1 //===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains common definitions used in the reading and writing of
10 // sample profile data.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
15 #define LLVM_PROFILEDATA_SAMPLEPROF_H
16
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringMap.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalValue.h"
24 #include "llvm/Support/Allocator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorOr.h"
27 #include "llvm/Support/MathExtras.h"
28 #include <algorithm>
29 #include <cstdint>
30 #include <list>
31 #include <map>
32 #include <set>
33 #include <sstream>
34 #include <string>
35 #include <system_error>
36 #include <unordered_map>
37 #include <utility>
38
39 namespace llvm {
40
41 class DILocation;
42 class raw_ostream;
43
44 const std::error_category &sampleprof_category();
45
46 enum class sampleprof_error {
47 success = 0,
48 bad_magic,
49 unsupported_version,
50 too_large,
51 truncated,
52 malformed,
53 unrecognized_format,
54 unsupported_writing_format,
55 truncated_name_table,
56 not_implemented,
57 counter_overflow,
58 ostream_seek_unsupported,
59 uncompress_failed,
60 zlib_unavailable,
61 hash_mismatch
62 };
63
make_error_code(sampleprof_error E)64 inline std::error_code make_error_code(sampleprof_error E) {
65 return std::error_code(static_cast<int>(E), sampleprof_category());
66 }
67
MergeResult(sampleprof_error & Accumulator,sampleprof_error Result)68 inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
69 sampleprof_error Result) {
70 // Prefer first error encountered as later errors may be secondary effects of
71 // the initial problem.
72 if (Accumulator == sampleprof_error::success &&
73 Result != sampleprof_error::success)
74 Accumulator = Result;
75 return Accumulator;
76 }
77
78 } // end namespace llvm
79
80 namespace std {
81
82 template <>
83 struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
84
85 } // end namespace std
86
87 namespace llvm {
88 namespace sampleprof {
89
90 enum SampleProfileFormat {
91 SPF_None = 0,
92 SPF_Text = 0x1,
93 SPF_Compact_Binary = 0x2,
94 SPF_GCC = 0x3,
95 SPF_Ext_Binary = 0x4,
96 SPF_Binary = 0xff
97 };
98
99 static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
100 return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
101 uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
102 uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
103 uint64_t('2') << (64 - 56) | uint64_t(Format);
104 }
105
106 /// Get the proper representation of a string according to whether the
107 /// current Format uses MD5 to represent the string.
108 static inline StringRef getRepInFormat(StringRef Name, bool UseMD5,
109 std::string &GUIDBuf) {
110 if (Name.empty() || !UseMD5)
111 return Name;
112 GUIDBuf = std::to_string(Function::getGUID(Name));
113 return GUIDBuf;
114 }
115
116 static inline uint64_t SPVersion() { return 103; }
117
118 // Section Type used by SampleProfileExtBinaryBaseReader and
119 // SampleProfileExtBinaryBaseWriter. Never change the existing
120 // value of enum. Only append new ones.
121 enum SecType {
122 SecInValid = 0,
123 SecProfSummary = 1,
124 SecNameTable = 2,
125 SecProfileSymbolList = 3,
126 SecFuncOffsetTable = 4,
127 SecFuncMetadata = 5,
128 SecCSNameTable = 6,
129 // marker for the first type of profile.
130 SecFuncProfileFirst = 32,
131 SecLBRProfile = SecFuncProfileFirst
132 };
133
134 static inline std::string getSecName(SecType Type) {
135 switch ((int)Type) { // Avoid -Wcovered-switch-default
136 case SecInValid:
137 return "InvalidSection";
138 case SecProfSummary:
139 return "ProfileSummarySection";
140 case SecNameTable:
141 return "NameTableSection";
142 case SecProfileSymbolList:
143 return "ProfileSymbolListSection";
144 case SecFuncOffsetTable:
145 return "FuncOffsetTableSection";
146 case SecFuncMetadata:
147 return "FunctionMetadata";
148 case SecCSNameTable:
149 return "CSNameTableSection";
150 case SecLBRProfile:
151 return "LBRProfileSection";
152 default:
153 return "UnknownSection";
154 }
155 }
156
157 // Entry type of section header table used by SampleProfileExtBinaryBaseReader
158 // and SampleProfileExtBinaryBaseWriter.
159 struct SecHdrTableEntry {
160 SecType Type;
161 uint64_t Flags;
162 uint64_t Offset;
163 uint64_t Size;
164 // The index indicating the location of the current entry in
165 // SectionHdrLayout table.
166 uint32_t LayoutIndex;
167 };
168
169 // Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
170 // common flags will be saved in the lower 32bits and section specific flags
171 // will be saved in the higher 32 bits.
172 enum class SecCommonFlags : uint32_t {
173 SecFlagInValid = 0,
174 SecFlagCompress = (1 << 0),
175 // Indicate the section contains only profile without context.
176 SecFlagFlat = (1 << 1)
177 };
178
179 // Section specific flags are defined here.
180 // !!!Note: Everytime a new enum class is created here, please add
181 // a new check in verifySecFlag.
182 enum class SecNameTableFlags : uint32_t {
183 SecFlagInValid = 0,
184 SecFlagMD5Name = (1 << 0),
185 // Store MD5 in fixed length instead of ULEB128 so NameTable can be
186 // accessed like an array.
187 SecFlagFixedLengthMD5 = (1 << 1),
188 // Profile contains ".__uniq." suffix name. Compiler shouldn't strip
189 // the suffix when doing profile matching when seeing the flag.
190 SecFlagUniqSuffix = (1 << 2)
191 };
192 enum class SecProfSummaryFlags : uint32_t {
193 SecFlagInValid = 0,
194 /// SecFlagPartial means the profile is for common/shared code.
195 /// The common profile is usually merged from profiles collected
196 /// from running other targets.
197 SecFlagPartial = (1 << 0),
198 /// SecFlagContext means this is context-sensitive flat profile for
199 /// CSSPGO
200 SecFlagFullContext = (1 << 1),
201 /// SecFlagFSDiscriminator means this profile uses flow-sensitive
202 /// discriminators.
