xref: /llvm-project/llvm/include/llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h (revision ddd5741521ed50468f06adcacc8ea41256356224)
1 ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file provides the interface for the sampled PGO profile loader base
11 /// implementation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
16 #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/IntrusiveRefCntPtr.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Analysis/LazyCallGraph.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
28 #include "llvm/Analysis/PostDominators.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/PseudoProbe.h"
39 #include "llvm/ProfileData/SampleProf.h"
40 #include "llvm/ProfileData/SampleProfReader.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/GenericDomTree.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/SampleProfileInference.h"
45 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
46 
47 namespace llvm {
48 using namespace sampleprof;
49 using namespace sampleprofutil;
50 using ProfileCount = Function::ProfileCount;
51 
52 namespace vfs {
53 class FileSystem;
54 } // namespace vfs
55 
56 #define DEBUG_TYPE "sample-profile-impl"
57 
58 namespace afdo_detail {
59 
60 template <typename BlockT> struct IRTraits;
61 template <> struct IRTraits<BasicBlock> {
62   using InstructionT = Instruction;
63   using BasicBlockT = BasicBlock;
64   using FunctionT = Function;
65   using BlockFrequencyInfoT = BlockFrequencyInfo;
66   using LoopT = Loop;
67   using LoopInfoPtrT = std::unique_ptr<LoopInfo>;
68   using DominatorTreePtrT = std::unique_ptr<DominatorTree>;
69   using PostDominatorTreeT = PostDominatorTree;
70   using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>;
71   using OptRemarkEmitterT = OptimizationRemarkEmitter;
72   using OptRemarkAnalysisT = OptimizationRemarkAnalysis;
73   using PredRangeT = pred_range;
74   using SuccRangeT = succ_range;
75   static Function &getFunction(Function &F) { return F; }
76   static const BasicBlock *getEntryBB(const Function *F) {
77     return &F->getEntryBlock();
78   }
79   static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); }
80   static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); }
81 };
82 
83 } // end namespace afdo_detail
84 
85 // This class serves sample counts correlation for SampleProfileLoader by
86 // analyzing pseudo probes and their function descriptors injected by
87 // SampleProfileProber.
88 class PseudoProbeManager {
89   DenseMap<uint64_t, PseudoProbeDescriptor> GUIDToProbeDescMap;
90 
91 public:
92   PseudoProbeManager(const Module &M) {
93     if (NamedMDNode *FuncInfo =
94             M.getNamedMetadata(PseudoProbeDescMetadataName)) {
95       for (const auto *Operand : FuncInfo->operands()) {
96         const auto *MD = cast<MDNode>(Operand);
97         auto GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0))
98                         ->getZExtValue();
99         auto Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1))
100                         ->getZExtValue();
101         GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash));
102       }
103     }
104   }
105 
106   const PseudoProbeDescriptor *getDesc(uint64_t GUID) const {
107     auto I = GUIDToProbeDescMap.find(GUID);
108     return I == GUIDToProbeDescMap.end() ? nullptr : &I->second;
109   }
110 
111   const PseudoProbeDescriptor *getDesc(StringRef FProfileName) const {
112     return getDesc(Function::getGUID(FProfileName));
113   }
114 
115   const PseudoProbeDescriptor *getDesc(const Function &F) const {
116     return getDesc(Function::getGUID(FunctionSamples::getCanonicalFnName(F)));
117   }
118 
119   bool profileIsHashMismatched(const PseudoProbeDescriptor &FuncDesc,
120                                const FunctionSamples &Samples) const {
121     return FuncDesc.getFunctionHash() != Samples.getFunctionHash();
122   }
123 
124   bool moduleIsProbed(const Module &M) const {
125     return M.getNamedMetadata(PseudoProbeDescMetadataName);
126   }
127 
128   bool profileIsValid(const Function &F, const FunctionSamples &Samples) const {
129     const auto *Desc = getDesc(F);
130     bool IsAvailableExternallyLinkage =
131         GlobalValue::isAvailableExternallyLinkage(F.getLinkage());
132     // Always check the function attribute to determine checksum mismatch for
133     // `available_externally` functions even if their desc are available. This
134     // is because the desc is computed based on the original internal function
135     // and it's substituted by the `available_externally` function during link
136     // time. However, when unstable IR or ODR violation issue occurs, the
137     // definitions of the same function across different translation units could
138     // be different and result in different checksums. So we should use the
139     // state from the new (available_externally) function, which is saved in its
140     // attribute.
141     // TODO: If the function's profile only exists as nested inlinee profile in
142     // a different module, we don't have the attr mismatch state(unknown), we
143     // need to fix it later.
