1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code for a function. This class contains a list of 10 // MachineBasicBlock instances that make up the current compiled function. 11 // 12 // This class also contains pointers to various classes which hold 13 // target-specific information about the generated code. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H 18 #define LLVM_CODEGEN_MACHINEFUNCTION_H 19 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/GraphTraits.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/ilist.h" 26 #include "llvm/ADT/iterator.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/ArrayRecycler.h" 33 #include "llvm/Support/AtomicOrdering.h" 34 #include "llvm/Support/Compiler.h" 35 #include "llvm/Support/Recycler.h" 36 #include "llvm/Target/TargetOptions.h" 37 #include <cassert> 38 #include <cstdint> 39 #include <memory> 40 #include <utility> 41 #include <vector> 42 43 namespace llvm { 44 45 class BasicBlock; 46 class BlockAddress; 47 class DataLayout; 48 class DebugLoc; 49 struct DenormalMode; 50 class DIExpression; 51 class DILocalVariable; 52 class DILocation; 53 class Function; 54 class GISelChangeObserver; 55 class GlobalValue; 56 class LLVMTargetMachine; 57 class MachineConstantPool; 58 class MachineFrameInfo; 59 class MachineFunction; 60 class MachineJumpTableInfo; 61 class MachineModuleInfo; 62 class MachineRegisterInfo; 63 class MCContext; 64 class MCInstrDesc; 65 class MCSymbol; 66 class MCSection; 67 class Pass; 68 class PseudoSourceValueManager; 69 class raw_ostream; 70 class SlotIndexes; 71 class StringRef; 72 class TargetRegisterClass; 73 class TargetSubtargetInfo; 74 struct WasmEHFuncInfo; 75 struct WinEHFuncInfo; 76 77 template <> struct ilist_alloc_traits<MachineBasicBlock> { 78 void deleteNode(MachineBasicBlock *MBB); 79 }; 80 81 template <> struct ilist_callback_traits<MachineBasicBlock> { 82 void addNodeToList(MachineBasicBlock* N); 83 void removeNodeFromList(MachineBasicBlock* N); 84 85 template <class Iterator> 86 void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) { 87 assert(this == &OldList && "never transfer MBBs between functions"); 88 } 89 }; 90 91 /// MachineFunctionInfo - This class can be derived from and used by targets to 92 /// hold private target-specific information for each MachineFunction. Objects 93 /// of type are accessed/created with MF::getInfo and destroyed when the 94 /// MachineFunction is destroyed. 95 struct MachineFunctionInfo { 96 virtual ~MachineFunctionInfo(); 97 98 /// Factory function: default behavior is to call new using the 99 /// supplied allocator. 100 /// 101 /// This function can be overridden in a derive class. 102 template<typename Ty> 103 static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) { 104 return new (Allocator.Allocate<Ty>()) Ty(MF); 105 } 106 }; 107 108 /// Properties which a MachineFunction may have at a given point in time. 109 /// Each of these has checking code in the MachineVerifier, and passes can 110 /// require that a property be set. 111 class MachineFunctionProperties { 112 // Possible TODO: Allow targets to extend this (perhaps by allowing the 113 // constructor to specify the size of the bit vector) 114 // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be 115 // stated as the negative of "has vregs" 116 117 public: 118 // The properties are stated in "positive" form; i.e. a pass could require 119 // that the property hold, but not that it does not hold. 120 121 // Property descriptions: 122 // IsSSA: True when the machine function is in SSA form and virtual registers 123 // have a single def. 124 // NoPHIs: The machine function does not contain any PHI instruction. 125 // TracksLiveness: True when tracking register liveness accurately. 126 // While this property is set, register liveness information in basic block 127 // live-in lists and machine instruction operands (e.g. implicit defs) is 128 // accurate, kill flags are conservatively accurate (kill flag correctly 129 // indicates the last use of a register, an operand without kill flag may or 130 // may not be the last use of a register). This means it can be used to 131 // change the code in ways that affect the values in registers, for example 132 // by the register scavenger. 133 // When this property is cleared at a very late time, liveness is no longer 134 // reliable. 135 // NoVRegs: The machine function does not use any virtual registers. 136 // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic 137 // instructions have been legalized; i.e., all instructions are now one of: 138 // - generic and always legal (e.g., COPY) 139 // - target-specific 140 // - legal pre-isel generic instructions. 141 // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic 142 // virtual registers have been assigned to a register bank. 143 // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel 144 // generic instructions have been eliminated; i.e., all instructions are now 145 // target-specific or non-pre-isel generic instructions (e.g., COPY). 146 // Since only pre-isel generic instructions can have generic virtual register 147 // operands, this also means that all generic virtual registers have been 148 // constrained to virtual registers (assigned to register classes) and that 149 // all sizes attached to them have been eliminated. 150 // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it 151 // means that tied-def have been rewritten to meet the RegConstraint. 152 enum class Property : unsigned { 153 IsSSA, 154 NoPHIs, 155 TracksLiveness, 156 NoVRegs, 157 FailedISel, 158 Legalized, 159 RegBankSelected, 160 Selected, 161 TiedOpsRewritten, 162 LastProperty = TiedOpsRewritten, 163 }; 164 165 bool hasProperty(Property P) const { 166 return Properties[static_cast<unsigned>(P)]; 167 } 168 169 MachineFunctionProperties &set(Property P) { 170 Properties.set(static_cast<unsigned>(P)); 171 return *this; 172 } 173 174 MachineFunctionProperties &reset(Property P) { 175 Properties.reset(static_cast<unsigned>(P)); 176 return *this; 177 } 178 179 /// Reset all the properties. 