xref: /llvm-project/llvm/include/llvm/Analysis/SparsePropagation.h (revision 056a3f4673a4f88d89e9bf00614355f671014ca5)
1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an abstract sparse conditional propagation algorithm,
10 // modeled after SCCP, but with a customizable lattice function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
15 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
16 
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/Debug.h"
21 #include <set>
22 
23 #define DEBUG_TYPE "sparseprop"
24 
25 namespace llvm {
26 
27 /// A template for translating between LLVM Values and LatticeKeys. Clients must
28 /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
29 template <class LatticeKey> struct LatticeKeyInfo {
30   // static inline Value *getValueFromLatticeKey(LatticeKey Key);
31   // static inline LatticeKey getLatticeKeyFromValue(Value *V);
32 };
33 
34 template <class LatticeKey, class LatticeVal,
35           class KeyInfo = LatticeKeyInfo<LatticeKey>>
36 class SparseSolver;
37 
38 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
39 /// to specify what the lattice values are and how they handle merges etc.  This
40 /// gives the client the power to compute lattice values from instructions,
41 /// constants, etc.  The current requirement is that lattice values must be
42 /// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
43 /// lattice keys must be able to be used as keys of a mapping data structure.
44 /// Internally, the generic solver currently uses a DenseMap to map lattice keys
45 /// to lattice values.  If the lattice key is a non-standard type, a
46 /// specialization of DenseMapInfo must be provided.
47 template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
48 private:
49   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
50 
51 public:
52   AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
53                           LatticeVal untrackedVal) {
54     UndefVal = undefVal;
55     OverdefinedVal = overdefinedVal;
56     UntrackedVal = untrackedVal;
57   }
58 
59   virtual ~AbstractLatticeFunction() = default;
60 
61   LatticeVal getUndefVal()       const { return UndefVal; }
62   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
63   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
64 
65   /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
66   /// to the analysis (i.e., it would always return UntrackedVal), this
67   /// function can return true to avoid pointless work.
68   virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
69 
70   /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
71   /// given LatticeKey.
72   virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
73     return getOverdefinedVal();
74   }
75 
76   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
77   /// one that the we want to handle through ComputeInstructionState.
78   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
79 
80   /// MergeValues - Compute and return the merge of the two specified lattice
81   /// values.  Merging should only move one direction down the lattice to
82   /// guarantee convergence (toward overdefined).
83   virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
84     return getOverdefinedVal(); // always safe, never useful.
85   }
86 
87   /// ComputeInstructionState - Compute the LatticeKeys that change as a result
88   /// of executing instruction \p I. Their associated LatticeVals are store in
89   /// \p ChangedValues.
90   virtual void ComputeInstructionState(
91       Instruction &I, SmallDenseMap<LatticeKey, LatticeVal, 16> &ChangedValues,
92       SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
93 
94   /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
95   virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
96 
97   /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
98   virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
99 
100   /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
101   /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
102   /// returned value must have the same type. This function is used by the
103   /// generic solver in attempting to resolve branch and switch conditions.
104   virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
105     return nullptr;
106   }
107 };
108 
109 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
110 /// Propagation with a programmable lattice function.
111 template <class LatticeKey, class LatticeVal, class KeyInfo>
112 class SparseSolver {
113 
114   /// LatticeFunc - This is the object that knows the lattice and how to
115   /// compute transfer functions.
116   AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
117 
118   /// ValueState - Holds the LatticeVals associated with LatticeKeys.
119   DenseMap<LatticeKey, LatticeVal> ValueState;
120 
121   /// BBExecutable - Holds the basic blocks that are executable.
122   SmallPtrSet<BasicBlock *, 16> BBExecutable;
123 
124   /// ValueWorkList - Holds values that should be processed.
125   SmallVector<Value *, 64> ValueWorkList;
126 
127   /// BBWorkList - Holds basic blocks that should be processed.
128   SmallVector<BasicBlock *, 64> BBWorkList;
129 
130   using Edge = std::pair<BasicBlock *, BasicBlock *>;
131 
132   /// KnownFeasibleEdges - Entries in this set are edges which have already had
133   /// PHI nodes retriggered.