144     if (IsAvailableExternallyLinkage || !Desc)
145       return !F.hasFnAttribute("profile-checksum-mismatch");
146 
147     return Desc && !profileIsHashMismatched(*Desc, Samples);
148   }
149 };
150 
151 
152 
153 extern cl::opt<bool> SampleProfileUseProfi;
154 
155 static inline bool skipProfileForFunction(const Function &F) {
156   return F.isDeclaration() || !F.hasFnAttribute("use-sample-profile");
157 }
158 
159 static inline void
160 buildTopDownFuncOrder(LazyCallGraph &CG,
161                       std::vector<Function *> &FunctionOrderList) {
162   CG.buildRefSCCs();
163   for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) {
164     for (LazyCallGraph::SCC &C : RC) {
165       for (LazyCallGraph::Node &N : C) {
166         Function &F = N.getFunction();
167         if (!skipProfileForFunction(F))
168           FunctionOrderList.push_back(&F);
169       }
170     }
171   }
172   std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
173 }
174 
175 template <typename FT> class SampleProfileLoaderBaseImpl {
176 public:
177   SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName,
178                               IntrusiveRefCntPtr<vfs::FileSystem> FS)
179       : Filename(Name), RemappingFilename(RemapName), FS(std::move(FS)) {}
180   void dump() { Reader->dump(); }
181 
182   using NodeRef = typename GraphTraits<FT *>::NodeRef;
183   using BT = std::remove_pointer_t<NodeRef>;
184   using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT;
185   using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT;
186   using BlockFrequencyInfoT =
187       typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT;
188   using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT;
189   using LoopT = typename afdo_detail::IRTraits<BT>::LoopT;
190   using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT;
191   using DominatorTreePtrT =
192       typename afdo_detail::IRTraits<BT>::DominatorTreePtrT;
193   using PostDominatorTreePtrT =
194       typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT;
195   using PostDominatorTreeT =
196       typename afdo_detail::IRTraits<BT>::PostDominatorTreeT;
197   using OptRemarkEmitterT =
198       typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT;
199   using OptRemarkAnalysisT =
200       typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT;
201   using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT;
202   using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT;
203 
204   using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>;
205   using EquivalenceClassMap =
206       DenseMap<const BasicBlockT *, const BasicBlockT *>;
207   using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
208   using EdgeWeightMap = DenseMap<Edge, uint64_t>;
209   using BlockEdgeMap =
210       DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>;
211 
212 protected:
213   ~SampleProfileLoaderBaseImpl() = default;
214   friend class SampleCoverageTracker;
215 
216   Function &getFunction(FunctionT &F) {
217     return afdo_detail::IRTraits<BT>::getFunction(F);
218   }
219   const BasicBlockT *getEntryBB(const FunctionT *F) {
220     return afdo_detail::IRTraits<BT>::getEntryBB(F);
221   }
222   PredRangeT getPredecessors(BasicBlockT *BB) {
223     return afdo_detail::IRTraits<BT>::getPredecessors(BB);
224   }
225   SuccRangeT getSuccessors(BasicBlockT *BB) {
226     return afdo_detail::IRTraits<BT>::getSuccessors(BB);
227   }
228 
229   unsigned getFunctionLoc(FunctionT &Func);
230   virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst);
231   ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst);
232   virtual ErrorOr<uint64_t> getProbeWeight(const InstructionT &Inst);
233   ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB);
234   mutable DenseMap<const DILocation *, const FunctionSamples *>
235       DILocation2SampleMap;
236   virtual const FunctionSamples *
237   findFunctionSamples(const InstructionT &I) const;
238   void printEdgeWeight(raw_ostream &OS, Edge E);
239   void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const;
240   void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB);
241   bool computeBlockWeights(FunctionT &F);
242   void findEquivalenceClasses(FunctionT &F);
243   void findEquivalencesFor(BasicBlockT *BB1,
244                            ArrayRef<BasicBlockT *> Descendants,
245                            PostDominatorTreeT *DomTree);
246   void propagateWeights(FunctionT &F);
247   void applyProfi(FunctionT &F, BlockEdgeMap &Successors,
248                   BlockWeightMap &SampleBlockWeights,
249                   BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights);
250   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
251   void buildEdges(FunctionT &F);
252   bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount);
253   void clearFunctionData(bool ResetDT = true);
254   void computeDominanceAndLoopInfo(FunctionT &F);
255   bool
256   computeAndPropagateWeights(FunctionT &F,
257                              const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
258   void initWeightPropagation(FunctionT &F,
259                              const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
260   void
261   finalizeWeightPropagation(FunctionT &F,
262                             const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
263   void emitCoverageRemarks(FunctionT &F);
264 
265   /// Map basic blocks to their computed weights.
266   ///
267   /// The weight of a basic block is defined to be the maximum
268   /// of all the instruction weights in that block.
269   BlockWeightMap BlockWeights;
270 
271   /// Map edges to their computed weights.
272   ///
273   /// Edge weights are computed by propagating basic block weights in
274   /// SampleProfile::propagateWeights.
275   EdgeWeightMap EdgeWeights;
276 
277   /// Set of visited blocks during propagation.
278   SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks;
279 
280   /// Set of visited edges during propagation.
281   SmallSet<Edge, 32> VisitedEdges;
282 
283   /// Equivalence classes for block weights.
284   ///
285   /// Two blocks BB1 and BB2 are in the same equivalence class if they
286   /// dominate and post-dominate each other, and they are in the same loop
287   /// nest. When this happens, the two blocks are guaranteed to execute
288   /// the same number of times.
289   EquivalenceClassMap EquivalenceClass;
290 
291   /// Dominance, post-dominance and loop information.
292   DominatorTreePtrT DT;
293   PostDominatorTreePtrT PDT;
294   LoopInfoPtrT LI;
295 
296   /// Predecessors for each basic block in the CFG.
297   BlockEdgeMap Predecessors;
298 
299   /// Successors for each basic block in the CFG.
