xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/CodeGen/MachineFunction.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code for a function.  This class contains a list of
10 // MachineBasicBlock instances that make up the current compiled function.
11 //
12 // This class also contains pointers to various classes which hold
13 // target-specific information about the generated code.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
18 #define LLVM_CODEGEN_MACHINEFUNCTION_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/GraphTraits.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/ilist.h"
26 #include "llvm/ADT/iterator.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/Support/Allocator.h"
32 #include "llvm/Support/ArrayRecycler.h"
33 #include "llvm/Support/AtomicOrdering.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Recycler.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <memory>
40 #include <utility>
41 #include <vector>
42 
43 namespace llvm {
44 
45 class BasicBlock;
46 class BlockAddress;
47 class DataLayout;
48 class DebugLoc;
49 struct DenormalMode;
50 class DIExpression;
51 class DILocalVariable;
52 class DILocation;
53 class Function;
54 class GISelChangeObserver;
55 class GlobalValue;
56 class LLVMTargetMachine;
57 class MachineConstantPool;
58 class MachineFrameInfo;
59 class MachineFunction;
60 class MachineJumpTableInfo;
61 class MachineModuleInfo;
62 class MachineRegisterInfo;
63 class MCContext;
64 class MCInstrDesc;
65 class MCSymbol;
66 class MCSection;
67 class Pass;
68 class PseudoSourceValueManager;
69 class raw_ostream;
70 class SlotIndexes;
71 class StringRef;
72 class TargetRegisterClass;
73 class TargetSubtargetInfo;
74 struct WasmEHFuncInfo;
75 struct WinEHFuncInfo;
76 
77 template <> struct ilist_alloc_traits<MachineBasicBlock> {
78   void deleteNode(MachineBasicBlock *MBB);
79 };
80 
81 template <> struct ilist_callback_traits<MachineBasicBlock> {
82   void addNodeToList(MachineBasicBlock* N);
83   void removeNodeFromList(MachineBasicBlock* N);
84 
85   template <class Iterator>
86   void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
87     assert(this == &OldList && "never transfer MBBs between functions");
88   }
89 };
90 
91 /// MachineFunctionInfo - This class can be derived from and used by targets to
92 /// hold private target-specific information for each MachineFunction.  Objects
93 /// of type are accessed/created with MF::getInfo and destroyed when the
94 /// MachineFunction is destroyed.
95 struct MachineFunctionInfo {
96   virtual ~MachineFunctionInfo();
97 
98   /// Factory function: default behavior is to call new using the
99   /// supplied allocator.
100   ///
101   /// This function can be overridden in a derive class.
102   template<typename Ty>
103   static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) {
104     return new (Allocator.Allocate<Ty>()) Ty(MF);
105   }
106 };
107 
108 /// Properties which a MachineFunction may have at a given point in time.
109 /// Each of these has checking code in the MachineVerifier, and passes can
110 /// require that a property be set.
111 class MachineFunctionProperties {
112   // Possible TODO: Allow targets to extend this (perhaps by allowing the
113   // constructor to specify the size of the bit vector)
114   // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
115   // stated as the negative of "has vregs"
116 
117 public:
118   // The properties are stated in "positive" form; i.e. a pass could require
119   // that the property hold, but not that it does not hold.
120 
121   // Property descriptions:
122   // IsSSA: True when the machine function is in SSA form and virtual registers
123   //  have a single def.
124   // NoPHIs: The machine function does not contain any PHI instruction.
125   // TracksLiveness: True when tracking register liveness accurately.
126   //  While this property is set, register liveness information in basic block
127   //  live-in lists and machine instruction operands (e.g. implicit defs) is
128   //  accurate, kill flags are conservatively accurate (kill flag correctly
129   //  indicates the last use of a register, an operand without kill flag may or
130   //  may not be the last use of a register). This means it can be used to
131   //  change the code in ways that affect the values in registers, for example
132   //  by the register scavenger.
133   //  When this property is cleared at a very late time, liveness is no longer
134   //  reliable.
135   // NoVRegs: The machine function does not use any virtual registers.
136   // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
137   //  instructions have been legalized; i.e., all instructions are now one of:
138   //   - generic and always legal (e.g., COPY)
139   //   - target-specific
140   //   - legal pre-isel generic instructions.
141   // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
142   //  virtual registers have been assigned to a register bank.
143   // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
144   //  generic instructions have been eliminated; i.e., all instructions are now
145   //  target-specific or non-pre-isel generic instructions (e.g., COPY).
146   //  Since only pre-isel generic instructions can have generic virtual register
147   //  operands, this also means that all generic virtual registers have been
148   //  constrained to virtual registers (assigned to register classes) and that
149   //  all sizes attached to them have been eliminated.
150   // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it
151   //  means that tied-def have been rewritten to meet the RegConstraint.
152   enum class Property : unsigned {
153     IsSSA,
154     NoPHIs,
155     TracksLiveness,
156     NoVRegs,
157     FailedISel,
158     Legalized,
159     RegBankSelected,
160     Selected,
161     TiedOpsRewritten,
162     LastProperty = TiedOpsRewritten,
163   };
164 
165   bool hasProperty(Property P) const {
166     return Properties[static_cast<unsigned>(P)];
167   }
168 
169   MachineFunctionProperties &set(Property P) {
170     Properties.set(static_cast<unsigned>(P));
171     return *this;
172   }
173 
174   MachineFunctionProperties &reset(Property P) {
175     Properties.reset(static_cast<unsigned>(P));
176     return *this;
177   }
178 
179   /// Reset all the properties.