134   std::set<Edge> KnownFeasibleEdges;
135 
136 public:
137   explicit SparseSolver(
138       AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
139       : LatticeFunc(Lattice) {}
140   SparseSolver(const SparseSolver &) = delete;
141   SparseSolver &operator=(const SparseSolver &) = delete;
142 
143   /// Solve - Solve for constants and executable blocks.
144   void Solve();
145 
146   void Print(raw_ostream &OS) const;
147 
148   /// getExistingValueState - Return the LatticeVal object corresponding to the
149   /// given value from the ValueState map. If the value is not in the map,
150   /// UntrackedVal is returned, unlike the getValueState method.
151   LatticeVal getExistingValueState(LatticeKey Key) const {
152     auto I = ValueState.find(Key);
153     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
154   }
155 
156   /// getValueState - Return the LatticeVal object corresponding to the given
157   /// value from the ValueState map. If the value is not in the map, its state
158   /// is initialized.
159   LatticeVal getValueState(LatticeKey Key);
160 
161   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
162   /// basic block to the 'To' basic block is currently feasible.  If
163   /// AggressiveUndef is true, then this treats values with unknown lattice
164   /// values as undefined.  This is generally only useful when solving the
165   /// lattice, not when querying it.
166   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
167                       bool AggressiveUndef = false);
168 
169   /// isBlockExecutable - Return true if there are any known feasible
170   /// edges into the basic block.  This is generally only useful when
171   /// querying the lattice.
172   bool isBlockExecutable(BasicBlock *BB) const {
173     return BBExecutable.count(BB);
174   }
175 
176   /// MarkBlockExecutable - This method can be used by clients to mark all of
177   /// the blocks that are known to be intrinsically live in the processed unit.
178   void MarkBlockExecutable(BasicBlock *BB);
179 
180 private:
181   /// UpdateState - When the state of some LatticeKey is potentially updated to
182   /// the given LatticeVal, this function notices and adds the LLVM value
183   /// corresponding the key to the work list, if needed.
184   void UpdateState(LatticeKey Key, LatticeVal LV);
185 
186   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
187   /// work list if it is not already executable.
188   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
189 
190   /// getFeasibleSuccessors - Return a vector of booleans to indicate which
191   /// successors are reachable from a given terminator instruction.
192   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
193                              bool AggressiveUndef);
194 
195   void visitInst(Instruction &I);
196   void visitPHINode(PHINode &I);
197   void visitTerminator(Instruction &TI);
198 };
199 
200 //===----------------------------------------------------------------------===//
201 //                  AbstractLatticeFunction Implementation
202 //===----------------------------------------------------------------------===//
203 
204 template <class LatticeKey, class LatticeVal>
205 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
206     LatticeVal V, raw_ostream &OS) {
207   if (V == UndefVal)
208     OS << "undefined";
209   else if (V == OverdefinedVal)
210     OS << "overdefined";
211   else if (V == UntrackedVal)
212     OS << "untracked";
213   else
214     OS << "unknown lattice value";
215 }
216 
217 template <class LatticeKey, class LatticeVal>
218 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
219     LatticeKey Key, raw_ostream &OS) {
220   OS << "unknown lattice key";
221 }
222 
223 //===----------------------------------------------------------------------===//
224 //                          SparseSolver Implementation
225 //===----------------------------------------------------------------------===//
226 
227 template <class LatticeKey, class LatticeVal, class KeyInfo>
228 LatticeVal
229 SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
230   auto I = ValueState.find(Key);
231   if (I != ValueState.end())
232     return I->second; // Common case, in the map
233 
234   if (LatticeFunc->IsUntrackedValue(Key))
235     return LatticeFunc->getUntrackedVal();
236   LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
237 
238   // If this value is untracked, don't add it to the map.
239   if (LV == LatticeFunc->getUntrackedVal())
240     return LV;
241   return ValueState[Key] = std::move(LV);
242 }
243 
244 template <class LatticeKey, class LatticeVal, class KeyInfo>
245 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
246                                                                 LatticeVal LV) {
247   auto I = ValueState.find(Key);
248   if (I != ValueState.end() && I->second == LV)
249     return; // No change.
250 
251   // Update the state of the given LatticeKey and add its corresponding LLVM
252   // value to the work list.
