xref: /llvm-project/llvm/include/llvm/Analysis/LoopInfo.h (revision 59f8796aaabc1ce400a8698431d3c6bfab4ad1a4)
1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares a GenericLoopInfo instantiation for LLVM IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_LOOPINFO_H
14 #define LLVM_ANALYSIS_LOOPINFO_H
15 
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/PassManager.h"
19 #include "llvm/Pass.h"
20 #include "llvm/Support/GenericLoopInfo.h"
21 #include <optional>
22 #include <utility>
23 
24 namespace llvm {
25 
26 class DominatorTree;
27 class InductionDescriptor;
28 class LoopInfo;
29 class Loop;
30 class MemorySSAUpdater;
31 class ScalarEvolution;
32 class raw_ostream;
33 
34 // Implementation in Support/GenericLoopInfoImpl.h
35 extern template class LoopBase<BasicBlock, Loop>;
36 
37 /// Represents a single loop in the control flow graph.  Note that not all SCCs
38 /// in the CFG are necessarily loops.
39 class LLVM_ABI Loop : public LoopBase<BasicBlock, Loop> {
40 public:
41   /// A range representing the start and end location of a loop.
42   class LocRange {
43     DebugLoc Start;
44     DebugLoc End;
45 
46   public:
47     LocRange() = default;
48     LocRange(DebugLoc Start) : Start(Start), End(Start) {}
49     LocRange(DebugLoc Start, DebugLoc End)
50         : Start(std::move(Start)), End(std::move(End)) {}
51 
52     const DebugLoc &getStart() const { return Start; }
53     const DebugLoc &getEnd() const { return End; }
54 
55     /// Check for null.
56     ///
57     explicit operator bool() const { return Start && End; }
58   };
59 
60   /// Return true if the specified value is loop invariant.
61   bool isLoopInvariant(const Value *V) const;
62 
63   /// Return true if all the operands of the specified instruction are loop
64   /// invariant.
65   bool hasLoopInvariantOperands(const Instruction *I) const;
66 
67   /// If the given value is an instruction inside of the loop and it can be
68   /// hoisted, do so to make it trivially loop-invariant.
69   /// Return true if \c V is already loop-invariant, and false if \c V can't
70   /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is
71   /// set to true. This function can be used as a slightly more aggressive
72   /// replacement for isLoopInvariant.
73   ///
74   /// If InsertPt is specified, it is the point to hoist instructions to.
75   /// If null, the terminator of the loop preheader is used.
76   ///
77   bool makeLoopInvariant(Value *V, bool &Changed,
78                          Instruction *InsertPt = nullptr,
79                          MemorySSAUpdater *MSSAU = nullptr,
80                          ScalarEvolution *SE = nullptr) const;
81 
82   /// If the given instruction is inside of the loop and it can be hoisted, do
83   /// so to make it trivially loop-invariant.
84   /// Return true if \c I is already loop-invariant, and false if \c I can't
85   /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is
86   /// set to true. This function can be used as a slightly more aggressive
87   /// replacement for isLoopInvariant.
88   ///
89   /// If InsertPt is specified, it is the point to hoist instructions to.
90   /// If null, the terminator of the loop preheader is used.
91   ///
92   bool makeLoopInvariant(Instruction *I, bool &Changed,
93                          Instruction *InsertPt = nullptr,
94                          MemorySSAUpdater *MSSAU = nullptr,
95                          ScalarEvolution *SE = nullptr) const;
96 
97   /// Check to see if the loop has a canonical induction variable: an integer
98   /// recurrence that starts at 0 and increments by one each time through the
99   /// loop. If so, return the phi node that corresponds to it.
100   ///
101   /// The IndVarSimplify pass transforms loops to have a canonical induction
102   /// variable.
103   ///
104   PHINode *getCanonicalInductionVariable() const;
105 
106   /// Get the latch condition instruction.
107   ICmpInst *getLatchCmpInst() const;
108 
109   /// Obtain the unique incoming and back edge. Return false if they are
110   /// non-unique or the loop is dead; otherwise, return true.