180   MachineFunctionProperties &reset() {
181     Properties.reset();
182     return *this;
183   }
184 
185   MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
186     Properties |= MFP.Properties;
187     return *this;
188   }
189 
190   MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
191     Properties.reset(MFP.Properties);
192     return *this;
193   }
194 
195   // Returns true if all properties set in V (i.e. required by a pass) are set
196   // in this.
197   bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
198     return !V.Properties.test(Properties);
199   }
200 
201   /// Print the MachineFunctionProperties in human-readable form.
202   void print(raw_ostream &OS) const;
203 
204 private:
205   BitVector Properties =
206       BitVector(static_cast<unsigned>(Property::LastProperty)+1);
207 };
208 
209 struct SEHHandler {
210   /// Filter or finally function. Null indicates a catch-all.
211   const Function *FilterOrFinally;
212 
213   /// Address of block to recover at. Null for a finally handler.
214   const BlockAddress *RecoverBA;
215 };
216 
217 /// This structure is used to retain landing pad info for the current function.
218 struct LandingPadInfo {
219   MachineBasicBlock *LandingPadBlock;      // Landing pad block.
220   SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
221   SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
222   SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
223   MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
224   std::vector<int> TypeIds;                // List of type ids (filters negative).
225 
226   explicit LandingPadInfo(MachineBasicBlock *MBB)
227       : LandingPadBlock(MBB) {}
228 };
229 
230 class MachineFunction {
231   Function &F;
232   const LLVMTargetMachine &Target;
233   const TargetSubtargetInfo *STI;
234   MCContext &Ctx;
235   MachineModuleInfo &MMI;
236 
237   // RegInfo - Information about each register in use in the function.
238   MachineRegisterInfo *RegInfo;
239 
240   // Used to keep track of target-specific per-machine function information for
241   // the target implementation.
242   MachineFunctionInfo *MFInfo;
243 
244   // Keep track of objects allocated on the stack.
245   MachineFrameInfo *FrameInfo;
246 
247   // Keep track of constants which are spilled to memory
248   MachineConstantPool *ConstantPool;
249 
250   // Keep track of jump tables for switch instructions
251   MachineJumpTableInfo *JumpTableInfo;
252 
253   // Keep track of the function section.
254   MCSection *Section = nullptr;
255 
256   // Keeps track of Wasm exception handling related data. This will be null for
257   // functions that aren't using a wasm EH personality.
258   WasmEHFuncInfo *WasmEHInfo = nullptr;
259 
260   // Keeps track of Windows exception handling related data. This will be null
261   // for functions that aren't using a funclet-based EH personality.
262   WinEHFuncInfo *WinEHInfo = nullptr;
263 
264   // Function-level unique numbering for MachineBasicBlocks.  When a
265   // MachineBasicBlock is inserted into a MachineFunction is it automatically
266   // numbered and this vector keeps track of the mapping from ID's to MBB's.
267   std::vector<MachineBasicBlock*> MBBNumbering;
268 
269   // Unary encoding of basic block symbols is used to reduce size of ".strtab".
270   // Basic block number 'i' gets a prefix of length 'i'.  The ith character also
271   // denotes the type of basic block number 'i'.  Return blocks are marked with
272   // 'r', landing pads with 'l' and regular blocks with 'a'.
273   std::vector<char> BBSectionsSymbolPrefix;
274 
275   // Pool-allocate MachineFunction-lifetime and IR objects.
276   BumpPtrAllocator Allocator;
277 
278   // Allocation management for instructions in function.
279   Recycler<MachineInstr> InstructionRecycler;
280 
281   // Allocation management for operand arrays on instructions.
282   ArrayRecycler<MachineOperand> OperandRecycler;
283 
284   // Allocation management for basic blocks in function.
285   Recycler<MachineBasicBlock> BasicBlockRecycler;
286 
287   // List of machine basic blocks in function
288   using BasicBlockListType = ilist<MachineBasicBlock>;
289   BasicBlockListType BasicBlocks;
290 
291   /// FunctionNumber - This provides a unique ID for each function emitted in
292   /// this translation unit.
293   ///
294   unsigned FunctionNumber;
295 
296   /// Alignment - The alignment of the function.
297   Align Alignment;
298 
299   /// ExposesReturnsTwice - True if the function calls setjmp or related
300   /// functions with attribute "returns twice", but doesn't have
301   /// the attribute itself.
302   /// This is used to limit optimizations which cannot reason
303   /// about the control flow of such functions.
304   bool ExposesReturnsTwice = false;
305 
306   /// True if the function includes any inline assembly.
307   bool HasInlineAsm = false;
308 
309   /// True if any WinCFI instruction have been emitted in this function.
310   bool HasWinCFI = false;
311 
312   /// Current high-level properties of the IR of the function (e.g. is in SSA
313   /// form or whether registers have been allocated)
314   MachineFunctionProperties Properties;
315 
316   // Allocation management for pseudo source values.
317   std::unique_ptr<PseudoSourceValueManager> PSVManager;
318 
319   /// List of moves done by a function's prolog.  Used to construct frame maps
320   /// by debug and exception handling consumers.