203 SecFlagFSDiscriminator = (1 << 2),
204 /// SecFlagIsPreInlined means this profile contains ShouldBeInlined
205 /// contexts thus this is CS preinliner computed.
206 SecFlagIsPreInlined = (1 << 4),
207 };
208
209 enum class SecFuncMetadataFlags : uint32_t {
210 SecFlagInvalid = 0,
211 SecFlagIsProbeBased = (1 << 0),
212 SecFlagHasAttribute = (1 << 1),
213 };
214
215 enum class SecFuncOffsetFlags : uint32_t {
216 SecFlagInvalid = 0,
217 // Store function offsets in an order of contexts. The order ensures that
218 // callee contexts of a given context laid out next to it.
219 SecFlagOrdered = (1 << 0),
220 };
221
222 // Verify section specific flag is used for the correct section.
223 template <class SecFlagType>
224 static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
225 // No verification is needed for common flags.
226 if (std::is_same<SecCommonFlags, SecFlagType>())
227 return;
228
229 // Verification starts here for section specific flag.
230 bool IsFlagLegal = false;
231 switch (Type) {
232 case SecNameTable:
233 IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
234 break;
235 case SecProfSummary:
236 IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
237 break;
238 case SecFuncMetadata:
239 IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
240 break;
241 default:
242 case SecFuncOffsetTable:
243 IsFlagLegal = std::is_same<SecFuncOffsetFlags, SecFlagType>();
244 break;
245 }
246 if (!IsFlagLegal)
247 llvm_unreachable("Misuse of a flag in an incompatible section");
248 }
249
250 template <class SecFlagType>
251 static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
252 verifySecFlag(Entry.Type, Flag);
253 auto FVal = static_cast<uint64_t>(Flag);
254 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
255 Entry.Flags |= IsCommon ? FVal : (FVal << 32);
256 }
257
258 template <class SecFlagType>
259 static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
260 verifySecFlag(Entry.Type, Flag);
261 auto FVal = static_cast<uint64_t>(Flag);
262 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
263 Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
264 }
265
266 template <class SecFlagType>
267 static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
268 verifySecFlag(Entry.Type, Flag);
269 auto FVal = static_cast<uint64_t>(Flag);
270 bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
271 return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
272 }
273
274 /// Represents the relative location of an instruction.
275 ///
276 /// Instruction locations are specified by the line offset from the
277 /// beginning of the function (marked by the line where the function
278 /// header is) and the discriminator value within that line.
279 ///
280 /// The discriminator value is useful to distinguish instructions
281 /// that are on the same line but belong to different basic blocks
282 /// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
283 struct LineLocation {
284 LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
285
286 void print(raw_ostream &OS) const;
287 void dump() const;
288
289 bool operator<(const LineLocation &O) const {
290 return LineOffset < O.LineOffset ||
291 (LineOffset == O.LineOffset && Discriminator < O.Discriminator);
292 }
293
294 bool operator==(const LineLocation &O) const {
295 return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
296 }
297
298 bool operator!=(const LineLocation &O) const {
299 return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
300 }
301
302 uint32_t LineOffset;
303 uint32_t Discriminator;
304 };
305
306 struct LineLocationHash {
307 uint64_t operator()(const LineLocation &Loc) const {
308 return std::hash<std::uint64_t>{}((((uint64_t)Loc.LineOffset) << 32) |
309 Loc.Discriminator);
310 }
311 };
312
313 raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
314
315 /// Representation of a single sample record.
316 ///
317 /// A sample record is represented by a positive integer value, which
318 /// indicates how frequently was the associated line location executed.
319 ///
320 /// Additionally, if the associated location contains a function call,
321 /// the record will hold a list of all the possible called targets. For
322 /// direct calls, this will be the exact function being invoked. For
323 /// indirect calls (function pointers, virtual table dispatch), this
324 /// will be a list of one or more functions.
325 class SampleRecord {
326 public:
327 using CallTarget = std::pair<StringRef, uint64_t>;
328 struct CallTargetComparator {
329 bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
330 if (LHS.second != RHS.second)
331 return LHS.second > RHS.second;
332
333 return LHS.first < RHS.first;
334 }
335 };
336
337 using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
338 using CallTargetMap = StringMap<uint64_t>;
339 SampleRecord() = default;
340
341 /// Increment the number of samples for this record by \p S.
342 /// Optionally scale sample count \p S by \p Weight.
343 ///
344 /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
345 /// around unsigned integers.
346 sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
347 bool Overflowed;
348 NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
349 return Overflowed ? sampleprof_error::counter_overflow
350 : sampleprof_error::success;
351 }
352
353 /// Decrease the number of samples for this record by \p S. Return the amout
354 /// of samples actually decreased.
355 uint64_t removeSamples(uint64_t S) {
356 if (S > NumSamples)
357 S = NumSamples;
358 NumSamples -= S;
359 return S;
360 }
361
362 /// Add called function \p F with samples \p S.
363 /// Optionally scale sample count \p S by \p Weight.
364 ///
365 /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
366 /// around unsigned integers.
367 sampleprof_error addCalledTarget(StringRef F, uint64_t S,
368 uint64_t Weight = 1) {
369 uint64_t &TargetSamples = CallTargets[F];
370 bool Overflowed;
371 TargetSamples =
372 SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
373 return Overflowed ? sampleprof_error::counter_overflow
374 : sampleprof_error::success;
375 }
376
377 /// Remove called function from the call target map. Return the target sample
378 /// count of the called function.
379 uint64_t removeCalledTarget(StringRef F) {
380 uint64_t Count = 0;
381 auto I = CallTargets.find(F);
382 if (I != CallTargets.end()) {
383 Count = I->second;
384 CallTargets.erase(I);
385 }
386 return Count;
387 }
388
389 /// Return true if this sample record contains function calls.
390 bool hasCalls() const { return !CallTargets.empty(); }
391
392 uint64_t getSamples() const { return NumSamples; }
393 const CallTargetMap &getCallTargets() const { return CallTargets; }
394 const SortedCallTargetSet getSortedCallTargets() const {
395 return SortCallTargets(CallTargets);
396 }
397
398 uint64_t getCallTargetSum() const {
399 uint64_t Sum = 0;
400 for (const auto &I : CallTargets)
401 Sum += I.second;
402 return Sum;
403 }
404
405 /// Sort call targets in descending order of call frequency.
