xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/Analysis/Utils/TFUtils.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 #ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H
10 #define LLVM_ANALYSIS_UTILS_TFUTILS_H
11 
12 #include "llvm/Config/llvm-config.h"
13 
14 #ifdef LLVM_HAVE_TF_API
15 #include "llvm/IR/LLVMContext.h"
16 #include "llvm/Support/JSON.h"
17 
18 #include <memory>
19 #include <vector>
20 
21 namespace llvm {
22 
23 /// Load a SavedModel, find the given inputs and outputs, and setup storage
24 /// for input tensors. The user is responsible for correctly dimensioning the
25 /// input tensors and setting their values before calling evaluate().
26 /// To initialize:
27 /// - construct the object
28 /// - initialize the input tensors using initInput. Indices must correspond to
29 ///   indices in the InputNames used at construction.
30 /// To use:
31 /// - set input values by using getInput to get each input tensor, and then
32 ///   setting internal scalars, for all dimensions (tensors are row-major:
33 ///   https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205)
34 /// - call evaluate. The input tensors' values are not consumed after this, and
35 ///   may still be read.
36 /// - use the outputs in the output vector
37 class TFModelEvaluatorImpl;
38 class EvaluationResultImpl;
39 
40 /// TensorSpec encapsulates the specification of a tensor: its dimensions, or
41 /// "shape" (row-major), its type (see TensorSpec::getDataType specializations
42 /// for supported types), its name and port (see "TensorFlow: Large-Scale
43 /// Machine Learning on Heterogeneous Distributed Systems", section 4.2, para 2:
44 /// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)
45 ///
46 /// TensorSpec is used to set up a TFModelEvaluator by describing the expected
47 /// inputs and outputs.
48 class TensorSpec final {
49 public:
50   template <typename T>
51   static TensorSpec createSpec(const std::string &Name,
52                                const std::vector<int64_t> &Shape,
53                                int Port = 0) {
54     return TensorSpec(Name, Port, getDataType<T>(), Shape);
55   }
56 
name()57   const std::string &name() const { return Name; }
port()58   int port() const { return Port; }
typeIndex()59   int typeIndex() const { return TypeIndex; }
shape()60   const std::vector<int64_t> &shape() const { return Shape; }
61 
62   bool operator==(const TensorSpec &Other) const {
63     return Name == Other.Name && Port == Other.Port &&
64            TypeIndex == Other.TypeIndex && Shape == Other.Shape;
65   }
66 
67   bool operator!=(const TensorSpec &Other) const { return !(*this == Other); }
68 
69   /// Get the number of elements in a tensor with this shape.
getElementCount()70   size_t getElementCount() const { return ElementCount; }
71   /// Get the size, in bytes, of one element.
72   size_t getElementByteSize() const;
73 
isElementType()74   template <typename T> bool isElementType() const {
75     return getDataType<T>() == TypeIndex;
76   }
77 
78 private:
79   TensorSpec(const std::string &Name, int Port, int TypeIndex,
80              const std::vector<int64_t> &Shape);
81 
getDataType()82   template <typename T> static int getDataType() {
83     llvm_unreachable("Undefined tensor type");
84   }
85 
86   std::string Name;
87   int Port = 0;
88   int TypeIndex = 0;
89   std::vector<int64_t> Shape;
90   size_t ElementCount = 0;
91 };
92 
93 /// Construct a TensorSpec from a JSON dictionary of the form:
94 /// { "name": <string>,
95 ///   "port": <int>,
96 ///   "type": <string. Use LLVM's types, e.g. float, double, int64_t>,
97 ///   "shape": <array of ints> }
98 /// For the "type" field, see the C++ primitive types used in
99 /// TFUTILS_SUPPORTED_TYPES.
100 Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
101                                            const json::Value &Value);
102 
103 struct LoggedFeatureSpec {
104   TensorSpec Spec;
105   Optional<std::string> LoggingName;
106 };
107 
108 /// Load the output specs. If SpecFileOverride is not empty, that path is used.
109 /// Otherwise, the file is assumed to be called 'output_spec.json' and be found
110 /// under ModelPath (the model directory).
111 /// The first output tensor name must match ExpectedDecisionName.
112 /// In case of error, the return is None and the error is logged.
113 Optional<std::vector<LoggedFeatureSpec>>
114 loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
115                 StringRef ModelPath, StringRef SpecFileOverride = StringRef());
116 
117 /// Logging utility - given an ordered specification of features, and assuming
118 /// a scalar reward, allow logging feature values and rewards, and then print
119 /// as tf.train.SequenceExample text protobuf.
120 /// The assumption is that, for an event to be logged (i.e. a set of feature
121 /// values and a reward), the user calls the log* API for each feature exactly
122 /// once, providing the index matching the position in the feature spec list
123 /// provided at construction:
124 /// event 0:
125 ///   logTensorValue(0, ...)
126 ///   logTensorValue(1, ...)
127 ///   ...
128 ///   logReward(...)
129 /// event 1:
130 ///   logTensorValue(0, ...)
131 ///   logTensorValue(1, ...)
132 ///   ...
133 ///   logReward(...)
134 ///
135 /// At the end, call print to generate the protobuf.
136 class Logger final {
137 public:
138   /// Construct a Logger. If IncludeReward is false, then logReward shouldn't
139   /// be called, and the reward feature won't be printed out.
