelTy() const { return getTypeID() == LabelTyID; }
229 
230   /// Return true if this is 'metadata'.
231   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
232 
233   /// Return true if this is 'token'.
234   bool isTokenTy() const { return getTypeID() == TokenTyID; }
235 
236   /// True if this is an instance of IntegerType.
237   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
238 
239   /// Return true if this is an IntegerType of the given width.
240   bool isIntegerTy(unsigned Bitwidth) const;
241 
242   /// Return true if this is an integer type or a vector of integer types.
243   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
244 
245   /// Return true if this is an integer type or a vector of integer types of
246   /// the given width.
247   bool isIntOrIntVectorTy(unsigned BitWidth) const {
248     return getScalarType()->isIntegerTy(BitWidth);
249   }
250 
251   /// Return true if this is an integer type or a pointer type.
252   bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
253 
254   /// True if this is an instance of FunctionType.
255   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
256 
257   /// True if this is an instance of StructType.
258   bool isStructTy() const { return getTypeID() == StructTyID; }
259 
260   /// True if this is an instance of ArrayType.
261   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
262 
263   /// True if this is an instance of PointerType.
264   bool isPointerTy() const { return getTypeID() == PointerTyID; }
265 
266   /// Return true if this is a pointer type or a vector of pointer types.
267   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
268 
269   /// True if this is an instance of VectorType.
270   inline bool isVectorTy() const {
271     return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
272   }
273 
274   // True if this is an instance of TargetExtType of RISC-V vector tuple.
275   bool isRISCVVectorTupleTy() const;
276 
277   /// Return true if this type could be converted with a lossless BitCast to
278   /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
279   /// same size only where no re-interpretation of the bits is done.
280   /// Determine if this type could be losslessly bitcast to Ty
281   bool canLosslesslyBitCastTo(Type *Ty) const;
282 
283   /// Return true if this type is empty, that is, it has no elements or all of
284   /// its elements are empty.
285   bool isEmptyTy() const;
286 
287   /// Return true if the type is "first class", meaning it is a valid type for a
288   /// Value.
289   bool isFirstClassType() const {
290     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
291   }
292 
293   /// Return true if the type is a valid type for a register in codegen. This
294   /// includes all first-class types except struct and array types.
295   bool isSingleValueType() const {
296     return isFloatingPointTy() || isIntegerTy() || isPointerTy() ||
297            isVectorTy() || isX86_AMXTy() || isTargetExtTy();
298   }
299 
300   /// Return true if the type is an aggregate type. This means it is valid as
301   /// the first operand of an insertvalue or extractvalue instruction. This
302   /// includes struct and array types, but does not include vector types.
303   bool isAggregateType() const {
304     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
305   }
306 
307   /// Return true if it makes sense to take the size of this type. To get the
308   /// actual size for a particular target, it is reasonable to use the
309   /// DataLayout subsystem to do this.
310   bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
311     // If it's a primitive, it is always sized.
312     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
313         getTypeID() == PointerTyID || getTypeID() == X86_AMXTyID)
314       return true;
315     // If it is not something that can have a size (e.g. a function or label),
316     // it doesn't have a size.
317     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
318         !isVectorTy() && getTypeID() != TargetExtTyID)
319       return false;
320     // Otherwise we have to try harder to decide.
321     return isSizedDerivedType(Visited);
322   }
323 
324   /// Return the basic size of this type if it is a primitive type. These are
325   /// fixed by LLVM and are not target-dependent.
326   /// This will return zero if the type does not have a size or is not a
327   /// primitive type.
328   ///
329   /// If this is a scalable vector type, the scalable property will be set and
330   /// the runtime size will be a positive integer multiple of the base size.
331   ///
332   /// Note that this may not reflect the size of memory allocated for an
333   /// instance of the type or the number of bytes that are written when an
334   /// instance of the type is stored to memory. The DataLayout class provides
335   /// additional query functions to provide this information.
336   ///
337   TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
338 
339   /// If this is a vector type, return the getPrimitiveSizeInBits value for the
340   /// element type. Otherwise return the getPrimitiveSizeInBits value for this
341   /// type.
342   unsigned getScalarSizeInBits() const LLVM_READONLY;
343 
344   /// Return the width of the mantissa of this type. This is only valid on
345   /// floating-point types. If the FP type does not have a stable mantissa (e.g.
346   /// ppc long double), this method returns -1.
347   int getFPMantissaWidth() const;
348 
349   /// Return whether the type is IEEE compatible, as defined by the eponymous
350   /// method in APFloat.
351   bool isIEEE() const;
352 
353   /// If this is a vector type, return the element type, otherwise return
354   /// 'this'.
355   inline Type *getScalarType() const {
356     if (isVectorTy())
357       return getContainedType(0);
358     return const_cast<Type *>(this);
359   }
360 
361   //===--------------------------------------------------------------------===//
362   // Type Iteration support.
363   //
364   using subtype_iterator = Type * const *;
365 
366   subtype_iterator subtype_begin() const { return ContainedTys; }
367   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
368   ArrayRef<Type*> subtypes() const {
369     return ArrayRef(subtype_begin(), subtype_end());
370   }
371 
372   using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
373 
374   subtype_reverse_iterator subtype_rbegin() const {
375     return subtype_reverse_iterator(subtype_end());
376   }
377   subtype_reverse_iterator subtype_rend() const {
378     return subtype_reverse_iterator(subtype_begin());
379   }
380 
381   /// This method is used to implement the type iterator (defined at the end of
382   /// the file). For derived types, this returns the types 'contained' in the
383   /// derived type.