300   BlockEdgeMap Successors;
301 
302   /// Profile coverage tracker.
303   SampleCoverageTracker CoverageTracker;
304 
305   /// Profile reader object.
306   std::unique_ptr<SampleProfileReader> Reader;
307 
308   /// Synthetic samples created by duplicating the samples of inlined functions
309   /// from the original profile as if they were top level sample profiles.
310   /// Use std::map because insertion may happen while its content is referenced.
311   std::map<SampleContext, FunctionSamples> OutlineFunctionSamples;
312 
313   // A pseudo probe helper to correlate the imported sample counts.
314   std::unique_ptr<PseudoProbeManager> ProbeManager;
315 
316   /// Samples collected for the body of this function.
317   FunctionSamples *Samples = nullptr;
318 
319   /// Name of the profile file to load.
320   std::string Filename;
321 
322   /// Name of the profile remapping file to load.
323   std::string RemappingFilename;
324 
325   /// VirtualFileSystem to load profile files from.
326   IntrusiveRefCntPtr<vfs::FileSystem> FS;
327 
328   /// Profile Summary Info computed from sample profile.
329   ProfileSummaryInfo *PSI = nullptr;
330 
331   /// Optimization Remark Emitter used to emit diagnostic remarks.
332   OptRemarkEmitterT *ORE = nullptr;
333 };
334 
335 /// Clear all the per-function data used to load samples and propagate weights.
336 template <typename BT>
337 void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) {
338   BlockWeights.clear();
339   EdgeWeights.clear();
340   VisitedBlocks.clear();
341   VisitedEdges.clear();
342   EquivalenceClass.clear();
343   if (ResetDT) {
344     DT = nullptr;
345     PDT = nullptr;
346     LI = nullptr;
347   }
348   Predecessors.clear();
349   Successors.clear();
350   CoverageTracker.clear();
351 }
352 
353 #ifndef NDEBUG
354 /// Print the weight of edge \p E on stream \p OS.
355 ///
356 /// \param OS  Stream to emit the output to.
357 /// \param E  Edge to print.
358 template <typename BT>
359 void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) {
360   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
361      << "]: " << EdgeWeights[E] << "\n";
362 }
363 
364 /// Print the equivalence class of block \p BB on stream \p OS.
365 ///
366 /// \param OS  Stream to emit the output to.
367 /// \param BB  Block to print.
368 template <typename BT>
369 void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence(
370     raw_ostream &OS, const BasicBlockT *BB) {
371   const BasicBlockT *Equiv = EquivalenceClass[BB];
372   OS << "equivalence[" << BB->getName()
373      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
374 }
375 
376 /// Print the weight of block \p BB on stream \p OS.
377 ///
378 /// \param OS  Stream to emit the output to.
379 /// \param BB  Block to print.
380 template <typename BT>
381 void SampleProfileLoaderBaseImpl<BT>::printBlockWeight(
382     raw_ostream &OS, const BasicBlockT *BB) const {
383   const auto &I = BlockWeights.find(BB);
384   uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
385   OS << "weight[" << BB->getName() << "]: " << W << "\n";
386 }
387 #endif
388 
389 /// Get the weight for an instruction.
390 ///
391 /// The "weight" of an instruction \p Inst is the number of samples
392 /// collected on that instruction at runtime. To retrieve it, we
393 /// need to compute the line number of \p Inst relative to the start of its
394 /// function. We use HeaderLineno to compute the offset. We then
395 /// look up the samples collected for \p Inst using BodySamples.
396 ///
397 /// \param Inst Instruction to query.
398 ///
399 /// \returns the weight of \p Inst.
400 template <typename BT>
401 ErrorOr<uint64_t>
402 SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) {
403   if (FunctionSamples::ProfileIsProbeBased)
404     return getProbeWeight(Inst);
405   return getInstWeightImpl(Inst);
406 }
407 
408 template <typename BT>
409 ErrorOr<uint64_t>
410 SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) {
411   const FunctionSamples *FS = findFunctionSamples(Inst);
412   if (!FS)
413     return std::error_code();
414 
415   const DebugLoc &DLoc = Inst.getDebugLoc();
416   if (!DLoc)
417     return std::error_code();
418 
419   const DILocation *DIL = DLoc;
420   uint32_t LineOffset = FunctionSamples::getOffset(DIL);
421   uint32_t Discriminator;
422   if (EnableFSDiscriminator)
423     Discriminator = DIL->getDiscriminator();
424   else
425     Discriminator = DIL->getBaseDiscriminator();
426 
427   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
428   if (R) {
429     bool FirstMark =
430         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
431     if (FirstMark) {
432       ORE->emit([&]() {
433         OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
434         Remark << "Applied " << ore::NV("NumSamples", *R);
435         Remark << " samples from profile (offset: ";
436         Remark << ore::NV("LineOffset", LineOffset);
437         if (Discriminator) {
438           Remark << ".";
439           Remark << ore::NV("Discriminator", Discriminator);
440         }
441         Remark << ")";
442         return Remark;
443       });
444     }
445     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "." << Discriminator << ":"
446                       << Inst << " (line offset: " << LineOffset << "."
