1 ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file provides the interface for the sampled PGO profile loader base 11 /// implementation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 16 #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/IntrusiveRefCntPtr.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Analysis/LazyCallGraph.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 28 #include "llvm/Analysis/PostDominators.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/PseudoProbe.h" 39 #include "llvm/ProfileData/SampleProf.h" 40 #include "llvm/ProfileData/SampleProfReader.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/GenericDomTree.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/SampleProfileInference.h" 45 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" 46 47 namespace llvm { 48 using namespace sampleprof; 49 using namespace sampleprofutil; 50 using ProfileCount = Function::ProfileCount; 51 52 namespace vfs { 53 class FileSystem; 54 } // namespace vfs 55 56 #define DEBUG_TYPE "sample-profile-impl" 57 58 namespace afdo_detail { 59 60 template <typename BlockT> struct IRTraits; 61 template <> struct IRTraits<BasicBlock> { 62 using InstructionT = Instruction; 63 using BasicBlockT = BasicBlock; 64 using FunctionT = Function; 65 using BlockFrequencyInfoT = BlockFrequencyInfo; 66 using LoopT = Loop; 67 using LoopInfoPtrT = std::unique_ptr<LoopInfo>; 68 using DominatorTreePtrT = std::unique_ptr<DominatorTree>; 69 using PostDominatorTreeT = PostDominatorTree; 70 using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>; 71 using OptRemarkEmitterT = OptimizationRemarkEmitter; 72 using OptRemarkAnalysisT = OptimizationRemarkAnalysis; 73 using PredRangeT = pred_range; 74 using SuccRangeT = succ_range; 75 static Function &getFunction(Function &F) { return F; } 76 static const BasicBlock *getEntryBB(const Function *F) { 77 return &F->getEntryBlock(); 78 } 79 static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); } 80 static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); } 81 }; 82 83 } // end namespace afdo_detail 84 85 // This class serves sample counts correlation for SampleProfileLoader by 86 // analyzing pseudo probes and their function descriptors injected by 87 // SampleProfileProber. 88 class PseudoProbeManager { 89 DenseMap<uint64_t, PseudoProbeDescriptor> GUIDToProbeDescMap; 90 91 public: 92 PseudoProbeManager(const Module &M) { 93 if (NamedMDNode *FuncInfo = 94 M.getNamedMetadata(PseudoProbeDescMetadataName)) { 95 for (const auto *Operand : FuncInfo->operands()) { 96 const auto *MD = cast<MDNode>(Operand); 97 auto GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)) 98 ->getZExtValue(); 99 auto Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)) 100 ->getZExtValue(); 101 GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash)); 102 } 103 } 104 } 105 106 const PseudoProbeDescriptor *getDesc(uint64_t GUID) const { 107 auto I = GUIDToProbeDescMap.find(GUID); 108 return I == GUIDToProbeDescMap.end() ? nullptr : &I->second; 109 } 110 111 const PseudoProbeDescriptor *getDesc(StringRef FProfileName) const { 112 return getDesc(Function::getGUID(FProfileName)); 113 } 114 115 const PseudoProbeDescriptor *getDesc(const Function &F) const { 116 return getDesc(Function::getGUID(FunctionSamples::getCanonicalFnName(F))); 117 } 118 119 bool profileIsHashMismatched(const PseudoProbeDescriptor &FuncDesc, 120 const FunctionSamples &Samples) const { 121 return FuncDesc.getFunctionHash() != Samples.getFunctionHash(); 122 } 123 124 bool moduleIsProbed(const Module &M) const { 125 return M.getNamedMetadata(PseudoProbeDescMetadataName); 126 } 127 128 bool profileIsValid(const Function &F, const FunctionSamples &Samples) const { 129 const auto *Desc = getDesc(F); 130 bool IsAvailableExternallyLinkage = 131 GlobalValue::isAvailableExternallyLinkage(F.getLinkage()); 132 // Always check the function attribute to determine checksum mismatch for 133 // `available_externally` functions even if their desc are available. This 134 // is because the desc is computed based on the original internal function 135 // and it's substituted by the `available_externally` function during link 136 // time. However, when unstable IR or ODR violation issue occurs, the 137 // definitions of the same function across different translation units could 138 // be different and result in different checksums. So we should use the 139 // state from the new (available_externally) function, which is saved in its 140 // attribute. 141 // TODO: If the function's profile only exists as nested inlinee profile in 142 // a different module, we don't have the attr mismatch state(unknown), we 143 // need to fix it later. 