1 //===-- llvm/Support/Threading.h - Control multithreading mode --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares helper functions for running LLVM in a multi-threaded 10 // environment. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_SUPPORT_THREADING_H 15 #define LLVM_SUPPORT_THREADING_H 16 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Config/llvm-config.h" // for LLVM_ON_UNIX 20 #include "llvm/Support/Compiler.h" 21 #include <optional> 22 23 #if defined(_MSC_VER) 24 // MSVC's call_once implementation worked since VS 2015, which is the minimum 25 // supported version as of this writing. 26 #define LLVM_THREADING_USE_STD_CALL_ONCE 1 27 #elif defined(LLVM_ON_UNIX) && \ 28 (defined(_LIBCPP_VERSION) || \ 29 !(defined(__NetBSD__) || defined(__OpenBSD__) || defined(__powerpc__))) 30 // std::call_once from libc++ is used on all Unix platforms. Other 31 // implementations like libstdc++ are known to have problems on NetBSD, 32 // OpenBSD and PowerPC. 33 #define LLVM_THREADING_USE_STD_CALL_ONCE 1 34 #elif defined(LLVM_ON_UNIX) && \ 35 (defined(__powerpc__) && defined(__LITTLE_ENDIAN__)) 36 #define LLVM_THREADING_USE_STD_CALL_ONCE 1 37 #else 38 #define LLVM_THREADING_USE_STD_CALL_ONCE 0 39 #endif 40 41 #if LLVM_THREADING_USE_STD_CALL_ONCE 42 #include <mutex> 43 #else 44 #include "llvm/Support/Atomic.h" 45 #endif 46 47 namespace llvm { 48 class Twine; 49 50 /// Returns true if LLVM is compiled with support for multi-threading, and 51 /// false otherwise. 52 constexpr bool llvm_is_multithreaded() { return LLVM_ENABLE_THREADS; } 53 54 #if LLVM_THREADING_USE_STD_CALL_ONCE 55 56 typedef std::once_flag once_flag; 57 58 #else 59 60 enum InitStatus { Uninitialized = 0, Wait = 1, Done = 2 }; 61 62 /// The llvm::once_flag structure 63 /// 64 /// This type is modeled after std::once_flag to use with llvm::call_once. 65 /// This structure must be used as an opaque object. It is a struct to force 66 /// autoinitialization and behave like std::once_flag. 67 struct once_flag { 68 volatile sys::cas_flag status = Uninitialized; 69 }; 70 71 #endif 72 73 /// Execute the function specified as a parameter once. 74 /// 75 /// Typical usage: 76 /// \code 77 /// void foo() {...}; 78 /// ... 79 /// static once_flag flag; 80 /// call_once(flag, foo); 81 /// \endcode 82 /// 83 /// \param flag Flag used for tracking whether or not this has run. 84 /// \param F Function to call once. 85 template <typename Function, typename... Args> 86 void call_once(once_flag &flag, Function &&F, Args &&... ArgList) { 87 #if LLVM_THREADING_USE_STD_CALL_ONCE 88 std::call_once(flag, std::forward<Function>(F), 89 std::forward<Args>(ArgList)...); 90 #else 91 // For other platforms we use a generic (if brittle) version based on our 92 // atomics. 93 sys::cas_flag old_val = sys::CompareAndSwap(&flag.status, Wait, Uninitialized); 94 if (old_val == Uninitialized) { 95 std::forward<Function>(F)(std::forward<Args>(ArgList)...); 96 sys::MemoryFence(); 97 TsanIgnoreWritesBegin(); 98 TsanHappensBefore(&flag.status); 99 flag.status = Done; 100 TsanIgnoreWritesEnd(); 101 } else { 102 // Wait until any thread doing the call has finished. 103 sys::cas_flag tmp = flag.status; 104 sys::MemoryFence(); 105 while (tmp != Done) { 106 tmp = flag.status; 107 sys::MemoryFence(); 108 } 109 } 110 TsanHappensAfter(&flag.status); 111 #endif 112 } 113 114 /// This tells how a thread pool will be used 115 class ThreadPoolStrategy { 116 public: 117 // The default value (0) means all available threads should be used, 118 // taking the affinity mask into account. If set, this value only represents 119 // a suggested high bound, the runtime might choose a lower value (not 120 // higher). 121 unsigned ThreadsRequested = 0; 122 123 // If SMT is active, use hyper threads. If false, there will be only one 124 // std::thread per core. 125 bool UseHyperThreads = true; 126 127 // If set, will constrain 'ThreadsRequested' to the number of hardware 128 // threads, or hardware cores. 129 bool Limit = false; 130 131 /// Retrieves the max available threads for the current strategy. This 132 /// accounts for affinity masks and takes advantage of all CPU sockets. 133 unsigned compute_thread_count() const; 134 135 /// Assign the current thread to an ideal hardware CPU or NUMA node. In a 136 /// multi-socket system, this ensures threads are assigned to all CPU 137 /// sockets. \p ThreadPoolNum represents a number bounded by [0, 138 /// compute_thread_count()). 139 void apply_thread_strategy(unsigned ThreadPoolNum) const; 140 141 /// Finds the CPU socket where a thread should go. Returns 'std::nullopt' if 142 /// the thread shall remain on the actual CPU socket. 143 std::optional<unsigned> compute_cpu_socket(unsigned ThreadPoolNum) const; 144 }; 145 146 /// Build a strategy from a number of threads as a string provided in \p Num. 147 /// When Num is above the max number of threads specified by the \p Default 148 /// strategy, we attempt to equally allocate the threads on all CPU sockets. 149 /// "0" or an empty string will return the \p Default strategy. 150 /// "all" for using all hardware threads. 