321   std::vector<MCCFIInstruction> FrameInstructions;
322 
323   /// List of basic blocks immediately following calls to _setjmp. Used to
324   /// construct a table of valid longjmp targets for Windows Control Flow Guard.
325   std::vector<MCSymbol *> LongjmpTargets;
326 
327   /// List of basic blocks that are the target of catchrets. Used to construct
328   /// a table of valid targets for Windows EHCont Guard.
329   std::vector<MCSymbol *> CatchretTargets;
330 
331   /// \name Exception Handling
332   /// \{
333 
334   /// List of LandingPadInfo describing the landing pad information.
335   std::vector<LandingPadInfo> LandingPads;
336 
337   /// Map a landing pad's EH symbol to the call site indexes.
338   DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
339 
340   /// Map a landing pad to its index.
341   DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap;
342 
343   /// Map of invoke call site index values to associated begin EH_LABEL.
344   DenseMap<MCSymbol*, unsigned> CallSiteMap;
345 
346   /// CodeView label annotations.
347   std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
348 
349   bool CallsEHReturn = false;
350   bool CallsUnwindInit = false;
351   bool HasEHCatchret = false;
352   bool HasEHScopes = false;
353   bool HasEHFunclets = false;
354 
355   /// Section Type for basic blocks, only relevant with basic block sections.
356   BasicBlockSection BBSectionsType = BasicBlockSection::None;
357 
358   /// List of C++ TypeInfo used.
359   std::vector<const GlobalValue *> TypeInfos;
360 
361   /// List of typeids encoding filters used.
362   std::vector<unsigned> FilterIds;
363 
364   /// List of the indices in FilterIds corresponding to filter terminators.
365   std::vector<unsigned> FilterEnds;
366 
367   EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
368 
369   /// \}
370 
371   /// Clear all the members of this MachineFunction, but the ones used
372   /// to initialize again the MachineFunction.
373   /// More specifically, this deallocates all the dynamically allocated
374   /// objects and get rid of all the XXXInfo data structure, but keep
375   /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
376   void clear();
377   /// Allocate and initialize the different members.
378   /// In particular, the XXXInfo data structure.
379   /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
380   void init();
381 
382 public:
383   struct VariableDbgInfo {
384     const DILocalVariable *Var;
385     const DIExpression *Expr;
386     // The Slot can be negative for fixed stack objects.
387     int Slot;
388     const DILocation *Loc;
389 
390     VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
391                     int Slot, const DILocation *Loc)
392         : Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
393   };
394 
395   class Delegate {
396     virtual void anchor();
397 
398   public:
399     virtual ~Delegate() = default;
400     /// Callback after an insertion. This should not modify the MI directly.
401     virtual void MF_HandleInsertion(MachineInstr &MI) = 0;
402     /// Callback before a removal. This should not modify the MI directly.
403     virtual void MF_HandleRemoval(MachineInstr &MI) = 0;
404   };
405 
406   /// Structure used to represent pair of argument number after call lowering
407   /// and register used to transfer that argument.
408   /// For now we support only cases when argument is transferred through one
409   /// register.
410   struct ArgRegPair {
411     Register Reg;
412     uint16_t ArgNo;
413     ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) {
414       assert(Arg < (1 << 16) && "Arg out of range");
415     }
416   };
417   /// Vector of call argument and its forwarding register.
418   using CallSiteInfo = SmallVector<ArgRegPair, 1>;
419   using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>;
420 
421 private:
422   Delegate *TheDelegate = nullptr;
423   GISelChangeObserver *Observer = nullptr;
424 
425   using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>;
426   /// Map a call instruction to call site arguments forwarding info.
427   CallSiteInfoMap CallSitesInfo;
428 
429   /// A helper function that returns call site info for a give call
430   /// instruction if debug entry value support is enabled.
431   CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI);
432 
433   // Callbacks for insertion and removal.
434   void handleInsertion(MachineInstr &MI);
435   void handleRemoval(MachineInstr &MI);
436   friend struct ilist_traits<MachineInstr>;
437 
438 public:
439   using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
440   VariableDbgInfoMapTy VariableDbgInfos;
441 
442   /// A count of how many instructions in the function have had numbers
443   /// assigned to them. Used for debug value tracking, to determine the
444   /// next instruction number.
445   unsigned DebugInstrNumberingCount = 0;
446 
447   /// Set value of DebugInstrNumberingCount field. Avoid using this unless
448   /// you're deserializing this data.
449   void setDebugInstrNumberingCount(unsigned Num);
450 
451   /// Pair of instruction number and operand number.
452   using DebugInstrOperandPair = std::pair<unsigned, unsigned>;
453 
454   /// Substitution map: from one <inst,operand> pair to another. Used to
455   /// record changes in where a value is defined, so that debug variable
456   /// locations can find it later.
457   std::map<DebugInstrOperandPair, DebugInstrOperandPair>
458       DebugValueSubstitutions;
459 
460   /// Create a substitution between one <instr,operand> value to a different,
461   /// new value.
462   void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair);
463 
464   /// Create substitutions for any tracked values in \p Old, to point at
465   /// \p New. Needed when we re-create an instruction during optimization,
466   /// which has the same signature (i.e., def operands in the same place) but
467   /// a modified instruction type, flags, or otherwise. An example: X86 moves
468   /// are sometimes transformed into equivalent LEAs.
469   /// If the two instructions are not the same opcode, limit which operands to
470   /// examine for substitutions to the first N operands by setting
471   /// \p MaxOperand.