144 if (IsAvailableExternallyLinkage || !Desc) 145 return !F.hasFnAttribute("profile-checksum-mismatch"); 146 147 return Desc && !profileIsHashMismatched(*Desc, Samples); 148 } 149 }; 150 151 152 153 extern cl::opt<bool> SampleProfileUseProfi; 154 155 static inline bool skipProfileForFunction(const Function &F) { 156 return F.isDeclaration() || !F.hasFnAttribute("use-sample-profile"); 157 } 158 159 static inline void 160 buildTopDownFuncOrder(LazyCallGraph &CG, 161 std::vector<Function *> &FunctionOrderList) { 162 CG.buildRefSCCs(); 163 for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs()) { 164 for (LazyCallGraph::SCC &C : RC) { 165 for (LazyCallGraph::Node &N : C) { 166 Function &F = N.getFunction(); 167 if (!skipProfileForFunction(F)) 168 FunctionOrderList.push_back(&F); 169 } 170 } 171 } 172 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end()); 173 } 174 175 template <typename FT> class SampleProfileLoaderBaseImpl { 176 public: 177 SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName, 178 IntrusiveRefCntPtr<vfs::FileSystem> FS) 179 : Filename(Name), RemappingFilename(RemapName), FS(std::move(FS)) {} 180 void dump() { Reader->dump(); } 181 182 using NodeRef = typename GraphTraits<FT *>::NodeRef; 183 using BT = std::remove_pointer_t<NodeRef>; 184 using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT; 185 using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT; 186 using BlockFrequencyInfoT = 187 typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT; 188 using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT; 189 using LoopT = typename afdo_detail::IRTraits<BT>::LoopT; 190 using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT; 191 using DominatorTreePtrT = 192 typename afdo_detail::IRTraits<BT>::DominatorTreePtrT; 193 using PostDominatorTreePtrT = 194 typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT; 195 using PostDominatorTreeT = 196 typename afdo_detail::IRTraits<BT>::PostDominatorTreeT; 197 using OptRemarkEmitterT = 198 typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT; 199 using OptRemarkAnalysisT = 200 typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT; 201 using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT; 202 using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT; 203 204 using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; 205 using EquivalenceClassMap = 206 DenseMap<const BasicBlockT *, const BasicBlockT *>; 207 using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; 208 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 209 using BlockEdgeMap = 210 DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; 211 212 protected: 213 ~SampleProfileLoaderBaseImpl() = default; 214 friend class SampleCoverageTracker; 215 216 Function &getFunction(FunctionT &F) { 217 return afdo_detail::IRTraits<BT>::getFunction(F); 218 } 219 const BasicBlockT *getEntryBB(const FunctionT *F) { 220 return afdo_detail::IRTraits<BT>::getEntryBB(F); 221 } 222 PredRangeT getPredecessors(BasicBlockT *BB) { 223 return afdo_detail::IRTraits<BT>::getPredecessors(BB); 224 } 225 SuccRangeT getSuccessors(BasicBlockT *BB) { 226 return afdo_detail::IRTraits<BT>::getSuccessors(BB); 227 } 228 229 unsigned getFunctionLoc(FunctionT &Func); 230 virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst); 231 ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst); 232 virtual ErrorOr<uint64_t> getProbeWeight(const InstructionT &Inst); 233 ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB); 234 mutable DenseMap<const DILocation *, const FunctionSamples *> 235 DILocation2SampleMap; 236 virtual const FunctionSamples * 237 findFunctionSamples(const InstructionT &I) const; 238 void printEdgeWeight(raw_ostream &OS, Edge E); 239 void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const; 240 void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB); 241 bool computeBlockWeights(FunctionT &F); 242 void findEquivalenceClasses(FunctionT &F); 243 void findEquivalencesFor(BasicBlockT *BB1, 244 ArrayRef<BasicBlockT *> Descendants, 245 PostDominatorTreeT *DomTree); 246 void propagateWeights(FunctionT &F); 247 void applyProfi(FunctionT &F, BlockEdgeMap &Successors, 248 BlockWeightMap &SampleBlockWeights, 249 BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights); 250 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 251 void buildEdges(FunctionT &F); 252 bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount); 253 void clearFunctionData(bool ResetDT = true); 254 void computeDominanceAndLoopInfo(FunctionT &F); 255 bool 256 computeAndPropagateWeights(FunctionT &F, 257 const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 258 void initWeightPropagation(FunctionT &F, 259 const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 260 void 261 finalizeWeightPropagation(FunctionT &F, 262 const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 263 void emitCoverageRemarks(FunctionT &F); 264 265 /// Map basic blocks to their computed weights. 266 /// 267 /// The weight of a basic block is defined to be the maximum 268 /// of all the instruction weights in that block. 269 BlockWeightMap BlockWeights; 270 271 /// Map edges to their computed weights. 272 /// 273 /// Edge weights are computed by propagating basic block weights in 274 /// SampleProfile::propagateWeights. 275 EdgeWeightMap EdgeWeights; 276 277 /// Set of visited blocks during propagation. 278 SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks; 279 280 /// Set of visited edges during propagation. 281 SmallSet<Edge, 32> VisitedEdges; 282 283 /// Equivalence classes for block weights. 284 /// 285 /// Two blocks BB1 and BB2 are in the same equivalence class if they 286 /// dominate and post-dominate each other, and they are in the same loop 287 /// nest. When this happens, the two blocks are guaranteed to execute 288 /// the same number of times. 289 EquivalenceClassMap EquivalenceClass; 290 291 /// Dominance, post-dominance and loop information. 