1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 /// [1] Linear-Time Algorithms for Dominators and Related Problems
15 /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 /// [2] An Experimental Study of Dynamic Dominators
32 /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 /// https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/PointerIntPair.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/GenericDomTree.h"
47 #include <queue>
48
49 #define DEBUG_TYPE "dom-tree-builder"
50
51 namespace llvm {
52 namespace DomTreeBuilder {
53
54 template <typename DomTreeT>
55 struct SemiNCAInfo {
56 using NodePtr = typename DomTreeT::NodePtr;
57 using NodeT = typename DomTreeT::NodeType;
58 using TreeNodePtr = DomTreeNodeBase<NodeT> *;
59 using RootsT = decltype(DomTreeT::Roots);
60 static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
61 using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
62
63 // Information record used by Semi-NCA during tree construction.
64 struct InfoRec {
65 unsigned DFSNum = 0;
66 unsigned Parent = 0;
67 unsigned Semi = 0;
68 NodePtr Label = nullptr;
69 NodePtr IDom = nullptr;
70 SmallVector<NodePtr, 2> ReverseChildren;
71 };
72
73 // Number to node mapping is 1-based. Initialize the mapping to start with
74 // a dummy element.
75 std::vector<NodePtr> NumToNode = {nullptr};
76 DenseMap<NodePtr, InfoRec> NodeToInfo;
77
78 using UpdateT = typename DomTreeT::UpdateType;
79 using UpdateKind = typename DomTreeT::UpdateKind;
80 struct BatchUpdateInfo {
81 // Note: Updates inside PreViewCFG are aleady legalized.
82 BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
PreViewCFGSemiNCAInfo::BatchUpdateInfo83 : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
84 NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
85
86 // Remembers if the whole tree was recalculated at some point during the
87 // current batch update.
88 bool IsRecalculated = false;
89 GraphDiffT &PreViewCFG;
90 GraphDiffT *PostViewCFG;
91 const size_t NumLegalized;
92 };
93
94 BatchUpdateInfo *BatchUpdates;
95 using BatchUpdatePtr = BatchUpdateInfo *;
96
97 // If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfoSemiNCAInfo98 SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
99
clearSemiNCAInfo100 void clear() {
101 NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
102 NodeToInfo.clear();
103 // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
104 // in progress, we need this information to continue it.
105 }
106
107 template <bool Inversed>
getChildrenSemiNCAInfo108 static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
109 if (BUI)
110 return BUI->PreViewCFG.template getChildren<Inversed>(N);
111 return getChildren<Inversed>(N);
112 }
113
114 template <bool Inversed>
getChildrenSemiNCAInfo115 static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
116 using DirectedNodeT =
117 std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
118 auto R = children<DirectedNodeT>(N);
119 SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
120
121 // Remove nullptr children for clang.
122 llvm::erase_value(Res, nullptr);
123 return Res;
124 }
125
getIDomSemiNCAInfo126 NodePtr getIDom(NodePtr BB) const {
127 auto InfoIt = NodeToInfo.find(BB);
128 if (InfoIt == NodeToInfo.end()) return nullptr;
129
130 return InfoIt->second.IDom;
131 }
132
getNodeForBlockSemiNCAInfo133 TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
134 if (TreeNodePtr Node = DT.getNode(BB)) return Node;
135
136 // Haven't calculated this node yet? Get or calculate the node for the
137 // immediate dominator.
138 NodePtr IDom = getIDom(BB);
139
140 assert(IDom || DT.DomTreeNodes[nullptr]);
141 TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
142
143 // Add a new tree node for this NodeT, and link it as a child of
144 // IDomNode
145 return DT.createChild(BB, IDomNode);
146 }
147
AlwaysDescendSemiNCAInfo148 static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
149
150 struct BlockNamePrinter {
151 NodePtr N;
152
BlockNamePrinterSemiNCAInfo::BlockNamePrinter153 BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinterSemiNCAInfo::BlockNamePrinter154 BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
155
156 friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
157 if (!BP.N)
158 O << "nullptr";
159 else
160 BP.N->printAsOperand(O, false);
161
162 return O;
163 }
164 };
165
166 using NodeOrderMap = DenseMap<NodePtr, unsigned>;
167
168 // Custom DFS implementation which can skip nodes based on a provided
169 // predicate. It also collects ReverseChildren so that we don't have to spend
170 // time getting predecessors in SemiNCA.
171 //
172 // If IsReverse is set to true, the DFS walk will be performed backwards
173 // relative to IsPostDom -- using reverse edges for dominators and forward
174 // edges for postdominators.
175 //
176 // If SuccOrder is specified then in this order the DFS traverses the children
177 // otherwise the order is implied by the results of getChildren().
178 template <bool IsReverse = false, typename DescendCondition>
179 unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
180 unsigned AttachToNum,
181 const NodeOrderMap *SuccOrder = nullptr) {
182 assert(V);
183 SmallVector<NodePtr, 64> WorkList = {V};
184 if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
185
186 while (!WorkList.empty()) {
187 const NodePtr BB = WorkList.pop_back_val();
188 auto &BBInfo = NodeToInfo[BB];
189
190 // Visited nodes always have positive DFS numbers.
191 if (BBInfo.DFSNum != 0) continue;
192 BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
193 BBInfo.Label = BB;
194 NumToNode.push_back(BB);
195
196 constexpr bool Direction = IsReverse != IsPostDom; // XOR.
197 auto Successors = getChildren<Direction>(BB, BatchUpdates);
198 if (SuccOrder && Successors.size() > 1)
199 llvm::sort(
200 Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
201 return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
202 });
203
204 for (const NodePtr Succ : Successors) {
205 const auto SIT = NodeToInfo.find(Succ);
206 // Don't visit nodes more than once but remember to collect
207 // ReverseChildren.
208 if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
209 if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
210 continue;
211 }
212
213 if (!Condition(BB, Succ)) continue;
214
215 // It's fine to add Succ to the map, because we know that it will be
216 // visited later.
217 auto &SuccInfo = NodeToInfo[Succ];
218 WorkList.push_back(Succ);
219 SuccInfo.Parent = LastNum;
220 SuccInfo.ReverseChildren.push_back(BB);
221 }
222 }
223
224 return LastNum;
225 }
226
227 // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
228 // of sdom(U), where U > W and there is a virtual forest path from U to V. The
229 // virtual forest consists of linked edges of processed vertices.
230 //
231 // We can follow Parent pointers (virtual forest edges) to determine the
232 // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
233 // compression technique to speed up to O(m*log(n)). Theoretically the virtual
234 // forest can be organized as balanced trees to achieve almost linear
235 // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
236 // and Child) and is unlikely to be faster than the simple implementation.
237 //
238 // For each vertex V, its Label points to the vertex with the minimal sdom(U)
239 // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
evalSemiNCAInfo240 NodePtr eval(NodePtr V, unsigned LastLinked,
241 SmallVectorImpl<InfoRec *> &Stack) {
242 InfoRec *VInfo = &NodeToInfo[V];
243 if (VInfo->Parent < LastLinked)
244 return VInfo->Label;
245
246 // Store ancestors except the last (root of a virtual tree) into a stack.
