1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains some functions that are useful for math stuff. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_SUPPORT_MATHEXTRAS_H 14 #define LLVM_SUPPORT_MATHEXTRAS_H 15 16 #include "llvm/ADT/bit.h" 17 #include "llvm/Support/Compiler.h" 18 #include <cassert> 19 #include <climits> 20 #include <cstdint> 21 #include <cstring> 22 #include <limits> 23 #include <type_traits> 24 25 namespace llvm { 26 /// Some template parameter helpers to optimize for bitwidth, for functions that 27 /// take multiple arguments. 28 29 // We can't verify signedness, since callers rely on implicit coercions to 30 // signed/unsigned. 31 template <typename T, typename U> 32 using enableif_int = 33 std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>>; 34 35 // Use std::common_type_t to widen only up to the widest argument. 36 template <typename T, typename U, typename = enableif_int<T, U>> 37 using common_uint = 38 std::common_type_t<std::make_unsigned_t<T>, std::make_unsigned_t<U>>; 39 template <typename T, typename U, typename = enableif_int<T, U>> 40 using common_sint = 41 std::common_type_t<std::make_signed_t<T>, std::make_signed_t<U>>; 42 43 /// Mathematical constants. 44 namespace numbers { 45 // TODO: Track C++20 std::numbers. 46 // TODO: Favor using the hexadecimal FP constants (requires C++17). 47 constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 48 egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 49 ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 50 ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 51 log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) 52 log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) 53 pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 54 inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 55 sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 56 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 57 sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 58 inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) 59 sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 60 inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) 61 phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 62 constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 63 egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 64 ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 65 ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 66 log2ef = 1.44269504F, // (0x1.715476P+0) 67 log10ef = .434294482F, // (0x1.bcb7b2P-2) 68 pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 69 inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 70 sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 71 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 72 sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 73 inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) 74 sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 75 inv_sqrt3f = .577350269F, // (0x1.279a74P-1) 76 phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 77 } // namespace numbers 78 79 /// Create a bitmask with the N right-most bits set to 1, and all other 80 /// bits set to 0. Only unsigned types are allowed. 81 template <typename T> T maskTrailingOnes(unsigned N) { 82 static_assert(std::is_unsigned_v<T>, "Invalid type!"); 83 const unsigned Bits = CHAR_BIT * sizeof(T); 84 assert(N <= Bits && "Invalid bit index"); 85 if (N == 0) 86 return 0; 87 return T(-1) >> (Bits - N); 88 } 89 90 /// Create a bitmask with the N left-most bits set to 1, and all other 91 /// bits set to 0. Only unsigned types are allowed. 92 template <typename T> T maskLeadingOnes(unsigned N) { 93 return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); 94 } 95 96 /// Create a bitmask with the N right-most bits set to 0, and all other 97 /// bits set to 1. Only unsigned types are allowed. 98 template <typename T> T maskTrailingZeros(unsigned N) { 99 return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); 100 } 101 102 /// Create a bitmask with the N left-most bits set to 0, and all other 103 /// bits set to 1. Only unsigned types are allowed. 