180 MachineFunctionProperties &reset() { 181 Properties.reset(); 182 return *this; 183 } 184 185 MachineFunctionProperties &set(const MachineFunctionProperties &MFP) { 186 Properties |= MFP.Properties; 187 return *this; 188 } 189 190 MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) { 191 Properties.reset(MFP.Properties); 192 return *this; 193 } 194 195 // Returns true if all properties set in V (i.e. required by a pass) are set 196 // in this. 197 bool verifyRequiredProperties(const MachineFunctionProperties &V) const { 198 return !V.Properties.test(Properties); 199 } 200 201 /// Print the MachineFunctionProperties in human-readable form. 202 void print(raw_ostream &OS) const; 203 204 private: 205 BitVector Properties = 206 BitVector(static_cast<unsigned>(Property::LastProperty)+1); 207 }; 208 209 struct SEHHandler { 210 /// Filter or finally function. Null indicates a catch-all. 211 const Function *FilterOrFinally; 212 213 /// Address of block to recover at. Null for a finally handler. 214 const BlockAddress *RecoverBA; 215 }; 216 217 /// This structure is used to retain landing pad info for the current function. 218 struct LandingPadInfo { 219 MachineBasicBlock *LandingPadBlock; // Landing pad block. 220 SmallVector<MCSymbol *, 1> BeginLabels; // Labels prior to invoke. 221 SmallVector<MCSymbol *, 1> EndLabels; // Labels after invoke. 222 SmallVector<SEHHandler, 1> SEHHandlers; // SEH handlers active at this lpad. 223 MCSymbol *LandingPadLabel = nullptr; // Label at beginning of landing pad. 224 std::vector<int> TypeIds; // List of type ids (filters negative). 225 226 explicit LandingPadInfo(MachineBasicBlock *MBB) 227 : LandingPadBlock(MBB) {} 228 }; 229 230 class MachineFunction { 231 Function &F; 232 const LLVMTargetMachine &Target; 233 const TargetSubtargetInfo *STI; 234 MCContext &Ctx; 235 MachineModuleInfo &MMI; 236 237 // RegInfo - Information about each register in use in the function. 238 MachineRegisterInfo *RegInfo; 239 240 // Used to keep track of target-specific per-machine function information for 241 // the target implementation. 242 MachineFunctionInfo *MFInfo; 243 244 // Keep track of objects allocated on the stack. 245 MachineFrameInfo *FrameInfo; 246 247 // Keep track of constants which are spilled to memory 248 MachineConstantPool *ConstantPool; 249 250 // Keep track of jump tables for switch instructions 251 MachineJumpTableInfo *JumpTableInfo; 252 253 // Keep track of the function section. 254 MCSection *Section = nullptr; 255 256 // Keeps track of Wasm exception handling related data. This will be null for 257 // functions that aren't using a wasm EH personality. 258 WasmEHFuncInfo *WasmEHInfo = nullptr; 259 260 // Keeps track of Windows exception handling related data. This will be null 261 // for functions that aren't using a funclet-based EH personality. 262 WinEHFuncInfo *WinEHInfo = nullptr; 263 264 // Function-level unique numbering for MachineBasicBlocks. When a 265 // MachineBasicBlock is inserted into a MachineFunction is it automatically 266 // numbered and this vector keeps track of the mapping from ID's to MBB's. 267 std::vector<MachineBasicBlock*> MBBNumbering; 268 269 // Unary encoding of basic block symbols is used to reduce size of ".strtab". 270 // Basic block number 'i' gets a prefix of length 'i'. The ith character also 271 // denotes the type of basic block number 'i'. Return blocks are marked with 272 // 'r', landing pads with 'l' and regular blocks with 'a'. 273 std::vector<char> BBSectionsSymbolPrefix; 274 275 // Pool-allocate MachineFunction-lifetime and IR objects. 276 BumpPtrAllocator Allocator; 277 278 // Allocation management for instructions in function. 279 Recycler<MachineInstr> InstructionRecycler; 280 281 // Allocation management for operand arrays on instructions. 282 ArrayRecycler<MachineOperand> OperandRecycler; 283 284 // Allocation management for basic blocks in function. 285 Recycler<MachineBasicBlock> BasicBlockRecycler; 286 287 // List of machine basic blocks in function 288 using BasicBlockListType = ilist<MachineBasicBlock>; 289 BasicBlockListType BasicBlocks; 290 291 /// FunctionNumber - This provides a unique ID for each function emitted in 292 /// this translation unit. 293 /// 294 unsigned FunctionNumber; 295 296 /// Alignment - The alignment of the function. 297 Align Alignment; 298 299 /// ExposesReturnsTwice - True if the function calls setjmp or related 300 /// functions with attribute "returns twice", but doesn't have 301 /// the attribute itself. 302 /// This is used to limit optimizations which cannot reason 303 /// about the control flow of such functions. 304 bool ExposesReturnsTwice = false; 305 306 /// True if the function includes any inline assembly. 307 bool HasInlineAsm = false; 308 309 /// True if any WinCFI instruction have been emitted in this function. 310 bool HasWinCFI = false; 311 312 /// Current high-level properties of the IR of the function (e.g. is in SSA 313 /// form or whether registers have been allocated) 314 MachineFunctionProperties Properties; 315 316 // Allocation management for pseudo source values. 317 std::unique_ptr<PseudoSourceValueManager> PSVManager; 318 319 /// List of moves done by a function's prolog. Used to construct frame maps 320 /// by debug and exception handling consumers. 321 std::vector<MCCFIInstruction> FrameInstructions; 322 323 /// List of basic blocks immediately following calls to _setjmp. Used to 324 /// construct a table of valid longjmp targets for Windows Control Flow Guard. 325 std::vector<MCSymbol *> LongjmpTargets; 326 327 /// List of basic blocks that are the target of catchrets. Used to construct 328 /// a table of valid targets for Windows EHCont Guard. 