247 assert(Stack.empty());
248 do {
249 Stack.push_back(VInfo);
250 VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
251 } while (VInfo->Parent >= LastLinked);
252
253 // Path compression. Point each vertex's Parent to the root and update its
254 // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
255 const InfoRec *PInfo = VInfo;
256 const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
257 do {
258 VInfo = Stack.pop_back_val();
259 VInfo->Parent = PInfo->Parent;
260 const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
261 if (PLabelInfo->Semi < VLabelInfo->Semi)
262 VInfo->Label = PInfo->Label;
263 else
264 PLabelInfo = VLabelInfo;
265 PInfo = VInfo;
266 } while (!Stack.empty());
267 return VInfo->Label;
268 }
269
270 // This function requires DFS to be run before calling it.
271 void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
272 const unsigned NextDFSNum(NumToNode.size());
273 // Initialize IDoms to spanning tree parents.
274 for (unsigned i = 1; i < NextDFSNum; ++i) {
275 const NodePtr V = NumToNode[i];
276 auto &VInfo = NodeToInfo[V];
277 VInfo.IDom = NumToNode[VInfo.Parent];
278 }
279
280 // Step #1: Calculate the semidominators of all vertices.
281 SmallVector<InfoRec *, 32> EvalStack;
282 for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
283 NodePtr W = NumToNode[i];
284 auto &WInfo = NodeToInfo[W];
285
286 // Initialize the semi dominator to point to the parent node.
287 WInfo.Semi = WInfo.Parent;
288 for (const auto &N : WInfo.ReverseChildren) {
289 if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
290 continue;
291
292 const TreeNodePtr TN = DT.getNode(N);
293 // Skip predecessors whose level is above the subtree we are processing.
294 if (TN && TN->getLevel() < MinLevel)
295 continue;
296
297 unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
298 if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
299 }
300 }
301
302 // Step #2: Explicitly define the immediate dominator of each vertex.
303 // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
304 // Note that the parents were stored in IDoms and later got invalidated
305 // during path compression in Eval.
306 for (unsigned i = 2; i < NextDFSNum; ++i) {
307 const NodePtr W = NumToNode[i];
308 auto &WInfo = NodeToInfo[W];
309 const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
310 NodePtr WIDomCandidate = WInfo.IDom;
311 while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
312 WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
313
314 WInfo.IDom = WIDomCandidate;
315 }
316 }
317
318 // PostDominatorTree always has a virtual root that represents a virtual CFG
319 // node that serves as a single exit from the function. All the other exits
320 // (CFG nodes with terminators and nodes in infinite loops are logically
321 // connected to this virtual CFG exit node).
322 // This functions maps a nullptr CFG node to the virtual root tree node.
addVirtualRootSemiNCAInfo323 void addVirtualRoot() {
324 assert(IsPostDom && "Only postdominators have a virtual root");
325 assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
326
327 auto &BBInfo = NodeToInfo[nullptr];
328 BBInfo.DFSNum = BBInfo.Semi = 1;
329 BBInfo.Label = nullptr;
330
331 NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
332 }
333
334 // For postdominators, nodes with no forward successors are trivial roots that
335 // are always selected as tree roots. Roots with forward successors correspond
336 // to CFG nodes within infinite loops.
HasForwardSuccessorsSemiNCAInfo337 static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
338 assert(N && "N must be a valid node");
339 return !getChildren<false>(N, BUI).empty();
340 }
341
GetEntryNodeSemiNCAInfo342 static NodePtr GetEntryNode(const DomTreeT &DT) {
343 assert(DT.Parent && "Parent not set");
344 return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
345 }
346
347 // Finds all roots without relaying on the set of roots already stored in the
348 // tree.
349 // We define roots to be some non-redundant set of the CFG nodes
FindRootsSemiNCAInfo350 static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
351 assert(DT.Parent && "Parent pointer is not set");
352 RootsT Roots;
353
354 // For dominators, function entry CFG node is always a tree root node.
355 if (!IsPostDom) {
356 Roots.push_back(GetEntryNode(DT));
357 return Roots;
358 }
359
360 SemiNCAInfo SNCA(BUI);
361
362 // PostDominatorTree always has a virtual root.
363 SNCA.addVirtualRoot();
364 unsigned Num = 1;
365
366 LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
367
368 // Step #1: Find all the trivial roots that are going to will definitely
369 // remain tree roots.
370 unsigned Total = 0;
371 // It may happen that there are some new nodes in the CFG that are result of
372 // the ongoing batch update, but we cannot really pretend that they don't
373 // exist -- we won't see any outgoing or incoming edges to them, so it's
374 // fine to discover them here, as they would end up appearing in the CFG at
375 // some point anyway.
376 for (const NodePtr N : nodes(DT.Parent)) {
377 ++Total;
378 // If it has no *successors*, it is definitely a root.
379 if (!HasForwardSuccessors(N, BUI)) {
380 Roots.push_back(N);
381 // Run DFS not to walk this part of CFG later.
382 Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
383 LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
384 << "\n");
385 LLVM_DEBUG(dbgs() << "Last visited node: "
386 << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
387 }
388 }
389
390 LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
391
392 // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
393 // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
394 // nodes in infinite loops).
395 bool HasNonTrivialRoots = false;
396 // Accounting for the virtual exit, see if we had any reverse-unreachable
397 // nodes.
398 if (Total + 1 != Num) {
399 HasNonTrivialRoots = true;
400
401 // SuccOrder is the order of blocks in the function. It is needed to make
402 // the calculation of the FurthestAway node and the whole PostDomTree
403 // immune to swap successors transformation (e.g. canonicalizing branch
404 // predicates). SuccOrder is initialized lazily only for successors of
405 // reverse unreachable nodes.
406 Optional<NodeOrderMap> SuccOrder;
407 auto InitSuccOrderOnce = [&]() {
408 SuccOrder = NodeOrderMap();
409 for (const auto Node : nodes(DT.Parent))
410 if (SNCA.NodeToInfo.count(Node) == 0)
411 for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
412 SuccOrder->try_emplace(Succ, 0);
413
414 // Add mapping for all entries of SuccOrder.
415 unsigned NodeNum = 0;
416 for (const auto Node : nodes(DT.Parent)) {
417 ++NodeNum;
418 auto Order = SuccOrder->find(Node);
419 if (Order != SuccOrder->end()) {
420 assert(Order->second == 0);
421 Order->second = NodeNum;
422 }
423 }
424 };
425
426 // Make another DFS pass over all other nodes to find the
427 // reverse-unreachable blocks, and find the furthest paths we'll be able
428 // to make.
429 // Note that this looks N^2, but it's really 2N worst case, if every node
430 // is unreachable. This is because we are still going to only visit each
431 // unreachable node once, we may just visit it in two directions,
432 // depending on how lucky we get.