104 template <typename T> T maskLeadingZeros(unsigned N) { 105 return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); 106 } 107 108 /// Macro compressed bit reversal table for 256 bits. 109 /// 110 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable 111 static const unsigned char BitReverseTable256[256] = { 112 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 113 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) 114 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) 115 R6(0), R6(2), R6(1), R6(3) 116 #undef R2 117 #undef R4 118 #undef R6 119 }; 120 121 /// Reverse the bits in \p Val. 122 template <typename T> T reverseBits(T Val) { 123 #if __has_builtin(__builtin_bitreverse8) 124 if constexpr (std::is_same_v<T, uint8_t>) 125 return __builtin_bitreverse8(Val); 126 #endif 127 #if __has_builtin(__builtin_bitreverse16) 128 if constexpr (std::is_same_v<T, uint16_t>) 129 return __builtin_bitreverse16(Val); 130 #endif 131 #if __has_builtin(__builtin_bitreverse32) 132 if constexpr (std::is_same_v<T, uint32_t>) 133 return __builtin_bitreverse32(Val); 134 #endif 135 #if __has_builtin(__builtin_bitreverse64) 136 if constexpr (std::is_same_v<T, uint64_t>) 137 return __builtin_bitreverse64(Val); 138 #endif 139 140 unsigned char in[sizeof(Val)]; 141 unsigned char out[sizeof(Val)]; 142 std::memcpy(in, &Val, sizeof(Val)); 143 for (unsigned i = 0; i < sizeof(Val); ++i) 144 out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; 145 std::memcpy(&Val, out, sizeof(Val)); 146 return Val; 147 } 148 149 // NOTE: The following support functions use the _32/_64 extensions instead of 150 // type overloading so that signed and unsigned integers can be used without 151 // ambiguity. 152 153 /// Return the high 32 bits of a 64 bit value. 154 constexpr uint32_t Hi_32(uint64_t Value) { 155 return static_cast<uint32_t>(Value >> 32); 156 } 157 158 /// Return the low 32 bits of a 64 bit value. 159 constexpr uint32_t Lo_32(uint64_t Value) { 160 return static_cast<uint32_t>(Value); 161 } 162 163 /// Make a 64-bit integer from a high / low pair of 32-bit integers. 164 constexpr uint64_t Make_64(uint32_t High, uint32_t Low) { 165 return ((uint64_t)High << 32) | (uint64_t)Low; 166 } 167 168 /// Checks if an integer fits into the given bit width. 169 template <unsigned N> constexpr bool isInt(int64_t x) { 170 if constexpr (N == 0) 171 return 0 == x; 172 if constexpr (N == 8) 173 return static_cast<int8_t>(x) == x; 174 if constexpr (N == 16) 175 return static_cast<int16_t>(x) == x; 176 if constexpr (N == 32) 177 return static_cast<int32_t>(x) == x; 178 if constexpr (N < 64) 179 return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); 180 (void)x; // MSVC v19.25 warns that x is unused. 181 return true; 182 } 183 184 /// Checks if a signed integer is an N bit number shifted left by S. 185 template <unsigned N, unsigned S> 186 constexpr bool isShiftedInt(int64_t x) { 187 static_assert(S < 64, "isShiftedInt<N, S> with S >= 64 is too much."); 188 static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); 189 return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 190 } 191 192 /// Checks if an unsigned integer fits into the given bit width. 193 template <unsigned N> constexpr bool isUInt(uint64_t x) { 194 if constexpr (N == 0) 195 return 0 == x; 196 if constexpr (N == 8) 197 return static_cast<uint8_t>(x) == x; 198 if constexpr (N == 16) 199 return static_cast<uint16_t>(x) == x; 200 if constexpr (N == 32) 201 return static_cast<uint32_t>(x) == x; 202 if constexpr (N < 64) 203 return x < (UINT64_C(1) << (N)); 204 (void)x; // MSVC v19.25 warns that x is unused. 205 return true; 206 } 207 208 /// Checks if a unsigned integer is an N bit number shifted left by S. 209 template <unsigned N, unsigned S> 210 constexpr bool isShiftedUInt(uint64_t x) { 211 static_assert(S < 64, "isShiftedUInt<N, S> with S >= 64 is too much."); 212 static_assert(N + S <= 64, 213 "isShiftedUInt<N, S> with N + S > 64 is too wide."); 214 // S must be strictly less than 64. So 1 << S is not undefined behavior. 215 return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 216 } 217 218 /// Gets the maximum value for a N-bit unsigned integer. 