329 std::vector<MCSymbol *> CatchretTargets; 330 331 /// \name Exception Handling 332 /// \{ 333 334 /// List of LandingPadInfo describing the landing pad information. 335 std::vector<LandingPadInfo> LandingPads; 336 337 /// Map a landing pad's EH symbol to the call site indexes. 338 DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap; 339 340 /// Map a landing pad to its index. 341 DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap; 342 343 /// Map of invoke call site index values to associated begin EH_LABEL. 344 DenseMap<MCSymbol*, unsigned> CallSiteMap; 345 346 /// CodeView label annotations. 347 std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations; 348 349 bool CallsEHReturn = false; 350 bool CallsUnwindInit = false; 351 bool HasEHCatchret = false; 352 bool HasEHScopes = false; 353 bool HasEHFunclets = false; 354 355 /// Section Type for basic blocks, only relevant with basic block sections. 356 BasicBlockSection BBSectionsType = BasicBlockSection::None; 357 358 /// List of C++ TypeInfo used. 359 std::vector<const GlobalValue *> TypeInfos; 360 361 /// List of typeids encoding filters used. 362 std::vector<unsigned> FilterIds; 363 364 /// List of the indices in FilterIds corresponding to filter terminators. 365 std::vector<unsigned> FilterEnds; 366 367 EHPersonality PersonalityTypeCache = EHPersonality::Unknown; 368 369 /// \} 370 371 /// Clear all the members of this MachineFunction, but the ones used 372 /// to initialize again the MachineFunction. 373 /// More specifically, this deallocates all the dynamically allocated 374 /// objects and get rid of all the XXXInfo data structure, but keep 375 /// unchanged the references to Fn, Target, MMI, and FunctionNumber. 376 void clear(); 377 /// Allocate and initialize the different members. 378 /// In particular, the XXXInfo data structure. 379 /// \pre Fn, Target, MMI, and FunctionNumber are properly set. 380 void init(); 381 382 public: 383 struct VariableDbgInfo { 384 const DILocalVariable *Var; 385 const DIExpression *Expr; 386 // The Slot can be negative for fixed stack objects. 387 int Slot; 388 const DILocation *Loc; 389 390 VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 391 int Slot, const DILocation *Loc) 392 : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {} 393 }; 394 395 class Delegate { 396 virtual void anchor(); 397 398 public: 399 virtual ~Delegate() = default; 400 /// Callback after an insertion. This should not modify the MI directly. 401 virtual void MF_HandleInsertion(MachineInstr &MI) = 0; 402 /// Callback before a removal. This should not modify the MI directly. 403 virtual void MF_HandleRemoval(MachineInstr &MI) = 0; 404 }; 405 406 /// Structure used to represent pair of argument number after call lowering 407 /// and register used to transfer that argument. 408 /// For now we support only cases when argument is transferred through one 409 /// register. 410 struct ArgRegPair { 411 Register Reg; 412 uint16_t ArgNo; 413 ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) { 414 assert(Arg < (1 << 16) && "Arg out of range"); 415 } 416 }; 417 /// Vector of call argument and its forwarding register. 418 using CallSiteInfo = SmallVector<ArgRegPair, 1>; 419 using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>; 420 421 private: 422 Delegate *TheDelegate = nullptr; 423 GISelChangeObserver *Observer = nullptr; 424 425 using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>; 426 /// Map a call instruction to call site arguments forwarding info. 427 CallSiteInfoMap CallSitesInfo; 428 429 /// A helper function that returns call site info for a give call 430 /// instruction if debug entry value support is enabled. 431 CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI); 432 433 // Callbacks for insertion and removal. 434 void handleInsertion(MachineInstr &MI); 435 void handleRemoval(MachineInstr &MI); 436 friend struct ilist_traits<MachineInstr>; 437 438 public: 439 using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>; 440 VariableDbgInfoMapTy VariableDbgInfos; 441 442 /// A count of how many instructions in the function have had numbers 443 /// assigned to them. Used for debug value tracking, to determine the 444 /// next instruction number. 445 unsigned DebugInstrNumberingCount = 0; 446 447 /// Set value of DebugInstrNumberingCount field. Avoid using this unless 448 /// you're deserializing this data. 449 void setDebugInstrNumberingCount(unsigned Num); 450 451 /// Pair of instruction number and operand number. 452 using DebugInstrOperandPair = std::pair<unsigned, unsigned>; 453 454 /// Substitution map: from one <inst,operand> pair to another. Used to 455 /// record changes in where a value is defined, so that debug variable 456 /// locations can find it later. 457 std::map<DebugInstrOperandPair, DebugInstrOperandPair> 458 DebugValueSubstitutions; 459 460 /// Create a substitution between one <instr,operand> value to a different, 461 /// new value. 462 void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair); 463 464 /// Create substitutions for any tracked values in \p Old, to point at 465 /// \p New. Needed when we re-create an instruction during optimization, 466 /// which has the same signature (i.e., def operands in the same place) but 467 /// a modified instruction type, flags, or otherwise. An example: X86 moves 468 /// are sometimes transformed into equivalent LEAs. 469 /// If the two instructions are not the same opcode, limit which operands to 470 /// examine for substitutions to the first N operands by setting 471 /// \p MaxOperand. 472 void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New, 473 unsigned MaxOperand = UINT_MAX); 474 475 MachineFunction(Function &F, const LLVMTargetMachine &Target, 476 const TargetSubtargetInfo &STI, unsigned FunctionNum, 477 MachineModuleInfo &MMI); 478 MachineFunction(const MachineFunction &) = delete; 479 MachineFunction &operator=(const MachineFunction &) = delete; 480 ~MachineFunction(); 481 482 /// Reset the instance as if it was just created. 