433 SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
434 for (const NodePtr I : nodes(DT.Parent)) {
435 if (SNCA.NodeToInfo.count(I) == 0) {
436 LLVM_DEBUG(dbgs()
437 << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
438 // Find the furthest away we can get by following successors, then
439 // follow them in reverse. This gives us some reasonable answer about
440 // the post-dom tree inside any infinite loop. In particular, it
441 // guarantees we get to the farthest away point along *some*
442 // path. This also matches the GCC's behavior.
443 // If we really wanted a totally complete picture of dominance inside
444 // this infinite loop, we could do it with SCC-like algorithms to find
445 // the lowest and highest points in the infinite loop. In theory, it
446 // would be nice to give the canonical backedge for the loop, but it's
447 // expensive and does not always lead to a minimal set of roots.
448 LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
449
450 if (!SuccOrder)
451 InitSuccOrderOnce();
452 assert(SuccOrder);
453
454 const unsigned NewNum =
455 SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
456 const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
457 LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
458 << "(non-trivial root): "
459 << BlockNamePrinter(FurthestAway) << "\n");
460 ConnectToExitBlock.insert(FurthestAway);
461 Roots.push_back(FurthestAway);
462 LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
463 << NewNum << "\n\t\t\tRemoving DFS info\n");
464 for (unsigned i = NewNum; i > Num; --i) {
465 const NodePtr N = SNCA.NumToNode[i];
466 LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
467 << BlockNamePrinter(N) << "\n");
468 SNCA.NodeToInfo.erase(N);
469 SNCA.NumToNode.pop_back();
470 }
471 const unsigned PrevNum = Num;
472 LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
473 Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
474 for (unsigned i = PrevNum + 1; i <= Num; ++i)
475 LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
476 << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
477 }
478 }
479 }
480
481 LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
482 LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
483 LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
484 << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
485
486 assert((Total + 1 == Num) && "Everything should have been visited");
487
488 // Step #3: If we found some non-trivial roots, make them non-redundant.
489 if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
490
491 LLVM_DEBUG(dbgs() << "Found roots: ");
492 LLVM_DEBUG(for (auto *Root
493 : Roots) dbgs()
494 << BlockNamePrinter(Root) << " ");
495 LLVM_DEBUG(dbgs() << "\n");
496
497 return Roots;
498 }
499
500 // This function only makes sense for postdominators.
501 // We define roots to be some set of CFG nodes where (reverse) DFS walks have
502 // to start in order to visit all the CFG nodes (including the
503 // reverse-unreachable ones).
504 // When the search for non-trivial roots is done it may happen that some of
505 // the non-trivial roots are reverse-reachable from other non-trivial roots,
506 // which makes them redundant. This function removes them from the set of
507 // input roots.
RemoveRedundantRootsSemiNCAInfo508 static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
509 RootsT &Roots) {
510 assert(IsPostDom && "This function is for postdominators only");
511 LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
512
513 SemiNCAInfo SNCA(BUI);
514
515 for (unsigned i = 0; i < Roots.size(); ++i) {
516 auto &Root = Roots[i];
517 // Trivial roots are always non-redundant.
518 if (!HasForwardSuccessors(Root, BUI)) continue;
519 LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
520 << " remains a root\n");
521 SNCA.clear();
522 // Do a forward walk looking for the other roots.
523 const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
524 // Skip the start node and begin from the second one (note that DFS uses
525 // 1-based indexing).
526 for (unsigned x = 2; x <= Num; ++x) {
527 const NodePtr N = SNCA.NumToNode[x];
528 // If we wound another root in a (forward) DFS walk, remove the current
529 // root from the set of roots, as it is reverse-reachable from the other
530 // one.
531 if (llvm::is_contained(Roots, N)) {
532 LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
533 << BlockNamePrinter(N) << "\n\tRemoving root "
534 << BlockNamePrinter(Root) << "\n");
535 std::swap(Root, Roots.back());
536 Roots.pop_back();
537
538 // Root at the back takes the current root's place.
539 // Start the next loop iteration with the same index.
540 --i;
541 break;
542 }
543 }
544 }
545 }
546
547 template <typename DescendCondition>
doFullDFSWalkSemiNCAInfo548 void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
549 if (!IsPostDom) {
550 assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
551 runDFS(DT.Roots[0], 0, DC, 0);
552 return;
553 }
554
555 addVirtualRoot();
556 unsigned Num = 1;
557 for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
558 }
559
CalculateFromScratchSemiNCAInfo560 static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
561 auto *Parent = DT.Parent;
562 DT.reset();
563 DT.Parent = Parent;
564 // If the update is using the actual CFG, BUI is null. If it's using a view,
565 // BUI is non-null and the PreCFGView is used. When calculating from
566 // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
567 BatchUpdatePtr PostViewBUI = nullptr;
568 if (BUI && BUI->PostViewCFG) {
569 BUI->PreViewCFG = *BUI->PostViewCFG;
570 PostViewBUI = BUI;
571 }
572 // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
573 // used in case the caller needs a DT update with a CFGView.
574 SemiNCAInfo SNCA(PostViewBUI);
575
576 // Step #0: Number blocks in depth-first order and initialize variables used
577 // in later stages of the algorithm.
578 DT.Roots = FindRoots(DT, PostViewBUI);
579 SNCA.doFullDFSWalk(DT, AlwaysDescend);
580
581 SNCA.runSemiNCA(DT);
582 if (BUI) {
583 BUI->IsRecalculated = true;
584 LLVM_DEBUG(
585 dbgs() << "DomTree recalculated, skipping future batch updates\n");
586 }
587
588 if (DT.Roots.empty()) return;
589
590 // Add a node for the root. If the tree is a PostDominatorTree it will be
591 // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
592 // all real exits (including multiple exit blocks, infinite loops).
593 NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
594
595 DT.RootNode = DT.createNode(Root);
596 SNCA.attachNewSubtree(DT, DT.RootNode);
597 }
598
attachNewSubtreeSemiNCAInfo599 void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
600 // Attach the first unreachable block to AttachTo.
601 NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
602 // Loop over all of the discovered blocks in the function...
603 for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
604 NodePtr W = NumToNode[i];
605
606 // Don't replace this with 'count', the insertion side effect is important
607 if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
608
609 NodePtr ImmDom = getIDom(W);
610
611 // Get or calculate the node for the immediate dominator.
612 TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
613
614 // Add a new tree node for this BasicBlock, and link it as a child of
615 // IDomNode.
616 DT.createChild(W, IDomNode);
617 }
618 }
619
reattachExistingSubtreeSemiNCAInfo620 void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
621 NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
622 for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
623 const NodePtr N = NumToNode[i];
624 const TreeNodePtr TN = DT.getNode(N);
625 assert(TN);
626 const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
627 TN->setIDom(NewIDom);
628 }
629 }
630
631 // Helper struct used during edge insertions.