219 inline uint64_t maxUIntN(uint64_t N) { 220 assert(N <= 64 && "integer width out of range"); 221 222 // uint64_t(1) << 64 is undefined behavior, so we can't do 223 // (uint64_t(1) << N) - 1 224 // without checking first that N != 64. But this works and doesn't have a 225 // branch for N != 0. 226 // Unfortunately, shifting a uint64_t right by 64 bit is undefined 227 // behavior, so the condition on N == 0 is necessary. Fortunately, most 228 // optimizers do not emit branches for this check. 229 if (N == 0) 230 return 0; 231 return UINT64_MAX >> (64 - N); 232 } 233 234 /// Gets the minimum value for a N-bit signed integer. 235 inline int64_t minIntN(int64_t N) { 236 assert(N <= 64 && "integer width out of range"); 237 238 if (N == 0) 239 return 0; 240 return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); 241 } 242 243 /// Gets the maximum value for a N-bit signed integer. 244 inline int64_t maxIntN(int64_t N) { 245 assert(N <= 64 && "integer width out of range"); 246 247 // This relies on two's complement wraparound when N == 64, so we convert to 248 // int64_t only at the very end to avoid UB. 249 if (N == 0) 250 return 0; 251 return (UINT64_C(1) << (N - 1)) - 1; 252 } 253 254 /// Checks if an unsigned integer fits into the given (dynamic) bit width. 255 inline bool isUIntN(unsigned N, uint64_t x) { 256 return N >= 64 || x <= maxUIntN(N); 257 } 258 259 /// Checks if an signed integer fits into the given (dynamic) bit width. 260 inline bool isIntN(unsigned N, int64_t x) { 261 return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); 262 } 263 264 /// Return true if the argument is a non-empty sequence of ones starting at the 265 /// least significant bit with the remainder zero (32 bit version). 266 /// Ex. isMask_32(0x0000FFFFU) == true. 267 constexpr bool isMask_32(uint32_t Value) { 268 return Value && ((Value + 1) & Value) == 0; 269 } 270 271 /// Return true if the argument is a non-empty sequence of ones starting at the 272 /// least significant bit with the remainder zero (64 bit version). 273 constexpr bool isMask_64(uint64_t Value) { 274 return Value && ((Value + 1) & Value) == 0; 275 } 276 277 /// Return true if the argument contains a non-empty sequence of ones with the 278 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. 279 constexpr bool isShiftedMask_32(uint32_t Value) { 280 return Value && isMask_32((Value - 1) | Value); 281 } 282 283 /// Return true if the argument contains a non-empty sequence of ones with the 284 /// remainder zero (64 bit version.) 285 constexpr bool isShiftedMask_64(uint64_t Value) { 286 return Value && isMask_64((Value - 1) | Value); 287 } 288 289 /// Return true if the argument is a power of two > 0. 290 /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) 291 constexpr bool isPowerOf2_32(uint32_t Value) { 292 return llvm::has_single_bit(Value); 293 } 294 295 /// Return true if the argument is a power of two > 0 (64 bit edition.) 296 constexpr bool isPowerOf2_64(uint64_t Value) { 297 return llvm::has_single_bit(Value); 298 } 299 300 /// Return true if the argument contains a non-empty sequence of ones with the 301 /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. 302 /// If true, \p MaskIdx will specify the index of the lowest set bit and \p 303 /// MaskLen is updated to specify the length of the mask, else neither are 304 /// updated. 305 inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, 306 unsigned &MaskLen) { 307 if (!isShiftedMask_32(Value)) 308 return false; 309 MaskIdx = llvm::countr_zero(Value); 310 MaskLen = llvm::popcount(Value); 311 return true; 312 } 313 314 /// Return true if the argument contains a non-empty sequence of ones with the 315 /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index 316 /// of the lowest set bit and \p MaskLen is updated to specify the length of the 317 /// mask, else neither are updated. 318 inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, 319 unsigned &MaskLen) { 320 if (!isShiftedMask_64(Value)) 321 return false; 322 MaskIdx = llvm::countr_zero(Value); 323 MaskLen = llvm::popcount(Value); 324 return true; 325 } 326 327 /// Compile time Log2. 