447                       << Discriminator << " - weight: " << R.get() << ")\n");
448   }
449   return R;
450 }
451 
452 template <typename BT>
453 ErrorOr<uint64_t>
454 SampleProfileLoaderBaseImpl<BT>::getProbeWeight(const InstructionT &Inst) {
455   assert(FunctionSamples::ProfileIsProbeBased &&
456          "Profile is not pseudo probe based");
457   std::optional<PseudoProbe> Probe = extractProbe(Inst);
458   // Ignore the non-probe instruction. If none of the instruction in the BB is
459   // probe, we choose to infer the BB's weight.
460   if (!Probe)
461     return std::error_code();
462 
463   const FunctionSamples *FS = findFunctionSamples(Inst);
464   if (!FS) {
465     // If we can't find the function samples for a probe, it could be due to the
466     // probe is later optimized away or the inlining context is mismatced. We
467     // treat it as unknown, leaving it to profile inference instead of forcing a
468     // zero count.
469     return std::error_code();
470   }
471 
472   auto R = FS->findSamplesAt(Probe->Id, Probe->Discriminator);
473   if (R) {
474     uint64_t Samples = R.get() * Probe->Factor;
475     bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
476     if (FirstMark) {
477       ORE->emit([&]() {
478         OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
479         Remark << "Applied " << ore::NV("NumSamples", Samples);
480         Remark << " samples from profile (ProbeId=";
481         Remark << ore::NV("ProbeId", Probe->Id);
482         if (Probe->Discriminator) {
483           Remark << ".";
484           Remark << ore::NV("Discriminator", Probe->Discriminator);
485         }
486         Remark << ", Factor=";
487         Remark << ore::NV("Factor", Probe->Factor);
488         Remark << ", OriginalSamples=";
489         Remark << ore::NV("OriginalSamples", R.get());
490         Remark << ")";
491         return Remark;
492       });
493     }
494     LLVM_DEBUG({dbgs() << "    " << Probe->Id;
495       if (Probe->Discriminator)
496         dbgs() << "." << Probe->Discriminator;
497       dbgs() << ":" << Inst << " - weight: " << R.get()
498              << " - factor: " << format("%0.2f", Probe->Factor) << ")\n";});
499     return Samples;
500   }
501   return R;
502 }
503 
504 /// Compute the weight of a basic block.
505 ///
506 /// The weight of basic block \p BB is the maximum weight of all the
507 /// instructions in BB.
508 ///
509 /// \param BB The basic block to query.
510 ///
511 /// \returns the weight for \p BB.
512 template <typename BT>
513 ErrorOr<uint64_t>
514 SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) {
515   uint64_t Max = 0;
516   bool HasWeight = false;
517   for (auto &I : *BB) {
518     const ErrorOr<uint64_t> &R = getInstWeight(I);
519     if (R) {
520       Max = std::max(Max, R.get());
521       HasWeight = true;
522     }
523   }
524   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
525 }
526 
527 /// Compute and store the weights of every basic block.
528 ///
529 /// This populates the BlockWeights map by computing
530 /// the weights of every basic block in the CFG.
531 ///
532 /// \param F The function to query.
533 template <typename BT>
534 bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) {
535   bool Changed = false;
536   LLVM_DEBUG(dbgs() << "Block weights\n");
537   for (const auto &BB : F) {
538     ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
539     if (Weight) {
540       BlockWeights[&BB] = Weight.get();
541       VisitedBlocks.insert(&BB);
542       Changed = true;
543     }
544     LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
545   }
546 
547   return Changed;
548 }
549 
550 /// Get the FunctionSamples for an instruction.
551 ///
552 /// The FunctionSamples of an instruction \p Inst is the inlined instance
553 /// in which that instruction is coming from. We traverse the inline stack
554 /// of that instruction, and match it with the tree nodes in the profile.
555 ///
556 /// \param Inst Instruction to query.
557 ///
558 /// \returns the FunctionSamples pointer to the inlined instance.
559 template <typename BT>
560 const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples(
561     const InstructionT &Inst) const {
562   const DILocation *DIL = Inst.getDebugLoc();
563   if (!DIL)
564     return Samples;
565 
566   auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
567   if (it.second) {
568     it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
569   }
570   return it.first->second;
571 }
572 
573 /// Find equivalence classes for the given block.
574 ///
575 /// This finds all the blocks that are guaranteed to execute the same
576 /// number of times as \p BB1. To do this, it traverses all the
577 /// descendants of \p BB1 in the dominator or post-dominator tree.
578 ///
579 /// A block BB2 will be in the same equivalence class as \p BB1 if
580 /// the following holds:
581 ///
582 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
583 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
584 ///    dominate BB1 in the post-dominator tree.
585 ///
586 /// 2- Both BB2 and \p BB1 must be in the same loop.
587 ///
588 /// For every block BB2 that meets those two requirements, we set BB2's
589 /// equivalence class to \p BB1.
590 ///
591 /// \param BB1  Block to check.
592 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
593 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
594 ///                 with blocks from \p BB1's dominator tree, then
595 ///                 this is the post-dominator tree, and vice versa.
596 template <typename BT>
597 void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor(
598     BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants,
599     PostDominatorTreeT *DomTree) {
600   const BasicBlockT *EC = EquivalenceClass[BB1];
601   uint64_t Weight = BlockWeights[EC];
602   for (const auto *BB2 : Descendants) {
603     bool IsDomParent = DomTree->dominates(BB2, BB1);
604     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
605     if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
606       EquivalenceClass[BB2] = EC;
607       // If BB2 is visited, then the entire EC should be marked as visited.