406 static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets) {
407 SortedCallTargetSet SortedTargets;
408 for (const auto &[Target, Frequency] : Targets) {
409 SortedTargets.emplace(Target, Frequency);
410 }
411 return SortedTargets;
412 }
413
414 /// Prorate call targets by a distribution factor.
415 static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
416 float DistributionFactor) {
417 CallTargetMap AdjustedTargets;
418 for (const auto &[Target, Frequency] : Targets) {
419 AdjustedTargets[Target] = Frequency * DistributionFactor;
420 }
421 return AdjustedTargets;
422 }
423
424 /// Merge the samples in \p Other into this record.
425 /// Optionally scale sample counts by \p Weight.
426 sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1);
427 void print(raw_ostream &OS, unsigned Indent) const;
428 void dump() const;
429
430 private:
431 uint64_t NumSamples = 0;
432 CallTargetMap CallTargets;
433 };
434
435 raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
436
437 // State of context associated with FunctionSamples
438 enum ContextStateMask {
439 UnknownContext = 0x0, // Profile without context
440 RawContext = 0x1, // Full context profile from input profile
441 SyntheticContext = 0x2, // Synthetic context created for context promotion
442 InlinedContext = 0x4, // Profile for context that is inlined into caller
443 MergedContext = 0x8 // Profile for context merged into base profile
444 };
445
446 // Attribute of context associated with FunctionSamples
447 enum ContextAttributeMask {
448 ContextNone = 0x0,
449 ContextWasInlined = 0x1, // Leaf of context was inlined in previous build
450 ContextShouldBeInlined = 0x2, // Leaf of context should be inlined
451 ContextDuplicatedIntoBase =
452 0x4, // Leaf of context is duplicated into the base profile
453 };
454
455 // Represents a context frame with function name and line location
456 struct SampleContextFrame {
457 StringRef FuncName;
458 LineLocation Location;
459
460 SampleContextFrame() : Location(0, 0) {}
461
462 SampleContextFrame(StringRef FuncName, LineLocation Location)
463 : FuncName(FuncName), Location(Location) {}
464
465 bool operator==(const SampleContextFrame &That) const {
466 return Location == That.Location && FuncName == That.FuncName;
467 }
468
469 bool operator!=(const SampleContextFrame &That) const {
470 return !(*this == That);
471 }
472
473 std::string toString(bool OutputLineLocation) const {
474 std::ostringstream OContextStr;
475 OContextStr << FuncName.str();
476 if (OutputLineLocation) {
477 OContextStr << ":" << Location.LineOffset;
478 if (Location.Discriminator)
479 OContextStr << "." << Location.Discriminator;
480 }
481 return OContextStr.str();
482 }
483 };
484
485 static inline hash_code hash_value(const SampleContextFrame &arg) {
486 return hash_combine(arg.FuncName, arg.Location.LineOffset,
487 arg.Location.Discriminator);
488 }
489
490 using SampleContextFrameVector = SmallVector<SampleContextFrame, 1>;
491 using SampleContextFrames = ArrayRef<SampleContextFrame>;
492
493 struct SampleContextFrameHash {
494 uint64_t operator()(const SampleContextFrameVector &S) const {
495 return hash_combine_range(S.begin(), S.end());
496 }
497 };
498
499 // Sample context for FunctionSamples. It consists of the calling context,
500 // the function name and context state. Internally sample context is represented
501 // using ArrayRef, which is also the input for constructing a `SampleContext`.
502 // It can accept and represent both full context string as well as context-less
503 // function name.
504 // For a CS profile, a full context vector can look like:
505 // `main:3 _Z5funcAi:1 _Z8funcLeafi`
506 // For a base CS profile without calling context, the context vector should only
507 // contain the leaf frame name.
508 // For a non-CS profile, the context vector should be empty.
509 class SampleContext {
510 public:
511 SampleContext() : State(UnknownContext), Attributes(ContextNone) {}
512
513 SampleContext(StringRef Name)
514 : Name(Name), State(UnknownContext), Attributes(ContextNone) {}
515
516 SampleContext(SampleContextFrames Context,
517 ContextStateMask CState = RawContext)
518 : Attributes(ContextNone) {
519 assert(!Context.empty() && "Context is empty");
520 setContext(Context, CState);
521 }
522
523 // Give a context string, decode and populate internal states like
524 // Function name, Calling context and context state. Example of input
525 // `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
526 SampleContext(StringRef ContextStr,
527 std::list<SampleContextFrameVector> &CSNameTable,
528 ContextStateMask CState = RawContext)
529 : Attributes(ContextNone) {
530 assert(!ContextStr.empty());
531 // Note that `[]` wrapped input indicates a full context string, otherwise
532 // it's treated as context-less function name only.
533 bool HasContext = ContextStr.startswith("[");
534 if (!HasContext) {
535 State = UnknownContext;
536 Name = ContextStr;
537 } else {
538 CSNameTable.emplace_back();
539 SampleContextFrameVector &Context = CSNameTable.back();
540 createCtxVectorFromStr(ContextStr, Context);
541 setContext(Context, CState);
542 }
543 }
544
545 /// Create a context vector from a given context string and save it in
546 /// `Context`.
547 static void createCtxVectorFromStr(StringRef ContextStr,
548 SampleContextFrameVector &Context) {
549 // Remove encapsulating '[' and ']' if any
550 ContextStr = ContextStr.substr(1, ContextStr.size() - 2);
551 StringRef ContextRemain = ContextStr;
552 StringRef ChildContext;
553 StringRef CalleeName;
554 while (!ContextRemain.empty()) {
555 auto ContextSplit = ContextRemain.split(" @ ");
556 ChildContext = ContextSplit.first;
557 ContextRemain = ContextSplit.second;
558 LineLocation CallSiteLoc(0, 0);
559 decodeContextString(ChildContext, CalleeName, CallSiteLoc);
560 Context.emplace_back(CalleeName, CallSiteLoc);
561 }
562 }
563
564 // Decode context string for a frame to get function name and location.