292 DominatorTreePtrT DT; 293 PostDominatorTreePtrT PDT; 294 LoopInfoPtrT LI; 295 296 /// Predecessors for each basic block in the CFG. 297 BlockEdgeMap Predecessors; 298 299 /// Successors for each basic block in the CFG. 300 BlockEdgeMap Successors; 301 302 /// Profile coverage tracker. 303 SampleCoverageTracker CoverageTracker; 304 305 /// Profile reader object. 306 std::unique_ptr<SampleProfileReader> Reader; 307 308 /// Synthetic samples created by duplicating the samples of inlined functions 309 /// from the original profile as if they were top level sample profiles. 310 /// Use std::map because insertion may happen while its content is referenced. 311 std::map<SampleContext, FunctionSamples> OutlineFunctionSamples; 312 313 // A pseudo probe helper to correlate the imported sample counts. 314 std::unique_ptr<PseudoProbeManager> ProbeManager; 315 316 /// Samples collected for the body of this function. 317 FunctionSamples *Samples = nullptr; 318 319 /// Name of the profile file to load. 320 std::string Filename; 321 322 /// Name of the profile remapping file to load. 323 std::string RemappingFilename; 324 325 /// VirtualFileSystem to load profile files from. 326 IntrusiveRefCntPtr<vfs::FileSystem> FS; 327 328 /// Profile Summary Info computed from sample profile. 329 ProfileSummaryInfo *PSI = nullptr; 330 331 /// Optimization Remark Emitter used to emit diagnostic remarks. 332 OptRemarkEmitterT *ORE = nullptr; 333 }; 334 335 /// Clear all the per-function data used to load samples and propagate weights. 336 template <typename BT> 337 void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) { 338 BlockWeights.clear(); 339 EdgeWeights.clear(); 340 VisitedBlocks.clear(); 341 VisitedEdges.clear(); 342 EquivalenceClass.clear(); 343 if (ResetDT) { 344 DT = nullptr; 345 PDT = nullptr; 346 LI = nullptr; 347 } 348 Predecessors.clear(); 349 Successors.clear(); 350 CoverageTracker.clear(); 351 } 352 353 #ifndef NDEBUG 354 /// Print the weight of edge \p E on stream \p OS. 355 /// 356 /// \param OS Stream to emit the output to. 357 /// \param E Edge to print. 358 template <typename BT> 359 void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) { 360 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 361 << "]: " << EdgeWeights[E] << "\n"; 362 } 363 364 /// Print the equivalence class of block \p BB on stream \p OS. 365 /// 366 /// \param OS Stream to emit the output to. 367 /// \param BB Block to print. 368 template <typename BT> 369 void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence( 370 raw_ostream &OS, const BasicBlockT *BB) { 371 const BasicBlockT *Equiv = EquivalenceClass[BB]; 372 OS << "equivalence[" << BB->getName() 373 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 374 } 375 376 /// Print the weight of block \p BB on stream \p OS. 377 /// 378 /// \param OS Stream to emit the output to. 379 /// \param BB Block to print. 380 template <typename BT> 381 void SampleProfileLoaderBaseImpl<BT>::printBlockWeight( 382 raw_ostream &OS, const BasicBlockT *BB) const { 383 const auto &I = BlockWeights.find(BB); 384 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 385 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 386 } 387 #endif 388 389 /// Get the weight for an instruction. 390 /// 391 /// The "weight" of an instruction \p Inst is the number of samples 392 /// collected on that instruction at runtime. To retrieve it, we 393 /// need to compute the line number of \p Inst relative to the start of its 394 /// function. We use HeaderLineno to compute the offset. We then 395 /// look up the samples collected for \p Inst using BodySamples. 396 /// 397 /// \param Inst Instruction to query. 398 /// 399 /// \returns the weight of \p Inst. 400 template <typename BT> 401 ErrorOr<uint64_t> 402 SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) { 403 if (FunctionSamples::ProfileIsProbeBased) 404 return getProbeWeight(Inst); 405 return getInstWeightImpl(Inst); 406 } 407 408 template <typename BT> 409 ErrorOr<uint64_t> 410 SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) { 411 const FunctionSamples *FS = findFunctionSamples(Inst); 412 if (!FS) 413 return std::error_code(); 414 415 const DebugLoc &DLoc = Inst.getDebugLoc(); 416 if (!DLoc) 417 return std::error_code(); 418 419 const DILocation *DIL = DLoc; 420 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 421 uint32_t Discriminator; 422 if (EnableFSDiscriminator) 423 Discriminator = DIL->getDiscriminator(); 424 else 425 Discriminator = DIL->getBaseDiscriminator(); 426 427 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 428 if (R) { 429 bool FirstMark = 430 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 431 if (FirstMark) { 432 ORE->emit([&]() { 433 OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 434 Remark << "Applied " << ore::NV("NumSamples", *R); 435 Remark << " samples from profile (offset: "; 436 Remark << ore::NV("LineOffset", LineOffset); 437 if (Discriminator) { 438 Remark << "."; 439 Remark << ore::NV("Discriminator", Discriminator); 440 } 441 Remark << ")"; 442 return Remark; 443 }); 444 } 445 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":" 446 << Inst << " (line offset: " << LineOffset << "." 447 << Discriminator << " - weight: " << R.get() << ")\n"); 448 } 449 return R; 450 } 451 452 template <typename BT> 453 ErrorOr<uint64_t> 454 SampleProfileLoaderBaseImpl<BT>::getProbeWeight(const InstructionT &Inst) { 455 assert(FunctionSamples::ProfileIsProbeBased && 456 "Profile is not pseudo probe based"); 457 std::optional<PseudoProbe> Probe = extractProbe(Inst); 458 // Ignore the non-probe instruction. If none of the instruction in the BB is 459 // probe, we choose to infer the BB's weight. 