483 void reset() { 484 clear(); 485 init(); 486 } 487 488 /// Reset the currently registered delegate - otherwise assert. 489 void resetDelegate(Delegate *delegate) { 490 assert(TheDelegate == delegate && 491 "Only the current delegate can perform reset!"); 492 TheDelegate = nullptr; 493 } 494 495 /// Set the delegate. resetDelegate must be called before attempting 496 /// to set. 497 void setDelegate(Delegate *delegate) { 498 assert(delegate && !TheDelegate && 499 "Attempted to set delegate to null, or to change it without " 500 "first resetting it!"); 501 502 TheDelegate = delegate; 503 } 504 505 void setObserver(GISelChangeObserver *O) { Observer = O; } 506 507 GISelChangeObserver *getObserver() const { return Observer; } 508 509 MachineModuleInfo &getMMI() const { return MMI; } 510 MCContext &getContext() const { return Ctx; } 511 512 /// Returns the Section this function belongs to. 513 MCSection *getSection() const { return Section; } 514 515 /// Indicates the Section this function belongs to. 516 void setSection(MCSection *S) { Section = S; } 517 518 PseudoSourceValueManager &getPSVManager() const { return *PSVManager; } 519 520 /// Return the DataLayout attached to the Module associated to this MF. 521 const DataLayout &getDataLayout() const; 522 523 /// Return the LLVM function that this machine code represents 524 Function &getFunction() { return F; } 525 526 /// Return the LLVM function that this machine code represents 527 const Function &getFunction() const { return F; } 528 529 /// getName - Return the name of the corresponding LLVM function. 530 StringRef getName() const; 531 532 /// getFunctionNumber - Return a unique ID for the current function. 533 unsigned getFunctionNumber() const { return FunctionNumber; } 534 535 /// Returns true if this function has basic block sections enabled. 536 bool hasBBSections() const { 537 return (BBSectionsType == BasicBlockSection::All || 538 BBSectionsType == BasicBlockSection::List || 539 BBSectionsType == BasicBlockSection::Preset); 540 } 541 542 /// Returns true if basic block labels are to be generated for this function. 543 bool hasBBLabels() const { 544 return BBSectionsType == BasicBlockSection::Labels; 545 } 546 547 void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; } 548 549 /// Assign IsBeginSection IsEndSection fields for basic blocks in this 550 /// function. 551 void assignBeginEndSections(); 552 553 /// getTarget - Return the target machine this machine code is compiled with 554 const LLVMTargetMachine &getTarget() const { return Target; } 555 556 /// getSubtarget - Return the subtarget for which this machine code is being 557 /// compiled. 558 const TargetSubtargetInfo &getSubtarget() const { return *STI; } 559 560 /// getSubtarget - This method returns a pointer to the specified type of 561 /// TargetSubtargetInfo. In debug builds, it verifies that the object being 562 /// returned is of the correct type. 563 template<typename STC> const STC &getSubtarget() const { 564 return *static_cast<const STC *>(STI); 565 } 566 567 /// getRegInfo - Return information about the registers currently in use. 568 MachineRegisterInfo &getRegInfo() { return *RegInfo; } 569 const MachineRegisterInfo &getRegInfo() const { return *RegInfo; } 570 571 /// getFrameInfo - Return the frame info object for the current function. 572 /// This object contains information about objects allocated on the stack 573 /// frame of the current function in an abstract way. 574 MachineFrameInfo &getFrameInfo() { return *FrameInfo; } 575 const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; } 576 577 /// getJumpTableInfo - Return the jump table info object for the current 578 /// function. This object contains information about jump tables in the 579 /// current function. If the current function has no jump tables, this will 580 /// return null. 581 const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; } 582 MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; } 583 584 /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 585 /// does already exist, allocate one. 586 MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind); 587 588 /// getConstantPool - Return the constant pool object for the current 589 /// function. 590 MachineConstantPool *getConstantPool() { return ConstantPool; } 591 const MachineConstantPool *getConstantPool() const { return ConstantPool; } 592 593 /// getWasmEHFuncInfo - Return information about how the current function uses 594 /// Wasm exception handling. Returns null for functions that don't use wasm 595 /// exception handling. 596 const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; } 597 WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; } 598 599 /// getWinEHFuncInfo - Return information about how the current function uses 600 /// Windows exception handling. Returns null for functions that don't use 601 /// funclets for exception handling. 602 const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; } 603 WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; } 604 605 /// getAlignment - Return the alignment of the function. 606 Align getAlignment() const { return Alignment; } 607 608 /// setAlignment - Set the alignment of the function. 609 void setAlignment(Align A) { Alignment = A; } 610 611 /// ensureAlignment - Make sure the function is at least A bytes aligned. 612 void ensureAlignment(Align A) { 613 if (Alignment < A) 614 Alignment = A; 615 } 616 617 /// exposesReturnsTwice - Returns true if the function calls setjmp or 618 /// any other similar functions with attribute "returns twice" without 619 /// having the attribute itself. 620 bool exposesReturnsTwice() const { 621 return ExposesReturnsTwice; 622 } 623 624 /// setCallsSetJmp - Set a flag that indicates if there's a call to 625 /// a "returns twice" function. 