1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an abstract sparse conditional propagation algorithm, 10 // modeled after SCCP, but with a customizable lattice function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H 15 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H 16 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/Support/Debug.h" 21 #include <set> 22 23 #define DEBUG_TYPE "sparseprop" 24 25 namespace llvm { 26 27 /// A template for translating between LLVM Values and LatticeKeys. Clients must 28 /// provide a specialization of LatticeKeyInfo for their LatticeKey type. 29 template <class LatticeKey> struct LatticeKeyInfo { 30 // static inline Value *getValueFromLatticeKey(LatticeKey Key); 31 // static inline LatticeKey getLatticeKeyFromValue(Value *V); 32 }; 33 34 template <class LatticeKey, class LatticeVal, 35 class KeyInfo = LatticeKeyInfo<LatticeKey>> 36 class SparseSolver; 37 38 /// AbstractLatticeFunction - This class is implemented by the dataflow instance 39 /// to specify what the lattice values are and how they handle merges etc. This 40 /// gives the client the power to compute lattice values from instructions, 41 /// constants, etc. The current requirement is that lattice values must be 42 /// copyable. At the moment, nothing tries to avoid copying. Additionally, 43 /// lattice keys must be able to be used as keys of a mapping data structure. 44 /// Internally, the generic solver currently uses a DenseMap to map lattice keys 45 /// to lattice values. If the lattice key is a non-standard type, a 46 /// specialization of DenseMapInfo must be provided. 47 template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction { 48 private: 49 LatticeVal UndefVal, OverdefinedVal, UntrackedVal; 50 51 public: 52 AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, 53 LatticeVal untrackedVal) { 54 UndefVal = undefVal; 55 OverdefinedVal = overdefinedVal; 56 UntrackedVal = untrackedVal; 57 } 58 59 virtual ~AbstractLatticeFunction() = default; 60 61 LatticeVal getUndefVal() const { return UndefVal; } 62 LatticeVal getOverdefinedVal() const { return OverdefinedVal; } 63 LatticeVal getUntrackedVal() const { return UntrackedVal; } 64 65 /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting 66 /// to the analysis (i.e., it would always return UntrackedVal), this 67 /// function can return true to avoid pointless work. 68 virtual bool IsUntrackedValue(LatticeKey Key) { return false; } 69 70 /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the 71 /// given LatticeKey. 72 virtual LatticeVal ComputeLatticeVal(LatticeKey Key) { 73 return getOverdefinedVal(); 74 } 75 76 /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is 77 /// one that the we want to handle through ComputeInstructionState. 78 virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } 79 80 /// MergeValues - Compute and return the merge of the two specified lattice 81 /// values. Merging should only move one direction down the lattice to 82 /// guarantee convergence (toward overdefined). 83 virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { 84 return getOverdefinedVal(); // always safe, never useful. 85 } 86 87 /// ComputeInstructionState - Compute the LatticeKeys that change as a result 88 /// of executing instruction \p I. Their associated LatticeVals are store in 89 /// \p ChangedValues. 90 virtual void ComputeInstructionState( 91 Instruction &I, SmallDenseMap<LatticeKey, LatticeVal, 16> &ChangedValues, 92 SparseSolver<LatticeKey, LatticeVal> &SS) = 0; 93 94 /// PrintLatticeVal - Render the given LatticeVal to the specified stream. 95 virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS); 96 97 /// PrintLatticeKey - Render the given LatticeKey to the specified stream. 98 virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS); 99 100 /// GetValueFromLatticeVal - If the given LatticeVal is representable as an 101 /// LLVM value, return it; otherwise, return nullptr. If a type is given, the 102 /// returned value must have the same type. This function is used by the 103 /// generic solver in attempting to resolve branch and switch conditions. 104 virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) { 105 return nullptr; 106 } 107 }; 108 109 /// SparseSolver - This class is a general purpose solver for Sparse Conditional 110 /// Propagation with a programmable lattice function. 111 template <class LatticeKey, class LatticeVal, class KeyInfo> 112 class SparseSolver { 113 114 /// LatticeFunc - This is the object that knows the lattice and how to 115 /// compute transfer functions. 116 AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc; 117 118 /// ValueState - Holds the LatticeVals associated with LatticeKeys. 119 DenseMap<LatticeKey, LatticeVal> ValueState; 120 121 /// BBExecutable - Holds the basic blocks that are executable. 