632 struct InsertionInfo {
633 struct Compare {
operatorSemiNCAInfo::InsertionInfo::Compare634 bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
635 return LHS->getLevel() < RHS->getLevel();
636 }
637 };
638
639 // Bucket queue of tree nodes ordered by descending level. For simplicity,
640 // we use a priority_queue here.
641 std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
642 Compare>
643 Bucket;
644 SmallDenseSet<TreeNodePtr, 8> Visited;
645 SmallVector<TreeNodePtr, 8> Affected;
646 #ifndef NDEBUG
647 SmallVector<TreeNodePtr, 8> VisitedUnaffected;
648 #endif
649 };
650
InsertEdgeSemiNCAInfo651 static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
652 const NodePtr From, const NodePtr To) {
653 assert((From || IsPostDom) &&
654 "From has to be a valid CFG node or a virtual root");
655 assert(To && "Cannot be a nullptr");
656 LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
657 << BlockNamePrinter(To) << "\n");
658 TreeNodePtr FromTN = DT.getNode(From);
659
660 if (!FromTN) {
661 // Ignore edges from unreachable nodes for (forward) dominators.
662 if (!IsPostDom) return;
663
664 // The unreachable node becomes a new root -- a tree node for it.
665 TreeNodePtr VirtualRoot = DT.getNode(nullptr);
666 FromTN = DT.createChild(From, VirtualRoot);
667 DT.Roots.push_back(From);
668 }
669
670 DT.DFSInfoValid = false;
671
672 const TreeNodePtr ToTN = DT.getNode(To);
673 if (!ToTN)
674 InsertUnreachable(DT, BUI, FromTN, To);
675 else
676 InsertReachable(DT, BUI, FromTN, ToTN);
677 }
678
679 // Determines if some existing root becomes reverse-reachable after the
680 // insertion. Rebuilds the whole tree if that situation happens.
UpdateRootsBeforeInsertionSemiNCAInfo681 static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
682 const TreeNodePtr From,
683 const TreeNodePtr To) {
684 assert(IsPostDom && "This function is only for postdominators");
685 // Destination node is not attached to the virtual root, so it cannot be a
686 // root.
687 if (!DT.isVirtualRoot(To->getIDom())) return false;
688
689 if (!llvm::is_contained(DT.Roots, To->getBlock()))
690 return false; // To is not a root, nothing to update.
691
692 LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
693 << " is no longer a root\n\t\tRebuilding the tree!!!\n");
694
695 CalculateFromScratch(DT, BUI);
696 return true;
697 }
698
isPermutationSemiNCAInfo699 static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
700 const SmallVectorImpl<NodePtr> &B) {
701 if (A.size() != B.size())
702 return false;
703 SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
704 for (NodePtr N : B)
705 if (Set.count(N) == 0)
706 return false;
707 return true;
708 }
709
710 // Updates the set of roots after insertion or deletion. This ensures that
711 // roots are the same when after a series of updates and when the tree would
712 // be built from scratch.
UpdateRootsAfterUpdateSemiNCAInfo713 static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
714 assert(IsPostDom && "This function is only for postdominators");
715
716 // The tree has only trivial roots -- nothing to update.
717 if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
718 return HasForwardSuccessors(N, BUI);
719 }))
720 return;
721
722 // Recalculate the set of roots.
723 RootsT Roots = FindRoots(DT, BUI);
724 if (!isPermutation(DT.Roots, Roots)) {
725 // The roots chosen in the CFG have changed. This is because the
726 // incremental algorithm does not really know or use the set of roots and
727 // can make a different (implicit) decision about which node within an
728 // infinite loop becomes a root.
729
730 LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
731 << "The entire tree needs to be rebuilt\n");
732 // It may be possible to update the tree without recalculating it, but
733 // we do not know yet how to do it, and it happens rarely in practice.
734 CalculateFromScratch(DT, BUI);
735 }
736 }
737
738 // Handles insertion to a node already in the dominator tree.
InsertReachableSemiNCAInfo739 static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
740 const TreeNodePtr From, const TreeNodePtr To) {
741 LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
742 << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
743 if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
744 // DT.findNCD expects both pointers to be valid. When From is a virtual
745 // root, then its CFG block pointer is a nullptr, so we have to 'compute'
746 // the NCD manually.
747 const NodePtr NCDBlock =
748 (From->getBlock() && To->getBlock())
749 ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
750 : nullptr;
751 assert(NCDBlock || DT.isPostDominator());
752 const TreeNodePtr NCD = DT.getNode(NCDBlock);
753 assert(NCD);
754
755 LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
756 const unsigned NCDLevel = NCD->getLevel();
757
758 // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
759 // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
760 // w on P s.t. depth(v) <= depth(w)
761 //
762 // This reduces to a widest path problem (maximizing the depth of the
763 // minimum vertex in the path) which can be solved by a modified version of
764 // Dijkstra with a bucket queue (named depth-based search in [2]).
765
766 // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
767 // affected if this does not hold.
768 if (NCDLevel + 1 >= To->getLevel())
769 return;
770
771 InsertionInfo II;
772 SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
773 II.Bucket.push(To);
774 II.Visited.insert(To);
775
776 while (!II.Bucket.empty()) {
777 TreeNodePtr TN = II.Bucket.top();
778 II.Bucket.pop();
779 II.Affected.push_back(TN);
780
781 const unsigned CurrentLevel = TN->getLevel();
782 LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
783 "as affected, CurrentLevel " << CurrentLevel << "\n");
784
785 assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
786
787 while (true) {
788 // Unlike regular Dijkstra, we have an inner loop to expand more
789 // vertices. The first iteration is for the (affected) vertex popped
790 // from II.Bucket and the rest are for vertices in
791 // UnaffectedOnCurrentLevel, which may eventually expand to affected
792 // vertices.
793 //
794 // Invariant: there is an optimal path from `To` to TN with the minimum
795 // depth being CurrentLevel.
796 for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
797 const TreeNodePtr SuccTN = DT.getNode(Succ);
798 assert(SuccTN &&
799 "Unreachable successor found at reachable insertion");
800 const unsigned SuccLevel = SuccTN->getLevel();
801
802 LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
803 << ", level = " << SuccLevel << "\n");
804
805 // There is an optimal path from `To` to Succ with the minimum depth
806 // being min(CurrentLevel, SuccLevel).
807 //
808 // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
809 // and no affected vertex may be reached by a path passing through it.
810 // Stop here. Also, Succ may be visited by other predecessors but the
811 // first visit has the optimal path. Stop if Succ has been visited.
812 if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
813 continue;
814
815 if (SuccLevel > CurrentLevel) {
816 // Succ is unaffected but it may (transitively) expand to affected
817 // vertices. Store it in UnaffectedOnCurrentLevel.
818 LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
819 << BlockNamePrinter(Succ) << "\n");
820 UnaffectedOnCurrentLevel.push_back(SuccTN);
821 #ifndef NDEBUG
822 II.VisitedUnaffected.push_back(SuccTN);
823 #endif
824 } else {
825 // The condition is satisfied (Succ is affected). Add Succ to the
826 // bucket queue.