111   bool getIncomingAndBackEdge(BasicBlock *&Incoming,
112                               BasicBlock *&Backedge) const;
113 
114   /// Below are some utilities to get the loop guard, loop bounds and induction
115   /// variable, and to check if a given phinode is an auxiliary induction
116   /// variable, if the loop is guarded, and if the loop is canonical.
117   ///
118   /// Here is an example:
119   /// \code
120   /// for (int i = lb; i < ub; i+=step)
121   ///   <loop body>
122   /// --- pseudo LLVMIR ---
123   /// beforeloop:
124   ///   guardcmp = (lb < ub)
125   ///   if (guardcmp) goto preheader; else goto afterloop
126   /// preheader:
127   /// loop:
128   ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
129   ///   <loop body>
130   ///   i_2 = i_1 + step
131   /// latch:
132   ///   cmp = (i_2 < ub)
133   ///   if (cmp) goto loop
134   /// exit:
135   /// afterloop:
136   /// \endcode
137   ///
138   /// - getBounds
139   ///   - getInitialIVValue      --> lb
140   ///   - getStepInst            --> i_2 = i_1 + step
141   ///   - getStepValue           --> step
142   ///   - getFinalIVValue        --> ub
143   ///   - getCanonicalPredicate  --> '<'
144   ///   - getDirection           --> Increasing
145   ///
146   /// - getInductionVariable            --> i_1
147   /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
148   /// - getLoopGuardBranch()
149   ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
150   /// - isGuarded()                     --> true
151   /// - isCanonical                     --> false
152   struct LoopBounds {
153     /// Return the LoopBounds object if
154     /// - the given \p IndVar is an induction variable
155     /// - the initial value of the induction variable can be found
156     /// - the step instruction of the induction variable can be found
157     /// - the final value of the induction variable can be found
158     ///
159     /// Else std::nullopt.
160     static std::optional<Loop::LoopBounds>
161     getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE);
162 
163     /// Get the initial value of the loop induction variable.
164     Value &getInitialIVValue() const { return InitialIVValue; }
165 
166     /// Get the instruction that updates the loop induction variable.
167     Instruction &getStepInst() const { return StepInst; }
168 
169     /// Get the step that the loop induction variable gets updated by in each
170     /// loop iteration. Return nullptr if not found.
171     Value *getStepValue() const { return StepValue; }
172 
173     /// Get the final value of the loop induction variable.
174     Value &getFinalIVValue() const { return FinalIVValue; }
175 
176     /// Return the canonical predicate for the latch compare instruction, if
177     /// able to be calcuated. Else BAD_ICMP_PREDICATE.
178     ///
179     /// A predicate is considered as canonical if requirements below are all
180     /// satisfied:
181     /// 1. The first successor of the latch branch is the loop header
182     ///    If not, inverse the predicate.
183     /// 2. One of the operands of the latch comparison is StepInst
184     ///    If not, and
185     ///    - if the current calcuated predicate is not ne or eq, flip the
186     ///      predicate.
187     ///    - else if the loop is increasing, return slt
188     ///      (notice that it is safe to change from ne or eq to sign compare)
189     ///    - else if the loop is decreasing, return sgt
190     ///      (notice that it is safe to change from ne or eq to sign compare)
191     ///
192     /// Here is an example when both (1) and (2) are not satisfied:
193     /// \code
194     /// loop.header:
195     ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
196     ///  %inc = add %iv, %step
197     ///  %cmp = slt %iv, %finaliv
198     ///  br %cmp, %loop.exit, %loop.header
199     /// loop.exit:
200     /// \endcode
201     /// - The second successor of the latch branch is the loop header instead
202     ///   of the first successor (slt -> sge)
203     /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
204     ///   instead of the StepInst (%inc) (sge -> sgt)
205     ///
206     /// The predicate would be sgt if both (1) and (2) are satisfied.
207     /// getCanonicalPredicate() returns sgt for this example.
208     /// Note: The IR is not changed.