328 /// Valid only for positive powers of two. 329 template <size_t kValue> constexpr size_t CTLog2() { 330 static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), 331 "Value is not a valid power of 2"); 332 return 1 + CTLog2<kValue / 2>(); 333 } 334 335 template <> constexpr size_t CTLog2<1>() { return 0; } 336 337 /// Return the floor log base 2 of the specified value, -1 if the value is zero. 338 /// (32 bit edition.) 339 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 340 inline unsigned Log2_32(uint32_t Value) { 341 return 31 - llvm::countl_zero(Value); 342 } 343 344 /// Return the floor log base 2 of the specified value, -1 if the value is zero. 345 /// (64 bit edition.) 346 inline unsigned Log2_64(uint64_t Value) { 347 return 63 - llvm::countl_zero(Value); 348 } 349 350 /// Return the ceil log base 2 of the specified value, 32 if the value is zero. 351 /// (32 bit edition). 352 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 353 inline unsigned Log2_32_Ceil(uint32_t Value) { 354 return 32 - llvm::countl_zero(Value - 1); 355 } 356 357 /// Return the ceil log base 2 of the specified value, 64 if the value is zero. 358 /// (64 bit edition.) 359 inline unsigned Log2_64_Ceil(uint64_t Value) { 360 return 64 - llvm::countl_zero(Value - 1); 361 } 362 363 /// A and B are either alignments or offsets. Return the minimum alignment that 364 /// may be assumed after adding the two together. 365 template <typename U, typename V, typename T = common_uint<U, V>> 366 constexpr T MinAlign(U A, V B) { 367 // The largest power of 2 that divides both A and B. 368 // 369 // Replace "-Value" by "1+~Value" in the following commented code to avoid 370 // MSVC warning C4146 371 // return (A | B) & -(A | B); 372 return (A | B) & (1 + ~(A | B)); 373 } 374 375 /// Fallback when arguments aren't integral. 376 constexpr uint64_t MinAlign(uint64_t A, uint64_t B) { 377 return (A | B) & (1 + ~(A | B)); 378 } 379 380 /// Returns the next power of two (in 64-bits) that is strictly greater than A. 381 /// Returns zero on overflow. 382 constexpr uint64_t NextPowerOf2(uint64_t A) { 383 A |= (A >> 1); 384 A |= (A >> 2); 385 A |= (A >> 4); 386 A |= (A >> 8); 387 A |= (A >> 16); 388 A |= (A >> 32); 389 return A + 1; 390 } 391 392 /// Returns the power of two which is greater than or equal to the given value. 393 /// Essentially, it is a ceil operation across the domain of powers of two. 394 inline uint64_t PowerOf2Ceil(uint64_t A) { 395 if (!A || A > UINT64_MAX / 2) 396 return 0; 397 return UINT64_C(1) << Log2_64_Ceil(A); 398 } 399 400 /// Returns the integer ceil(Numerator / Denominator). Unsigned version. 401 /// Guaranteed to never overflow. 402 template <typename U, typename V, typename T = common_uint<U, V>> 403 constexpr T divideCeil(U Numerator, V Denominator) { 404 assert(Denominator && "Division by zero"); 405 T Bias = (Numerator != 0); 406 return (Numerator - Bias) / Denominator + Bias; 407 } 408 409 /// Fallback when arguments aren't integral. 410 constexpr uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { 411 assert(Denominator && "Division by zero"); 412 uint64_t Bias = (Numerator != 0); 413 return (Numerator - Bias) / Denominator + Bias; 414 } 415 416 // Check whether divideCeilSigned or divideFloorSigned would overflow. This 417 // happens only when Numerator = INT_MIN and Denominator = -1. 418 template <typename U, typename V> 419 constexpr bool divideSignedWouldOverflow(U Numerator, V Denominator) { 420 return Numerator == std::numeric_limits<U>::min() && Denominator == -1; 421 } 422 423 /// Returns the integer ceil(Numerator / Denominator). Signed version. 424 /// Overflow is explicitly forbidden with an assert. 425 template <typename U, typename V, typename T = common_sint<U, V>> 426 constexpr T divideCeilSigned(U Numerator, V Denominator) { 427 assert(Denominator && "Division by zero"); 428 assert(!divideSignedWouldOverflow(Numerator, Denominator) && 429 "Divide would overflow"); 430 if (!Numerator) 431 return 0; 432 // C's integer division rounds towards 0. 433 T Bias = Denominator >= 0 ? 1 : -1; 434 bool SameSign = (Numerator >= 0) == (Denominator >= 0); 435 return SameSign ? (Numerator - Bias) / Denominator + 1 436 : Numerator / Denominator; 437 } 438 439 /// Returns the integer floor(Numerator / Denominator). Signed version. 