122 SmallPtrSet<BasicBlock *, 16> BBExecutable; 123 124 /// ValueWorkList - Holds values that should be processed. 125 SmallVector<Value *, 64> ValueWorkList; 126 127 /// BBWorkList - Holds basic blocks that should be processed. 128 SmallVector<BasicBlock *, 64> BBWorkList; 129 130 using Edge = std::pair<BasicBlock *, BasicBlock *>; 131 132 /// KnownFeasibleEdges - Entries in this set are edges which have already had 133 /// PHI nodes retriggered. 134 std::set<Edge> KnownFeasibleEdges; 135 136 public: 137 explicit SparseSolver( 138 AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice) 139 : LatticeFunc(Lattice) {} 140 SparseSolver(const SparseSolver &) = delete; 141 SparseSolver &operator=(const SparseSolver &) = delete; 142 143 /// Solve - Solve for constants and executable blocks. 144 void Solve(); 145 146 void Print(raw_ostream &OS) const; 147 148 /// getExistingValueState - Return the LatticeVal object corresponding to the 149 /// given value from the ValueState map. If the value is not in the map, 150 /// UntrackedVal is returned, unlike the getValueState method. 151 LatticeVal getExistingValueState(LatticeKey Key) const { 152 auto I = ValueState.find(Key); 153 return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); 154 } 155 156 /// getValueState - Return the LatticeVal object corresponding to the given 157 /// value from the ValueState map. If the value is not in the map, its state 158 /// is initialized. 159 LatticeVal getValueState(LatticeKey Key); 160 161 /// isEdgeFeasible - Return true if the control flow edge from the 'From' 162 /// basic block to the 'To' basic block is currently feasible. If 163 /// AggressiveUndef is true, then this treats values with unknown lattice 164 /// values as undefined. This is generally only useful when solving the 165 /// lattice, not when querying it. 166 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, 167 bool AggressiveUndef = false); 168 169 /// isBlockExecutable - Return true if there are any known feasible 170 /// edges into the basic block. This is generally only useful when 171 /// querying the lattice. 172 bool isBlockExecutable(BasicBlock *BB) const { 173 return BBExecutable.count(BB); 174 } 175 176 /// MarkBlockExecutable - This method can be used by clients to mark all of 177 /// the blocks that are known to be intrinsically live in the processed unit. 178 void MarkBlockExecutable(BasicBlock *BB); 179 180 private: 181 /// UpdateState - When the state of some LatticeKey is potentially updated to 182 /// the given LatticeVal, this function notices and adds the LLVM value 183 /// corresponding the key to the work list, if needed. 184 void UpdateState(LatticeKey Key, LatticeVal LV); 185 186 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 187 /// work list if it is not already executable. 188 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); 189 190 /// getFeasibleSuccessors - Return a vector of booleans to indicate which 191 /// successors are reachable from a given terminator instruction. 192 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs, 193 bool AggressiveUndef); 194 195 void visitInst(Instruction &I); 196 void visitPHINode(PHINode &I); 197 void visitTerminator(Instruction &TI); 198 }; 199 200 //===----------------------------------------------------------------------===// 201 // AbstractLatticeFunction Implementation 202 //===----------------------------------------------------------------------===// 203 204 template <class LatticeKey, class LatticeVal> 205 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal( 206 LatticeVal V, raw_ostream &OS) { 207 if (V == UndefVal) 208 OS << "undefined"; 209 else if (V == OverdefinedVal) 210 OS << "overdefined"; 211 else if (V == UntrackedVal) 212 OS << "untracked"; 213 else 214 OS << "unknown lattice value"; 215 } 216 217 template <class LatticeKey, class LatticeVal> 218 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey( 219 LatticeKey Key, raw_ostream &OS) { 220 OS << "unknown lattice key"; 221 } 222 223 //===----------------------------------------------------------------------===// 224 // SparseSolver Implementation 225 //===----------------------------------------------------------------------===// 226 227 template <class LatticeKey, class LatticeVal, class KeyInfo> 228 LatticeVal 229 SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) { 230 auto I = ValueState.find(Key); 231 if (I != ValueState.end()) 232 return I->second; // Common case, in the map 233 234 if (LatticeFunc->IsUntrackedValue(Key)) 235 return LatticeFunc->getUntrackedVal(); 236 LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key); 237 238 // If this value is untracked, don't add it to the map. 239 if (LV == LatticeFunc->getUntrackedVal()) 240 return LV; 241 return ValueState[Key] = std::move(LV); 242 } 243 244 template <class LatticeKey, class LatticeVal, class KeyInfo> 245 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key, 246 LatticeVal LV) { 247 auto I = ValueState.find(Key); 248 if (I != ValueState.end() && I->second == LV) 249 return; // No change. 