253   ValueState[Key] = std::move(LV);
254   if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
255     ValueWorkList.push_back(V);
256 }
257 
258 template <class LatticeKey, class LatticeVal, class KeyInfo>
259 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
260     BasicBlock *BB) {
261   if (!BBExecutable.insert(BB).second)
262     return;
263   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
264   BBWorkList.push_back(BB); // Add the block to the work list!
265 }
266 
267 template <class LatticeKey, class LatticeVal, class KeyInfo>
268 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
269     BasicBlock *Source, BasicBlock *Dest) {
270   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
271     return; // This edge is already known to be executable!
272 
273   LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
274                     << " -> " << Dest->getName() << "\n");
275 
276   if (BBExecutable.count(Dest)) {
277     // The destination is already executable, but we just made an edge
278     // feasible that wasn't before.  Revisit the PHI nodes in the block
279     // because they have potentially new operands.
280     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
281       visitPHINode(*cast<PHINode>(I));
282   } else {
283     MarkBlockExecutable(Dest);
284   }
285 }
286 
287 template <class LatticeKey, class LatticeVal, class KeyInfo>
288 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
289     Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
290   Succs.resize(TI.getNumSuccessors());
291   if (TI.getNumSuccessors() == 0)
292     return;
293 
294   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
295     if (BI->isUnconditional()) {
296       Succs[0] = true;
297       return;
298     }
299 
300     LatticeVal BCValue;
301     if (AggressiveUndef)
302       BCValue =
303           getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
304     else
305       BCValue = getExistingValueState(
306           KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
307 
308     if (BCValue == LatticeFunc->getOverdefinedVal() ||
309         BCValue == LatticeFunc->getUntrackedVal()) {
310       // Overdefined condition variables can branch either way.
311       Succs[0] = Succs[1] = true;
312       return;
313     }
314 
315     // If undefined, neither is feasible yet.
316     if (BCValue == LatticeFunc->getUndefVal())
317       return;
318 
319     Constant *C =
320         dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
321             std::move(BCValue), BI->getCondition()->getType()));
322     if (!C || !isa<ConstantInt>(C)) {
323       // Non-constant values can go either way.
324       Succs[0] = Succs[1] = true;
325       return;
326     }
327 
328     // Constant condition variables mean the branch can only go a single way
329     Succs[C->isNullValue()] = true;
330     return;
331   }
332 
333   if (!isa<SwitchInst>(TI)) {
334     // Unknown termintor, assume all successors are feasible.
335     Succs.assign(Succs.size(), true);
336     return;
337   }
338 
339   SwitchInst &SI = cast<SwitchInst>(TI);
340   LatticeVal SCValue;
341   if (AggressiveUndef)
342     SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
343   else
344     SCValue = getExistingValueState(
345         KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
346 
347   if (SCValue == LatticeFunc->getOverdefinedVal() ||
348       SCValue == LatticeFunc->getUntrackedVal()) {
349     // All destinations are executable!
350     Succs.assign(TI.getNumSuccessors(), true);
351     return;
352   }
353 
354   // If undefined, neither is feasible yet.
355   if (SCValue == LatticeFunc->getUndefVal())
356     return;
357 
358   Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
359       std::move(SCValue), SI.getCondition()->getType()));
360   if (!C || !isa<ConstantInt>(C)) {
361     // All destinations are executable!
362     Succs.assign(TI.getNumSuccessors(), true);
363     return;
364   }
365   SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
366   Succs[Case.getSuccessorIndex()] = true;
367 }
368 
369 template <class LatticeKey, class LatticeVal, class KeyInfo>
370 bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
371     BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
372   SmallVector<bool, 16> SuccFeasible;
373   Instruction *TI = From->getTerminator();
374   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
375 
376   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
377     if (TI->getSuccessor(i) == To && SuccFeasible[i])
378       return true;
379 
380   return false;
381 }
382 
383 template <class LatticeKey, class LatticeVal, class KeyInfo>
384 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
385     Instruction &TI) {
386   SmallVector<bool, 16> SuccFeasible;
387   getFeasibleSuccessors(TI, SuccFeasible, true);
388 
389   BasicBlock *BB = TI.getParent();
390 
391   // Mark all feasible successors executable...