626 void setExposesReturnsTwice(bool B) { 627 ExposesReturnsTwice = B; 628 } 629 630 /// Returns true if the function contains any inline assembly. 631 bool hasInlineAsm() const { 632 return HasInlineAsm; 633 } 634 635 /// Set a flag that indicates that the function contains inline assembly. 636 void setHasInlineAsm(bool B) { 637 HasInlineAsm = B; 638 } 639 640 bool hasWinCFI() const { 641 return HasWinCFI; 642 } 643 void setHasWinCFI(bool v) { HasWinCFI = v; } 644 645 /// True if this function needs frame moves for debug or exceptions. 646 bool needsFrameMoves() const; 647 648 /// Get the function properties 649 const MachineFunctionProperties &getProperties() const { return Properties; } 650 MachineFunctionProperties &getProperties() { return Properties; } 651 652 /// getInfo - Keep track of various per-function pieces of information for 653 /// backends that would like to do so. 654 /// 655 template<typename Ty> 656 Ty *getInfo() { 657 if (!MFInfo) 658 MFInfo = Ty::template create<Ty>(Allocator, *this); 659 return static_cast<Ty*>(MFInfo); 660 } 661 662 template<typename Ty> 663 const Ty *getInfo() const { 664 return const_cast<MachineFunction*>(this)->getInfo<Ty>(); 665 } 666 667 /// Returns the denormal handling type for the default rounding mode of the 668 /// function. 669 DenormalMode getDenormalMode(const fltSemantics &FPType) const; 670 671 /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they 672 /// are inserted into the machine function. The block number for a machine 673 /// basic block can be found by using the MBB::getNumber method, this method 674 /// provides the inverse mapping. 675 MachineBasicBlock *getBlockNumbered(unsigned N) const { 676 assert(N < MBBNumbering.size() && "Illegal block number"); 677 assert(MBBNumbering[N] && "Block was removed from the machine function!"); 678 return MBBNumbering[N]; 679 } 680 681 /// Should we be emitting segmented stack stuff for the function 682 bool shouldSplitStack() const; 683 684 /// getNumBlockIDs - Return the number of MBB ID's allocated. 685 unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); } 686 687 /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 688 /// recomputes them. This guarantees that the MBB numbers are sequential, 689 /// dense, and match the ordering of the blocks within the function. If a 690 /// specific MachineBasicBlock is specified, only that block and those after 691 /// it are renumbered. 692 void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr); 693 694 /// print - Print out the MachineFunction in a format suitable for debugging 695 /// to the specified stream. 696 void print(raw_ostream &OS, const SlotIndexes* = nullptr) const; 697 698 /// viewCFG - This function is meant for use from the debugger. You can just 699 /// say 'call F->viewCFG()' and a ghostview window should pop up from the 700 /// program, displaying the CFG of the current function with the code for each 701 /// basic block inside. This depends on there being a 'dot' and 'gv' program 702 /// in your path. 703 void viewCFG() const; 704 705 /// viewCFGOnly - This function is meant for use from the debugger. It works 706 /// just like viewCFG, but it does not include the contents of basic blocks 707 /// into the nodes, just the label. If you are only interested in the CFG 708 /// this can make the graph smaller. 709 /// 710 void viewCFGOnly() const; 711 712 /// dump - Print the current MachineFunction to cerr, useful for debugger use. 713 void dump() const; 714 715 /// Run the current MachineFunction through the machine code verifier, useful 716 /// for debugger use. 717 /// \returns true if no problems were found. 718 bool verify(Pass *p = nullptr, const char *Banner = nullptr, 719 bool AbortOnError = true) const; 720 721 // Provide accessors for the MachineBasicBlock list... 722 using iterator = BasicBlockListType::iterator; 723 using const_iterator = BasicBlockListType::const_iterator; 724 using const_reverse_iterator = BasicBlockListType::const_reverse_iterator; 725 using reverse_iterator = BasicBlockListType::reverse_iterator; 726 727 /// Support for MachineBasicBlock::getNextNode(). 728 static BasicBlockListType MachineFunction::* 729 getSublistAccess(MachineBasicBlock *) { 730 return &MachineFunction::BasicBlocks; 731 } 732 733 /// addLiveIn - Add the specified physical register as a live-in value and 734 /// create a corresponding virtual register for it. 735 Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC); 736 737 //===--------------------------------------------------------------------===// 738 // BasicBlock accessor functions. 739 // 740 iterator begin() { return BasicBlocks.begin(); } 741 const_iterator begin() const { return BasicBlocks.begin(); } 742 iterator end () { return BasicBlocks.end(); } 743 const_iterator end () const { return BasicBlocks.end(); } 744 745 reverse_iterator rbegin() { return BasicBlocks.rbegin(); } 746 const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); } 747 reverse_iterator rend () { return BasicBlocks.rend(); } 748 const_reverse_iterator rend () const { return BasicBlocks.rend(); } 749 750 unsigned size() const { return (unsigned)BasicBlocks.size();} 751 bool empty() const { return BasicBlocks.empty(); } 752 const MachineBasicBlock &front() const { return BasicBlocks.front(); } 753 MachineBasicBlock &front() { return BasicBlocks.front(); } 754 const MachineBasicBlock & back() const { return BasicBlocks.back(); } 755 MachineBasicBlock & back() { return BasicBlocks.back(); } 756 757 void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); } 758 void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); } 759 void insert(iterator MBBI, MachineBasicBlock *MBB) { 760 BasicBlocks.insert(MBBI, MBB); 761 } 762 void splice(iterator InsertPt, iterator MBBI) { 763 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI); 764 } 765 void splice(iterator InsertPt, MachineBasicBlock *MBB) { 766 BasicBlocks.splice(InsertPt, BasicBlocks, MBB); 767 } 768 void splice(iterator InsertPt, iterator MBBI, iterator MBBE) { 769 BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE); 770 } 771 772 void remove(iterator MBBI) { BasicBlocks.remove(MBBI); } 773 void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); } 774 void erase(iterator MBBI) { BasicBlocks.erase(MBBI); } 775 void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); } 776 777 template <typename Comp> 778 void sort(Comp comp) { 779 BasicBlocks.sort(comp); 780 } 781 782 /// Return the number of \p MachineInstrs in this \p MachineFunction. 