xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/CodeGen/LiveRangeEdit.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- LiveRangeEdit.h - Basic tools for split and spill --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
11 //
12 // The parent register is never changed. Instead, a number of new virtual
13 // registers are created and added to the newRegs vector.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
18 #define LLVM_CODEGEN_LIVERANGEEDIT_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include <cassert>
32 
33 namespace llvm {
34 
35 class AAResults;
36 class LiveIntervals;
37 class MachineBlockFrequencyInfo;
38 class MachineInstr;
39 class MachineLoopInfo;
40 class MachineOperand;
41 class TargetInstrInfo;
42 class TargetRegisterInfo;
43 class VirtRegMap;
44 class VirtRegAuxInfo;
45 
46 class LiveRangeEdit : private MachineRegisterInfo::Delegate {
47 public:
48   /// Callback methods for LiveRangeEdit owners.
49   class Delegate {
50     virtual void anchor();
51 
52   public:
53     virtual ~Delegate() = default;
54 
55     /// Called immediately before erasing a dead machine instruction.
LRE_WillEraseInstruction(MachineInstr * MI)56     virtual void LRE_WillEraseInstruction(MachineInstr *MI) {}
57 
58     /// Called when a virtual register is no longer used. Return false to defer
59     /// its deletion from LiveIntervals.
LRE_CanEraseVirtReg(Register)60     virtual bool LRE_CanEraseVirtReg(Register) { return true; }
61 
62     /// Called before shrinking the live range of a virtual register.
LRE_WillShrinkVirtReg(Register)63     virtual void LRE_WillShrinkVirtReg(Register) {}
64 
65     /// Called after cloning a virtual register.
66     /// This is used for new registers representing connected components of Old.
LRE_DidCloneVirtReg(Register New,Register Old)67     virtual void LRE_DidCloneVirtReg(Register New, Register Old) {}
68   };
69 
70 private:
71   LiveInterval *Parent;
72   SmallVectorImpl<Register> &NewRegs;
73   MachineRegisterInfo &MRI;
74   LiveIntervals &LIS;
75   VirtRegMap *VRM;
76   const TargetInstrInfo &TII;
77   Delegate *const TheDelegate;
78 
79   /// FirstNew - Index of the first register added to NewRegs.
80   const unsigned FirstNew;
81 
82   /// ScannedRemattable - true when remattable values have been identified.
83   bool ScannedRemattable = false;
84 
85   /// DeadRemats - The saved instructions which have already been dead after
86   /// rematerialization but not deleted yet -- to be done in postOptimization.
87   SmallPtrSet<MachineInstr *, 32> *DeadRemats;
88 
89   /// Remattable - Values defined by remattable instructions as identified by
90   /// tii.isTriviallyReMaterializable().
91   SmallPtrSet<const VNInfo *, 4> Remattable;
92 
93   /// Rematted - Values that were actually rematted, and so need to have their
94   /// live range trimmed or entirely removed.
95   SmallPtrSet<const VNInfo *, 4> Rematted;
96 
97   /// scanRemattable - Identify the Parent values that may rematerialize.
98   void scanRemattable(AAResults *aa);
99 
100   /// allUsesAvailableAt - Return true if all registers used by OrigMI at
101   /// OrigIdx are also available with the same value at UseIdx.
102   bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
103                           SlotIndex UseIdx) const;
104 
105   /// foldAsLoad - If LI has a single use and a single def that can be folded as
106   /// a load, eliminate the register by folding the def into the use.
107   bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr *> &Dead);
108 
109   using ToShrinkSet = SetVector<LiveInterval *, SmallVector<LiveInterval *, 8>,
110                                 SmallPtrSet<LiveInterval *, 8>>;
111 
112   /// Helper for eliminateDeadDefs.
113   void eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
114                         AAResults *AA);
115 
116   /// MachineRegisterInfo callback to notify when new virtual
117   /// registers are created.
118   void MRI_NoteNewVirtualRegister(Register VReg) override;
119 
120   /// Check if MachineOperand \p MO is a last use/kill either in the
121   /// main live range of \p LI or in one of the matching subregister ranges.
122   bool useIsKill(const LiveInterval &LI, const MachineOperand &MO) const;
123 
124   /// Create a new empty interval based on OldReg.
125   LiveInterval &createEmptyIntervalFrom(Register OldReg, bool createSubRanges);
126 
127 public:
128   /// Create a LiveRangeEdit for breaking down parent into smaller pieces.
129   /// @param parent The register being spilled or split.
130   /// @param newRegs List to receive any new registers created. This needn't be
131   ///                empty initially, any existing registers are ignored.
132   /// @param MF The MachineFunction the live range edit is taking place in.
133   /// @param lis The collection of all live intervals in this function.
134   /// @param vrm Map of virtual registers to physical registers for this
135   ///            function.  If NULL, no virtual register map updates will
136   ///            be done.  This could be the case if called before Regalloc.
137   /// @param deadRemats The collection of all the instructions defining an
138   ///                   original reg and are dead after remat.