460 if (!Probe) 461 return std::error_code(); 462 463 const FunctionSamples *FS = findFunctionSamples(Inst); 464 if (!FS) { 465 // If we can't find the function samples for a probe, it could be due to the 466 // probe is later optimized away or the inlining context is mismatced. We 467 // treat it as unknown, leaving it to profile inference instead of forcing a 468 // zero count. 469 return std::error_code(); 470 } 471 472 auto R = FS->findSamplesAt(Probe->Id, Probe->Discriminator); 473 if (R) { 474 uint64_t Samples = R.get() * Probe->Factor; 475 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 476 if (FirstMark) { 477 ORE->emit([&]() { 478 OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 479 Remark << "Applied " << ore::NV("NumSamples", Samples); 480 Remark << " samples from profile (ProbeId="; 481 Remark << ore::NV("ProbeId", Probe->Id); 482 if (Probe->Discriminator) { 483 Remark << "."; 484 Remark << ore::NV("Discriminator", Probe->Discriminator); 485 } 486 Remark << ", Factor="; 487 Remark << ore::NV("Factor", Probe->Factor); 488 Remark << ", OriginalSamples="; 489 Remark << ore::NV("OriginalSamples", R.get()); 490 Remark << ")"; 491 return Remark; 492 }); 493 } 494 LLVM_DEBUG({dbgs() << " " << Probe->Id; 495 if (Probe->Discriminator) 496 dbgs() << "." << Probe->Discriminator; 497 dbgs() << ":" << Inst << " - weight: " << R.get() 498 << " - factor: " << format("%0.2f", Probe->Factor) << ")\n";}); 499 return Samples; 500 } 501 return R; 502 } 503 504 /// Compute the weight of a basic block. 505 /// 506 /// The weight of basic block \p BB is the maximum weight of all the 507 /// instructions in BB. 508 /// 509 /// \param BB The basic block to query. 510 /// 511 /// \returns the weight for \p BB. 512 template <typename BT> 513 ErrorOr<uint64_t> 514 SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) { 515 uint64_t Max = 0; 516 bool HasWeight = false; 517 for (auto &I : *BB) { 518 const ErrorOr<uint64_t> &R = getInstWeight(I); 519 if (R) { 520 Max = std::max(Max, R.get()); 521 HasWeight = true; 522 } 523 } 524 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 525 } 526 527 /// Compute and store the weights of every basic block. 528 /// 529 /// This populates the BlockWeights map by computing 530 /// the weights of every basic block in the CFG. 531 /// 532 /// \param F The function to query. 533 template <typename BT> 534 bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) { 535 bool Changed = false; 536 LLVM_DEBUG(dbgs() << "Block weights\n"); 537 for (const auto &BB : F) { 538 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 539 if (Weight) { 540 BlockWeights[&BB] = Weight.get(); 541 VisitedBlocks.insert(&BB); 542 Changed = true; 543 } 544 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 545 } 546 547 return Changed; 548 } 549 550 /// Get the FunctionSamples for an instruction. 551 /// 552 /// The FunctionSamples of an instruction \p Inst is the inlined instance 553 /// in which that instruction is coming from. We traverse the inline stack 554 /// of that instruction, and match it with the tree nodes in the profile. 555 /// 556 /// \param Inst Instruction to query. 557 /// 558 /// \returns the FunctionSamples pointer to the inlined instance. 559 template <typename BT> 560 const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples( 561 const InstructionT &Inst) const { 562 const DILocation *DIL = Inst.getDebugLoc(); 563 if (!DIL) 564 return Samples; 565 566 auto it = DILocation2SampleMap.try_emplace(DIL, nullptr); 567 if (it.second) { 568 it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); 569 } 570 return it.first->second; 571 } 572 573 /// Find equivalence classes for the given block. 574 /// 575 /// This finds all the blocks that are guaranteed to execute the same 576 /// number of times as \p BB1. To do this, it traverses all the 577 /// descendants of \p BB1 in the dominator or post-dominator tree. 578 /// 579 /// A block BB2 will be in the same equivalence class as \p BB1 if 580 /// the following holds: 581 /// 582 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 583 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 584 /// dominate BB1 in the post-dominator tree. 585 /// 586 /// 2- Both BB2 and \p BB1 must be in the same loop. 587 /// 588 /// For every block BB2 that meets those two requirements, we set BB2's 589 /// equivalence class to \p BB1. 590 /// 591 /// \param BB1 Block to check. 592 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 593 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 594 /// with blocks from \p BB1's dominator tree, then 595 /// this is the post-dominator tree, and vice versa. 596 template <typename BT> 597 void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor( 598 BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants, 599 PostDominatorTreeT *DomTree) { 600 const BasicBlockT *EC = EquivalenceClass[BB1]; 601 uint64_t Weight = BlockWeights[EC]; 602 for (const auto *BB2 : Descendants) { 603 bool IsDomParent = DomTree->dominates(BB2, BB1); 604 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 605 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 606 EquivalenceClass[BB2] = EC; 607 // If BB2 is visited, then the entire EC should be marked as visited. 