827 LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
828 << " to a Bucket\n");
829 II.Bucket.push(SuccTN);
830 }
831 }
832
833 if (UnaffectedOnCurrentLevel.empty())
834 break;
835 TN = UnaffectedOnCurrentLevel.pop_back_val();
836 LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
837 }
838 }
839
840 // Finish by updating immediate dominators and levels.
841 UpdateInsertion(DT, BUI, NCD, II);
842 }
843
844 // Updates immediate dominators and levels after insertion.
UpdateInsertionSemiNCAInfo845 static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
846 const TreeNodePtr NCD, InsertionInfo &II) {
847 LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
848
849 for (const TreeNodePtr TN : II.Affected) {
850 LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
851 << ") = " << BlockNamePrinter(NCD) << "\n");
852 TN->setIDom(NCD);
853 }
854
855 #ifndef NDEBUG
856 for (const TreeNodePtr TN : II.VisitedUnaffected)
857 assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
858 "TN should have been updated by an affected ancestor");
859 #endif
860
861 if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
862 }
863
864 // Handles insertion to previously unreachable nodes.
InsertUnreachableSemiNCAInfo865 static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
866 const TreeNodePtr From, const NodePtr To) {
867 LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
868 << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
869
870 // Collect discovered edges to already reachable nodes.
871 SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
872 // Discover and connect nodes that became reachable with the insertion.
873 ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
874
875 LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
876 << " -> (prev unreachable) " << BlockNamePrinter(To)
877 << "\n");
878
879 // Used the discovered edges and inset discovered connecting (incoming)
880 // edges.
881 for (const auto &Edge : DiscoveredEdgesToReachable) {
882 LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
883 << BlockNamePrinter(Edge.first) << " -> "
884 << BlockNamePrinter(Edge.second) << "\n");
885 InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
886 }
887 }
888
889 // Connects nodes that become reachable with an insertion.
ComputeUnreachableDominatorsSemiNCAInfo890 static void ComputeUnreachableDominators(
891 DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
892 const TreeNodePtr Incoming,
893 SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
894 &DiscoveredConnectingEdges) {
895 assert(!DT.getNode(Root) && "Root must not be reachable");
896
897 // Visit only previously unreachable nodes.
898 auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
899 NodePtr To) {
900 const TreeNodePtr ToTN = DT.getNode(To);
901 if (!ToTN) return true;
902
903 DiscoveredConnectingEdges.push_back({From, ToTN});
904 return false;
905 };
906
907 SemiNCAInfo SNCA(BUI);
908 SNCA.runDFS(Root, 0, UnreachableDescender, 0);
909 SNCA.runSemiNCA(DT);
910 SNCA.attachNewSubtree(DT, Incoming);
911
912 LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
913 }
914
DeleteEdgeSemiNCAInfo915 static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
916 const NodePtr From, const NodePtr To) {
917 assert(From && To && "Cannot disconnect nullptrs");
918 LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
919 << BlockNamePrinter(To) << "\n");
920
921 #ifndef NDEBUG
922 // Ensure that the edge was in fact deleted from the CFG before informing
923 // the DomTree about it.
924 // The check is O(N), so run it only in debug configuration.
925 auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
926 auto Successors = getChildren<IsPostDom>(Of, BUI);
927 return llvm::is_contained(Successors, SuccCandidate);
928 };
929 (void)IsSuccessor;
930 assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
931 #endif
932
933 const TreeNodePtr FromTN = DT.getNode(From);
934 // Deletion in an unreachable subtree -- nothing to do.
935 if (!FromTN) return;
936
937 const TreeNodePtr ToTN = DT.getNode(To);
938 if (!ToTN) {
939 LLVM_DEBUG(
940 dbgs() << "\tTo (" << BlockNamePrinter(To)
941 << ") already unreachable -- there is no edge to delete\n");
942 return;
943 }
944
945 const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
946 const TreeNodePtr NCD = DT.getNode(NCDBlock);
947
948 // If To dominates From -- nothing to do.
949 if (ToTN != NCD) {
950 DT.DFSInfoValid = false;
951
952 const TreeNodePtr ToIDom = ToTN->getIDom();
953 LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
954 << BlockNamePrinter(ToIDom) << "\n");
955
956 // To remains reachable after deletion.
957 // (Based on the caption under Figure 4. from [2].)
958 if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
959 DeleteReachable(DT, BUI, FromTN, ToTN);
960 else
961 DeleteUnreachable(DT, BUI, ToTN);
962 }
963
964 if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
965 }
966
967 // Handles deletions that leave destination nodes reachable.
DeleteReachableSemiNCAInfo968 static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
969 const TreeNodePtr FromTN,
970 const TreeNodePtr ToTN) {
971 LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
972 << " -> " << BlockNamePrinter(ToTN) << "\n");
973 LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
974
975 // Find the top of the subtree that needs to be rebuilt.
976 // (Based on the lemma 2.6 from [2].)
977 const NodePtr ToIDom =
978 DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
979 assert(ToIDom || DT.isPostDominator());
980 const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
981 assert(ToIDomTN);
982 const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
983 // Top of the subtree to rebuild is the root node. Rebuild the tree from
984 // scratch.
985 if (!PrevIDomSubTree) {
986 LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
987 CalculateFromScratch(DT, BUI);
988 return;
989 }
990
991 // Only visit nodes in the subtree starting at To.
992 const unsigned Level = ToIDomTN->getLevel();
993 auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
994 return DT.getNode(To)->getLevel() > Level;
995 };
996
997 LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
998 << "\n");
999
1000 SemiNCAInfo SNCA(BUI);
1001 SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1002 LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1003 SNCA.runSemiNCA(DT, Level);
1004 SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1005 }
1006
1007 // Checks if a node has proper support, as defined on the page 3 and later
1008 // explained on the page 7 of [2].
HasProperSupportSemiNCAInfo1009 static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1010 const TreeNodePtr TN) {
1011 LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1012 << "\n");
1013 auto TNB = TN->getBlock();
1014 for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
1015 LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1016 if (!DT.getNode(Pred)) continue;
1017
1018 const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1019 LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1020 if (Support != TNB) {
1021 LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1022 << " is reachable from support "
1023 << BlockNamePrinter(Support) << "\n");
1024 return true;
1025 }
1026 }
1027
1028 return false;
1029 }
1030
1031 // Handle deletions that make destination node unreachable.
1032 // (Based on the lemma 2.7 from the [2].)
DeleteUnreachableSemiNCAInfo1033 static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1034 const TreeNodePtr ToTN) {
1035 LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1036 << BlockNamePrinter(ToTN) << "\n");
1037 assert(ToTN);
1038 assert(ToTN->getBlock());
1039
1040 if (IsPostDom) {
1041 // Deletion makes a region reverse-unreachable and creates a new root.
1042 // Simulate that by inserting an edge from the virtual root to ToTN and
1043 // adding it as a new root.