151 std::optional<ThreadPoolStrategy> 152 get_threadpool_strategy(StringRef Num, ThreadPoolStrategy Default = {}); 153 154 /// Returns a thread strategy for tasks requiring significant memory or other 155 /// resources. To be used for workloads where hardware_concurrency() proves to 156 /// be less efficient. Avoid this strategy if doing lots of I/O. Currently 157 /// based on physical cores, if available for the host system, otherwise falls 158 /// back to hardware_concurrency(). Returns 1 when LLVM is configured with 159 /// LLVM_ENABLE_THREADS = OFF. 160 inline ThreadPoolStrategy 161 heavyweight_hardware_concurrency(unsigned ThreadCount = 0) { 162 ThreadPoolStrategy S; 163 S.UseHyperThreads = false; 164 S.ThreadsRequested = ThreadCount; 165 return S; 166 } 167 168 /// Like heavyweight_hardware_concurrency() above, but builds a strategy 169 /// based on the rules described for get_threadpool_strategy(). 170 /// If \p Num is invalid, returns a default strategy where one thread per 171 /// hardware core is used. 172 inline ThreadPoolStrategy heavyweight_hardware_concurrency(StringRef Num) { 173 std::optional<ThreadPoolStrategy> S = 174 get_threadpool_strategy(Num, heavyweight_hardware_concurrency()); 175 if (S) 176 return *S; 177 return heavyweight_hardware_concurrency(); 178 } 179 180 /// Returns a default thread strategy where all available hardware resources 181 /// are to be used, except for those initially excluded by an affinity mask. 182 /// This function takes affinity into consideration. Returns 1 when LLVM is 183 /// configured with LLVM_ENABLE_THREADS=OFF. 184 inline ThreadPoolStrategy hardware_concurrency(unsigned ThreadCount = 0) { 185 ThreadPoolStrategy S; 186 S.ThreadsRequested = ThreadCount; 187 return S; 188 } 189 190 /// Like hardware_concurrency() above, but builds a strategy 191 /// based on the rules described for get_threadpool_strategy(). 192 /// If \p Num is invalid, returns a default strategy where one thread per 193 /// hardware core is used. 194 inline ThreadPoolStrategy hardware_concurrency(StringRef Num) { 195 std::optional<ThreadPoolStrategy> S = 196 get_threadpool_strategy(Num, hardware_concurrency()); 197 if (S) 198 return *S; 199 return hardware_concurrency(); 200 } 201 202 /// Returns an optimal thread strategy to execute specified amount of tasks. 203 /// This strategy should prevent us from creating too many threads if we 204 /// occasionaly have an unexpectedly small amount of tasks. 205 inline ThreadPoolStrategy optimal_concurrency(unsigned TaskCount = 0) { 206 ThreadPoolStrategy S; 207 S.Limit = true; 208 S.ThreadsRequested = TaskCount; 209 return S; 210 } 211 212 /// Return the current thread id, as used in various OS system calls. 213 /// Note that not all platforms guarantee that the value returned will be 214 /// unique across the entire system, so portable code should not assume 215 /// this. 216 uint64_t get_threadid(); 217 218 /// Get the maximum length of a thread name on this platform. 219 /// A value of 0 means there is no limit. 220 uint32_t get_max_thread_name_length(); 221 222 /// Set the name of the current thread. Setting a thread's name can 223 /// be helpful for enabling useful diagnostics under a debugger or when 224 /// logging. The level of support for setting a thread's name varies 225 /// wildly across operating systems, and we only make a best effort to 226 /// perform the operation on supported platforms. No indication of success 227 /// or failure is returned. 228 void set_thread_name(const Twine &Name); 229 230 /// Get the name of the current thread. The level of support for 231 /// getting a thread's name varies wildly across operating systems, and it 232 /// is not even guaranteed that if you can successfully set a thread's name 233 /// that you can later get it back. This function is intended for diagnostic 234 /// purposes, and as with setting a thread's name no indication of whether 235 /// the operation succeeded or failed is returned. 236 void get_thread_name(SmallVectorImpl<char> &Name); 237 238 /// Returns a mask that represents on which hardware thread, core, CPU, NUMA 239 /// group, the calling thread can be executed. On Windows, threads cannot 240 /// cross CPU sockets boundaries. 241 llvm::BitVector get_thread_affinity_mask(); 242 243 /// Returns how many physical CPUs or NUMA groups the system has. 244 unsigned get_cpus(); 245 246 /// Returns how many physical cores (as opposed to logical cores returned from 247 /// thread::hardware_concurrency(), which includes hyperthreads). 248 /// Returns -1 if unknown for the current host system. 249 int get_physical_cores(); 250 251 enum class ThreadPriority { 252 /// Lower the current thread's priority as much as possible. Can be used 253 /// for long-running tasks that are not time critical; more energy- 254 /// efficient than Low. 255 Background = 0, 256 257 /// Lower the current thread's priority such that it does not affect 258 /// foreground tasks significantly. This is a good default for long- 259 /// running, latency-insensitive tasks to make sure cpu is not hogged 260 /// by this task. 261 Low = 1, 262 263 /// Restore the current thread's priority to default scheduling priority. 264 Default = 2, 265 }; 266 enum class SetThreadPriorityResult { FAILURE, SUCCESS }; 267 SetThreadPriorityResult set_thread_priority(ThreadPriority Priority); 268 } 269 270 #endif 271