565 // `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
566 static void decodeContextString(StringRef ContextStr, StringRef &FName,
567 LineLocation &LineLoc) {
568 // Get function name
569 auto EntrySplit = ContextStr.split(':');
570 FName = EntrySplit.first;
571
572 LineLoc = {0, 0};
573 if (!EntrySplit.second.empty()) {
574 // Get line offset, use signed int for getAsInteger so string will
575 // be parsed as signed.
576 int LineOffset = 0;
577 auto LocSplit = EntrySplit.second.split('.');
578 LocSplit.first.getAsInteger(10, LineOffset);
579 LineLoc.LineOffset = LineOffset;
580
581 // Get discriminator
582 if (!LocSplit.second.empty())
583 LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
584 }
585 }
586
587 operator SampleContextFrames() const { return FullContext; }
588 bool hasAttribute(ContextAttributeMask A) { return Attributes & (uint32_t)A; }
589 void setAttribute(ContextAttributeMask A) { Attributes |= (uint32_t)A; }
590 uint32_t getAllAttributes() { return Attributes; }
591 void setAllAttributes(uint32_t A) { Attributes = A; }
592 bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
593 void setState(ContextStateMask S) { State |= (uint32_t)S; }
594 void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
595 bool hasContext() const { return State != UnknownContext; }
596 bool isBaseContext() const { return FullContext.size() == 1; }
597 StringRef getName() const { return Name; }
598 SampleContextFrames getContextFrames() const { return FullContext; }
599
600 static std::string getContextString(SampleContextFrames Context,
601 bool IncludeLeafLineLocation = false) {
602 std::ostringstream OContextStr;
603 for (uint32_t I = 0; I < Context.size(); I++) {
604 if (OContextStr.str().size()) {
605 OContextStr << " @ ";
606 }
607 OContextStr << Context[I].toString(I != Context.size() - 1 ||
608 IncludeLeafLineLocation);
609 }
610 return OContextStr.str();
611 }
612
613 std::string toString() const {
614 if (!hasContext())
615 return Name.str();
616 return getContextString(FullContext, false);
617 }
618
619 uint64_t getHashCode() const {
620 return hasContext() ? hash_value(getContextFrames())
621 : hash_value(getName());
622 }
623
624 /// Set the name of the function and clear the current context.
625 void setName(StringRef FunctionName) {
626 Name = FunctionName;
627 FullContext = SampleContextFrames();
628 State = UnknownContext;
629 }
630
631 void setContext(SampleContextFrames Context,
632 ContextStateMask CState = RawContext) {
633 assert(CState != UnknownContext);
634 FullContext = Context;
635 Name = Context.back().FuncName;
636 State = CState;
637 }
638
639 bool operator==(const SampleContext &That) const {
640 return State == That.State && Name == That.Name &&
641 FullContext == That.FullContext;
642 }
643
644 bool operator!=(const SampleContext &That) const { return !(*this == That); }
645
646 bool operator<(const SampleContext &That) const {
647 if (State != That.State)
648 return State < That.State;
649
650 if (!hasContext()) {
651 return Name < That.Name;
652 }
653
654 uint64_t I = 0;
655 while (I < std::min(FullContext.size(), That.FullContext.size())) {
656 auto &Context1 = FullContext[I];
657 auto &Context2 = That.FullContext[I];
658 auto V = Context1.FuncName.compare(Context2.FuncName);
659 if (V)
660 return V < 0;
661 if (Context1.Location != Context2.Location)
662 return Context1.Location < Context2.Location;
663 I++;
664 }
665
666 return FullContext.size() < That.FullContext.size();
667 }
668
669 struct Hash {
670 uint64_t operator()(const SampleContext &Context) const {
671 return Context.getHashCode();
672 }
673 };
674
675 bool IsPrefixOf(const SampleContext &That) const {
676 auto ThisContext = FullContext;
677 auto ThatContext = That.FullContext;
678 if (ThatContext.size() < ThisContext.size())
679 return false;
680 ThatContext = ThatContext.take_front(ThisContext.size());
681 // Compare Leaf frame first
682 if (ThisContext.back().FuncName != ThatContext.back().FuncName)
683 return false;
684 // Compare leading context
685 return ThisContext.drop_back() == ThatContext.drop_back();
686 }
687
688 private:
689 /// Mangled name of the function.
690 StringRef Name;
691 // Full context including calling context and leaf function name
692 SampleContextFrames FullContext;
693 // State of the associated sample profile
694 uint32_t State;
695 // Attribute of the associated sample profile
696 uint32_t Attributes;
697 };
698
699 static inline hash_code hash_value(const SampleContext &arg) {
700 return arg.hasContext() ? hash_value(arg.getContextFrames())
701 : hash_value(arg.getName());
702 }
703
704 class FunctionSamples;
705 class SampleProfileReaderItaniumRemapper;
706
707 using BodySampleMap = std::map<LineLocation, SampleRecord>;
708 // NOTE: Using a StringMap here makes parsed profiles consume around 17% more
709 // memory, which is *very* significant for large profiles.
710 using FunctionSamplesMap = std::map<std::string, FunctionSamples, std::less<>>;
711 using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
712
713 /// Representation of the samples collected for a function.
714 ///
715 /// This data structure contains all the collected samples for the body
716 /// of a function. Each sample corresponds to a LineLocation instance
717 /// within the body of the function.
718 class FunctionSamples {
719 public:
720 FunctionSamples() = default;
721
722 void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
723 void dump() const;
724
725 sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
726 bool Overflowed;
727 TotalSamples =
728 SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
729 return Overflowed ? sampleprof_error::counter_overflow
730 : sampleprof_error::success;
731 }
732
733 void removeTotalSamples(uint64_t Num) {
734 if (TotalSamples < Num)
735 TotalSamples = 0;
736 else
737 TotalSamples -= Num;
738 }
739
740 void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
741
742 sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
743 bool Overflowed;
744 TotalHeadSamples =
745 SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
746 return Overflowed ? sampleprof_error::counter_overflow
747 : sampleprof_error::success;
748 }
749
750 sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
751 uint64_t Num, uint64_t Weight = 1) {
752 return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
753 Num, Weight);
754 }
755
756 sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
757 uint32_t Discriminator,
758 StringRef FName, uint64_t Num,
759 uint64_t Weight = 1) {
760 return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
761 FName, Num, Weight);
762 }
763
764 // Remove a call target and decrease the body sample correspondingly. Return
765 // the number of body samples actually decreased.