209     ICmpInst::Predicate getCanonicalPredicate() const;
210 
211     /// An enum for the direction of the loop
212     /// - for (int i = 0; i < ub; ++i)  --> Increasing
213     /// - for (int i = ub; i > 0; --i)  --> Descresing
214     /// - for (int i = x; i != y; i+=z) --> Unknown
215     enum class Direction { Increasing, Decreasing, Unknown };
216 
217     /// Get the direction of the loop.
218     Direction getDirection() const;
219 
220   private:
221     LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
222                ScalarEvolution &SE)
223         : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
224           FinalIVValue(F), SE(SE) {}
225 
226     const Loop &L;
227 
228     // The initial value of the loop induction variable
229     Value &InitialIVValue;
230 
231     // The instruction that updates the loop induction variable
232     Instruction &StepInst;
233 
234     // The value that the loop induction variable gets updated by in each loop
235     // iteration
236     Value *StepValue;
237 
238     // The final value of the loop induction variable
239     Value &FinalIVValue;
240 
241     ScalarEvolution &SE;
242   };
243 
244   /// Return the struct LoopBounds collected if all struct members are found,
245   /// else std::nullopt.
246   std::optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
247 
248   /// Return the loop induction variable if found, else return nullptr.
249   /// An instruction is considered as the loop induction variable if
250   /// - it is an induction variable of the loop; and
251   /// - it is used to determine the condition of the branch in the loop latch
252   ///
253   /// Note: the induction variable doesn't need to be canonical, i.e. starts at
254   /// zero and increments by one each time through the loop (but it can be).
255   PHINode *getInductionVariable(ScalarEvolution &SE) const;
256 
257   /// Get the loop induction descriptor for the loop induction variable. Return
258   /// true if the loop induction variable is found.
259   bool getInductionDescriptor(ScalarEvolution &SE,
260                               InductionDescriptor &IndDesc) const;
261 
262   /// Return true if the given PHINode \p AuxIndVar is
263   /// - in the loop header
264   /// - not used outside of the loop
265   /// - incremented by a loop invariant step for each loop iteration
266   /// - step instruction opcode should be add or sub
267   /// Note: auxiliary induction variable is not required to be used in the
268   ///       conditional branch in the loop latch. (but it can be)
269   bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
270                                     ScalarEvolution &SE) const;
271 
272   /// Return the loop guard branch, if it exists.
273   ///
274   /// This currently only works on simplified loop, as it requires a preheader
275   /// and a latch to identify the guard. It will work on loops of the form:
276   /// \code
277   /// GuardBB:
278   ///   br cond1, Preheader, ExitSucc <== GuardBranch
279   /// Preheader:
280   ///   br Header
281   /// Header:
282   ///  ...
283   ///   br Latch
284   /// Latch:
285   ///   br cond2, Header, ExitBlock
286   /// ExitBlock:
287   ///   br ExitSucc
288   /// ExitSucc:
289   /// \endcode
290   BranchInst *getLoopGuardBranch() const;
291 
292   /// Return true iff the loop is
293   /// - in simplify rotated form, and
294   /// - guarded by a loop guard branch.
295   bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
296 
297   /// Return true if the loop is in rotated form.
298   ///
299   /// This does not check if the loop was rotated by loop rotation, instead it
300   /// only checks if the loop is in rotated form (has a valid latch that exists
301   /// the loop).
302   bool isRotatedForm() const {
303     assert(!isInvalid() && "Loop not in a valid state!");
304     BasicBlock *Latch = getLoopLatch();
305     return Latch && isLoopExiting(Latch);
306   }
307 
308   /// Return true if the loop induction variable starts at zero and increments
309   /// by one each time through the loop.
310   bool isCanonical(ScalarEvolution &SE) const;
311 
312   /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to
313   /// true, token values defined inside loop are allowed to violate LCSSA form.
314   bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const;
315 
316   /// Return true if this Loop and all inner subloops are in LCSSA form. If \p
317   /// IgnoreTokens is set to true, token values defined inside loop are allowed
318   /// to violate LCSSA form.