472   void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New,
473                                     unsigned MaxOperand = UINT_MAX);
474 
475   MachineFunction(Function &F, const LLVMTargetMachine &Target,
476                   const TargetSubtargetInfo &STI, unsigned FunctionNum,
477                   MachineModuleInfo &MMI);
478   MachineFunction(const MachineFunction &) = delete;
479   MachineFunction &operator=(const MachineFunction &) = delete;
480   ~MachineFunction();
481 
482   /// Reset the instance as if it was just created.
483   void reset() {
484     clear();
485     init();
486   }
487 
488   /// Reset the currently registered delegate - otherwise assert.
489   void resetDelegate(Delegate *delegate) {
490     assert(TheDelegate == delegate &&
491            "Only the current delegate can perform reset!");
492     TheDelegate = nullptr;
493   }
494 
495   /// Set the delegate. resetDelegate must be called before attempting
496   /// to set.
497   void setDelegate(Delegate *delegate) {
498     assert(delegate && !TheDelegate &&
499            "Attempted to set delegate to null, or to change it without "
500            "first resetting it!");
501 
502     TheDelegate = delegate;
503   }
504 
505   void setObserver(GISelChangeObserver *O) { Observer = O; }
506 
507   GISelChangeObserver *getObserver() const { return Observer; }
508 
509   MachineModuleInfo &getMMI() const { return MMI; }
510   MCContext &getContext() const { return Ctx; }
511 
512   /// Returns the Section this function belongs to.
513   MCSection *getSection() const { return Section; }
514 
515   /// Indicates the Section this function belongs to.
516   void setSection(MCSection *S) { Section = S; }
517 
518   PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
519 
520   /// Return the DataLayout attached to the Module associated to this MF.
521   const DataLayout &getDataLayout() const;
522 
523   /// Return the LLVM function that this machine code represents
524   Function &getFunction() { return F; }
525 
526   /// Return the LLVM function that this machine code represents
527   const Function &getFunction() const { return F; }
528 
529   /// getName - Return the name of the corresponding LLVM function.
530   StringRef getName() const;
531 
532   /// getFunctionNumber - Return a unique ID for the current function.
533   unsigned getFunctionNumber() const { return FunctionNumber; }
534 
535   /// Returns true if this function has basic block sections enabled.
536   bool hasBBSections() const {
537     return (BBSectionsType == BasicBlockSection::All ||
538             BBSectionsType == BasicBlockSection::List ||
539             BBSectionsType == BasicBlockSection::Preset);
540   }
541 
542   /// Returns true if basic block labels are to be generated for this function.
543   bool hasBBLabels() const {
544     return BBSectionsType == BasicBlockSection::Labels;
545   }
546 
547   void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; }
548 
549   /// Assign IsBeginSection IsEndSection fields for basic blocks in this
550   /// function.
551   void assignBeginEndSections();
552 
553   /// getTarget - Return the target machine this machine code is compiled with
554   const LLVMTargetMachine &getTarget() const { return Target; }
555 
556   /// getSubtarget - Return the subtarget for which this machine code is being
557   /// compiled.
558   const TargetSubtargetInfo &getSubtarget() const { return *STI; }
559 
560   /// getSubtarget - This method returns a pointer to the specified type of
561   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
562   /// returned is of the correct type.
563   template<typename STC> const STC &getSubtarget() const {
564     return *static_cast<const STC *>(STI);
565   }
566 
567   /// getRegInfo - Return information about the registers currently in use.
568   MachineRegisterInfo &getRegInfo() { return *RegInfo; }
569   const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
570 
571   /// getFrameInfo - Return the frame info object for the current function.
572   /// This object contains information about objects allocated on the stack
573   /// frame of the current function in an abstract way.
574   MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
575   const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
576 
577   /// getJumpTableInfo - Return the jump table info object for the current
578   /// function.  This object contains information about jump tables in the
579   /// current function.  If the current function has no jump tables, this will
580   /// return null.
581   const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
582   MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
583 
584   /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
585   /// does already exist, allocate one.
586   MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
587 
588   /// getConstantPool - Return the constant pool object for the current
589   /// function.
590   MachineConstantPool *getConstantPool() { return ConstantPool; }
591   const MachineConstantPool *getConstantPool() const { return ConstantPool; }
592 
593   /// getWasmEHFuncInfo - Return information about how the current function uses
594   /// Wasm exception handling. Returns null for functions that don't use wasm
595   /// exception handling.
596   const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
597   WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
598 
599   /// getWinEHFuncInfo - Return information about how the current function uses
600   /// Windows exception handling. Returns null for functions that don't use
601   /// funclets for exception handling.
602   const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
603   WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
604 
605   /// getAlignment - Return the alignment of the function.
606   Align getAlignment() const { return Alignment; }
607 
608   /// setAlignment - Set the alignment of the function.
609   void setAlignment(Align A) { Alignment = A; }
610 
611   /// ensureAlignment - Make sure the function is at least A bytes aligned.
612   void ensureAlignment(Align A) {
613     if (Alignment < A)
614       Alignment = A;
615   }
616 
617   /// exposesReturnsTwice - Returns true if the function calls setjmp or
618   /// any other similar functions with attribute "returns twice" without
619   /// having the attribute itself.