608       if (VisitedBlocks.count(BB2)) {
609         VisitedBlocks.insert(EC);
610       }
611 
612       // If BB2 is heavier than BB1, make BB2 have the same weight
613       // as BB1.
614       //
615       // Note that we don't worry about the opposite situation here
616       // (when BB2 is lighter than BB1). We will deal with this
617       // during the propagation phase. Right now, we just want to
618       // make sure that BB1 has the largest weight of all the
619       // members of its equivalence set.
620       Weight = std::max(Weight, BlockWeights[BB2]);
621     }
622   }
623   const BasicBlockT *EntryBB = getEntryBB(EC->getParent());
624   if (EC == EntryBB) {
625     BlockWeights[EC] = Samples->getHeadSamples() + 1;
626   } else {
627     BlockWeights[EC] = Weight;
628   }
629 }
630 
631 /// Find equivalence classes.
632 ///
633 /// Since samples may be missing from blocks, we can fill in the gaps by setting
634 /// the weights of all the blocks in the same equivalence class to the same
635 /// weight. To compute the concept of equivalence, we use dominance and loop
636 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
637 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
638 ///
639 /// \param F The function to query.
640 template <typename BT>
641 void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) {
642   SmallVector<BasicBlockT *, 8> DominatedBBs;
643   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
644   // Find equivalence sets based on dominance and post-dominance information.
645   for (auto &BB : F) {
646     BasicBlockT *BB1 = &BB;
647 
648     // Compute BB1's equivalence class once.
649     if (EquivalenceClass.count(BB1)) {
650       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
651       continue;
652     }
653 
654     // By default, blocks are in their own equivalence class.
655     EquivalenceClass[BB1] = BB1;
656 
657     // Traverse all the blocks dominated by BB1. We are looking for
658     // every basic block BB2 such that:
659     //
660     // 1- BB1 dominates BB2.
661     // 2- BB2 post-dominates BB1.
662     // 3- BB1 and BB2 are in the same loop nest.
663     //
664     // If all those conditions hold, it means that BB2 is executed
665     // as many times as BB1, so they are placed in the same equivalence
666     // class by making BB2's equivalence class be BB1.
667     DominatedBBs.clear();
668     DT->getDescendants(BB1, DominatedBBs);
669     findEquivalencesFor(BB1, DominatedBBs, &*PDT);
670 
671     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
672   }
673 
674   // Assign weights to equivalence classes.
675   //
676   // All the basic blocks in the same equivalence class will execute
677   // the same number of times. Since we know that the head block in
678   // each equivalence class has the largest weight, assign that weight
679   // to all the blocks in that equivalence class.
680   LLVM_DEBUG(
681       dbgs() << "\nAssign the same weight to all blocks in the same class\n");
682   for (auto &BI : F) {
683     const BasicBlockT *BB = &BI;
684     const BasicBlockT *EquivBB = EquivalenceClass[BB];
685     if (BB != EquivBB)
686       BlockWeights[BB] = BlockWeights[EquivBB];
687     LLVM_DEBUG(printBlockWeight(dbgs(), BB));
688   }
689 }
690 
691 /// Visit the given edge to decide if it has a valid weight.
692 ///
693 /// If \p E has not been visited before, we copy to \p UnknownEdge
694 /// and increment the count of unknown edges.
695 ///
696 /// \param E  Edge to visit.
697 /// \param NumUnknownEdges  Current number of unknown edges.
698 /// \param UnknownEdge  Set if E has not been visited before.
699 ///
700 /// \returns E's weight, if known. Otherwise, return 0.
701 template <typename BT>
702 uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E,
703                                                     unsigned *NumUnknownEdges,
704                                                     Edge *UnknownEdge) {
705   if (!VisitedEdges.count(E)) {
706     (*NumUnknownEdges)++;
707     *UnknownEdge = E;
708     return 0;
709   }
710 
711   return EdgeWeights[E];
712 }
713 
714 /// Propagate weights through incoming/outgoing edges.
715 ///
716 /// If the weight of a basic block is known, and there is only one edge
717 /// with an unknown weight, we can calculate the weight of that edge.
718 ///
719 /// Similarly, if all the edges have a known count, we can calculate the
720 /// count of the basic block, if needed.
721 ///
722 /// \param F  Function to process.
723 /// \param UpdateBlockCount  Whether we should update basic block counts that
724 ///                          has already been annotated.
725 ///
726 /// \returns  True if new weights were assigned to edges or blocks.
727 template <typename BT>
728 bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges(
729     FunctionT &F, bool UpdateBlockCount) {
730   bool Changed = false;
731   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
732   for (const auto &BI : F) {
733     const BasicBlockT *BB = &BI;
734     const BasicBlockT *EC = EquivalenceClass[BB];
735 
736     // Visit all the predecessor and successor edges to determine
737     // which ones have a weight assigned already. Note that it doesn't
738     // matter that we only keep track of a single unknown edge. The
739     // only case we are interested in handling is when only a single
740     // edge is unknown (see setEdgeOrBlockWeight).
741     for (unsigned i = 0; i < 2; i++) {
742       uint64_t TotalWeight = 0;
743       unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
744       Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
745 
746       if (i == 0) {
747         // First, visit all predecessor edges.