1044 LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1045 LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1046 << "\n");
1047 DT.Roots.push_back(ToTN->getBlock());
1048 InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1049 return;
1050 }
1051
1052 SmallVector<NodePtr, 16> AffectedQueue;
1053 const unsigned Level = ToTN->getLevel();
1054
1055 // Traverse destination node's descendants with greater level in the tree
1056 // and collect visited nodes.
1057 auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1058 const TreeNodePtr TN = DT.getNode(To);
1059 assert(TN);
1060 if (TN->getLevel() > Level) return true;
1061 if (!llvm::is_contained(AffectedQueue, To))
1062 AffectedQueue.push_back(To);
1063
1064 return false;
1065 };
1066
1067 SemiNCAInfo SNCA(BUI);
1068 unsigned LastDFSNum =
1069 SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1070
1071 TreeNodePtr MinNode = ToTN;
1072
1073 // Identify the top of the subtree to rebuild by finding the NCD of all
1074 // the affected nodes.
1075 for (const NodePtr N : AffectedQueue) {
1076 const TreeNodePtr TN = DT.getNode(N);
1077 const NodePtr NCDBlock =
1078 DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1079 assert(NCDBlock || DT.isPostDominator());
1080 const TreeNodePtr NCD = DT.getNode(NCDBlock);
1081 assert(NCD);
1082
1083 LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1084 << " with NCD = " << BlockNamePrinter(NCD)
1085 << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1086 if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1087 }
1088
1089 // Root reached, rebuild the whole tree from scratch.
1090 if (!MinNode->getIDom()) {
1091 LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1092 CalculateFromScratch(DT, BUI);
1093 return;
1094 }
1095
1096 // Erase the unreachable subtree in reverse preorder to process all children
1097 // before deleting their parent.
1098 for (unsigned i = LastDFSNum; i > 0; --i) {
1099 const NodePtr N = SNCA.NumToNode[i];
1100 const TreeNodePtr TN = DT.getNode(N);
1101 LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1102
1103 EraseNode(DT, TN);
1104 }
1105
1106 // The affected subtree start at the To node -- there's no extra work to do.
1107 if (MinNode == ToTN) return;
1108
1109 LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1110 << BlockNamePrinter(MinNode) << "\n");
1111 const unsigned MinLevel = MinNode->getLevel();
1112 const TreeNodePtr PrevIDom = MinNode->getIDom();
1113 assert(PrevIDom);
1114 SNCA.clear();
1115
1116 // Identify nodes that remain in the affected subtree.
1117 auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1118 const TreeNodePtr ToTN = DT.getNode(To);
1119 return ToTN && ToTN->getLevel() > MinLevel;
1120 };
1121 SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1122
1123 LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1124 << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1125
1126 // Rebuild the remaining part of affected subtree.
1127 SNCA.runSemiNCA(DT, MinLevel);
1128 SNCA.reattachExistingSubtree(DT, PrevIDom);
1129 }
1130
1131 // Removes leaf tree nodes from the dominator tree.
EraseNodeSemiNCAInfo1132 static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1133 assert(TN);
1134 assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1135
1136 const TreeNodePtr IDom = TN->getIDom();
1137 assert(IDom);
1138
1139 auto ChIt = llvm::find(IDom->Children, TN);
1140 assert(ChIt != IDom->Children.end());
1141 std::swap(*ChIt, IDom->Children.back());
1142 IDom->Children.pop_back();
1143
1144 DT.DomTreeNodes.erase(TN->getBlock());
1145 }
1146
1147 //~~
1148 //===--------------------- DomTree Batch Updater --------------------------===
1149 //~~
1150
ApplyUpdatesSemiNCAInfo1151 static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1152 GraphDiffT *PostViewCFG) {
1153 // Note: the PostViewCFG is only used when computing from scratch. It's data
1154 // should already included in the PreViewCFG for incremental updates.
1155 const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1156 if (NumUpdates == 0)
1157 return;
1158
1159 // Take the fast path for a single update and avoid running the batch update
1160 // machinery.
1161 if (NumUpdates == 1) {
1162 UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1163 if (!PostViewCFG) {
1164 if (Update.getKind() == UpdateKind::Insert)
1165 InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1166 else
1167 DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1168 } else {
1169 BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1170 if (Update.getKind() == UpdateKind::Insert)
1171 InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1172 else
1173 DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1174 }
1175 return;
1176 }
1177
1178 BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1179 // Recalculate the DominatorTree when the number of updates
1180 // exceeds a threshold, which usually makes direct updating slower than
1181 // recalculation. We select this threshold proportional to the
1182 // size of the DominatorTree. The constant is selected
1183 // by choosing the one with an acceptable performance on some real-world
1184 // inputs.
1185
1186 // Make unittests of the incremental algorithm work
1187 if (DT.DomTreeNodes.size() <= 100) {
1188 if (BUI.NumLegalized > DT.DomTreeNodes.size())
1189 CalculateFromScratch(DT, &BUI);
1190 } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1191 CalculateFromScratch(DT, &BUI);
1192
1193 // If the DominatorTree was recalculated at some point, stop the batch
1194 // updates. Full recalculations ignore batch updates and look at the actual
1195 // CFG.
1196 for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1197 ApplyNextUpdate(DT, BUI);
1198 }
1199
ApplyNextUpdateSemiNCAInfo1200 static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1201 // Popping the next update, will move the PreViewCFG to the next snapshot.
1202 UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1203 #if 0
1204 // FIXME: The LLVM_DEBUG macro only plays well with a modular
1205 // build of LLVM when the header is marked as textual, but doing
1206 // so causes redefinition errors.
1207 LLVM_DEBUG(dbgs() << "Applying update: ");
1208 LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1209 #endif
1210
1211 if (CurrentUpdate.getKind() == UpdateKind::Insert)
1212 InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1213 else
1214 DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1215 }
1216
1217 //~~
1218 //===--------------- DomTree correctness verification ---------------------===
1219 //~~
1220
1221 // Check if the tree has correct roots. A DominatorTree always has a single
1222 // root which is the function's entry node. A PostDominatorTree can have
1223 // multiple roots - one for each node with no successors and for infinite
1224 // loops.
1225 // Running time: O(N).
verifyRootsSemiNCAInfo1226 bool verifyRoots(const DomTreeT &DT) {
1227 if (!DT.Parent && !DT.Roots.empty()) {
1228 errs() << "Tree has no parent but has roots!\n";
1229 errs().flush();
1230 return false;
1231 }
1232
1233 if (!IsPostDom) {
1234 if (DT.Roots.empty()) {
1235 errs() << "Tree doesn't have a root!\n";
1236 errs().flush();
1237 return false;
1238 }
1239
1240 if (DT.getRoot() != GetEntryNode(DT)) {
1241 errs() << "Tree's root is not its parent's entry node!\n";
1242 errs().flush();
1243 return false;
1244 }
1245 }
1246
1247 RootsT ComputedRoots = FindRoots(DT, nullptr);
1248 if (!isPermutation(DT.Roots, ComputedRoots)) {
1249 errs() << "Tree has different roots than freshly computed ones!\n";
1250 errs() << "\tPDT roots: ";
1251 for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1252 errs() << "\n\tComputed roots: ";
1253 for (const NodePtr N : ComputedRoots)
1254 errs() << BlockNamePrinter(N) << ", ";
1255 errs() << "\n";
1256 errs().flush();
1257 return false;
1258 }
1259
1260 return true;
1261 }
1262
1263 // Checks if the tree contains all reachable nodes in the input graph.