620   bool exposesReturnsTwice() const {
621     return ExposesReturnsTwice;
622   }
623 
624   /// setCallsSetJmp - Set a flag that indicates if there's a call to
625   /// a "returns twice" function.
626   void setExposesReturnsTwice(bool B) {
627     ExposesReturnsTwice = B;
628   }
629 
630   /// Returns true if the function contains any inline assembly.
631   bool hasInlineAsm() const {
632     return HasInlineAsm;
633   }
634 
635   /// Set a flag that indicates that the function contains inline assembly.
636   void setHasInlineAsm(bool B) {
637     HasInlineAsm = B;
638   }
639 
640   bool hasWinCFI() const {
641     return HasWinCFI;
642   }
643   void setHasWinCFI(bool v) { HasWinCFI = v; }
644 
645   /// True if this function needs frame moves for debug or exceptions.
646   bool needsFrameMoves() const;
647 
648   /// Get the function properties
649   const MachineFunctionProperties &getProperties() const { return Properties; }
650   MachineFunctionProperties &getProperties() { return Properties; }
651 
652   /// getInfo - Keep track of various per-function pieces of information for
653   /// backends that would like to do so.
654   ///
655   template<typename Ty>
656   Ty *getInfo() {
657     if (!MFInfo)
658       MFInfo = Ty::template create<Ty>(Allocator, *this);
659     return static_cast<Ty*>(MFInfo);
660   }
661 
662   template<typename Ty>
663   const Ty *getInfo() const {
664      return const_cast<MachineFunction*>(this)->getInfo<Ty>();
665   }
666 
667   /// Returns the denormal handling type for the default rounding mode of the
668   /// function.
669   DenormalMode getDenormalMode(const fltSemantics &FPType) const;
670 
671   /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
672   /// are inserted into the machine function.  The block number for a machine
673   /// basic block can be found by using the MBB::getNumber method, this method
674   /// provides the inverse mapping.
675   MachineBasicBlock *getBlockNumbered(unsigned N) const {
676     assert(N < MBBNumbering.size() && "Illegal block number");
677     assert(MBBNumbering[N] && "Block was removed from the machine function!");
678     return MBBNumbering[N];
679   }
680 
681   /// Should we be emitting segmented stack stuff for the function
682   bool shouldSplitStack() const;
683 
684   /// getNumBlockIDs - Return the number of MBB ID's allocated.
685   unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
686 
687   /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
688   /// recomputes them.  This guarantees that the MBB numbers are sequential,
689   /// dense, and match the ordering of the blocks within the function.  If a
690   /// specific MachineBasicBlock is specified, only that block and those after
691   /// it are renumbered.
692   void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
693 
694   /// print - Print out the MachineFunction in a format suitable for debugging
695   /// to the specified stream.
696   void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
697 
698   /// viewCFG - This function is meant for use from the debugger.  You can just
699   /// say 'call F->viewCFG()' and a ghostview window should pop up from the
700   /// program, displaying the CFG of the current function with the code for each
701   /// basic block inside.  This depends on there being a 'dot' and 'gv' program
702   /// in your path.
703   void viewCFG() const;
704 
705   /// viewCFGOnly - This function is meant for use from the debugger.  It works
706   /// just like viewCFG, but it does not include the contents of basic blocks
707   /// into the nodes, just the label.  If you are only interested in the CFG
708   /// this can make the graph smaller.
709   ///
710   void viewCFGOnly() const;
711 
712   /// dump - Print the current MachineFunction to cerr, useful for debugger use.
713   void dump() const;
714 
715   /// Run the current MachineFunction through the machine code verifier, useful
716   /// for debugger use.
717   /// \returns true if no problems were found.
718   bool verify(Pass *p = nullptr, const char *Banner = nullptr,
719               bool AbortOnError = true) const;
720 
721   // Provide accessors for the MachineBasicBlock list...
722   using iterator = BasicBlockListType::iterator;
723   using const_iterator = BasicBlockListType::const_iterator;
724   using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
725   using reverse_iterator = BasicBlockListType::reverse_iterator;
726 
727   /// Support for MachineBasicBlock::getNextNode().
728   static BasicBlockListType MachineFunction::*
729   getSublistAccess(MachineBasicBlock *) {
730     return &MachineFunction::BasicBlocks;
731   }
732 
733   /// addLiveIn - Add the specified physical register as a live-in value and
734   /// create a corresponding virtual register for it.
735   Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC);
736 
737   //===--------------------------------------------------------------------===//
738   // BasicBlock accessor functions.
739   //
740   iterator                 begin()       { return BasicBlocks.begin(); }
741   const_iterator           begin() const { return BasicBlocks.begin(); }
742   iterator                 end  ()       { return BasicBlocks.end();   }
743   const_iterator           end  () const { return BasicBlocks.end();   }
744 
745   reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
746   const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
747   reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
748   const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
749 
750   unsigned                  size() const { return (unsigned)BasicBlocks.size();}
751   bool                     empty() const { return BasicBlocks.empty(); }
752   const MachineBasicBlock &front() const { return BasicBlocks.front(); }
753         MachineBasicBlock &front()       { return BasicBlocks.front(); }
754   const MachineBasicBlock & back() const { return BasicBlocks.back(); }
755         MachineBasicBlock & back()       { return BasicBlocks.back(); }
756 
757   void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
758   void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
759   void insert(iterator MBBI, MachineBasicBlock *MBB) {
760     BasicBlocks.insert(MBBI, MBB);
761   }
762   void splice(iterator InsertPt, iterator MBBI) {
763     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
764   }
765   void splice(iterator InsertPt, MachineBasicBlock *MBB) {
766     BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
767   }
768   void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
769     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
770   }
771 
772   void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
773   void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
774   void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
775   void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
776 
777   template <typename Comp>
778   void sort(Comp comp) {
779     BasicBlocks.sort(comp);
780   }
781 
782   /// Return the number of \p MachineInstrs in this \p MachineFunction.