608 if (VisitedBlocks.count(BB2)) { 609 VisitedBlocks.insert(EC); 610 } 611 612 // If BB2 is heavier than BB1, make BB2 have the same weight 613 // as BB1. 614 // 615 // Note that we don't worry about the opposite situation here 616 // (when BB2 is lighter than BB1). We will deal with this 617 // during the propagation phase. Right now, we just want to 618 // make sure that BB1 has the largest weight of all the 619 // members of its equivalence set. 620 Weight = std::max(Weight, BlockWeights[BB2]); 621 } 622 } 623 const BasicBlockT *EntryBB = getEntryBB(EC->getParent()); 624 if (EC == EntryBB) { 625 BlockWeights[EC] = Samples->getHeadSamples() + 1; 626 } else { 627 BlockWeights[EC] = Weight; 628 } 629 } 630 631 /// Find equivalence classes. 632 /// 633 /// Since samples may be missing from blocks, we can fill in the gaps by setting 634 /// the weights of all the blocks in the same equivalence class to the same 635 /// weight. To compute the concept of equivalence, we use dominance and loop 636 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 637 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 638 /// 639 /// \param F The function to query. 640 template <typename BT> 641 void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) { 642 SmallVector<BasicBlockT *, 8> DominatedBBs; 643 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 644 // Find equivalence sets based on dominance and post-dominance information. 645 for (auto &BB : F) { 646 BasicBlockT *BB1 = &BB; 647 648 // Compute BB1's equivalence class once. 649 if (EquivalenceClass.count(BB1)) { 650 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 651 continue; 652 } 653 654 // By default, blocks are in their own equivalence class. 655 EquivalenceClass[BB1] = BB1; 656 657 // Traverse all the blocks dominated by BB1. We are looking for 658 // every basic block BB2 such that: 659 // 660 // 1- BB1 dominates BB2. 661 // 2- BB2 post-dominates BB1. 662 // 3- BB1 and BB2 are in the same loop nest. 663 // 664 // If all those conditions hold, it means that BB2 is executed 665 // as many times as BB1, so they are placed in the same equivalence 666 // class by making BB2's equivalence class be BB1. 667 DominatedBBs.clear(); 668 DT->getDescendants(BB1, DominatedBBs); 669 findEquivalencesFor(BB1, DominatedBBs, &*PDT); 670 671 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 672 } 673 674 // Assign weights to equivalence classes. 675 // 676 // All the basic blocks in the same equivalence class will execute 677 // the same number of times. Since we know that the head block in 678 // each equivalence class has the largest weight, assign that weight 679 // to all the blocks in that equivalence class. 680 LLVM_DEBUG( 681 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 682 for (auto &BI : F) { 683 const BasicBlockT *BB = &BI; 684 const BasicBlockT *EquivBB = EquivalenceClass[BB]; 685 if (BB != EquivBB) 686 BlockWeights[BB] = BlockWeights[EquivBB]; 687 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 688 } 689 } 690 691 /// Visit the given edge to decide if it has a valid weight. 692 /// 693 /// If \p E has not been visited before, we copy to \p UnknownEdge 694 /// and increment the count of unknown edges. 695 /// 696 /// \param E Edge to visit. 697 /// \param NumUnknownEdges Current number of unknown edges. 698 /// \param UnknownEdge Set if E has not been visited before. 699 /// 700 /// \returns E's weight, if known. Otherwise, return 0. 701 template <typename BT> 702 uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E, 703 unsigned *NumUnknownEdges, 704 Edge *UnknownEdge) { 705 if (!VisitedEdges.count(E)) { 706 (*NumUnknownEdges)++; 707 *UnknownEdge = E; 708 return 0; 709 } 710 711 return EdgeWeights[E]; 712 } 713 714 /// Propagate weights through incoming/outgoing edges. 715 /// 716 /// If the weight of a basic block is known, and there is only one edge 717 /// with an unknown weight, we can calculate the weight of that edge. 718 /// 719 /// Similarly, if all the edges have a known count, we can calculate the 720 /// count of the basic block, if needed. 721 /// 722 /// \param F Function to process. 723 /// \param UpdateBlockCount Whether we should update basic block counts that 724 /// has already been annotated. 725 /// 726 /// \returns True if new weights were assigned to edges or blocks. 727 template <typename BT> 728 bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges( 729 FunctionT &F, bool UpdateBlockCount) { 730 bool Changed = false; 731 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 732 for (const auto &BI : F) { 733 const BasicBlockT *BB = &BI; 734 const BasicBlockT *EC = EquivalenceClass[BB]; 735 736 // Visit all the predecessor and successor edges to determine 737 // which ones have a weight assigned already. Note that it doesn't 738 // matter that we only keep track of a single unknown edge. The 739 // only case we are interested in handling is when only a single 740 // edge is unknown (see setEdgeOrBlockWeight). 741 for (unsigned i = 0; i < 2; i++) { 742 uint64_t TotalWeight = 0; 743 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 744 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 745 746 if (i == 0) { 747 // First, visit all predecessor edges. 