xref: /llvm-project/llvm/include/llvm/Support/GenericIteratedDominanceFrontier.h (revision 719557269e9f5206d954c87ef0cb3d9abdf49946)
1 //===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Compute iterated dominance frontiers using a linear time algorithm.
10 ///
11 /// The algorithm used here is based on:
12 ///
13 ///   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
14 ///   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
15 ///   Programming Languages
16 ///   POPL '95. ACM, New York, NY, 62-73.
17 ///
18 /// It has been modified to not explicitly use the DJ graph data structure and
19 /// to directly compute pruned SSA using per-variable liveness information.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #ifndef LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H
24 #define LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H
25 
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Support/GenericDomTree.h"
30 #include <queue>
31 
32 namespace llvm {
33 
34 namespace IDFCalculatorDetail {
35 
36 /// Generic utility class used for getting the children of a basic block.
37 /// May be specialized if, for example, one wouldn't like to return nullpointer
38 /// successors.
39 template <class NodeTy, bool IsPostDom> struct ChildrenGetterTy {
40   using NodeRef = typename GraphTraits<NodeTy *>::NodeRef;
41   using ChildIteratorType = typename GraphTraits<NodeTy *>::ChildIteratorType;
42   using range = iterator_range<ChildIteratorType>;
43 
44   range get(const NodeRef &N);
45 };
46 
47 } // end of namespace IDFCalculatorDetail
48 
49 /// Determine the iterated dominance frontier, given a set of defining
50 /// blocks, and optionally, a set of live-in blocks.
51 ///
52 /// In turn, the results can be used to place phi nodes.
53 ///
54 /// This algorithm is a linear time computation of Iterated Dominance Frontiers,
55 /// pruned using the live-in set.
56 /// By default, liveness is not used to prune the IDF computation.
57 /// The template parameters should be of a CFG block type.
58 template <class NodeTy, bool IsPostDom> class IDFCalculatorBase {
59 public:
60   using OrderedNodeTy =
61       std::conditional_t<IsPostDom, Inverse<NodeTy *>, NodeTy *>;
62   using ChildrenGetterTy =
63       IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>;
64 
65   IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT) : DT(DT) {}
66 
67   IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT,
68                     const ChildrenGetterTy &C)
69       : DT(DT), ChildrenGetter(C) {}
70 
71   /// Give the IDF calculator the set of blocks in which the value is
72   /// defined.  This is equivalent to the set of starting blocks it should be
73   /// calculating the IDF for (though later gets pruned based on liveness).
74   ///
75   /// Note: This set *must* live for the entire lifetime of the IDF calculator.
76   void setDefiningBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
77     DefBlocks = &Blocks;
78   }
79 
80   /// Give the IDF calculator the set of blocks in which the value is
81   /// live on entry to the block.   This is used to prune the IDF calculation to
82   /// not include blocks where any phi insertion would be dead.
83   ///
84   /// Note: This set *must* live for the entire lifetime of the IDF calculator.
85   void setLiveInBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
86     LiveInBlocks = &Blocks;
87     useLiveIn = true;
88   }
89 
90   /// Reset the live-in block set to be empty, and tell the IDF
91   /// calculator to not use liveness anymore.
92   void resetLiveInBlocks() {
93     LiveInBlocks = nullptr;
94     useLiveIn = false;
95   }
96 
97   /// Calculate iterated dominance frontiers
98   ///
99   /// This uses the linear-time phi algorithm based on DJ-graphs mentioned in
100   /// the file-level comment.  It performs DF->IDF pruning using the live-in
101   /// set, to avoid computing the IDF for blocks where an inserted PHI node
102   /// would be dead.
103   void calculate(SmallVectorImpl<NodeTy *> &IDFBlocks);
104 
105 private:
106   DominatorTreeBase<NodeTy, IsPostDom> &DT;
107   ChildrenGetterTy ChildrenGetter;
108   bool useLiveIn = false;
109   const SmallPtrSetImpl<NodeTy *> *LiveInBlocks;
110   const SmallPtrSetImpl<NodeTy *> *DefBlocks;
111 };
112 
113 //===----------------------------------------------------------------------===//
114 // Implementation.