766 uint64_t removeCalledTargetAndBodySample(uint32_t LineOffset,
767 uint32_t Discriminator,
768 StringRef FName) {
769 uint64_t Count = 0;
770 auto I = BodySamples.find(LineLocation(LineOffset, Discriminator));
771 if (I != BodySamples.end()) {
772 Count = I->second.removeCalledTarget(FName);
773 Count = I->second.removeSamples(Count);
774 if (!I->second.getSamples())
775 BodySamples.erase(I);
776 }
777 return Count;
778 }
779
780 sampleprof_error addBodySamplesForProbe(uint32_t Index, uint64_t Num,
781 uint64_t Weight = 1) {
782 SampleRecord S;
783 S.addSamples(Num, Weight);
784 return BodySamples[LineLocation(Index, 0)].merge(S, Weight);
785 }
786
787 // Accumulate all call target samples to update the body samples.
788 void updateCallsiteSamples() {
789 for (auto &I : BodySamples) {
790 uint64_t TargetSamples = I.second.getCallTargetSum();
791 // It's possible that the body sample count can be greater than the call
792 // target sum. E.g, if some call targets are external targets, they won't
793 // be considered valid call targets, but the body sample count which is
794 // from lbr ranges can actually include them.
795 if (TargetSamples > I.second.getSamples())
796 I.second.addSamples(TargetSamples - I.second.getSamples());
797 }
798 }
799
800 // Accumulate all body samples to set total samples.
801 void updateTotalSamples() {
802 setTotalSamples(0);
803 for (const auto &I : BodySamples)
804 addTotalSamples(I.second.getSamples());
805
806 for (auto &I : CallsiteSamples) {
807 for (auto &CS : I.second) {
808 CS.second.updateTotalSamples();
809 addTotalSamples(CS.second.getTotalSamples());
810 }
811 }
812 }
813
814 // Set current context and all callee contexts to be synthetic.
815 void SetContextSynthetic() {
816 Context.setState(SyntheticContext);
817 for (auto &I : CallsiteSamples) {
818 for (auto &CS : I.second) {
819 CS.second.SetContextSynthetic();
820 }
821 }
822 }
823
824 /// Return the number of samples collected at the given location.
825 /// Each location is specified by \p LineOffset and \p Discriminator.
826 /// If the location is not found in profile, return error.
827 ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
828 uint32_t Discriminator) const {
829 const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
830 if (ret == BodySamples.end())
831 return std::error_code();
832 return ret->second.getSamples();
833 }
834
835 /// Returns the call target map collected at a given location.
836 /// Each location is specified by \p LineOffset and \p Discriminator.
837 /// If the location is not found in profile, return error.
838 ErrorOr<SampleRecord::CallTargetMap>
839 findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
840 const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
841 if (ret == BodySamples.end())
842 return std::error_code();
843 return ret->second.getCallTargets();
844 }
845
846 /// Returns the call target map collected at a given location specified by \p
847 /// CallSite. If the location is not found in profile, return error.
848 ErrorOr<SampleRecord::CallTargetMap>
849 findCallTargetMapAt(const LineLocation &CallSite) const {
850 const auto &Ret = BodySamples.find(CallSite);
851 if (Ret == BodySamples.end())
852 return std::error_code();
853 return Ret->second.getCallTargets();
854 }
855
856 /// Return the function samples at the given callsite location.
857 FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
858 return CallsiteSamples[Loc];
859 }
860
861 /// Returns the FunctionSamplesMap at the given \p Loc.
862 const FunctionSamplesMap *
863 findFunctionSamplesMapAt(const LineLocation &Loc) const {
864 auto iter = CallsiteSamples.find(Loc);
865 if (iter == CallsiteSamples.end())
866 return nullptr;
867 return &iter->second;
868 }
869
870 /// Returns a pointer to FunctionSamples at the given callsite location
871 /// \p Loc with callee \p CalleeName. If no callsite can be found, relax
872 /// the restriction to return the FunctionSamples at callsite location
873 /// \p Loc with the maximum total sample count. If \p Remapper is not
874 /// nullptr, use \p Remapper to find FunctionSamples with equivalent name
875 /// as \p CalleeName.
876 const FunctionSamples *
877 findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName,
878 SampleProfileReaderItaniumRemapper *Remapper) const;
879
880 bool empty() const { return TotalSamples == 0; }
881
882 /// Return the total number of samples collected inside the function.
883 uint64_t getTotalSamples() const { return TotalSamples; }
884
885 /// For top-level functions, return the total number of branch samples that
886 /// have the function as the branch target (or 0 otherwise). This is the raw
887 /// data fetched from the profile. This should be equivalent to the sample of
888 /// the first instruction of the symbol. But as we directly get this info for
889 /// raw profile without referring to potentially inaccurate debug info, this
890 /// gives more accurate profile data and is preferred for standalone symbols.
891 uint64_t getHeadSamples() const { return TotalHeadSamples; }
892
893 /// Return an estimate of the sample count of the function entry basic block.
894 /// The function can be either a standalone symbol or an inlined function.
895 /// For Context-Sensitive profiles, this will prefer returning the head
896 /// samples (i.e. getHeadSamples()), if non-zero. Otherwise it estimates from
897 /// the function body's samples or callsite samples.
898 uint64_t getHeadSamplesEstimate() const {
899 if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
900 // For CS profile, if we already have more accurate head samples
901 // counted by branch sample from caller, use them as entry samples.
902 return getHeadSamples();
903 }
904 uint64_t Count = 0;
905 // Use either BodySamples or CallsiteSamples which ever has the smaller
906 // lineno.
907 if (!BodySamples.empty() &&
908 (CallsiteSamples.empty() ||
909 BodySamples.begin()->first < CallsiteSamples.begin()->first))
910 Count = BodySamples.begin()->second.getSamples();
911 else if (!CallsiteSamples.empty()) {
912 // An indirect callsite may be promoted to several inlined direct calls.
913 // We need to get the sum of them.