783 unsigned getInstructionCount() const { 784 unsigned InstrCount = 0; 785 for (const MachineBasicBlock &MBB : BasicBlocks) 786 InstrCount += MBB.size(); 787 return InstrCount; 788 } 789 790 //===--------------------------------------------------------------------===// 791 // Internal functions used to automatically number MachineBasicBlocks 792 793 /// Adds the MBB to the internal numbering. Returns the unique number 794 /// assigned to the MBB. 795 unsigned addToMBBNumbering(MachineBasicBlock *MBB) { 796 MBBNumbering.push_back(MBB); 797 return (unsigned)MBBNumbering.size()-1; 798 } 799 800 /// removeFromMBBNumbering - Remove the specific machine basic block from our 801 /// tracker, this is only really to be used by the MachineBasicBlock 802 /// implementation. 803 void removeFromMBBNumbering(unsigned N) { 804 assert(N < MBBNumbering.size() && "Illegal basic block #"); 805 MBBNumbering[N] = nullptr; 806 } 807 808 /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 809 /// of `new MachineInstr'. 810 MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL, 811 bool NoImplicit = false); 812 813 /// Create a new MachineInstr which is a copy of \p Orig, identical in all 814 /// ways except the instruction has no parent, prev, or next. Bundling flags 815 /// are reset. 816 /// 817 /// Note: Clones a single instruction, not whole instruction bundles. 818 /// Does not perform target specific adjustments; consider using 819 /// TargetInstrInfo::duplicate() instead. 820 MachineInstr *CloneMachineInstr(const MachineInstr *Orig); 821 822 /// Clones instruction or the whole instruction bundle \p Orig and insert 823 /// into \p MBB before \p InsertBefore. 824 /// 825 /// Note: Does not perform target specific adjustments; consider using 826 /// TargetInstrInfo::duplicate() intead. 827 MachineInstr &CloneMachineInstrBundle(MachineBasicBlock &MBB, 828 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig); 829 830 /// DeleteMachineInstr - Delete the given MachineInstr. 831 void DeleteMachineInstr(MachineInstr *MI); 832 833 /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 834 /// instead of `new MachineBasicBlock'. 835 MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr); 836 837 /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 838 void DeleteMachineBasicBlock(MachineBasicBlock *MBB); 839 840 /// getMachineMemOperand - Allocate a new MachineMemOperand. 841 /// MachineMemOperands are owned by the MachineFunction and need not be 842 /// explicitly deallocated. 843 MachineMemOperand *getMachineMemOperand( 844 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, 845 Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(), 846 const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System, 847 AtomicOrdering Ordering = AtomicOrdering::NotAtomic, 848 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic); 849 850 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 851 /// an existing one, adjusting by an offset and using the given size. 852 /// MachineMemOperands are owned by the MachineFunction and need not be 853 /// explicitly deallocated. 854 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 855 int64_t Offset, uint64_t Size); 856 857 /// getMachineMemOperand - Allocate a new MachineMemOperand by copying 858 /// an existing one, replacing only the MachinePointerInfo and size. 859 /// MachineMemOperands are owned by the MachineFunction and need not be 860 /// explicitly deallocated. 861 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 862 MachinePointerInfo &PtrInfo, 863 uint64_t Size); 864 865 /// Allocate a new MachineMemOperand by copying an existing one, 866 /// replacing only AliasAnalysis information. MachineMemOperands are owned 867 /// by the MachineFunction and need not be explicitly deallocated. 868 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 869 const AAMDNodes &AAInfo); 870 871 /// Allocate a new MachineMemOperand by copying an existing one, 872 /// replacing the flags. MachineMemOperands are owned 873 /// by the MachineFunction and need not be explicitly deallocated. 874 MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO, 875 MachineMemOperand::Flags Flags); 876 877 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 878 879 /// Allocate an array of MachineOperands. This is only intended for use by 880 /// internal MachineInstr functions. 881 MachineOperand *allocateOperandArray(OperandCapacity Cap) { 882 return OperandRecycler.allocate(Cap, Allocator); 883 } 884 885 /// Dellocate an array of MachineOperands and recycle the memory. This is 886 /// only intended for use by internal MachineInstr functions. 887 /// Cap must be the same capacity that was used to allocate the array. 888 void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) { 889 OperandRecycler.deallocate(Cap, Array); 890 } 891 892 /// Allocate and initialize a register mask with @p NumRegister bits. 893 uint32_t *allocateRegMask(); 894 895 ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask); 896 897 /// Allocate and construct an extra info structure for a `MachineInstr`. 898 /// 899 /// This is allocated on the function's allocator and so lives the life of 900 /// the function. 