1264 // Running time: O(N).
verifyReachabilitySemiNCAInfo1265 bool verifyReachability(const DomTreeT &DT) {
1266 clear();
1267 doFullDFSWalk(DT, AlwaysDescend);
1268
1269 for (auto &NodeToTN : DT.DomTreeNodes) {
1270 const TreeNodePtr TN = NodeToTN.second.get();
1271 const NodePtr BB = TN->getBlock();
1272
1273 // Virtual root has a corresponding virtual CFG node.
1274 if (DT.isVirtualRoot(TN)) continue;
1275
1276 if (NodeToInfo.count(BB) == 0) {
1277 errs() << "DomTree node " << BlockNamePrinter(BB)
1278 << " not found by DFS walk!\n";
1279 errs().flush();
1280
1281 return false;
1282 }
1283 }
1284
1285 for (const NodePtr N : NumToNode) {
1286 if (N && !DT.getNode(N)) {
1287 errs() << "CFG node " << BlockNamePrinter(N)
1288 << " not found in the DomTree!\n";
1289 errs().flush();
1290
1291 return false;
1292 }
1293 }
1294
1295 return true;
1296 }
1297
1298 // Check if for every parent with a level L in the tree all of its children
1299 // have level L + 1.
1300 // Running time: O(N).
VerifyLevelsSemiNCAInfo1301 static bool VerifyLevels(const DomTreeT &DT) {
1302 for (auto &NodeToTN : DT.DomTreeNodes) {
1303 const TreeNodePtr TN = NodeToTN.second.get();
1304 const NodePtr BB = TN->getBlock();
1305 if (!BB) continue;
1306
1307 const TreeNodePtr IDom = TN->getIDom();
1308 if (!IDom && TN->getLevel() != 0) {
1309 errs() << "Node without an IDom " << BlockNamePrinter(BB)
1310 << " has a nonzero level " << TN->getLevel() << "!\n";
1311 errs().flush();
1312
1313 return false;
1314 }
1315
1316 if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1317 errs() << "Node " << BlockNamePrinter(BB) << " has level "
1318 << TN->getLevel() << " while its IDom "
1319 << BlockNamePrinter(IDom->getBlock()) << " has level "
1320 << IDom->getLevel() << "!\n";
1321 errs().flush();
1322
1323 return false;
1324 }
1325 }
1326
1327 return true;
1328 }
1329
1330 // Check if the computed DFS numbers are correct. Note that DFS info may not
1331 // be valid, and when that is the case, we don't verify the numbers.
1332 // Running time: O(N log(N)).
VerifyDFSNumbersSemiNCAInfo1333 static bool VerifyDFSNumbers(const DomTreeT &DT) {
1334 if (!DT.DFSInfoValid || !DT.Parent)
1335 return true;
1336
1337 const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1338 const TreeNodePtr Root = DT.getNode(RootBB);
1339
1340 auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1341 errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1342 << TN->getDFSNumOut() << '}';
1343 };
1344
1345 // Verify the root's DFS In number. Although DFS numbering would also work
1346 // if we started from some other value, we assume 0-based numbering.
1347 if (Root->getDFSNumIn() != 0) {
1348 errs() << "DFSIn number for the tree root is not:\n\t";
1349 PrintNodeAndDFSNums(Root);
1350 errs() << '\n';
1351 errs().flush();
1352 return false;
1353 }
1354
1355 // For each tree node verify if children's DFS numbers cover their parent's
1356 // DFS numbers with no gaps.
1357 for (const auto &NodeToTN : DT.DomTreeNodes) {
1358 const TreeNodePtr Node = NodeToTN.second.get();
1359
1360 // Handle tree leaves.
1361 if (Node->isLeaf()) {
1362 if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1363 errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1364 PrintNodeAndDFSNums(Node);
1365 errs() << '\n';
1366 errs().flush();
1367 return false;
1368 }
1369
1370 continue;
1371 }
1372
1373 // Make a copy and sort it such that it is possible to check if there are
1374 // no gaps between DFS numbers of adjacent children.
1375 SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1376 llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1377 return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1378 });
1379
1380 auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1381 const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1382 assert(FirstCh);
1383
1384 errs() << "Incorrect DFS numbers for:\n\tParent ";
1385 PrintNodeAndDFSNums(Node);
1386
1387 errs() << "\n\tChild ";
1388 PrintNodeAndDFSNums(FirstCh);
1389
1390 if (SecondCh) {
1391 errs() << "\n\tSecond child ";
1392 PrintNodeAndDFSNums(SecondCh);
1393 }
1394
1395 errs() << "\nAll children: ";
1396 for (const TreeNodePtr Ch : Children) {
1397 PrintNodeAndDFSNums(Ch);
1398 errs() << ", ";
1399 }
1400
1401 errs() << '\n';
1402 errs().flush();
1403 };
1404
1405 if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1406 PrintChildrenError(Children.front(), nullptr);
1407 return false;
1408 }
1409
1410 if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1411 PrintChildrenError(Children.back(), nullptr);
1412 return false;
1413 }
1414
1415 for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1416 if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1417 PrintChildrenError(Children[i], Children[i + 1]);
1418 return false;
1419 }
1420 }
1421 }
1422
1423 return true;
1424 }
1425
1426 // The below routines verify the correctness of the dominator tree relative to
1427 // the CFG it's coming from. A tree is a dominator tree iff it has two
1428 // properties, called the parent property and the sibling property. Tarjan
1429 // and Lengauer prove (but don't explicitly name) the properties as part of
1430 // the proofs in their 1972 paper, but the proofs are mostly part of proving
1431 // things about semidominators and idoms, and some of them are simply asserted
1432 // based on even earlier papers (see, e.g., lemma 2). Some papers refer to
1433 // these properties as "valid" and "co-valid". See, e.g., "Dominators,
1434 // directed bipolar orders, and independent spanning trees" by Loukas
1435 // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1436 // and Vertex-Disjoint Paths " by the same authors.
1437
1438 // A very simple and direct explanation of these properties can be found in
1439 // "An Experimental Study of Dynamic Dominators", found at
1440 // https://arxiv.org/abs/1604.02711
1441
1442 // The easiest way to think of the parent property is that it's a requirement
1443 // of being a dominator. Let's just take immediate dominators. For PARENT to
1444 // be an immediate dominator of CHILD, all paths in the CFG must go through
1445 // PARENT before they hit CHILD. This implies that if you were to cut PARENT
1446 // out of the CFG, there should be no paths to CHILD that are reachable. If
1447 // there are, then you now have a path from PARENT to CHILD that goes around
1448 // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1449 // a dominator of CHILD (let alone an immediate one).