914 for (const auto &N_FS : CallsiteSamples.begin()->second)
915 Count += N_FS.second.getHeadSamplesEstimate();
916 }
917 // Return at least 1 if total sample is not 0.
918 return Count ? Count : TotalSamples > 0;
919 }
920
921 /// Return all the samples collected in the body of the function.
922 const BodySampleMap &getBodySamples() const { return BodySamples; }
923
924 /// Return all the callsite samples collected in the body of the function.
925 const CallsiteSampleMap &getCallsiteSamples() const {
926 return CallsiteSamples;
927 }
928
929 /// Return the maximum of sample counts in a function body. When SkipCallSite
930 /// is false, which is the default, the return count includes samples in the
931 /// inlined functions. When SkipCallSite is true, the return count only
932 /// considers the body samples.
933 uint64_t getMaxCountInside(bool SkipCallSite = false) const {
934 uint64_t MaxCount = 0;
935 for (const auto &L : getBodySamples())
936 MaxCount = std::max(MaxCount, L.second.getSamples());
937 if (SkipCallSite)
938 return MaxCount;
939 for (const auto &C : getCallsiteSamples())
940 for (const FunctionSamplesMap::value_type &F : C.second)
941 MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
942 return MaxCount;
943 }
944
945 /// Merge the samples in \p Other into this one.
946 /// Optionally scale samples by \p Weight.
947 sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
948 sampleprof_error Result = sampleprof_error::success;
949 if (!GUIDToFuncNameMap)
950 GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
951 if (Context.getName().empty())
952 Context = Other.getContext();
953 if (FunctionHash == 0) {
954 // Set the function hash code for the target profile.
955 FunctionHash = Other.getFunctionHash();
956 } else if (FunctionHash != Other.getFunctionHash()) {
957 // The two profiles coming with different valid hash codes indicates
958 // either:
959 // 1. They are same-named static functions from different compilation
960 // units (without using -unique-internal-linkage-names), or
961 // 2. They are really the same function but from different compilations.
962 // Let's bail out in either case for now, which means one profile is
963 // dropped.
964 return sampleprof_error::hash_mismatch;
965 }
966
967 MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
968 MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
969 for (const auto &I : Other.getBodySamples()) {
970 const LineLocation &Loc = I.first;
971 const SampleRecord &Rec = I.second;
972 MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
973 }
974 for (const auto &I : Other.getCallsiteSamples()) {
975 const LineLocation &Loc = I.first;
976 FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
977 for (const auto &Rec : I.second)
978 MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
979 }
980 return Result;
981 }
982
983 /// Recursively traverses all children, if the total sample count of the
984 /// corresponding function is no less than \p Threshold, add its corresponding
985 /// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
986 /// to \p S.
987 void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S,
988 const StringMap<Function *> &SymbolMap,
989 uint64_t Threshold) const {
990 if (TotalSamples <= Threshold)
991 return;
992 auto isDeclaration = [](const Function *F) {
993 return !F || F->isDeclaration();
994 };
995 if (isDeclaration(SymbolMap.lookup(getFuncName()))) {
996 // Add to the import list only when it's defined out of module.
997 S.insert(getGUID(getName()));
998 }
999 // Import hot CallTargets, which may not be available in IR because full
1000 // profile annotation cannot be done until backend compilation in ThinLTO.
1001 for (const auto &BS : BodySamples)
1002 for (const auto &TS : BS.second.getCallTargets())
1003 if (TS.getValue() > Threshold) {
1004 const Function *Callee = SymbolMap.lookup(getFuncName(TS.getKey()));
1005 if (isDeclaration(Callee))
1006 S.insert(getGUID(TS.getKey()));
1007 }
1008 for (const auto &CS : CallsiteSamples)
1009 for (const auto &NameFS : CS.second)
1010 NameFS.second.findInlinedFunctions(S, SymbolMap, Threshold);
1011 }
1012
1013 /// Set the name of the function.
1014 void setName(StringRef FunctionName) { Context.setName(FunctionName); }
1015
1016 /// Return the function name.
1017 StringRef getName() const { return Context.getName(); }
1018
1019 /// Return the original function name.
1020 StringRef getFuncName() const { return getFuncName(getName()); }
1021
1022 void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
1023
1024 uint64_t getFunctionHash() const { return FunctionHash; }
1025
1026 /// Return the canonical name for a function, taking into account
1027 /// suffix elision policy attributes.
1028 static StringRef getCanonicalFnName(const Function &F) {
1029 auto AttrName = "sample-profile-suffix-elision-policy";
1030 auto Attr = F.getFnAttribute(AttrName).getValueAsString();
1031 return getCanonicalFnName(F.getName(), Attr);
1032 }
1033
1034 /// Name suffixes which canonicalization should handle to avoid
1035 /// profile mismatch.
1036 static constexpr const char *LLVMSuffix = ".llvm.";
1037 static constexpr const char *PartSuffix = ".part.";
1038 static constexpr const char *UniqSuffix = ".__uniq.";
1039
1040 static StringRef getCanonicalFnName(StringRef FnName,
1041 StringRef Attr = "selected") {
1042 // Note the sequence of the suffixes in the knownSuffixes array matters.
1043 // If suffix "A" is appended after the suffix "B", "A" should be in front
1044 // of "B" in knownSuffixes.
1045 const char *knownSuffixes[] = {LLVMSuffix, PartSuffix, UniqSuffix};
1046 if (Attr == "" || Attr == "all") {
1047 return FnName.split('.').first;
1048 } else if (Attr == "selected") {
1049 StringRef Cand(FnName);
1050 for (const auto &Suf : knownSuffixes) {
1051 StringRef Suffix(Suf);
1052 // If the profile contains ".__uniq." suffix, don't strip the
1053 // suffix for names in the IR.
1054 if (Suffix == UniqSuffix && FunctionSamples::HasUniqSuffix)
1055 continue;
1056 auto It = Cand.rfind(Suffix);
1057 if (It == StringRef::npos)
1058 continue;
1059 auto Dit = Cand.rfind('.');
1060 if (Dit == It + Suffix.size() - 1)
1061 Cand = Cand.substr(0, It);
1062 }
1063 return Cand;
1064 } else if (Attr == "none") {
1065 return FnName;
1066 } else {
1067 assert(false && "internal error: unknown suffix elision policy");
1068 }
1069 return FnName;
1070 }
1071
1072 /// Translate \p Name into its original name.