901 MachineInstr::ExtraInfo *createMIExtraInfo( 902 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr, 903 MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr); 904 905 /// Allocate a string and populate it with the given external symbol name. 906 const char *createExternalSymbolName(StringRef Name); 907 908 //===--------------------------------------------------------------------===// 909 // Label Manipulation. 910 911 /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 912 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 913 /// normal 'L' label is returned. 914 MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx, 915 bool isLinkerPrivate = false) const; 916 917 /// getPICBaseSymbol - Return a function-local symbol to represent the PIC 918 /// base. 919 MCSymbol *getPICBaseSymbol() const; 920 921 /// Returns a reference to a list of cfi instructions in the function's 922 /// prologue. Used to construct frame maps for debug and exception handling 923 /// comsumers. 924 const std::vector<MCCFIInstruction> &getFrameInstructions() const { 925 return FrameInstructions; 926 } 927 928 LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst); 929 930 /// Returns a reference to a list of symbols immediately following calls to 931 /// _setjmp in the function. Used to construct the longjmp target table used 932 /// by Windows Control Flow Guard. 933 const std::vector<MCSymbol *> &getLongjmpTargets() const { 934 return LongjmpTargets; 935 } 936 937 /// Add the specified symbol to the list of valid longjmp targets for Windows 938 /// Control Flow Guard. 939 void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); } 940 941 /// Returns a reference to a list of symbols that we have catchrets. 942 /// Used to construct the catchret target table used by Windows EHCont Guard. 943 const std::vector<MCSymbol *> &getCatchretTargets() const { 944 return CatchretTargets; 945 } 946 947 /// Add the specified symbol to the list of valid catchret targets for Windows 948 /// EHCont Guard. 949 void addCatchretTarget(MCSymbol *Target) { 950 CatchretTargets.push_back(Target); 951 } 952 953 /// \name Exception Handling 954 /// \{ 955 956 bool callsEHReturn() const { return CallsEHReturn; } 957 void setCallsEHReturn(bool b) { CallsEHReturn = b; } 958 959 bool callsUnwindInit() const { return CallsUnwindInit; } 960 void setCallsUnwindInit(bool b) { CallsUnwindInit = b; } 961 962 bool hasEHCatchret() const { return HasEHCatchret; } 963 void setHasEHCatchret(bool V) { HasEHCatchret = V; } 964 965 bool hasEHScopes() const { return HasEHScopes; } 966 void setHasEHScopes(bool V) { HasEHScopes = V; } 967 968 bool hasEHFunclets() const { return HasEHFunclets; } 969 void setHasEHFunclets(bool V) { HasEHFunclets = V; } 970 971 /// Find or create an LandingPadInfo for the specified MachineBasicBlock. 972 LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad); 973 974 /// Remap landing pad labels and remove any deleted landing pads. 975 void tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap = nullptr, 976 bool TidyIfNoBeginLabels = true); 977 978 /// Return a reference to the landing pad info for the current function. 979 const std::vector<LandingPadInfo> &getLandingPads() const { 980 return LandingPads; 981 } 982 983 /// Provide the begin and end labels of an invoke style call and associate it 984 /// with a try landing pad block. 985 void addInvoke(MachineBasicBlock *LandingPad, 986 MCSymbol *BeginLabel, MCSymbol *EndLabel); 987 988 /// Add a new panding pad, and extract the exception handling information from 989 /// the landingpad instruction. Returns the label ID for the landing pad 990 /// entry. 991 MCSymbol *addLandingPad(MachineBasicBlock *LandingPad); 992 993 /// Provide the catch typeinfo for a landing pad. 994 void addCatchTypeInfo(MachineBasicBlock *LandingPad, 995 ArrayRef<const GlobalValue *> TyInfo); 996 997 /// Provide the filter typeinfo for a landing pad. 998 void addFilterTypeInfo(MachineBasicBlock *LandingPad, 999 ArrayRef<const GlobalValue *> TyInfo); 1000 1001 /// Add a cleanup action for a landing pad. 1002 void addCleanup(MachineBasicBlock *LandingPad); 1003 1004 void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter, 1005 const BlockAddress *RecoverBA); 1006 1007 void addSEHCleanupHandler(MachineBasicBlock *LandingPad, 1008 const Function *Cleanup); 1009 1010 /// Return the type id for the specified typeinfo. This is function wide. 1011 unsigned getTypeIDFor(const GlobalValue *TI); 1012 1013 /// Return the id of the filter encoded by TyIds. This is function wide. 1014 int getFilterIDFor(std::vector<unsigned> &TyIds); 1015 1016 /// Map the landing pad's EH symbol to the call site indexes. 1017 void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites); 1018 1019 /// Map the landing pad to its index. Used for Wasm exception handling. 1020 void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) { 1021 WasmLPadToIndexMap[LPad] = Index; 1022 } 1023 1024 /// Returns true if the landing pad has an associate index in wasm EH. 1025 bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1026 return WasmLPadToIndexMap.count(LPad); 1027 } 1028 1029 /// Get the index in wasm EH for a given landing pad. 1030 unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const { 1031 assert(hasWasmLandingPadIndex(LPad)); 1032 return WasmLPadToIndexMap.lookup(LPad); 1033 } 1034 1035 /// Get the call site indexes for a landing pad EH symbol. 1036 SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) { 1037 assert(hasCallSiteLandingPad(Sym) && 1038 "missing call site number for landing pad!"); 1039 return LPadToCallSiteMap[Sym]; 1040 } 1041 1042 /// Return true if the landing pad Eh symbol has an associated call site. 1043 bool hasCallSiteLandingPad(MCSymbol *Sym) { 1044 return !LPadToCallSiteMap[Sym].empty(); 1045 } 1046 1047 /// Map the begin label for a call site. 1048 void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) { 1049 CallSiteMap[BeginLabel] = Site; 1050 } 1051 1052 /// Get the call site number for a begin label. 