Logger(const std::vector<LoggedFeatureSpec> & FeatureSpecs,const TensorSpec & RewardSpec,bool IncludeReward)140   Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
141          const TensorSpec &RewardSpec, bool IncludeReward)
142       : FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
143         RawLogData(FeatureSpecs.size() + IncludeReward),
144         IncludeReward(IncludeReward) {}
145 
logReward(T Value)146   template <typename T> void logReward(T Value) {
147     assert(IncludeReward);
148     logTensorValue(RawLogData.size() - 1, &Value);
149   }
150 
logFinalReward(T Value)151   template <typename T> void logFinalReward(T Value) {
152     assert(RawLogData.back().empty());
153     logReward(Value);
154   }
155 
156   template <typename T>
157   void logTensorValue(size_t FeatureID, const T *Value, size_t Size = 1) {
158     const char *Start = reinterpret_cast<const char *>(Value);
159     const char *End = Start + sizeof(T) * Size;
160     RawLogData[FeatureID].insert(RawLogData[FeatureID].end(), Start, End);
161   }
162 
163   void print(raw_ostream &OS);
164 
165 private:
166   std::vector<LoggedFeatureSpec> FeatureSpecs;
167   TensorSpec RewardSpec;
168   /// RawData has one entry per feature, plus one more for the reward.
169   /// Each feature's values are then stored in a vector, in succession.
170   /// This means the ith event is stored at [*][i]
171   std::vector<std::vector<char>> RawLogData;
172   const bool IncludeReward;
173 };
174 
175 class TFModelEvaluator final {
176 public:
177   /// The result of a model evaluation. Handles the lifetime of the output
178   /// tensors, which means that their values need to be used before
179   /// the EvaluationResult's dtor is called.
180   class EvaluationResult {
181   public:
182     EvaluationResult(const EvaluationResult &) = delete;
183     EvaluationResult &operator=(const EvaluationResult &Other) = delete;
184 
185     EvaluationResult(EvaluationResult &&Other);
186     EvaluationResult &operator=(EvaluationResult &&Other);
187 
188     ~EvaluationResult();
189 
190     /// Get a (const) pointer to the first element of the tensor at Index.
getTensorValue(size_t Index)191     template <typename T> T *getTensorValue(size_t Index) {
192       return static_cast<T *>(getUntypedTensorValue(Index));
193     }
194 
getTensorValue(size_t Index)195     template <typename T> const T *getTensorValue(size_t Index) const {
196       return static_cast<T *>(getUntypedTensorValue(Index));
197     }
198 
199     /// Get a (const) pointer to the untyped data of the tensor.
200     void *getUntypedTensorValue(size_t Index);
201     const void *getUntypedTensorValue(size_t Index) const;
202 
203   private:
204     friend class TFModelEvaluator;
205     EvaluationResult(std::unique_ptr<EvaluationResultImpl> Impl);
206     std::unique_ptr<EvaluationResultImpl> Impl;
207   };
208 
209   TFModelEvaluator(StringRef SavedModelPath,
210                    const std::vector<TensorSpec> &InputSpecs,
211                    const std::vector<TensorSpec> &OutputSpecs,
212                    const char *Tags = "serve");
213   TFModelEvaluator(StringRef SavedModelPath,
214                    const std::vector<TensorSpec> &InputSpecs,
215                    function_ref<TensorSpec(size_t)> GetOutputSpecs,
216                    size_t OutputSpecsSize, const char *Tags = "serve");
217 
218   ~TFModelEvaluator();
219   TFModelEvaluator(const TFModelEvaluator &) = delete;
220   TFModelEvaluator(TFModelEvaluator &&) = delete;
221 
222   /// Evaluate the model, assuming it is valid. Returns None if the evaluation
223   /// fails or the model is invalid, or an EvaluationResult otherwise. The
224   /// inputs are assumed to have been already provided via getInput(). When
225   /// returning None, it also invalidates this object.
226   Optional<EvaluationResult> evaluate();
227 
228   /// Provides access to the input vector.
getInput(size_t Index)229   template <typename T> T *getInput(size_t Index) {
230     return static_cast<T *>(getUntypedInput(Index));
231   }
232 
233   /// Returns true if the tensorflow model was loaded successfully, false
234   /// otherwise.
isValid()235   bool isValid() const { return !!Impl; }
236 
237 private:
238   void *getUntypedInput(size_t Index);
239   std::unique_ptr<TFModelEvaluatorImpl> Impl;
240 };
241 
242 /// List of supported types, as a pair:
243 /// - C++ type
244 /// - enum name (implementation-specific)
245 #define TFUTILS_SUPPORTED_TYPES(M)                                             \
246   M(float, TF_FLOAT)                                                           \
247   M(double, TF_DOUBLE)                                                         \
248   M(int8_t, TF_INT8)                                                           \
249   M(uint8_t, TF_UINT8)                                                         \
250   M(int16_t, TF_INT16)                                                         \
251   M(uint16_t, TF_UINT16)                                                       \
252   M(int32_t, TF_INT32)                                                         \
253   M(uint32_t, TF_UINT32)                                                       \
254   M(int64_t, TF_INT64)                                                         \
255   M(uint64_t, TF_UINT64)
256 
257 #define TFUTILS_GETDATATYPE_DEF(T, E)                                          \
258   template <> int TensorSpec::getDataType<T>();
259 
260 TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_DEF)
261 
262 #undef TFUTILS_GETDATATYPE_DEF
263 } // namespace llvm
264 
265 #endif // LLVM_HAVE_TF_API
266 #endif // LLVM_ANALYSIS_UTILS_TFUTILS_H
267