748         NumTotalEdges = Predecessors[BB].size();
749         for (auto *Pred : Predecessors[BB]) {
750           Edge E = std::make_pair(Pred, BB);
751           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
752           if (E.first == E.second)
753             SelfReferentialEdge = E;
754         }
755         if (NumTotalEdges == 1) {
756           SingleEdge = std::make_pair(Predecessors[BB][0], BB);
757         }
758       } else {
759         // On the second round, visit all successor edges.
760         NumTotalEdges = Successors[BB].size();
761         for (auto *Succ : Successors[BB]) {
762           Edge E = std::make_pair(BB, Succ);
763           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
764         }
765         if (NumTotalEdges == 1) {
766           SingleEdge = std::make_pair(BB, Successors[BB][0]);
767         }
768       }
769 
770       // After visiting all the edges, there are three cases that we
771       // can handle immediately:
772       //
773       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
774       //   In this case, we simply check that the sum of all the edges
775       //   is the same as BB's weight. If not, we change BB's weight
776       //   to match. Additionally, if BB had not been visited before,
777       //   we mark it visited.
778       //
779       // - Only one edge is unknown and BB has already been visited.
780       //   In this case, we can compute the weight of the edge by
781       //   subtracting the total block weight from all the known
782       //   edge weights. If the edges weight more than BB, then the
783       //   edge of the last remaining edge is set to zero.
784       //
785       // - There exists a self-referential edge and the weight of BB is
786       //   known. In this case, this edge can be based on BB's weight.
787       //   We add up all the other known edges and set the weight on
788       //   the self-referential edge as we did in the previous case.
789       //
790       // In any other case, we must continue iterating. Eventually,
791       // all edges will get a weight, or iteration will stop when
792       // it reaches SampleProfileMaxPropagateIterations.
793       if (NumUnknownEdges <= 1) {
794         uint64_t &BBWeight = BlockWeights[EC];
795         if (NumUnknownEdges == 0) {
796           if (!VisitedBlocks.count(EC)) {
797             // If we already know the weight of all edges, the weight of the
798             // basic block can be computed. It should be no larger than the sum
799             // of all edge weights.
800             if (TotalWeight > BBWeight) {
801               BBWeight = TotalWeight;
802               Changed = true;
803               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
804                                 << " known. Set weight for block: ";
805                          printBlockWeight(dbgs(), BB););
806             }
807           } else if (NumTotalEdges == 1 &&
808                      EdgeWeights[SingleEdge] < BlockWeights[EC]) {
809             // If there is only one edge for the visited basic block, use the
810             // block weight to adjust edge weight if edge weight is smaller.
811             EdgeWeights[SingleEdge] = BlockWeights[EC];
812             Changed = true;
813           }
814         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
815           // If there is a single unknown edge and the block has been
816           // visited, then we can compute E's weight.
817           if (BBWeight >= TotalWeight)
818             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
819           else
820             EdgeWeights[UnknownEdge] = 0;
821           const BasicBlockT *OtherEC;
822           if (i == 0)
823             OtherEC = EquivalenceClass[UnknownEdge.first];
824           else
825             OtherEC = EquivalenceClass[UnknownEdge.second];
826           // Edge weights should never exceed the BB weights it connects.
827           if (VisitedBlocks.count(OtherEC) &&
828               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
829             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
830           VisitedEdges.insert(UnknownEdge);
831           Changed = true;
832           LLVM_DEBUG(dbgs() << "Set weight for edge: ";
833                      printEdgeWeight(dbgs(), UnknownEdge));
834         }
835       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
836         // If a block Weights 0, all its in/out edges should weight 0.
837         if (i == 0) {
838           for (auto *Pred : Predecessors[BB]) {
839             Edge E = std::make_pair(Pred, BB);
840             EdgeWeights[E] = 0;
841             VisitedEdges.insert(E);
842           }
843         } else {
844           for (auto *Succ : Successors[BB]) {
845             Edge E = std::make_pair(BB, Succ);
846             EdgeWeights[E] = 0;
847             VisitedEdges.insert(E);
848           }
849         }
850       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
851         uint64_t &BBWeight = BlockWeights[BB];
852         // We have a self-referential edge and the weight of BB is known.
853         if (BBWeight >= TotalWeight)
854           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
855         else
856           EdgeWeights[SelfReferentialEdge] = 0;
857         VisitedEdges.insert(SelfReferentialEdge);
858         Changed = true;
859         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
860                    printEdgeWeight(dbgs(), SelfReferentialEdge));
861       }
862       if (UpdateBlockCount && TotalWeight > 0 &&
863           VisitedBlocks.insert(EC).second) {
864         BlockWeights[EC] = TotalWeight;
865         Changed = true;
866       }
867     }
868   }
869 
870   return Changed;
871 }
872 
873 /// Build in/out edge lists for each basic block in the CFG.
874 ///
875 /// We are interested in unique edges. If a block B1 has multiple
876 /// edges to another block B2, we only add a single B1->B2 edge.
877 template <typename BT>
878 void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) {
879   for (auto &BI : F) {
880     BasicBlockT *B1 = &BI;
881 
882     // Add predecessors for B1.