1053 unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1054 assert(hasCallSiteBeginLabel(BeginLabel) && 1055 "Missing call site number for EH_LABEL!"); 1056 return CallSiteMap.lookup(BeginLabel); 1057 } 1058 1059 /// Return true if the begin label has a call site number associated with it. 1060 bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const { 1061 return CallSiteMap.count(BeginLabel); 1062 } 1063 1064 /// Record annotations associated with a particular label. 1065 void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) { 1066 CodeViewAnnotations.push_back({Label, MD}); 1067 } 1068 1069 ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const { 1070 return CodeViewAnnotations; 1071 } 1072 1073 /// Return a reference to the C++ typeinfo for the current function. 1074 const std::vector<const GlobalValue *> &getTypeInfos() const { 1075 return TypeInfos; 1076 } 1077 1078 /// Return a reference to the typeids encoding filters used in the current 1079 /// function. 1080 const std::vector<unsigned> &getFilterIds() const { 1081 return FilterIds; 1082 } 1083 1084 /// \} 1085 1086 /// Collect information used to emit debugging information of a variable. 1087 void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, 1088 int Slot, const DILocation *Loc) { 1089 VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc); 1090 } 1091 1092 VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; } 1093 const VariableDbgInfoMapTy &getVariableDbgInfo() const { 1094 return VariableDbgInfos; 1095 } 1096 1097 /// Start tracking the arguments passed to the call \p CallI. 1098 void addCallArgsForwardingRegs(const MachineInstr *CallI, 1099 CallSiteInfoImpl &&CallInfo) { 1100 assert(CallI->isCandidateForCallSiteEntry()); 1101 bool Inserted = 1102 CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second; 1103 (void)Inserted; 1104 assert(Inserted && "Call site info not unique"); 1105 } 1106 1107 const CallSiteInfoMap &getCallSitesInfo() const { 1108 return CallSitesInfo; 1109 } 1110 1111 /// Following functions update call site info. They should be called before 1112 /// removing, replacing or copying call instruction. 1113 1114 /// Erase the call site info for \p MI. It is used to remove a call 1115 /// instruction from the instruction stream. 1116 void eraseCallSiteInfo(const MachineInstr *MI); 1117 /// Copy the call site info from \p Old to \ New. Its usage is when we are 1118 /// making a copy of the instruction that will be inserted at different point 1119 /// of the instruction stream. 1120 void copyCallSiteInfo(const MachineInstr *Old, 1121 const MachineInstr *New); 1122 1123 const std::vector<char> &getBBSectionsSymbolPrefix() const { 1124 return BBSectionsSymbolPrefix; 1125 } 1126 1127 /// Move the call site info from \p Old to \New call site info. This function 1128 /// is used when we are replacing one call instruction with another one to 1129 /// the same callee. 1130 void moveCallSiteInfo(const MachineInstr *Old, 1131 const MachineInstr *New); 1132 1133 unsigned getNewDebugInstrNum() { 1134 return ++DebugInstrNumberingCount; 1135 } 1136 }; 1137 1138 //===--------------------------------------------------------------------===// 1139 // GraphTraits specializations for function basic block graphs (CFGs) 1140 //===--------------------------------------------------------------------===// 1141 1142 // Provide specializations of GraphTraits to be able to treat a 1143 // machine function as a graph of machine basic blocks... these are 1144 // the same as the machine basic block iterators, except that the root 1145 // node is implicitly the first node of the function. 1146 // 1147 template <> struct GraphTraits<MachineFunction*> : 1148 public GraphTraits<MachineBasicBlock*> { 1149 static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); } 1150 1151 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1152 using nodes_iterator = pointer_iterator<MachineFunction::iterator>; 1153 1154 static nodes_iterator nodes_begin(MachineFunction *F) { 1155 return nodes_iterator(F->begin()); 1156 } 1157 1158 static nodes_iterator nodes_end(MachineFunction *F) { 1159 return nodes_iterator(F->end()); 1160 } 1161 1162 static unsigned size (MachineFunction *F) { return F->size(); } 1163 }; 1164 template <> struct GraphTraits<const MachineFunction*> : 1165 public GraphTraits<const MachineBasicBlock*> { 1166 static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); } 1167 1168 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 1169 using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>; 1170 1171 static nodes_iterator nodes_begin(const MachineFunction *F) { 1172 return nodes_iterator(F->begin()); 1173 } 1174 1175 static nodes_iterator nodes_end (const MachineFunction *F) { 1176 return nodes_iterator(F->end()); 1177 } 1178 1179 static unsigned size (const MachineFunction *F) { 1180 return F->size(); 1181 } 1182 }; 1183 1184 // Provide specializations of GraphTraits to be able to treat a function as a 1185 // graph of basic blocks... and to walk it in inverse order. Inverse order for 1186 // a function is considered to be when traversing the predecessor edges of a BB 1187 // instead of the successor edges. 1188 // 1189 template <> struct GraphTraits<Inverse<MachineFunction*>> : 1190 public GraphTraits<Inverse<MachineBasicBlock*>> { 1191 static NodeRef getEntryNode(Inverse<MachineFunction *> G) { 1192 return &G.Graph->front(); 1193 } 1194 }; 1195 template <> struct GraphTraits<Inverse<const MachineFunction*>> : 1196 public GraphTraits<Inverse<const MachineBasicBlock*>> { 1197 static NodeRef getEntryNode(Inverse<const MachineFunction *> G) { 1198 return &G.Graph->front(); 1199 } 1200 }; 1201 1202 class MachineFunctionAnalysisManager; 1203 void verifyMachineFunction(MachineFunctionAnalysisManager *, 1204 const std::string &Banner, 1205 const MachineFunction &MF); 1206 1207 } // end namespace llvm 1208 1209 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H 1210