1073 /// When profile doesn't use MD5, \p Name needs no translation.
1074 /// When profile uses MD5, \p Name in current FunctionSamples
1075 /// is actually GUID of the original function name. getFuncName will
1076 /// translate \p Name in current FunctionSamples into its original name
1077 /// by looking up in the function map GUIDToFuncNameMap.
1078 /// If the original name doesn't exist in the map, return empty StringRef.
1079 StringRef getFuncName(StringRef Name) const {
1080 if (!UseMD5)
1081 return Name;
1082
1083 assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be populated first");
1084 return GUIDToFuncNameMap->lookup(std::stoull(Name.data()));
1085 }
1086
1087 /// Returns the line offset to the start line of the subprogram.
1088 /// We assume that a single function will not exceed 65535 LOC.
1089 static unsigned getOffset(const DILocation *DIL);
1090
1091 /// Returns a unique call site identifier for a given debug location of a call
1092 /// instruction. This is wrapper of two scenarios, the probe-based profile and
1093 /// regular profile, to hide implementation details from the sample loader and
1094 /// the context tracker.
1095 static LineLocation getCallSiteIdentifier(const DILocation *DIL,
1096 bool ProfileIsFS = false);
1097
1098 /// Returns a unique hash code for a combination of a callsite location and
1099 /// the callee function name.
1100 static uint64_t getCallSiteHash(StringRef CalleeName,
1101 const LineLocation &Callsite);
1102
1103 /// Get the FunctionSamples of the inline instance where DIL originates
1104 /// from.
1105 ///
1106 /// The FunctionSamples of the instruction (Machine or IR) associated to
1107 /// \p DIL is the inlined instance in which that instruction is coming from.
1108 /// We traverse the inline stack of that instruction, and match it with the
1109 /// tree nodes in the profile.
1110 ///
1111 /// \returns the FunctionSamples pointer to the inlined instance.
1112 /// If \p Remapper is not nullptr, it will be used to find matching
1113 /// FunctionSamples with not exactly the same but equivalent name.
1114 const FunctionSamples *findFunctionSamples(
1115 const DILocation *DIL,
1116 SampleProfileReaderItaniumRemapper *Remapper = nullptr) const;
1117
1118 static bool ProfileIsProbeBased;
1119
1120 static bool ProfileIsCS;
1121
1122 static bool ProfileIsPreInlined;
1123
1124 SampleContext &getContext() const { return Context; }
1125
1126 void setContext(const SampleContext &FContext) { Context = FContext; }
1127
1128 /// Whether the profile uses MD5 to represent string.
1129 static bool UseMD5;
1130
1131 /// Whether the profile contains any ".__uniq." suffix in a name.
1132 static bool HasUniqSuffix;
1133
1134 /// If this profile uses flow sensitive discriminators.
1135 static bool ProfileIsFS;
1136
1137 /// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
1138 /// all the function symbols defined or declared in current module.
1139 DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
1140
1141 // Assume the input \p Name is a name coming from FunctionSamples itself.
1142 // If UseMD5 is true, the name is already a GUID and we
1143 // don't want to return the GUID of GUID.
1144 static uint64_t getGUID(StringRef Name) {
1145 return UseMD5 ? std::stoull(Name.data()) : Function::getGUID(Name);
1146 }
1147
1148 // Find all the names in the current FunctionSamples including names in
1149 // all the inline instances and names of call targets.
1150 void findAllNames(DenseSet<StringRef> &NameSet) const;
1151
1152 private:
1153 /// CFG hash value for the function.
1154 uint64_t FunctionHash = 0;
1155
1156 /// Calling context for function profile
1157 mutable SampleContext Context;
1158
1159 /// Total number of samples collected inside this function.
1160 ///
1161 /// Samples are cumulative, they include all the samples collected
1162 /// inside this function and all its inlined callees.
1163 uint64_t TotalSamples = 0;
1164
1165 /// Total number of samples collected at the head of the function.
1166 /// This is an approximation of the number of calls made to this function
1167 /// at runtime.
1168 uint64_t TotalHeadSamples = 0;
1169
1170 /// Map instruction locations to collected samples.
1171 ///
1172 /// Each entry in this map contains the number of samples
1173 /// collected at the corresponding line offset. All line locations
1174 /// are an offset from the start of the function.
1175 BodySampleMap BodySamples;
1176
1177 /// Map call sites to collected samples for the called function.
1178 ///
1179 /// Each entry in this map corresponds to all the samples
1180 /// collected for the inlined function call at the given
1181 /// location. For example, given:
1182 ///
1183 /// void foo() {
1184 /// 1 bar();
1185 /// ...
1186 /// 8 baz();
1187 /// }
1188 ///
1189 /// If the bar() and baz() calls were inlined inside foo(), this
1190 /// map will contain two entries. One for all the samples collected
1191 /// in the call to bar() at line offset 1, the other for all the samples
1192 /// collected in the call to baz() at line offset 8.
1193 CallsiteSampleMap CallsiteSamples;
1194 };
1195
1196 raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
1197
1198 using SampleProfileMap =
1199 std::unordered_map<SampleContext, FunctionSamples, SampleContext::Hash>;
1200
1201 using NameFunctionSamples = std::pair<SampleContext, const FunctionSamples *>;
1202
1203 void sortFuncProfiles(const SampleProfileMap &ProfileMap,
1204 std::vector<NameFunctionSamples> &SortedProfiles);
1205
1206 /// Sort a LocationT->SampleT map by LocationT.
1207 ///
1208 /// It produces a sorted list of <LocationT, SampleT> records by ascending
1209 /// order of LocationT.