440 /// Overflow is explicitly forbidden with an assert. 441 template <typename U, typename V, typename T = common_sint<U, V>> 442 constexpr T divideFloorSigned(U Numerator, V Denominator) { 443 assert(Denominator && "Division by zero"); 444 assert(!divideSignedWouldOverflow(Numerator, Denominator) && 445 "Divide would overflow"); 446 if (!Numerator) 447 return 0; 448 // C's integer division rounds towards 0. 449 T Bias = Denominator >= 0 ? -1 : 1; 450 bool SameSign = (Numerator >= 0) == (Denominator >= 0); 451 return SameSign ? Numerator / Denominator 452 : (Numerator - Bias) / Denominator - 1; 453 } 454 455 /// Returns the remainder of the Euclidean division of LHS by RHS. Result is 456 /// always non-negative. 457 template <typename U, typename V, typename T = common_sint<U, V>> 458 constexpr T mod(U Numerator, V Denominator) { 459 assert(Denominator >= 1 && "Mod by non-positive number"); 460 T Mod = Numerator % Denominator; 461 return Mod < 0 ? Mod + Denominator : Mod; 462 } 463 464 /// Returns (Numerator / Denominator) rounded by round-half-up. Guaranteed to 465 /// never overflow. 466 template <typename U, typename V, typename T = common_uint<U, V>> 467 constexpr T divideNearest(U Numerator, V Denominator) { 468 assert(Denominator && "Division by zero"); 469 T Mod = Numerator % Denominator; 470 return (Numerator / Denominator) + 471 (Mod > (static_cast<T>(Denominator) - 1) / 2); 472 } 473 474 /// Returns the next integer (mod 2**nbits) that is greater than or equal to 475 /// \p Value and is a multiple of \p Align. \p Align must be non-zero. 476 /// 477 /// Examples: 478 /// \code 479 /// alignTo(5, 8) = 8 480 /// alignTo(17, 8) = 24 481 /// alignTo(~0LL, 8) = 0 482 /// alignTo(321, 255) = 510 483 /// \endcode 484 /// 485 /// Will overflow only if result is not representable in T. 486 template <typename U, typename V, typename T = common_uint<U, V>> 487 constexpr T alignTo(U Value, V Align) { 488 assert(Align != 0u && "Align can't be 0."); 489 T CeilDiv = divideCeil(Value, Align); 490 return CeilDiv * Align; 491 } 492 493 /// Fallback when arguments aren't integral. 494 constexpr uint64_t alignTo(uint64_t Value, uint64_t Align) { 495 assert(Align != 0u && "Align can't be 0."); 496 uint64_t CeilDiv = divideCeil(Value, Align); 497 return CeilDiv * Align; 498 } 499 500 constexpr uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { 501 assert(Align != 0 && (Align & (Align - 1)) == 0 && 502 "Align must be a power of 2"); 503 // Replace unary minus to avoid compilation error on Windows: 504 // "unary minus operator applied to unsigned type, result still unsigned" 505 uint64_t NegAlign = (~Align) + 1; 506 return (Value + Align - 1) & NegAlign; 507 } 508 509 /// If non-zero \p Skew is specified, the return value will be a minimal integer 510 /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for 511 /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p 512 /// Skew mod \p A'. \p Align must be non-zero. 513 /// 514 /// Examples: 515 /// \code 516 /// alignTo(5, 8, 7) = 7 517 /// alignTo(17, 8, 1) = 17 518 /// alignTo(~0LL, 8, 3) = 3 519 /// alignTo(321, 255, 42) = 552 520 /// \endcode 521 /// 522 /// May overflow. 523 template <typename U, typename V, typename W, 524 typename T = common_uint<common_uint<U, V>, W>> 525 constexpr T alignTo(U Value, V Align, W Skew) { 526 assert(Align != 0u && "Align can't be 0."); 527 Skew %= Align; 528 return alignTo(Value - Skew, Align) + Skew; 529 } 530 531 /// Returns the next integer (mod 2**nbits) that is greater than or equal to 532 /// \p Value and is a multiple of \c Align. \c Align must be non-zero. 533 /// 534 /// Will overflow only if result is not representable in T. 535 template <auto Align, typename V, typename T = common_uint<decltype(Align), V>> 536 constexpr T alignTo(V Value) { 537 static_assert(Align != 0u, "Align must be non-zero"); 538 T CeilDiv = divideCeil(Value, Align); 539 return CeilDiv * Align; 540 } 541 542 /// Returns the largest unsigned integer less than or equal to \p Value and is 543 /// \p Skew mod \p Align. \p Align must be non-zero. Guaranteed to never 544 /// overflow. 