783   unsigned getInstructionCount() const {
784     unsigned InstrCount = 0;
785     for (const MachineBasicBlock &MBB : BasicBlocks)
786       InstrCount += MBB.size();
787     return InstrCount;
788   }
789 
790   //===--------------------------------------------------------------------===//
791   // Internal functions used to automatically number MachineBasicBlocks
792 
793   /// Adds the MBB to the internal numbering. Returns the unique number
794   /// assigned to the MBB.
795   unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
796     MBBNumbering.push_back(MBB);
797     return (unsigned)MBBNumbering.size()-1;
798   }
799 
800   /// removeFromMBBNumbering - Remove the specific machine basic block from our
801   /// tracker, this is only really to be used by the MachineBasicBlock
802   /// implementation.
803   void removeFromMBBNumbering(unsigned N) {
804     assert(N < MBBNumbering.size() && "Illegal basic block #");
805     MBBNumbering[N] = nullptr;
806   }
807 
808   /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
809   /// of `new MachineInstr'.
810   MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL,
811                                    bool NoImplicit = false);
812 
813   /// Create a new MachineInstr which is a copy of \p Orig, identical in all
814   /// ways except the instruction has no parent, prev, or next. Bundling flags
815   /// are reset.
816   ///
817   /// Note: Clones a single instruction, not whole instruction bundles.
818   /// Does not perform target specific adjustments; consider using
819   /// TargetInstrInfo::duplicate() instead.
820   MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
821 
822   /// Clones instruction or the whole instruction bundle \p Orig and insert
823   /// into \p MBB before \p InsertBefore.
824   ///
825   /// Note: Does not perform target specific adjustments; consider using
826   /// TargetInstrInfo::duplicate() intead.
827   MachineInstr &CloneMachineInstrBundle(MachineBasicBlock &MBB,
828       MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig);
829 
830   /// DeleteMachineInstr - Delete the given MachineInstr.
831   void DeleteMachineInstr(MachineInstr *MI);
832 
833   /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
834   /// instead of `new MachineBasicBlock'.
835   MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);
836 
837   /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
838   void DeleteMachineBasicBlock(MachineBasicBlock *MBB);
839 
840   /// getMachineMemOperand - Allocate a new MachineMemOperand.
841   /// MachineMemOperands are owned by the MachineFunction and need not be
842   /// explicitly deallocated.
843   MachineMemOperand *getMachineMemOperand(
844       MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
845       Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
846       const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
847       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
848       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
849 
850   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
851   /// an existing one, adjusting by an offset and using the given size.
852   /// MachineMemOperands are owned by the MachineFunction and need not be
853   /// explicitly deallocated.
854   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
855                                           int64_t Offset, uint64_t Size);
856 
857   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
858   /// an existing one, replacing only the MachinePointerInfo and size.
859   /// MachineMemOperands are owned by the MachineFunction and need not be
860   /// explicitly deallocated.
861   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
862                                           MachinePointerInfo &PtrInfo,
863                                           uint64_t Size);
864 
865   /// Allocate a new MachineMemOperand by copying an existing one,
866   /// replacing only AliasAnalysis information. MachineMemOperands are owned
867   /// by the MachineFunction and need not be explicitly deallocated.
868   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
869                                           const AAMDNodes &AAInfo);
870 
871   /// Allocate a new MachineMemOperand by copying an existing one,
872   /// replacing the flags. MachineMemOperands are owned
873   /// by the MachineFunction and need not be explicitly deallocated.
874   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
875                                           MachineMemOperand::Flags Flags);
876 
877   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
878 
879   /// Allocate an array of MachineOperands. This is only intended for use by
880   /// internal MachineInstr functions.
881   MachineOperand *allocateOperandArray(OperandCapacity Cap) {
882     return OperandRecycler.allocate(Cap, Allocator);
883   }
884 
885   /// Dellocate an array of MachineOperands and recycle the memory. This is
886   /// only intended for use by internal MachineInstr functions.
887   /// Cap must be the same capacity that was used to allocate the array.
888   void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
889     OperandRecycler.deallocate(Cap, Array);
890   }
891 
892   /// Allocate and initialize a register mask with @p NumRegister bits.
893   uint32_t *allocateRegMask();
894 
895   ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask);
896 
897   /// Allocate and construct an extra info structure for a `MachineInstr`.
898   ///
899   /// This is allocated on the function's allocator and so lives the life of
900   /// the function.
901   MachineInstr::ExtraInfo *createMIExtraInfo(
902       ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr,
903       MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr);
904 
905   /// Allocate a string and populate it with the given external symbol name.
906   const char *createExternalSymbolName(StringRef Name);
907 
908   //===--------------------------------------------------------------------===//
909   // Label Manipulation.
910 
911   /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
912   /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
913   /// normal 'L' label is returned.
914   MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
915                          bool isLinkerPrivate = false) const;
916 
917   /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
918   /// base.