139   LiveRangeEdit(LiveInterval *parent, SmallVectorImpl<Register> &newRegs,
140                 MachineFunction &MF, LiveIntervals &lis, VirtRegMap *vrm,
141                 Delegate *delegate = nullptr,
142                 SmallPtrSet<MachineInstr *, 32> *deadRemats = nullptr)
Parent(parent)143       : Parent(parent), NewRegs(newRegs), MRI(MF.getRegInfo()), LIS(lis),
144         VRM(vrm), TII(*MF.getSubtarget().getInstrInfo()), TheDelegate(delegate),
145         FirstNew(newRegs.size()), DeadRemats(deadRemats) {
146     MRI.setDelegate(this);
147   }
148 
~LiveRangeEdit()149   ~LiveRangeEdit() override { MRI.resetDelegate(this); }
150 
getParent()151   LiveInterval &getParent() const {
152     assert(Parent && "No parent LiveInterval");
153     return *Parent;
154   }
155 
getReg()156   Register getReg() const { return getParent().reg(); }
157 
158   /// Iterator for accessing the new registers added by this edit.
159   using iterator = SmallVectorImpl<Register>::const_iterator;
begin()160   iterator begin() const { return NewRegs.begin() + FirstNew; }
end()161   iterator end() const { return NewRegs.end(); }
size()162   unsigned size() const { return NewRegs.size() - FirstNew; }
empty()163   bool empty() const { return size() == 0; }
get(unsigned idx)164   Register get(unsigned idx) const { return NewRegs[idx + FirstNew]; }
165 
166   /// pop_back - It allows LiveRangeEdit users to drop new registers.
167   /// The context is when an original def instruction of a register is
168   /// dead after rematerialization, we still want to keep it for following
169   /// rematerializations. We save the def instruction in DeadRemats,
170   /// and replace the original dst register with a new dummy register so
171   /// the live range of original dst register can be shrinked normally.
172   /// We don't want to allocate phys register for the dummy register, so
173   /// we want to drop it from the NewRegs set.
pop_back()174   void pop_back() { NewRegs.pop_back(); }
175 
regs()176   ArrayRef<Register> regs() const {
177     return makeArrayRef(NewRegs).slice(FirstNew);
178   }
179 
180   /// createFrom - Create a new virtual register based on OldReg.
181   Register createFrom(Register OldReg);
182 
183   /// create - Create a new register with the same class and original slot as
184   /// parent.
createEmptyInterval()185   LiveInterval &createEmptyInterval() {
186     return createEmptyIntervalFrom(getReg(), true);
187   }
188 
create()189   Register create() { return createFrom(getReg()); }
190 
191   /// anyRematerializable - Return true if any parent values may be
192   /// rematerializable.
193   /// This function must be called before any rematerialization is attempted.
194   bool anyRematerializable(AAResults *);
195 
196   /// checkRematerializable - Manually add VNI to the list of rematerializable
197   /// values if DefMI may be rematerializable.
198   bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI,
199                              AAResults *);
200 
201   /// Remat - Information needed to rematerialize at a specific location.
202   struct Remat {
203     VNInfo *ParentVNI;              // parent_'s value at the remat location.
204     MachineInstr *OrigMI = nullptr; // Instruction defining OrigVNI. It contains
205                                     // the real expr for remat.
206 
RematRemat207     explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI) {}
208   };
209 
210   /// canRematerializeAt - Determine if ParentVNI can be rematerialized at
211   /// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
212   /// When cheapAsAMove is set, only cheap remats are allowed.
213   bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx,
214                           bool cheapAsAMove);
215 
216   /// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
217   /// instruction into MBB before MI. The new instruction is mapped, but
218   /// liveness is not updated.
219   /// Return the SlotIndex of the new instruction.
220   SlotIndex rematerializeAt(MachineBasicBlock &MBB,
221                             MachineBasicBlock::iterator MI, unsigned DestReg,
222                             const Remat &RM, const TargetRegisterInfo &,
223                             bool Late = false);
224 
225   /// markRematerialized - explicitly mark a value as rematerialized after doing
226   /// it manually.
markRematerialized(const VNInfo * ParentVNI)227   void markRematerialized(const VNInfo *ParentVNI) {
228     Rematted.insert(ParentVNI);
229   }
230 
231   /// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
didRematerialize(const VNInfo * ParentVNI)232   bool didRematerialize(const VNInfo *ParentVNI) const {
233     return Rematted.count(ParentVNI);
234   }
235 
236   /// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
237   /// to erase it from LIS.
238   void eraseVirtReg(Register Reg);
239 
240   /// eliminateDeadDefs - Try to delete machine instructions that are now dead
241   /// (allDefsAreDead returns true). This may cause live intervals to be trimmed
242   /// and further dead efs to be eliminated.
243   /// RegsBeingSpilled lists registers currently being spilled by the register
244   /// allocator.  These registers should not be split into new intervals
245   /// as currently those new intervals are not guaranteed to spill.
246   void eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
247                          ArrayRef<Register> RegsBeingSpilled = None,
248                          AAResults *AA = nullptr);
249 
250   /// calculateRegClassAndHint - Recompute register class and hint for each new
251   /// register.
252   void calculateRegClassAndHint(MachineFunction &, VirtRegAuxInfo &);
253 };
254 
255 } // end namespace llvm
256 
257 #endif // LLVM_CODEGEN_LIVERANGEEDIT_H
258