xref: /minix3/external/bsd/llvm/dist/llvm/include/llvm/ExecutionEngine/RTDyldMemoryManager.h (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1 //===-- RTDyldMemoryManager.cpp - Memory manager for MC-JIT -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Interface of the runtime dynamic memory manager base class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_EXECUTIONENGINE_RTDYLDMEMORYMANAGER_H
15 #define LLVM_EXECUTIONENGINE_RTDYLDMEMORYMANAGER_H
16 
17 #include "llvm-c/ExecutionEngine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Memory.h"
21 
22 namespace llvm {
23 
24 class ExecutionEngine;
25 
26   namespace object {
27     class ObjectFile;
28   }
29 
30 // RuntimeDyld clients often want to handle the memory management of
31 // what gets placed where. For JIT clients, this is the subset of
32 // JITMemoryManager required for dynamic loading of binaries.
33 //
34 // FIXME: As the RuntimeDyld fills out, additional routines will be needed
35 //        for the varying types of objects to be allocated.
36 class RTDyldMemoryManager {
37   RTDyldMemoryManager(const RTDyldMemoryManager&) LLVM_DELETED_FUNCTION;
38   void operator=(const RTDyldMemoryManager&) LLVM_DELETED_FUNCTION;
39 public:
RTDyldMemoryManager()40   RTDyldMemoryManager() {}
41   virtual ~RTDyldMemoryManager();
42 
43   /// Allocate a memory block of (at least) the given size suitable for
44   /// executable code. The SectionID is a unique identifier assigned by the JIT
45   /// engine, and optionally recorded by the memory manager to access a loaded
46   /// section.
47   virtual uint8_t *allocateCodeSection(
48     uintptr_t Size, unsigned Alignment, unsigned SectionID,
49     StringRef SectionName) = 0;
50 
51   /// Allocate a memory block of (at least) the given size suitable for data.
52   /// The SectionID is a unique identifier assigned by the JIT engine, and
53   /// optionally recorded by the memory manager to access a loaded section.
54   virtual uint8_t *allocateDataSection(
55     uintptr_t Size, unsigned Alignment, unsigned SectionID,
56     StringRef SectionName, bool IsReadOnly) = 0;
57 
58   /// Inform the memory manager about the total amount of memory required to
59   /// allocate all sections to be loaded:
60   /// \p CodeSize - the total size of all code sections
61   /// \p DataSizeRO - the total size of all read-only data sections
62   /// \p DataSizeRW - the total size of all read-write data sections
63   ///
64   /// Note that by default the callback is disabled. To enable it
65   /// redefine the method needsToReserveAllocationSpace to return true.
reserveAllocationSpace(uintptr_t CodeSize,uintptr_t DataSizeRO,uintptr_t DataSizeRW)66   virtual void reserveAllocationSpace(
67     uintptr_t CodeSize, uintptr_t DataSizeRO, uintptr_t DataSizeRW) { }
68 
69   /// Override to return true to enable the reserveAllocationSpace callback.
needsToReserveAllocationSpace()70   virtual bool needsToReserveAllocationSpace() { return false; }
71 
72   /// Register the EH frames with the runtime so that c++ exceptions work.
73   ///
74   /// \p Addr parameter provides the local address of the EH frame section
75   /// data, while \p LoadAddr provides the address of the data in the target
76   /// address space.  If the section has not been remapped (which will usually
77   /// be the case for local execution) these two values will be the same.
78   virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size);
79 
80   virtual void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size);
81 
82   /// This method returns the address of the specified function or variable in
83   /// the current process.
84   static uint64_t getSymbolAddressInProcess(const std::string &Name);
85 
86   /// This method returns the address of the specified function or variable.
87   /// It is used to resolve symbols during module linking.
getSymbolAddress(const std::string & Name)88   virtual uint64_t getSymbolAddress(const std::string &Name) {
89     return getSymbolAddressInProcess(Name);
90   }
91 
92   /// This method returns the address of the specified function. As such it is
93   /// only useful for resolving library symbols, not code generated symbols.
94   ///
95   /// If \p AbortOnFailure is false and no function with the given name is
96   /// found, this function returns a null pointer. Otherwise, it prints a
97   /// message to stderr and aborts.
98   ///
99   /// This function is deprecated for memory managers to be used with
100   /// MCJIT or RuntimeDyld.  Use getSymbolAddress instead.
101   virtual void *getPointerToNamedFunction(const std::string &Name,
102                                           bool AbortOnFailure = true);
103 
104   /// This method is called after an object has been loaded into memory but
105   /// before relocations are applied to the loaded sections.  The object load
106   /// may have been initiated by MCJIT to resolve an external symbol for another
107   /// object that is being finalized.  In that case, the object about which
108   /// the memory manager is being notified will be finalized immediately after
109   /// the memory manager returns from this call.
110   ///
111   /// Memory managers which are preparing code for execution in an external
112   /// address space can use this call to remap the section addresses for the
113   /// newly loaded object.
notifyObjectLoaded(ExecutionEngine * EE,const object::ObjectFile &)114   virtual void notifyObjectLoaded(ExecutionEngine *EE,
115                                   const object::ObjectFile &) {}
116 
117   /// This method is called when object loading is complete and section page
118   /// permissions can be applied.  It is up to the memory manager implementation
119   /// to decide whether or not to act on this method.  The memory manager will
120   /// typically allocate all sections as read-write and then apply specific
121   /// permissions when this method is called.  Code sections cannot be executed
122   /// until this function has been called.  In addition, any cache coherency
123   /// operations needed to reliably use the memory are also performed.
124   ///
125   /// Returns true if an error occurred, false otherwise.
126   virtual bool finalizeMemory(std::string *ErrMsg = nullptr) = 0;
127 };
128 
129 // Create wrappers for C Binding types (see CBindingWrapping.h).
130 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(
131     RTDyldMemoryManager, LLVMMCJITMemoryManagerRef)
132 
133 } // namespace llvm
134 
135 #endif
136