115 //===----------------------------------------------------------------------===//
116 
117 namespace IDFCalculatorDetail {
118 
119 template <class NodeTy, bool IsPostDom>
120 typename ChildrenGetterTy<NodeTy, IsPostDom>::range
121 ChildrenGetterTy<NodeTy, IsPostDom>::get(const NodeRef &N) {
122   using OrderedNodeTy =
123       typename IDFCalculatorBase<NodeTy, IsPostDom>::OrderedNodeTy;
124 
125   return children<OrderedNodeTy>(N);
126 }
127 
128 } // end of namespace IDFCalculatorDetail
129 
130 template <class NodeTy, bool IsPostDom>
131 void IDFCalculatorBase<NodeTy, IsPostDom>::calculate(
132     SmallVectorImpl<NodeTy *> &IDFBlocks) {
133   // Use a priority queue keyed on dominator tree level so that inserted nodes
134   // are handled from the bottom of the dominator tree upwards. We also augment
135   // the level with a DFS number to ensure that the blocks are ordered in a
136   // deterministic way.
137   using DomTreeNodePair =
138       std::pair<DomTreeNodeBase<NodeTy> *, std::pair<unsigned, unsigned>>;
139   using IDFPriorityQueue =
140       std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
141                           less_second>;
142 
143   IDFPriorityQueue PQ;
144 
145   DT.updateDFSNumbers();
146 
147   SmallVector<DomTreeNodeBase<NodeTy> *, 32> Worklist;
148   SmallPtrSet<DomTreeNodeBase<NodeTy> *, 16> VisitedPQ;
149   SmallPtrSet<DomTreeNodeBase<NodeTy> *, 16> VisitedWorklist;
150   if (useLiveIn) {
151     VisitedPQ.reserve(LiveInBlocks->size());
152     VisitedWorklist.reserve(LiveInBlocks->size());
153   }
154 
155   for (NodeTy *BB : *DefBlocks)
156     if (DomTreeNodeBase<NodeTy> *Node = DT.getNode(BB)) {
157       PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())});
158       VisitedWorklist.insert(Node);
159     }
160 
161   while (!PQ.empty()) {
162     DomTreeNodePair RootPair = PQ.top();
163     PQ.pop();
164     DomTreeNodeBase<NodeTy> *Root = RootPair.first;
165     unsigned RootLevel = RootPair.second.first;
166 
167     // Walk all dominator tree children of Root, inspecting their CFG edges with
168     // targets elsewhere on the dominator tree. Only targets whose level is at
169     // most Root's level are added to the iterated dominance frontier of the
170     // definition set.
171 
172     assert(Worklist.empty());
173     Worklist.push_back(Root);
174 
175     while (!Worklist.empty()) {
176       DomTreeNodeBase<NodeTy> *Node = Worklist.pop_back_val();
177       NodeTy *BB = Node->getBlock();
178       // Succ is the successor in the direction we are calculating IDF, so it is
179       // successor for IDF, and predecessor for Reverse IDF.
180       auto DoWork = [&](NodeTy *Succ) {
181         DomTreeNodeBase<NodeTy> *SuccNode = DT.getNode(Succ);
182 
183         const unsigned SuccLevel = SuccNode->getLevel();
184         if (SuccLevel > RootLevel)
185           return;
186 
187         if (!VisitedPQ.insert(SuccNode).second)
188           return;
189 
190         NodeTy *SuccBB = SuccNode->getBlock();
191         if (useLiveIn && !LiveInBlocks->count(SuccBB))
192           return;
193 
194         IDFBlocks.emplace_back(SuccBB);
195         if (!DefBlocks->count(SuccBB))
196           PQ.push(std::make_pair(
197               SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn())));
198       };
199 
200       for (auto *Succ : ChildrenGetter.get(BB))
201         DoWork(Succ);
202 
203       for (auto DomChild : *Node) {
204         if (VisitedWorklist.insert(DomChild).second)
205           Worklist.push_back(DomChild);
206       }
207     }
208   }
209 }
210 
211 } // end of namespace llvm
212 
213 #endif
214