1210 template <class LocationT, class SampleT> class SampleSorter {
1211 public:
1212 using SamplesWithLoc = std::pair<const LocationT, SampleT>;
1213 using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
1214
1215 SampleSorter(const std::map<LocationT, SampleT> &Samples) {
1216 for (const auto &I : Samples)
1217 V.push_back(&I);
1218 llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
1219 return A->first < B->first;
1220 });
1221 }
1222
1223 const SamplesWithLocList &get() const { return V; }
1224
1225 private:
1226 SamplesWithLocList V;
1227 };
1228
1229 /// SampleContextTrimmer impelements helper functions to trim, merge cold
1230 /// context profiles. It also supports context profile canonicalization to make
1231 /// sure ProfileMap's key is consistent with FunctionSample's name/context.
1232 class SampleContextTrimmer {
1233 public:
1234 SampleContextTrimmer(SampleProfileMap &Profiles) : ProfileMap(Profiles){};
1235 // Trim and merge cold context profile when requested. TrimBaseProfileOnly
1236 // should only be effective when TrimColdContext is true. On top of
1237 // TrimColdContext, TrimBaseProfileOnly can be used to specify to trim all
1238 // cold profiles or only cold base profiles. Trimming base profiles only is
1239 // mainly to honor the preinliner decsion. Note that when MergeColdContext is
1240 // true, preinliner decsion is not honored anyway so TrimBaseProfileOnly will
1241 // be ignored.
1242 void trimAndMergeColdContextProfiles(uint64_t ColdCountThreshold,
1243 bool TrimColdContext,
1244 bool MergeColdContext,
1245 uint32_t ColdContextFrameLength,
1246 bool TrimBaseProfileOnly);
1247 // Canonicalize context profile name and attributes.
1248 void canonicalizeContextProfiles();
1249
1250 private:
1251 SampleProfileMap &ProfileMap;
1252 };
1253
1254 // CSProfileConverter converts a full context-sensitive flat sample profile into
1255 // a nested context-sensitive sample profile.
1256 class CSProfileConverter {
1257 public:
1258 CSProfileConverter(SampleProfileMap &Profiles);
1259 void convertProfiles();
1260 struct FrameNode {
1261 FrameNode(StringRef FName = StringRef(),
1262 FunctionSamples *FSamples = nullptr,
1263 LineLocation CallLoc = {0, 0})
1264 : FuncName(FName), FuncSamples(FSamples), CallSiteLoc(CallLoc){};
1265
1266 // Map line+discriminator location to child frame
1267 std::map<uint64_t, FrameNode> AllChildFrames;
1268 // Function name for current frame
1269 StringRef FuncName;
1270 // Function Samples for current frame
1271 FunctionSamples *FuncSamples;
1272 // Callsite location in parent context
1273 LineLocation CallSiteLoc;
1274
1275 FrameNode *getOrCreateChildFrame(const LineLocation &CallSite,
1276 StringRef CalleeName);
1277 };
1278
1279 private:
1280 // Nest all children profiles into the profile of Node.
1281 void convertProfiles(FrameNode &Node);
1282 FrameNode *getOrCreateContextPath(const SampleContext &Context);
1283
1284 SampleProfileMap &ProfileMap;
1285 FrameNode RootFrame;
1286 };
1287
1288 /// ProfileSymbolList records the list of function symbols shown up
1289 /// in the binary used to generate the profile. It is useful to
1290 /// to discriminate a function being so cold as not to shown up
1291 /// in the profile and a function newly added.
1292 class ProfileSymbolList {
1293 public:
1294 /// copy indicates whether we need to copy the underlying memory
1295 /// for the input Name.
1296 void add(StringRef Name, bool copy = false) {
1297 if (!copy) {
1298 Syms.insert(Name);
1299 return;
1300 }
1301 Syms.insert(Name.copy(Allocator));
1302 }
1303
1304 bool contains(StringRef Name) { return Syms.count(Name); }
1305
1306 void merge(const ProfileSymbolList &List) {
1307 for (auto Sym : List.Syms)
1308 add(Sym, true);
1309 }
1310
1311 unsigned size() { return Syms.size(); }
1312
1313 void setToCompress(bool TC) { ToCompress = TC; }
1314 bool toCompress() { return ToCompress; }
1315
1316 std::error_code read(const uint8_t *Data, uint64_t ListSize);
1317 std::error_code write(raw_ostream &OS);
1318 void dump(raw_ostream &OS = dbgs()) const;
1319
1320 private:
1321 // Determine whether or not to compress the symbol list when
1322 // writing it into profile. The variable is unused when the symbol
1323 // list is read from an existing profile.
1324 bool ToCompress = false;
1325 DenseSet<StringRef> Syms;
1326 BumpPtrAllocator Allocator;
1327 };
1328
1329 } // end namespace sampleprof
1330
1331 using namespace sampleprof;
1332 // Provide DenseMapInfo for SampleContext.
1333 template <> struct DenseMapInfo<SampleContext> {
1334 static inline SampleContext getEmptyKey() { return SampleContext(); }
1335
1336 static inline SampleContext getTombstoneKey() { return SampleContext("@"); }
1337
1338 static unsigned getHashValue(const SampleContext &Val) {
1339 return Val.getHashCode();
1340 }
1341
1342 static bool isEqual(const SampleContext &LHS, const SampleContext &RHS) {
1343 return LHS == RHS;
1344 }
1345 };
1346
1347 // Prepend "__uniq" before the hash for tools like profilers to understand
1348 // that this symbol is of internal linkage type. The "__uniq" is the
1349 // pre-determined prefix that is used to tell tools that this symbol was
1350 // created with -funique-internal-linakge-symbols and the tools can strip or
1351 // keep the prefix as needed.
1352 inline std::string getUniqueInternalLinkagePostfix(const StringRef &FName) {
1353 llvm::MD5 Md5;
1354 Md5.update(FName);
1355 llvm::MD5::MD5Result R;
1356 Md5.final(R);
1357 SmallString<32> Str;
1358 llvm::MD5::stringifyResult(R, Str);
1359 // Convert MD5hash to Decimal. Demangler suffixes can either contain
1360 // numbers or characters but not both.
1361 llvm::APInt IntHash(128, Str.str(), 16);
1362 return toString(IntHash, /* Radix = */ 10, /* Signed = */ false)
1363 .insert(0, FunctionSamples::UniqSuffix);
1364 }
1365
1366 } // end namespace llvm
1367
1368 #endif // LLVM_PROFILEDATA_SAMPLEPROF_H
1369