384   Type *getContainedType(unsigned i) const {
385     assert(i < NumContainedTys && "Index out of range!");
386     return ContainedTys[i];
387   }
388 
389   /// Return the number of types in the derived type.
390   unsigned getNumContainedTypes() const { return NumContainedTys; }
391 
392   //===--------------------------------------------------------------------===//
393   // Helper methods corresponding to subclass methods.  This forces a cast to
394   // the specified subclass and calls its accessor.  "getArrayNumElements" (for
395   // example) is shorthand for cast<ArrayType>(Ty)->getNumElements().  This is
396   // only intended to cover the core methods that are frequently used, helper
397   // methods should not be added here.
398 
399   inline unsigned getIntegerBitWidth() const;
400 
401   inline Type *getFunctionParamType(unsigned i) const;
402   inline unsigned getFunctionNumParams() const;
403   inline bool isFunctionVarArg() const;
404 
405   inline StringRef getStructName() const;
406   inline unsigned getStructNumElements() const;
407   inline Type *getStructElementType(unsigned N) const;
408 
409   inline uint64_t getArrayNumElements() const;
410 
411   Type *getArrayElementType() const {
412     assert(getTypeID() == ArrayTyID);
413     return ContainedTys[0];
414   }
415 
416   inline StringRef getTargetExtName() const;
417 
418   /// Given vector type, change the element type,
419   /// whilst keeping the old number of elements.
420   /// For non-vectors simply returns \p EltTy.
421   inline Type *getWithNewType(Type *EltTy) const;
422 
423   /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
424   /// whilst keeping the old number of lanes.
425   inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
426 
427   /// Given scalar/vector integer type, returns a type with elements twice as
428   /// wide as in the original type. For vectors, preserves element count.
429   inline Type *getExtendedType() const;
430 
431   /// Get the address space of this pointer or pointer vector type.
432   inline unsigned getPointerAddressSpace() const;
433 
434   //===--------------------------------------------------------------------===//
435   // Static members exported by the Type class itself.  Useful for getting
436   // instances of Type.
437   //
438 
439   /// Return a type based on an identifier.
440   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
441 
442   //===--------------------------------------------------------------------===//
443   // These are the builtin types that are always available.
444   //
445   static Type *getVoidTy(LLVMContext &C);
446   static Type *getLabelTy(LLVMContext &C);
447   static Type *getHalfTy(LLVMContext &C);
448   static Type *getBFloatTy(LLVMContext &C);
449   static Type *getFloatTy(LLVMContext &C);
450   static Type *getDoubleTy(LLVMContext &C);
451   static Type *getMetadataTy(LLVMContext &C);
452   static Type *getX86_FP80Ty(LLVMContext &C);
453   static Type *getFP128Ty(LLVMContext &C);
454   static Type *getPPC_FP128Ty(LLVMContext &C);
455   static Type *getX86_AMXTy(LLVMContext &C);
456   static Type *getTokenTy(LLVMContext &C);
457   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
458   static IntegerType *getInt1Ty(LLVMContext &C);
459   static IntegerType *getInt8Ty(LLVMContext &C);
460   static IntegerType *getInt16Ty(LLVMContext &C);
461   static IntegerType *getInt32Ty(LLVMContext &C);
462   static IntegerType *getInt64Ty(LLVMContext &C);
463   static IntegerType *getInt128Ty(LLVMContext &C);
464   template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
465     int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
466     if (std::is_integral<ScalarTy>::value) {
467       return (Type*) Type::getIntNTy(C, noOfBits);
468     } else if (std::is_floating_point<ScalarTy>::value) {
469       switch (noOfBits) {
470       case 32:
471         return Type::getFloatTy(C);
472       case 64:
473         return Type::getDoubleTy(C);
474       }
475     }
476     llvm_unreachable("Unsupported type in Type::getScalarTy");
477   }
478   static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S);
479 
480   //===--------------------------------------------------------------------===//
481   // Convenience methods for getting pointer types.
482   //
483   static Type *getWasm_ExternrefTy(LLVMContext &C);
484   static Type *getWasm_FuncrefTy(LLVMContext &C);
485 
486   /// Return a pointer to the current type. This is equivalent to
487   /// PointerType::get(Ctx, AddrSpace).
488   /// TODO: Remove this after opaque pointer transition is complete.
489   LLVM_DEPRECATED("Use PointerType::get instead", "PointerType::get")
490   PointerType *getPointerTo(unsigned AddrSpace = 0) const;
491 
492 private:
493   /// Derived types like structures and arrays are sized iff all of the members
494   /// of the type are sized as well. Since asking for their size is relatively
495   /// uncommon, move this operation out-of-line.
496   bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
497 };
498 
499 // Printing of types.
500 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
501   T.print(OS);
502   return OS;
503 }
504 
505 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
506 template <> struct isa_impl<PointerType, Type> {
507   static inline bool doit(const Type &Ty) {
508     return Ty.getTypeID() == Type::PointerTyID;
509   }
510 };
511 
512 // Create wrappers for C Binding types (see CBindingWrapping.h).
513 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
514 
515 /* Specialized opaque type conversions.
516  */
517 inline Type **unwrap(LLVMTypeRef* Tys) {
518   return reinterpret_cast<Type**>(Tys);
519 }
520 
521 inline LLVMTypeRef *wrap(Type **Tys) {
522   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
523 }
524 
525 } // end namespace llvm
526 
527 #endif // LLVM_IR_TYPE_H
528