919   MCSymbol *getPICBaseSymbol() const;
920 
921   /// Returns a reference to a list of cfi instructions in the function's
922   /// prologue.  Used to construct frame maps for debug and exception handling
923   /// comsumers.
924   const std::vector<MCCFIInstruction> &getFrameInstructions() const {
925     return FrameInstructions;
926   }
927 
928   LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst);
929 
930   /// Returns a reference to a list of symbols immediately following calls to
931   /// _setjmp in the function. Used to construct the longjmp target table used
932   /// by Windows Control Flow Guard.
933   const std::vector<MCSymbol *> &getLongjmpTargets() const {
934     return LongjmpTargets;
935   }
936 
937   /// Add the specified symbol to the list of valid longjmp targets for Windows
938   /// Control Flow Guard.
939   void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); }
940 
941   /// Returns a reference to a list of symbols that we have catchrets.
942   /// Used to construct the catchret target table used by Windows EHCont Guard.
943   const std::vector<MCSymbol *> &getCatchretTargets() const {
944     return CatchretTargets;
945   }
946 
947   /// Add the specified symbol to the list of valid catchret targets for Windows
948   /// EHCont Guard.
949   void addCatchretTarget(MCSymbol *Target) {
950     CatchretTargets.push_back(Target);
951   }
952 
953   /// \name Exception Handling
954   /// \{
955 
956   bool callsEHReturn() const { return CallsEHReturn; }
957   void setCallsEHReturn(bool b) { CallsEHReturn = b; }
958 
959   bool callsUnwindInit() const { return CallsUnwindInit; }
960   void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
961 
962   bool hasEHCatchret() const { return HasEHCatchret; }
963   void setHasEHCatchret(bool V) { HasEHCatchret = V; }
964 
965   bool hasEHScopes() const { return HasEHScopes; }
966   void setHasEHScopes(bool V) { HasEHScopes = V; }
967 
968   bool hasEHFunclets() const { return HasEHFunclets; }
969   void setHasEHFunclets(bool V) { HasEHFunclets = V; }
970 
971   /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
972   LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
973 
974   /// Remap landing pad labels and remove any deleted landing pads.
975   void tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap = nullptr,
976                        bool TidyIfNoBeginLabels = true);
977 
978   /// Return a reference to the landing pad info for the current function.
979   const std::vector<LandingPadInfo> &getLandingPads() const {
980     return LandingPads;
981   }
982 
983   /// Provide the begin and end labels of an invoke style call and associate it
984   /// with a try landing pad block.
985   void addInvoke(MachineBasicBlock *LandingPad,
986                  MCSymbol *BeginLabel, MCSymbol *EndLabel);
987 
988   /// Add a new panding pad, and extract the exception handling information from
989   /// the landingpad instruction. Returns the label ID for the landing pad
990   /// entry.
991   MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
992 
993   /// Provide the catch typeinfo for a landing pad.
994   void addCatchTypeInfo(MachineBasicBlock *LandingPad,
995                         ArrayRef<const GlobalValue *> TyInfo);
996 
997   /// Provide the filter typeinfo for a landing pad.
998   void addFilterTypeInfo(MachineBasicBlock *LandingPad,
999                          ArrayRef<const GlobalValue *> TyInfo);
1000 
1001   /// Add a cleanup action for a landing pad.
1002   void addCleanup(MachineBasicBlock *LandingPad);
1003 
1004   void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter,
1005                           const BlockAddress *RecoverBA);
1006 
1007   void addSEHCleanupHandler(MachineBasicBlock *LandingPad,
1008                             const Function *Cleanup);
1009 
1010   /// Return the type id for the specified typeinfo.  This is function wide.
1011   unsigned getTypeIDFor(const GlobalValue *TI);
1012 
1013   /// Return the id of the filter encoded by TyIds.  This is function wide.
1014   int getFilterIDFor(std::vector<unsigned> &TyIds);
1015 
1016   /// Map the landing pad's EH symbol to the call site indexes.
1017   void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
1018 
1019   /// Map the landing pad to its index. Used for Wasm exception handling.
1020   void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) {
1021     WasmLPadToIndexMap[LPad] = Index;
1022   }
1023 
1024   /// Returns true if the landing pad has an associate index in wasm EH.
1025   bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1026     return WasmLPadToIndexMap.count(LPad);
1027   }
1028 
1029   /// Get the index in wasm EH for a given landing pad.
1030   unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1031     assert(hasWasmLandingPadIndex(LPad));
1032     return WasmLPadToIndexMap.lookup(LPad);
1033   }
1034 
1035   /// Get the call site indexes for a landing pad EH symbol.
1036   SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
1037     assert(hasCallSiteLandingPad(Sym) &&
1038            "missing call site number for landing pad!");
1039     return LPadToCallSiteMap[Sym];
1040   }
1041 
1042   /// Return true if the landing pad Eh symbol has an associated call site.
1043   bool hasCallSiteLandingPad(MCSymbol *Sym) {
1044     return !LPadToCallSiteMap[Sym].empty();
1045   }
1046 
1047   /// Map the begin label for a call site.
1048   void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
1049     CallSiteMap[BeginLabel] = Site;
1050   }
1051 
1052   /// Get the call site number for a begin label.
1053   unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1054     assert(hasCallSiteBeginLabel(BeginLabel) &&
1055            "Missing call site number for EH_LABEL!");
1056     return CallSiteMap.lookup(BeginLabel);
1057   }
1058 
1059   /// Return true if the begin label has a call site number associated with it.