883     SmallPtrSet<BasicBlockT *, 16> Visited;
884     if (!Predecessors[B1].empty())
885       llvm_unreachable("Found a stale predecessors list in a basic block.");
886     for (auto *B2 : getPredecessors(B1))
887       if (Visited.insert(B2).second)
888         Predecessors[B1].push_back(B2);
889 
890     // Add successors for B1.
891     Visited.clear();
892     if (!Successors[B1].empty())
893       llvm_unreachable("Found a stale successors list in a basic block.");
894     for (auto *B2 : getSuccessors(B1))
895       if (Visited.insert(B2).second)
896         Successors[B1].push_back(B2);
897   }
898 }
899 
900 /// Propagate weights into edges
901 ///
902 /// The following rules are applied to every block BB in the CFG:
903 ///
904 /// - If BB has a single predecessor/successor, then the weight
905 ///   of that edge is the weight of the block.
906 ///
907 /// - If all incoming or outgoing edges are known except one, and the
908 ///   weight of the block is already known, the weight of the unknown
909 ///   edge will be the weight of the block minus the sum of all the known
910 ///   edges. If the sum of all the known edges is larger than BB's weight,
911 ///   we set the unknown edge weight to zero.
912 ///
913 /// - If there is a self-referential edge, and the weight of the block is
914 ///   known, the weight for that edge is set to the weight of the block
915 ///   minus the weight of the other incoming edges to that block (if
916 ///   known).
917 template <typename BT>
918 void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) {
919   // Flow-based profile inference is only usable with BasicBlock instantiation
920   // of SampleProfileLoaderBaseImpl.
921   if (SampleProfileUseProfi) {
922     // Prepare block sample counts for inference.
923     BlockWeightMap SampleBlockWeights;
924     for (const auto &BI : F) {
925       ErrorOr<uint64_t> Weight = getBlockWeight(&BI);
926       if (Weight)
927         SampleBlockWeights[&BI] = Weight.get();
928     }
929     // Fill in BlockWeights and EdgeWeights using an inference algorithm.
930     applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights);
931   } else {
932     bool Changed = true;
933     unsigned I = 0;
934 
935     // If BB weight is larger than its corresponding loop's header BB weight,
936     // use the BB weight to replace the loop header BB weight.
937     for (auto &BI : F) {
938       BasicBlockT *BB = &BI;
939       LoopT *L = LI->getLoopFor(BB);
940       if (!L) {
941         continue;
942       }
943       BasicBlockT *Header = L->getHeader();
944       if (Header && BlockWeights[BB] > BlockWeights[Header]) {
945         BlockWeights[Header] = BlockWeights[BB];
946       }
947     }
948 
949     // Propagate until we converge or we go past the iteration limit.
950     while (Changed && I++ < SampleProfileMaxPropagateIterations) {
951       Changed = propagateThroughEdges(F, false);
952     }
953 
954     // The first propagation propagates BB counts from annotated BBs to unknown
955     // BBs. The 2nd propagation pass resets edges weights, and use all BB
956     // weights to propagate edge weights.
957     VisitedEdges.clear();
958     Changed = true;
959     while (Changed && I++ < SampleProfileMaxPropagateIterations) {
960       Changed = propagateThroughEdges(F, false);
961     }
962 
963     // The 3rd propagation pass allows adjust annotated BB weights that are
964     // obviously wrong.
965     Changed = true;
966     while (Changed && I++ < SampleProfileMaxPropagateIterations) {
967       Changed = propagateThroughEdges(F, true);
968     }
969   }
970 }
971 
972 template <typename FT>
973 void SampleProfileLoaderBaseImpl<FT>::applyProfi(
974     FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights,
975     BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) {
976   auto Infer = SampleProfileInference<FT>(F, Successors, SampleBlockWeights);
977   Infer.apply(BlockWeights, EdgeWeights);
978 }
979 
980 /// Generate branch weight metadata for all branches in \p F.
981 ///
982 /// Branch weights are computed out of instruction samples using a
983 /// propagation heuristic. Propagation proceeds in 3 phases:
984 ///
985 /// 1- Assignment of block weights. All the basic blocks in the function
986 ///    are initial assigned the same weight as their most frequently
987 ///    executed instruction.
988 ///
989 /// 2- Creation of equivalence classes. Since samples may be missing from
990 ///    blocks, we can fill in the gaps by setting the weights of all the
991 ///    blocks in the same equivalence class to the same weight. To compute
992 ///    the concept of equivalence, we use dominance and loop information.
993 ///    Two blocks B1 and B2 are in the same equivalence class if B1
994 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
995 ///
996 /// 3- Propagation of block weights into edges. This uses a simple
997 ///    propagation heuristic. The following rules are applied to every
998 ///    block BB in the CFG:
999 ///
1000 ///    - If BB has a single predecessor/successor, then the weight
1001 ///      of that edge is the weight of the block.
1002 ///
1003 ///    - If all the edges are known except one, and the weight of the
1004 ///      block is already known, the weight of the unknown edge will
1005 ///      be the weight of the block minus the sum of all the known
1006 ///      edges. If the sum of all the known edges is larger than BB's weight,
1007 ///      we set the unknown edge weight to zero.
1008 ///
1009 ///    - If there is a self-referential edge, and the weight of the block is
1010 ///      known, the weight for that edge is set to the weight of the block
1011 ///      minus the weight of the other incoming edges to that block (if
1012 ///      known).