748 NumTotalEdges = Predecessors[BB].size(); 749 for (auto *Pred : Predecessors[BB]) { 750 Edge E = std::make_pair(Pred, BB); 751 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 752 if (E.first == E.second) 753 SelfReferentialEdge = E; 754 } 755 if (NumTotalEdges == 1) { 756 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 757 } 758 } else { 759 // On the second round, visit all successor edges. 760 NumTotalEdges = Successors[BB].size(); 761 for (auto *Succ : Successors[BB]) { 762 Edge E = std::make_pair(BB, Succ); 763 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 764 } 765 if (NumTotalEdges == 1) { 766 SingleEdge = std::make_pair(BB, Successors[BB][0]); 767 } 768 } 769 770 // After visiting all the edges, there are three cases that we 771 // can handle immediately: 772 // 773 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 774 // In this case, we simply check that the sum of all the edges 775 // is the same as BB's weight. If not, we change BB's weight 776 // to match. Additionally, if BB had not been visited before, 777 // we mark it visited. 778 // 779 // - Only one edge is unknown and BB has already been visited. 780 // In this case, we can compute the weight of the edge by 781 // subtracting the total block weight from all the known 782 // edge weights. If the edges weight more than BB, then the 783 // edge of the last remaining edge is set to zero. 784 // 785 // - There exists a self-referential edge and the weight of BB is 786 // known. In this case, this edge can be based on BB's weight. 787 // We add up all the other known edges and set the weight on 788 // the self-referential edge as we did in the previous case. 789 // 790 // In any other case, we must continue iterating. Eventually, 791 // all edges will get a weight, or iteration will stop when 792 // it reaches SampleProfileMaxPropagateIterations. 793 if (NumUnknownEdges <= 1) { 794 uint64_t &BBWeight = BlockWeights[EC]; 795 if (NumUnknownEdges == 0) { 796 if (!VisitedBlocks.count(EC)) { 797 // If we already know the weight of all edges, the weight of the 798 // basic block can be computed. It should be no larger than the sum 799 // of all edge weights. 800 if (TotalWeight > BBWeight) { 801 BBWeight = TotalWeight; 802 Changed = true; 803 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 804 << " known. Set weight for block: "; 805 printBlockWeight(dbgs(), BB);); 806 } 807 } else if (NumTotalEdges == 1 && 808 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 809 // If there is only one edge for the visited basic block, use the 810 // block weight to adjust edge weight if edge weight is smaller. 811 EdgeWeights[SingleEdge] = BlockWeights[EC]; 812 Changed = true; 813 } 814 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 815 // If there is a single unknown edge and the block has been 816 // visited, then we can compute E's weight. 817 if (BBWeight >= TotalWeight) 818 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 819 else 820 EdgeWeights[UnknownEdge] = 0; 821 const BasicBlockT *OtherEC; 822 if (i == 0) 823 OtherEC = EquivalenceClass[UnknownEdge.first]; 824 else 825 OtherEC = EquivalenceClass[UnknownEdge.second]; 826 // Edge weights should never exceed the BB weights it connects. 827 if (VisitedBlocks.count(OtherEC) && 828 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 829 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 830 VisitedEdges.insert(UnknownEdge); 831 Changed = true; 832 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 833 printEdgeWeight(dbgs(), UnknownEdge)); 834 } 835 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 836 // If a block Weights 0, all its in/out edges should weight 0. 837 if (i == 0) { 838 for (auto *Pred : Predecessors[BB]) { 839 Edge E = std::make_pair(Pred, BB); 840 EdgeWeights[E] = 0; 841 VisitedEdges.insert(E); 842 } 843 } else { 844 for (auto *Succ : Successors[BB]) { 845 Edge E = std::make_pair(BB, Succ); 846 EdgeWeights[E] = 0; 847 VisitedEdges.insert(E); 848 } 849 } 850 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 851 uint64_t &BBWeight = BlockWeights[BB]; 852 // We have a self-referential edge and the weight of BB is known. 853 if (BBWeight >= TotalWeight) 854 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 855 else 856 EdgeWeights[SelfReferentialEdge] = 0; 857 VisitedEdges.insert(SelfReferentialEdge); 858 Changed = true; 859 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 860 printEdgeWeight(dbgs(), SelfReferentialEdge)); 861 } 862 if (UpdateBlockCount && TotalWeight > 0 && 863 VisitedBlocks.insert(EC).second) { 864 BlockWeights[EC] = TotalWeight; 865 Changed = true; 866 } 867 } 868 } 869 870 return Changed; 871 } 872 873 /// Build in/out edge lists for each basic block in the CFG. 874 /// 875 /// We are interested in unique edges. If a block B1 has multiple 876 /// edges to another block B2, we only add a single B1->B2 edge. 877 template <typename BT> 878 void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) { 879 for (auto &BI : F) { 880 BasicBlockT *B1 = &BI; 881 882 // Add predecessors for B1. 883 SmallPtrSet<BasicBlockT *, 16> Visited; 884 if (!Predecessors[B1].empty()) 885 llvm_unreachable("Found a stale predecessors list in a basic block."); 886 for (auto *B2 : getPredecessors(B1)) 887 if (Visited.insert(B2).second) 888 Predecessors[B1].push_back(B2); 889 890 // Add successors for B1. 