1060   bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1061     return CallSiteMap.count(BeginLabel);
1062   }
1063 
1064   /// Record annotations associated with a particular label.
1065   void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
1066     CodeViewAnnotations.push_back({Label, MD});
1067   }
1068 
1069   ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
1070     return CodeViewAnnotations;
1071   }
1072 
1073   /// Return a reference to the C++ typeinfo for the current function.
1074   const std::vector<const GlobalValue *> &getTypeInfos() const {
1075     return TypeInfos;
1076   }
1077 
1078   /// Return a reference to the typeids encoding filters used in the current
1079   /// function.
1080   const std::vector<unsigned> &getFilterIds() const {
1081     return FilterIds;
1082   }
1083 
1084   /// \}
1085 
1086   /// Collect information used to emit debugging information of a variable.
1087   void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
1088                           int Slot, const DILocation *Loc) {
1089     VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
1090   }
1091 
1092   VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
1093   const VariableDbgInfoMapTy &getVariableDbgInfo() const {
1094     return VariableDbgInfos;
1095   }
1096 
1097   /// Start tracking the arguments passed to the call \p CallI.
1098   void addCallArgsForwardingRegs(const MachineInstr *CallI,
1099                                  CallSiteInfoImpl &&CallInfo) {
1100     assert(CallI->isCandidateForCallSiteEntry());
1101     bool Inserted =
1102         CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second;
1103     (void)Inserted;
1104     assert(Inserted && "Call site info not unique");
1105   }
1106 
1107   const CallSiteInfoMap &getCallSitesInfo() const {
1108     return CallSitesInfo;
1109   }
1110 
1111   /// Following functions update call site info. They should be called before
1112   /// removing, replacing or copying call instruction.
1113 
1114   /// Erase the call site info for \p MI. It is used to remove a call
1115   /// instruction from the instruction stream.
1116   void eraseCallSiteInfo(const MachineInstr *MI);
1117   /// Copy the call site info from \p Old to \ New. Its usage is when we are
1118   /// making a copy of the instruction that will be inserted at different point
1119   /// of the instruction stream.
1120   void copyCallSiteInfo(const MachineInstr *Old,
1121                         const MachineInstr *New);
1122 
1123   const std::vector<char> &getBBSectionsSymbolPrefix() const {
1124     return BBSectionsSymbolPrefix;
1125   }
1126 
1127   /// Move the call site info from \p Old to \New call site info. This function
1128   /// is used when we are replacing one call instruction with another one to
1129   /// the same callee.
1130   void moveCallSiteInfo(const MachineInstr *Old,
1131                         const MachineInstr *New);
1132 
1133   unsigned getNewDebugInstrNum() {
1134     return ++DebugInstrNumberingCount;
1135   }
1136 };
1137 
1138 //===--------------------------------------------------------------------===//
1139 // GraphTraits specializations for function basic block graphs (CFGs)
1140 //===--------------------------------------------------------------------===//
1141 
1142 // Provide specializations of GraphTraits to be able to treat a
1143 // machine function as a graph of machine basic blocks... these are
1144 // the same as the machine basic block iterators, except that the root
1145 // node is implicitly the first node of the function.
1146 //
1147 template <> struct GraphTraits<MachineFunction*> :
1148   public GraphTraits<MachineBasicBlock*> {
1149   static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
1150 
1151   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1152   using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
1153 
1154   static nodes_iterator nodes_begin(MachineFunction *F) {
1155     return nodes_iterator(F->begin());
1156   }
1157 
1158   static nodes_iterator nodes_end(MachineFunction *F) {
1159     return nodes_iterator(F->end());
1160   }
1161 
1162   static unsigned       size       (MachineFunction *F) { return F->size(); }
1163 };
1164 template <> struct GraphTraits<const MachineFunction*> :
1165   public GraphTraits<const MachineBasicBlock*> {
1166   static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
1167 
1168   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1169   using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
1170 
1171   static nodes_iterator nodes_begin(const MachineFunction *F) {
1172     return nodes_iterator(F->begin());
1173   }
1174 
1175   static nodes_iterator nodes_end  (const MachineFunction *F) {
1176     return nodes_iterator(F->end());
1177   }
1178 
1179   static unsigned       size       (const MachineFunction *F)  {
1180     return F->size();
1181   }
1182 };
1183 
1184 // Provide specializations of GraphTraits to be able to treat a function as a
1185 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
1186 // a function is considered to be when traversing the predecessor edges of a BB
1187 // instead of the successor edges.
1188 //
1189 template <> struct GraphTraits<Inverse<MachineFunction*>> :
1190   public GraphTraits<Inverse<MachineBasicBlock*>> {
1191   static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
1192     return &G.Graph->front();
1193   }
1194 };
1195 template <> struct GraphTraits<Inverse<const MachineFunction*>> :
1196   public GraphTraits<Inverse<const MachineBasicBlock*>> {
1197   static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
1198     return &G.Graph->front();
1199   }
1200 };
1201 
1202 class MachineFunctionAnalysisManager;
1203 void verifyMachineFunction(MachineFunctionAnalysisManager *,
1204                            const std::string &Banner,
1205                            const MachineFunction &MF);
1206 
1207 } // end namespace llvm
1208 
1209 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H
1210