1013 ///
1014 /// Since this propagation is not guaranteed to finalize for every CFG, we
1015 /// only allow it to proceed for a limited number of iterations (controlled
1016 /// by -sample-profile-max-propagate-iterations).
1017 ///
1018 /// FIXME: Try to replace this propagation heuristic with a scheme
1019 /// that is guaranteed to finalize. A work-list approach similar to
1020 /// the standard value propagation algorithm used by SSA-CCP might
1021 /// work here.
1022 ///
1023 /// \param F The function to query.
1024 ///
1025 /// \returns true if \p F was modified. Returns false, otherwise.
1026 template <typename BT>
1027 bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights(
1028     FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1029   bool Changed = (InlinedGUIDs.size() != 0);
1030 
1031   // Compute basic block weights.
1032   Changed |= computeBlockWeights(F);
1033 
1034   if (Changed) {
1035     // Initialize propagation.
1036     initWeightPropagation(F, InlinedGUIDs);
1037 
1038     // Propagate weights to all edges.
1039     propagateWeights(F);
1040 
1041     // Post-process propagated weights.
1042     finalizeWeightPropagation(F, InlinedGUIDs);
1043   }
1044 
1045   return Changed;
1046 }
1047 
1048 template <typename BT>
1049 void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation(
1050     FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1051   // Add an entry count to the function using the samples gathered at the
1052   // function entry.
1053   // Sets the GUIDs that are inlined in the profiled binary. This is used
1054   // for ThinLink to make correct liveness analysis, and also make the IR
1055   // match the profiled binary before annotation.
1056   getFunction(F).setEntryCount(
1057       ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1058       &InlinedGUIDs);
1059 
1060   if (!SampleProfileUseProfi) {
1061     // Compute dominance and loop info needed for propagation.
1062     computeDominanceAndLoopInfo(F);
1063 
1064     // Find equivalence classes.
1065     findEquivalenceClasses(F);
1066   }
1067 
1068   // Before propagation starts, build, for each block, a list of
1069   // unique predecessors and successors. This is necessary to handle
1070   // identical edges in multiway branches. Since we visit all blocks and all
1071   // edges of the CFG, it is cleaner to build these lists once at the start
1072   // of the pass.
1073   buildEdges(F);
1074 }
1075 
1076 template <typename BT>
1077 void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation(
1078     FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1079   // If we utilize a flow-based count inference, then we trust the computed
1080   // counts and set the entry count as computed by the algorithm. This is
1081   // primarily done to sync the counts produced by profi and BFI inference,
1082   // which uses the entry count for mass propagation.
1083   // If profi produces a zero-value for the entry count, we fallback to
1084   // Samples->getHeadSamples() + 1 to avoid functions with zero count.
1085   if (SampleProfileUseProfi) {
1086     const BasicBlockT *EntryBB = getEntryBB(&F);
1087     ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB);
1088     if (BlockWeights[EntryBB] > 0) {
1089       getFunction(F).setEntryCount(
1090           ProfileCount(BlockWeights[EntryBB], Function::PCT_Real),
1091           &InlinedGUIDs);
1092     }
1093   }
1094 }
1095 
1096 template <typename BT>
1097 void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) {
1098   // If coverage checking was requested, compute it now.
1099   const Function &Func = getFunction(F);
1100   if (SampleProfileRecordCoverage) {
1101     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1102     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1103     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1104     if (Coverage < SampleProfileRecordCoverage) {
1105       Func.getContext().diagnose(DiagnosticInfoSampleProfile(
1106           Func.getSubprogram()->getFilename(), getFunctionLoc(F),
1107           Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1108               Twine(Coverage) + "%) were applied",
1109           DS_Warning));
1110     }
1111   }
1112 
1113   if (SampleProfileSampleCoverage) {
1114     uint64_t Used = CoverageTracker.getTotalUsedSamples();
1115     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1116     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1117     if (Coverage < SampleProfileSampleCoverage) {
1118       Func.getContext().diagnose(DiagnosticInfoSampleProfile(
1119           Func.getSubprogram()->getFilename(), getFunctionLoc(F),
1120           Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1121               Twine(Coverage) + "%) were applied",
1122           DS_Warning));
1123     }
1124   }
1125 }
1126 
1127 /// Get the line number for the function header.
1128 ///
1129 /// This looks up function \p F in the current compilation unit and
1130 /// retrieves the line number where the function is defined. This is
1131 /// line 0 for all the samples read from the profile file. Every line
1132 /// number is relative to this line.
1133 ///
1134 /// \param F  Function object to query.
1135 ///
1136 /// \returns the line number where \p F is defined. If it returns 0,
1137 ///          it means that there is no debug information available for \p F.
1138 template <typename BT>
1139 unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) {
1140   const Function &Func = getFunction(F);
1141   if (DISubprogram *S = Func.getSubprogram())
1142     return S->getLine();
1143 
1144   if (NoWarnSampleUnused)
1145     return 0;
1146 
1147   // If the start of \p F is missing, emit a diagnostic to inform the user
1148   // about the missed opportunity.
1149   Func.getContext().diagnose(DiagnosticInfoSampleProfile(
1150       "No debug information found in function " + Func.getName() +
1151           ": Function profile not used",
1152       DS_Warning));
1153   return 0;
1154 }
1155 
1156 #undef DEBUG_TYPE
1157 
1158 } // namespace llvm
1159 #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
1160