891 Visited.clear(); 892 if (!Successors[B1].empty()) 893 llvm_unreachable("Found a stale successors list in a basic block."); 894 for (auto *B2 : getSuccessors(B1)) 895 if (Visited.insert(B2).second) 896 Successors[B1].push_back(B2); 897 } 898 } 899 900 /// Propagate weights into edges 901 /// 902 /// The following rules are applied to every block BB in the CFG: 903 /// 904 /// - If BB has a single predecessor/successor, then the weight 905 /// of that edge is the weight of the block. 906 /// 907 /// - If all incoming or outgoing edges are known except one, and the 908 /// weight of the block is already known, the weight of the unknown 909 /// edge will be the weight of the block minus the sum of all the known 910 /// edges. If the sum of all the known edges is larger than BB's weight, 911 /// we set the unknown edge weight to zero. 912 /// 913 /// - If there is a self-referential edge, and the weight of the block is 914 /// known, the weight for that edge is set to the weight of the block 915 /// minus the weight of the other incoming edges to that block (if 916 /// known). 917 template <typename BT> 918 void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) { 919 // Flow-based profile inference is only usable with BasicBlock instantiation 920 // of SampleProfileLoaderBaseImpl. 921 if (SampleProfileUseProfi) { 922 // Prepare block sample counts for inference. 923 BlockWeightMap SampleBlockWeights; 924 for (const auto &BI : F) { 925 ErrorOr<uint64_t> Weight = getBlockWeight(&BI); 926 if (Weight) 927 SampleBlockWeights[&BI] = Weight.get(); 928 } 929 // Fill in BlockWeights and EdgeWeights using an inference algorithm. 930 applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights); 931 } else { 932 bool Changed = true; 933 unsigned I = 0; 934 935 // If BB weight is larger than its corresponding loop's header BB weight, 936 // use the BB weight to replace the loop header BB weight. 937 for (auto &BI : F) { 938 BasicBlockT *BB = &BI; 939 LoopT *L = LI->getLoopFor(BB); 940 if (!L) { 941 continue; 942 } 943 BasicBlockT *Header = L->getHeader(); 944 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 945 BlockWeights[Header] = BlockWeights[BB]; 946 } 947 } 948 949 // Propagate until we converge or we go past the iteration limit. 950 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 951 Changed = propagateThroughEdges(F, false); 952 } 953 954 // The first propagation propagates BB counts from annotated BBs to unknown 955 // BBs. The 2nd propagation pass resets edges weights, and use all BB 956 // weights to propagate edge weights. 957 VisitedEdges.clear(); 958 Changed = true; 959 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 960 Changed = propagateThroughEdges(F, false); 961 } 962 963 // The 3rd propagation pass allows adjust annotated BB weights that are 964 // obviously wrong. 965 Changed = true; 966 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 967 Changed = propagateThroughEdges(F, true); 968 } 969 } 970 } 971 972 template <typename FT> 973 void SampleProfileLoaderBaseImpl<FT>::applyProfi( 974 FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights, 975 BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) { 976 auto Infer = SampleProfileInference<FT>(F, Successors, SampleBlockWeights); 977 Infer.apply(BlockWeights, EdgeWeights); 978 } 979 980 /// Generate branch weight metadata for all branches in \p F. 981 /// 982 /// Branch weights are computed out of instruction samples using a 983 /// propagation heuristic. Propagation proceeds in 3 phases: 984 /// 985 /// 1- Assignment of block weights. All the basic blocks in the function 986 /// are initial assigned the same weight as their most frequently 987 /// executed instruction. 988 /// 989 /// 2- Creation of equivalence classes. Since samples may be missing from 990 /// blocks, we can fill in the gaps by setting the weights of all the 991 /// blocks in the same equivalence class to the same weight. To compute 992 /// the concept of equivalence, we use dominance and loop information. 993 /// Two blocks B1 and B2 are in the same equivalence class if B1 994 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 995 /// 996 /// 3- Propagation of block weights into edges. This uses a simple 997 /// propagation heuristic. The following rules are applied to every 998 /// block BB in the CFG: 999 /// 1000 /// - If BB has a single predecessor/successor, then the weight 1001 /// of that edge is the weight of the block. 1002 /// 1003 /// - If all the edges are known except one, and the weight of the 1004 /// block is already known, the weight of the unknown edge will 1005 /// be the weight of the block minus the sum of all the known 1006 /// edges. If the sum of all the known edges is larger than BB's weight, 1007 /// we set the unknown edge weight to zero. 1008 /// 1009 /// - If there is a self-referential edge, and the weight of the block is 1010 /// known, the weight for that edge is set to the weight of the block 1011 /// minus the weight of the other incoming edges to that block (if 1012 /// known). 1013 /// 1014 /// Since this propagation is not guaranteed to finalize for every CFG, we 1015 /// only allow it to proceed for a limited number of iterations (controlled 1016 /// by -sample-profile-max-propagate-iterations). 1017 /// 1018 /// FIXME: Try to replace this propagation heuristic with a scheme 1019 /// that is guaranteed to finalize. A work-list approach similar to 1020 /// the standard value propagation algorithm used by SSA-CCP might 1021 /// work here. 1022 /// 1023 /// \param F The function to query. 