392   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
393     if (SuccFeasible[i])
394       markEdgeExecutable(BB, TI.getSuccessor(i));
395 }
396 
397 template <class LatticeKey, class LatticeVal, class KeyInfo>
398 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
399   // The lattice function may store more information on a PHINode than could be
400   // computed from its incoming values.  For example, SSI form stores its sigma
401   // functions as PHINodes with a single incoming value.
402   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
403     SmallDenseMap<LatticeKey, LatticeVal, 16> ChangedValues;
404     LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
405     for (auto &ChangedValue : ChangedValues)
406       if (ChangedValue.second != LatticeFunc->getUntrackedVal())
407         UpdateState(std::move(ChangedValue.first),
408                     std::move(ChangedValue.second));
409     return;
410   }
411 
412   LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
413   LatticeVal PNIV = getValueState(Key);
414   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
415 
416   // If this value is already overdefined (common) just return.
417   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
418     return; // Quick exit
419 
420   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
421   // and slow us down a lot.  Just mark them overdefined.
422   if (PN.getNumIncomingValues() > 64) {
423     UpdateState(Key, Overdefined);
424     return;
425   }
426 
427   // Look at all of the executable operands of the PHI node.  If any of them
428   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
429   // transfer function to give us the merge of the incoming values.
430   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
431     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
432     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
433       continue;
434 
435     // Merge in this value.
436     LatticeVal OpVal =
437         getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
438     if (OpVal != PNIV)
439       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
440 
441     if (PNIV == Overdefined)
442       break; // Rest of input values don't matter.
443   }
444 
445   // Update the PHI with the compute value, which is the merge of the inputs.
446   UpdateState(Key, PNIV);
447 }
448 
449 template <class LatticeKey, class LatticeVal, class KeyInfo>
450 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
451   // PHIs are handled by the propagation logic, they are never passed into the
452   // transfer functions.
453   if (PHINode *PN = dyn_cast<PHINode>(&I))
454     return visitPHINode(*PN);
455 
456   // Otherwise, ask the transfer function what the result is.  If this is
457   // something that we care about, remember it.
458   SmallDenseMap<LatticeKey, LatticeVal, 16> ChangedValues;
459   LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
460   for (auto &ChangedValue : ChangedValues)
461     if (ChangedValue.second != LatticeFunc->getUntrackedVal())
462       UpdateState(ChangedValue.first, ChangedValue.second);
463 
464   if (I.isTerminator())
465     visitTerminator(I);
466 }
467 
468 template <class LatticeKey, class LatticeVal, class KeyInfo>
469 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
470   // Process the work lists until they are empty!
471   while (!BBWorkList.empty() || !ValueWorkList.empty()) {
472     // Process the value work list.
473     while (!ValueWorkList.empty()) {
474       Value *V = ValueWorkList.pop_back_val();
475 
476       LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
477 
478       // "V" got into the work list because it made a transition. See if any
479       // users are both live and in need of updating.
480       for (User *U : V->users())
481         if (Instruction *Inst = dyn_cast<Instruction>(U))
482           if (BBExecutable.count(Inst->getParent())) // Inst is executable?
483             visitInst(*Inst);
484     }
485 
486     // Process the basic block work list.
487     while (!BBWorkList.empty()) {
488       BasicBlock *BB = BBWorkList.pop_back_val();
489 
490       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
491 
492       // Notify all instructions in this basic block that they are newly
493       // executable.
494       for (Instruction &I : *BB)
495         visitInst(I);
496     }
497   }
498 }
499 
500 template <class LatticeKey, class LatticeVal, class KeyInfo>
501 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
502     raw_ostream &OS) const {
503   if (ValueState.empty())
504     return;
505 
506   LatticeKey Key;
507   LatticeVal LV;
508 
509   OS << "ValueState:\n";
510   for (auto &Entry : ValueState) {
511     std::tie(Key, LV) = Entry;
512     if (LV == LatticeFunc->getUntrackedVal())
513       continue;
514     OS << "\t";
515     LatticeFunc->PrintLatticeVal(LV, OS);
516     OS << ": ";
517     LatticeFunc->PrintLatticeKey(Key, OS);
518     OS << "\n";
519   }
520 }
521 } // end namespace llvm
522 
523 #undef DEBUG_TYPE
524 
525 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
526