1450
1451 // The sibling property is similar. It says that for each pair of sibling
1452 // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1453 // other. If sibling LEFT dominated sibling RIGHT, it means there are no
1454 // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1455 // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1456 // RIGHT, not a sibling.
1457
1458 // It is possible to verify the parent and sibling properties in linear time,
1459 // but the algorithms are complex. Instead, we do it in a straightforward
1460 // N^2 and N^3 way below, using direct path reachability.
1461
1462 // Checks if the tree has the parent property: if for all edges from V to W in
1463 // the input graph, such that V is reachable, the parent of W in the tree is
1464 // an ancestor of V in the tree.
1465 // Running time: O(N^2).
1466 //
1467 // This means that if a node gets disconnected from the graph, then all of
1468 // the nodes it dominated previously will now become unreachable.
verifyParentPropertySemiNCAInfo1469 bool verifyParentProperty(const DomTreeT &DT) {
1470 for (auto &NodeToTN : DT.DomTreeNodes) {
1471 const TreeNodePtr TN = NodeToTN.second.get();
1472 const NodePtr BB = TN->getBlock();
1473 if (!BB || TN->isLeaf())
1474 continue;
1475
1476 LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1477 << BlockNamePrinter(TN) << "\n");
1478 clear();
1479 doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1480 return From != BB && To != BB;
1481 });
1482
1483 for (TreeNodePtr Child : TN->children())
1484 if (NodeToInfo.count(Child->getBlock()) != 0) {
1485 errs() << "Child " << BlockNamePrinter(Child)
1486 << " reachable after its parent " << BlockNamePrinter(BB)
1487 << " is removed!\n";
1488 errs().flush();
1489
1490 return false;
1491 }
1492 }
1493
1494 return true;
1495 }
1496
1497 // Check if the tree has sibling property: if a node V does not dominate a
1498 // node W for all siblings V and W in the tree.
1499 // Running time: O(N^3).
1500 //
1501 // This means that if a node gets disconnected from the graph, then all of its
1502 // siblings will now still be reachable.
verifySiblingPropertySemiNCAInfo1503 bool verifySiblingProperty(const DomTreeT &DT) {
1504 for (auto &NodeToTN : DT.DomTreeNodes) {
1505 const TreeNodePtr TN = NodeToTN.second.get();
1506 const NodePtr BB = TN->getBlock();
1507 if (!BB || TN->isLeaf())
1508 continue;
1509
1510 for (const TreeNodePtr N : TN->children()) {
1511 clear();
1512 NodePtr BBN = N->getBlock();
1513 doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1514 return From != BBN && To != BBN;
1515 });
1516
1517 for (const TreeNodePtr S : TN->children()) {
1518 if (S == N) continue;
1519
1520 if (NodeToInfo.count(S->getBlock()) == 0) {
1521 errs() << "Node " << BlockNamePrinter(S)
1522 << " not reachable when its sibling " << BlockNamePrinter(N)
1523 << " is removed!\n";
1524 errs().flush();
1525
1526 return false;
1527 }
1528 }
1529 }
1530 }
1531
1532 return true;
1533 }
1534
1535 // Check if the given tree is the same as a freshly computed one for the same
1536 // Parent.
1537 // Running time: O(N^2), but faster in practice (same as tree construction).
1538 //
1539 // Note that this does not check if that the tree construction algorithm is
1540 // correct and should be only used for fast (but possibly unsound)
1541 // verification.
IsSameAsFreshTreeSemiNCAInfo1542 static bool IsSameAsFreshTree(const DomTreeT &DT) {
1543 DomTreeT FreshTree;
1544 FreshTree.recalculate(*DT.Parent);
1545 const bool Different = DT.compare(FreshTree);
1546
1547 if (Different) {
1548 errs() << (DT.isPostDominator() ? "Post" : "")
1549 << "DominatorTree is different than a freshly computed one!\n"
1550 << "\tCurrent:\n";
1551 DT.print(errs());
1552 errs() << "\n\tFreshly computed tree:\n";
1553 FreshTree.print(errs());
1554 errs().flush();
1555 }
1556
1557 return !Different;
1558 }
1559 };
1560
1561 template <class DomTreeT>
Calculate(DomTreeT & DT)1562 void Calculate(DomTreeT &DT) {
1563 SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1564 }
1565
1566 template <typename DomTreeT>
CalculateWithUpdates(DomTreeT & DT,ArrayRef<typename DomTreeT::UpdateType> Updates)1567 void CalculateWithUpdates(DomTreeT &DT,
1568 ArrayRef<typename DomTreeT::UpdateType> Updates) {
1569 // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1570 // This behavior is however incorrect; this actually needs the PostViewCFG.
1571 GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1572 Updates, /*ReverseApplyUpdates=*/true);
1573 typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1574 SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1575 }
1576
1577 template <class DomTreeT>
InsertEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1578 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1579 typename DomTreeT::NodePtr To) {
1580 if (DT.isPostDominator()) std::swap(From, To);
1581 SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1582 }
1583
1584 template <class DomTreeT>
DeleteEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1585 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1586 typename DomTreeT::NodePtr To) {
1587 if (DT.isPostDominator()) std::swap(From, To);
1588 SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1589 }
1590
1591 template <class DomTreeT>
ApplyUpdates(DomTreeT & DT,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> & PreViewCFG,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> * PostViewCFG)1592 void ApplyUpdates(DomTreeT &DT,
1593 GraphDiff<typename DomTreeT::NodePtr,
1594 DomTreeT::IsPostDominator> &PreViewCFG,
1595 GraphDiff<typename DomTreeT::NodePtr,
1596 DomTreeT::IsPostDominator> *PostViewCFG) {
1597 SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1598 }
1599
1600 template <class DomTreeT>
Verify(const DomTreeT & DT,typename DomTreeT::VerificationLevel VL)1601 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1602 SemiNCAInfo<DomTreeT> SNCA(nullptr);
1603
1604 // Simplist check is to compare against a new tree. This will also
1605 // usefully print the old and new trees, if they are different.
1606 if (!SNCA.IsSameAsFreshTree(DT))
1607 return false;
1608
1609 // Common checks to verify the properties of the tree. O(N log N) at worst.
1610 if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1611 !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1612 return false;
1613
1614 // Extra checks depending on VerificationLevel. Up to O(N^3).
1615 if (VL == DomTreeT::VerificationLevel::Basic ||
1616 VL == DomTreeT::VerificationLevel::Full)
1617 if (!SNCA.verifyParentProperty(DT))
1618 return false;
1619 if (VL == DomTreeT::VerificationLevel::Full)
1620 if (!SNCA.verifySiblingProperty(DT))
1621 return false;
1622
1623 return true;
1624 }
1625
1626 } // namespace DomTreeBuilder
1627 } // namespace llvm
1628
1629 #undef DEBUG_TYPE
1630
1631 #endif
1632