545 template <typename U, typename V, typename W = uint8_t, 546 typename T = common_uint<common_uint<U, V>, W>> 547 constexpr T alignDown(U Value, V Align, W Skew = 0) { 548 assert(Align != 0u && "Align can't be 0."); 549 Skew %= Align; 550 return (Value - Skew) / Align * Align + Skew; 551 } 552 553 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 554 /// Requires B <= 32. 555 template <unsigned B> constexpr int32_t SignExtend32(uint32_t X) { 556 static_assert(B <= 32, "Bit width out of range."); 557 if constexpr (B == 0) 558 return 0; 559 return int32_t(X << (32 - B)) >> (32 - B); 560 } 561 562 /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 563 /// Requires B <= 32. 564 inline int32_t SignExtend32(uint32_t X, unsigned B) { 565 assert(B <= 32 && "Bit width out of range."); 566 if (B == 0) 567 return 0; 568 return int32_t(X << (32 - B)) >> (32 - B); 569 } 570 571 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 572 /// Requires B <= 64. 573 template <unsigned B> constexpr int64_t SignExtend64(uint64_t x) { 574 static_assert(B <= 64, "Bit width out of range."); 575 if constexpr (B == 0) 576 return 0; 577 return int64_t(x << (64 - B)) >> (64 - B); 578 } 579 580 /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 581 /// Requires B <= 64. 582 inline int64_t SignExtend64(uint64_t X, unsigned B) { 583 assert(B <= 64 && "Bit width out of range."); 584 if (B == 0) 585 return 0; 586 return int64_t(X << (64 - B)) >> (64 - B); 587 } 588 589 /// Subtract two unsigned integers, X and Y, of type T and return the absolute 590 /// value of the result. 591 template <typename U, typename V, typename T = common_uint<U, V>> 592 constexpr T AbsoluteDifference(U X, V Y) { 593 return X > Y ? (X - Y) : (Y - X); 594 } 595 596 /// Add two unsigned integers, X and Y, of type T. Clamp the result to the 597 /// maximum representable value of T on overflow. ResultOverflowed indicates if 598 /// the result is larger than the maximum representable value of type T. 599 template <typename T> 600 std::enable_if_t<std::is_unsigned_v<T>, T> 601 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { 602 bool Dummy; 603 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 604 // Hacker's Delight, p. 29 605 T Z = X + Y; 606 Overflowed = (Z < X || Z < Y); 607 if (Overflowed) 608 return std::numeric_limits<T>::max(); 609 else 610 return Z; 611 } 612 613 /// Add multiple unsigned integers of type T. Clamp the result to the 614 /// maximum representable value of T on overflow. 615 template <class T, class... Ts> 616 std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, 617 Ts... Args) { 618 bool Overflowed = false; 619 T XY = SaturatingAdd(X, Y, &Overflowed); 620 if (Overflowed) 621 return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); 622 return SaturatingAdd(XY, Z, Args...); 623 } 624 625 /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the 626 /// maximum representable value of T on overflow. ResultOverflowed indicates if 627 /// the result is larger than the maximum representable value of type T. 628 template <typename T> 629 std::enable_if_t<std::is_unsigned_v<T>, T> 630 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { 631 bool Dummy; 632 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 633 634 // Hacker's Delight, p. 30 has a different algorithm, but we don't use that 635 // because it fails for uint16_t (where multiplication can have undefined 636 // behavior due to promotion to int), and requires a division in addition 637 // to the multiplication. 638 639 Overflowed = false; 640 641 // Log2(Z) would be either Log2Z or Log2Z + 1. 642 // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z 643 // will necessarily be less than Log2Max as desired. 