1024 /// 1025 /// \returns true if \p F was modified. Returns false, otherwise. 1026 template <typename BT> 1027 bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights( 1028 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1029 bool Changed = (InlinedGUIDs.size() != 0); 1030 1031 // Compute basic block weights. 1032 Changed |= computeBlockWeights(F); 1033 1034 if (Changed) { 1035 // Initialize propagation. 1036 initWeightPropagation(F, InlinedGUIDs); 1037 1038 // Propagate weights to all edges. 1039 propagateWeights(F); 1040 1041 // Post-process propagated weights. 1042 finalizeWeightPropagation(F, InlinedGUIDs); 1043 } 1044 1045 return Changed; 1046 } 1047 1048 template <typename BT> 1049 void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation( 1050 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1051 // Add an entry count to the function using the samples gathered at the 1052 // function entry. 1053 // Sets the GUIDs that are inlined in the profiled binary. This is used 1054 // for ThinLink to make correct liveness analysis, and also make the IR 1055 // match the profiled binary before annotation. 1056 getFunction(F).setEntryCount( 1057 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1058 &InlinedGUIDs); 1059 1060 if (!SampleProfileUseProfi) { 1061 // Compute dominance and loop info needed for propagation. 1062 computeDominanceAndLoopInfo(F); 1063 1064 // Find equivalence classes. 1065 findEquivalenceClasses(F); 1066 } 1067 1068 // Before propagation starts, build, for each block, a list of 1069 // unique predecessors and successors. This is necessary to handle 1070 // identical edges in multiway branches. Since we visit all blocks and all 1071 // edges of the CFG, it is cleaner to build these lists once at the start 1072 // of the pass. 1073 buildEdges(F); 1074 } 1075 1076 template <typename BT> 1077 void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation( 1078 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1079 // If we utilize a flow-based count inference, then we trust the computed 1080 // counts and set the entry count as computed by the algorithm. This is 1081 // primarily done to sync the counts produced by profi and BFI inference, 1082 // which uses the entry count for mass propagation. 1083 // If profi produces a zero-value for the entry count, we fallback to 1084 // Samples->getHeadSamples() + 1 to avoid functions with zero count. 1085 if (SampleProfileUseProfi) { 1086 const BasicBlockT *EntryBB = getEntryBB(&F); 1087 ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB); 1088 if (BlockWeights[EntryBB] > 0) { 1089 getFunction(F).setEntryCount( 1090 ProfileCount(BlockWeights[EntryBB], Function::PCT_Real), 1091 &InlinedGUIDs); 1092 } 1093 } 1094 } 1095 1096 template <typename BT> 1097 void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) { 1098 // If coverage checking was requested, compute it now. 1099 const Function &Func = getFunction(F); 1100 if (SampleProfileRecordCoverage) { 1101 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1102 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1103 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1104 if (Coverage < SampleProfileRecordCoverage) { 1105 Func.getContext().diagnose(DiagnosticInfoSampleProfile( 1106 Func.getSubprogram()->getFilename(), getFunctionLoc(F), 1107 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1108 Twine(Coverage) + "%) were applied", 1109 DS_Warning)); 1110 } 1111 } 1112 1113 if (SampleProfileSampleCoverage) { 1114 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1115 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1116 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1117 if (Coverage < SampleProfileSampleCoverage) { 1118 Func.getContext().diagnose(DiagnosticInfoSampleProfile( 1119 Func.getSubprogram()->getFilename(), getFunctionLoc(F), 1120 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1121 Twine(Coverage) + "%) were applied", 1122 DS_Warning)); 1123 } 1124 } 1125 } 1126 1127 /// Get the line number for the function header. 1128 /// 1129 /// This looks up function \p F in the current compilation unit and 1130 /// retrieves the line number where the function is defined. This is 1131 /// line 0 for all the samples read from the profile file. Every line 1132 /// number is relative to this line. 1133 /// 1134 /// \param F Function object to query. 1135 /// 1136 /// \returns the line number where \p F is defined. If it returns 0, 1137 /// it means that there is no debug information available for \p F. 1138 template <typename BT> 1139 unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) { 1140 const Function &Func = getFunction(F); 1141 if (DISubprogram *S = Func.getSubprogram()) 1142 return S->getLine(); 1143 1144 if (NoWarnSampleUnused) 1145 return 0; 1146 1147 // If the start of \p F is missing, emit a diagnostic to inform the user 1148 // about the missed opportunity. 1149 Func.getContext().diagnose(DiagnosticInfoSampleProfile( 1150 "No debug information found in function " + Func.getName() + 1151 ": Function profile not used", 1152 DS_Warning)); 1153 return 0; 1154 } 1155 1156 #undef DEBUG_TYPE 1157 1158 } // namespace llvm 1159 #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 1160