250 251 // Update the state of the given LatticeKey and add its corresponding LLVM 252 // value to the work list. 253 ValueState[Key] = std::move(LV); 254 if (Value *V = KeyInfo::getValueFromLatticeKey(Key)) 255 ValueWorkList.push_back(V); 256 } 257 258 template <class LatticeKey, class LatticeVal, class KeyInfo> 259 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable( 260 BasicBlock *BB) { 261 if (!BBExecutable.insert(BB).second) 262 return; 263 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 264 BBWorkList.push_back(BB); // Add the block to the work list! 265 } 266 267 template <class LatticeKey, class LatticeVal, class KeyInfo> 268 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable( 269 BasicBlock *Source, BasicBlock *Dest) { 270 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 271 return; // This edge is already known to be executable! 272 273 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 274 << " -> " << Dest->getName() << "\n"); 275 276 if (BBExecutable.count(Dest)) { 277 // The destination is already executable, but we just made an edge 278 // feasible that wasn't before. Revisit the PHI nodes in the block 279 // because they have potentially new operands. 280 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 281 visitPHINode(*cast<PHINode>(I)); 282 } else { 283 MarkBlockExecutable(Dest); 284 } 285 } 286 287 template <class LatticeKey, class LatticeVal, class KeyInfo> 288 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors( 289 Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) { 290 Succs.resize(TI.getNumSuccessors()); 291 if (TI.getNumSuccessors() == 0) 292 return; 293 294 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 295 if (BI->isUnconditional()) { 296 Succs[0] = true; 297 return; 298 } 299 300 LatticeVal BCValue; 301 if (AggressiveUndef) 302 BCValue = 303 getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition())); 304 else 305 BCValue = getExistingValueState( 306 KeyInfo::getLatticeKeyFromValue(BI->getCondition())); 307 308 if (BCValue == LatticeFunc->getOverdefinedVal() || 309 BCValue == LatticeFunc->getUntrackedVal()) { 310 // Overdefined condition variables can branch either way. 311 Succs[0] = Succs[1] = true; 312 return; 313 } 314 315 // If undefined, neither is feasible yet. 316 if (BCValue == LatticeFunc->getUndefVal()) 317 return; 318 319 Constant *C = 320 dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( 321 std::move(BCValue), BI->getCondition()->getType())); 322 if (!C || !isa<ConstantInt>(C)) { 323 // Non-constant values can go either way. 324 Succs[0] = Succs[1] = true; 325 return; 326 } 327 328 // Constant condition variables mean the branch can only go a single way 329 Succs[C->isNullValue()] = true; 330 return; 331 } 332 333 if (!isa<SwitchInst>(TI)) { 334 // Unknown termintor, assume all successors are feasible. 335 Succs.assign(Succs.size(), true); 336 return; 337 } 338 339 SwitchInst &SI = cast<SwitchInst>(TI); 340 LatticeVal SCValue; 341 if (AggressiveUndef) 342 SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition())); 343 else 344 SCValue = getExistingValueState( 345 KeyInfo::getLatticeKeyFromValue(SI.getCondition())); 346 347 if (SCValue == LatticeFunc->getOverdefinedVal() || 348 SCValue == LatticeFunc->getUntrackedVal()) { 349 // All destinations are executable! 350 Succs.assign(TI.getNumSuccessors(), true); 351 return; 352 } 353 354 // If undefined, neither is feasible yet. 355 if (SCValue == LatticeFunc->getUndefVal()) 356 return; 357 358 Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( 359 std::move(SCValue), SI.getCondition()->getType())); 360 if (!C || !isa<ConstantInt>(C)) { 361 // All destinations are executable! 362 Succs.assign(TI.getNumSuccessors(), true); 363 return; 364 } 365 SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C)); 366 Succs[Case.getSuccessorIndex()] = true; 367 } 368 369 template <class LatticeKey, class LatticeVal, class KeyInfo> 370 bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible( 371 BasicBlock *From, BasicBlock *To, bool AggressiveUndef) { 372 SmallVector<bool, 16> SuccFeasible; 373 Instruction *TI = From->getTerminator(); 374 getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); 375 376 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 377 if (TI->getSuccessor(i) == To && SuccFeasible[i]) 378 return true; 379 380 return false; 381 } 382 383 template <class LatticeKey, class LatticeVal, class KeyInfo> 384 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator( 385 Instruction &TI) { 386 SmallVector<bool, 16> SuccFeasible; 387 getFeasibleSuccessors(TI, SuccFeasible, true); 388 389 BasicBlock *BB = TI.getParent(); 390 391 // Mark all feasible successors executable... 