644 int Log2Z = Log2_64(X) + Log2_64(Y); 645 const T Max = std::numeric_limits<T>::max(); 646 int Log2Max = Log2_64(Max); 647 if (Log2Z < Log2Max) { 648 return X * Y; 649 } 650 if (Log2Z > Log2Max) { 651 Overflowed = true; 652 return Max; 653 } 654 655 // We're going to use the top bit, and maybe overflow one 656 // bit past it. Multiply all but the bottom bit then add 657 // that on at the end. 658 T Z = (X >> 1) * Y; 659 if (Z & ~(Max >> 1)) { 660 Overflowed = true; 661 return Max; 662 } 663 Z <<= 1; 664 if (X & 1) 665 return SaturatingAdd(Z, Y, ResultOverflowed); 666 667 return Z; 668 } 669 670 /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to 671 /// the product. Clamp the result to the maximum representable value of T on 672 /// overflow. ResultOverflowed indicates if the result is larger than the 673 /// maximum representable value of type T. 674 template <typename T> 675 std::enable_if_t<std::is_unsigned_v<T>, T> 676 SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { 677 bool Dummy; 678 bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 679 680 T Product = SaturatingMultiply(X, Y, &Overflowed); 681 if (Overflowed) 682 return Product; 683 684 return SaturatingAdd(A, Product, &Overflowed); 685 } 686 687 /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. 688 extern const float huge_valf; 689 690 /// Add two signed integers, computing the two's complement truncated result, 691 /// returning true if overflow occurred. 692 template <typename T> 693 std::enable_if_t<std::is_signed_v<T>, T> AddOverflow(T X, T Y, T &Result) { 694 #if __has_builtin(__builtin_add_overflow) 695 return __builtin_add_overflow(X, Y, &Result); 696 #else 697 // Perform the unsigned addition. 698 using U = std::make_unsigned_t<T>; 699 const U UX = static_cast<U>(X); 700 const U UY = static_cast<U>(Y); 701 const U UResult = UX + UY; 702 703 // Convert to signed. 704 Result = static_cast<T>(UResult); 705 706 // Adding two positive numbers should result in a positive number. 707 if (X > 0 && Y > 0) 708 return Result <= 0; 709 // Adding two negatives should result in a negative number. 710 if (X < 0 && Y < 0) 711 return Result >= 0; 712 return false; 713 #endif 714 } 715 716 /// Subtract two signed integers, computing the two's complement truncated 717 /// result, returning true if an overflow ocurred. 718 template <typename T> 719 std::enable_if_t<std::is_signed_v<T>, T> SubOverflow(T X, T Y, T &Result) { 720 #if __has_builtin(__builtin_sub_overflow) 721 return __builtin_sub_overflow(X, Y, &Result); 722 #else 723 // Perform the unsigned addition. 724 using U = std::make_unsigned_t<T>; 725 const U UX = static_cast<U>(X); 726 const U UY = static_cast<U>(Y); 727 const U UResult = UX - UY; 728 729 // Convert to signed. 730 Result = static_cast<T>(UResult); 731 732 // Subtracting a positive number from a negative results in a negative number. 733 if (X <= 0 && Y > 0) 734 return Result >= 0; 735 // Subtracting a negative number from a positive results in a positive number. 736 if (X >= 0 && Y < 0) 737 return Result <= 0; 738 return false; 739 #endif 740 } 741 742 /// Multiply two signed integers, computing the two's complement truncated 743 /// result, returning true if an overflow ocurred. 744 template <typename T> 745 std::enable_if_t<std::is_signed_v<T>, T> MulOverflow(T X, T Y, T &Result) { 746 #if __has_builtin(__builtin_mul_overflow) 747 return __builtin_mul_overflow(X, Y, &Result); 748 #else 749 // Perform the unsigned multiplication on absolute values. 750 using U = std::make_unsigned_t<T>; 751 const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); 752 const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); 753 const U UResult = UX * UY; 754 755 // Convert to signed. 756 const bool IsNegative = (X < 0) ^ (Y < 0); 757 Result = IsNegative ? (0 - UResult) : UResult; 758 759 // If any of the args was 0, result is 0 and no overflow occurs. 760 if (UX == 0 || UY == 0) 761 return false; 762 763 // UX and UY are in [1, 2^n], where n is the number of digits. 764 // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for 765 // positive) divided by an argument compares to the other. 766 if (IsNegative) 767 return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; 768 else 769 return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; 770 #endif 771 } 772 773 /// Type to force float point values onto the stack, so that x86 doesn't add 774 /// hidden precision, avoiding rounding differences on various platforms. 775 #if defined(__i386__) || defined(_M_IX86) 776 using stack_float_t = volatile float; 777 #else 778 using stack_float_t = float; 779 #endif 780 781 } // namespace llvm 782 783 #endif 784