392 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 393 if (SuccFeasible[i]) 394 markEdgeExecutable(BB, TI.getSuccessor(i)); 395 } 396 397 template <class LatticeKey, class LatticeVal, class KeyInfo> 398 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) { 399 // The lattice function may store more information on a PHINode than could be 400 // computed from its incoming values. For example, SSI form stores its sigma 401 // functions as PHINodes with a single incoming value. 402 if (LatticeFunc->IsSpecialCasedPHI(&PN)) { 403 SmallDenseMap<LatticeKey, LatticeVal, 16> ChangedValues; 404 LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this); 405 for (auto &ChangedValue : ChangedValues) 406 if (ChangedValue.second != LatticeFunc->getUntrackedVal()) 407 UpdateState(std::move(ChangedValue.first), 408 std::move(ChangedValue.second)); 409 return; 410 } 411 412 LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN); 413 LatticeVal PNIV = getValueState(Key); 414 LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); 415 416 // If this value is already overdefined (common) just return. 417 if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) 418 return; // Quick exit 419 420 // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, 421 // and slow us down a lot. Just mark them overdefined. 422 if (PN.getNumIncomingValues() > 64) { 423 UpdateState(Key, Overdefined); 424 return; 425 } 426 427 // Look at all of the executable operands of the PHI node. If any of them 428 // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the 429 // transfer function to give us the merge of the incoming values. 430 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 431 // If the edge is not yet known to be feasible, it doesn't impact the PHI. 432 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) 433 continue; 434 435 // Merge in this value. 436 LatticeVal OpVal = 437 getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i))); 438 if (OpVal != PNIV) 439 PNIV = LatticeFunc->MergeValues(PNIV, OpVal); 440 441 if (PNIV == Overdefined) 442 break; // Rest of input values don't matter. 443 } 444 445 // Update the PHI with the compute value, which is the merge of the inputs. 446 UpdateState(Key, PNIV); 447 } 448 449 template <class LatticeKey, class LatticeVal, class KeyInfo> 450 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) { 451 // PHIs are handled by the propagation logic, they are never passed into the 452 // transfer functions. 453 if (PHINode *PN = dyn_cast<PHINode>(&I)) 454 return visitPHINode(*PN); 455 456 // Otherwise, ask the transfer function what the result is. If this is 457 // something that we care about, remember it. 458 SmallDenseMap<LatticeKey, LatticeVal, 16> ChangedValues; 459 LatticeFunc->ComputeInstructionState(I, ChangedValues, *this); 460 for (auto &ChangedValue : ChangedValues) 461 if (ChangedValue.second != LatticeFunc->getUntrackedVal()) 462 UpdateState(ChangedValue.first, ChangedValue.second); 463 464 if (I.isTerminator()) 465 visitTerminator(I); 466 } 467 468 template <class LatticeKey, class LatticeVal, class KeyInfo> 469 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() { 470 // Process the work lists until they are empty! 471 while (!BBWorkList.empty() || !ValueWorkList.empty()) { 472 // Process the value work list. 473 while (!ValueWorkList.empty()) { 474 Value *V = ValueWorkList.pop_back_val(); 475 476 LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n"); 477 478 // "V" got into the work list because it made a transition. See if any 479 // users are both live and in need of updating. 480 for (User *U : V->users()) 481 if (Instruction *Inst = dyn_cast<Instruction>(U)) 482 if (BBExecutable.count(Inst->getParent())) // Inst is executable? 483 visitInst(*Inst); 484 } 485 486 // Process the basic block work list. 487 while (!BBWorkList.empty()) { 488 BasicBlock *BB = BBWorkList.pop_back_val(); 489 490 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); 491 492 // Notify all instructions in this basic block that they are newly 493 // executable. 494 for (Instruction &I : *BB) 495 visitInst(I); 496 } 497 } 498 } 499 500 template <class LatticeKey, class LatticeVal, class KeyInfo> 501 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print( 502 raw_ostream &OS) const { 503 if (ValueState.empty()) 504 return; 505 506 LatticeKey Key; 507 LatticeVal LV; 508 509 OS << "ValueState:\n"; 510 for (auto &Entry : ValueState) { 511 std::tie(Key, LV) = Entry; 512 if (LV == LatticeFunc->getUntrackedVal()) 513 continue; 514 OS << "\t"; 515 LatticeFunc->PrintLatticeVal(LV, OS); 516 OS << ": "; 517 LatticeFunc->PrintLatticeKey(Key, OS); 518 OS << "\n"; 519 } 520 } 521 } // end namespace llvm 522 523 #undef DEBUG_TYPE 524 525 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H 526