319   bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI,
320                               bool IgnoreTokens = true) const;
321 
322   /// Return true if the Loop is in the form that the LoopSimplify form
323   /// transforms loops to, which is sometimes called normal form.
324   bool isLoopSimplifyForm() const;
325 
326   /// Return true if the loop body is safe to clone in practice.
327   bool isSafeToClone() const;
328 
329   /// Returns true if the loop is annotated parallel.
330   ///
331   /// A parallel loop can be assumed to not contain any dependencies between
332   /// iterations by the compiler. That is, any loop-carried dependency checking
333   /// can be skipped completely when parallelizing the loop on the target
334   /// machine. Thus, if the parallel loop information originates from the
335   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
336   /// programmer's responsibility to ensure there are no loop-carried
337   /// dependencies. The final execution order of the instructions across
338   /// iterations is not guaranteed, thus, the end result might or might not
339   /// implement actual concurrent execution of instructions across multiple
340   /// iterations.
341   bool isAnnotatedParallel() const;
342 
343   /// Return the llvm.loop loop id metadata node for this loop if it is present.
344   ///
345   /// If this loop contains the same llvm.loop metadata on each branch to the
346   /// header then the node is returned. If any latch instruction does not
347   /// contain llvm.loop or if multiple latches contain different nodes then
348   /// 0 is returned.
349   MDNode *getLoopID() const;
350   /// Set the llvm.loop loop id metadata for this loop.
351   ///
352   /// The LoopID metadata node will be added to each terminator instruction in
353   /// the loop that branches to the loop header.
354   ///
355   /// The LoopID metadata node should have one or more operands and the first
356   /// operand should be the node itself.
357   void setLoopID(MDNode *LoopID) const;
358 
359   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
360   ///
361   /// Remove existing unroll metadata and add unroll disable metadata to
362   /// indicate the loop has already been unrolled.  This prevents a loop
363   /// from being unrolled more than is directed by a pragma if the loop
364   /// unrolling pass is run more than once (which it generally is).
365   void setLoopAlreadyUnrolled();
366 
367   /// Add llvm.loop.mustprogress to this loop's loop id metadata.
368   void setLoopMustProgress();
369 
370   void dump() const;
371   void dumpVerbose() const;
372 
373   /// Return the debug location of the start of this loop.
374   /// This looks for a BB terminating instruction with a known debug
375   /// location by looking at the preheader and header blocks. If it
376   /// cannot find a terminating instruction with location information,
377   /// it returns an unknown location.
378   DebugLoc getStartLoc() const;
379 
380   /// Return the source code span of the loop.
381   LocRange getLocRange() const;
382 
383   /// Return a string containing the debug location of the loop (file name +
384   /// line number if present, otherwise module name). Meant to be used for debug
385   /// printing within LLVM_DEBUG.
386   std::string getLocStr() const;
387 
388   StringRef getName() const {
389     if (BasicBlock *Header = getHeader())
390       if (Header->hasName())
391         return Header->getName();
392     return "<unnamed loop>";
393   }
394 
395 private:
396   Loop() = default;
397 
398   friend class LoopInfoBase<BasicBlock, Loop>;
399   friend class LoopBase<BasicBlock, Loop>;
400   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
401   ~Loop() = default;
402 };
403 
404 // Implementation in Support/GenericLoopInfoImpl.h
405 extern template class LoopInfoBase<BasicBlock, Loop>;
406 
407 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
408   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
409 
410   friend class LoopBase<BasicBlock, Loop>;
411 
412   void operator=(const LoopInfo &) = delete;
413   LoopInfo(const LoopInfo &) = delete;
414 
415 public:
416   LoopInfo() = default;
417   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
418 
419   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
420   LoopInfo &operator=(LoopInfo &&RHS) {
421     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
422     return *this;
423   }
424 
425   /// Handle invalidation explicitly.
426   bool invalidate(Function &F, const PreservedAnalyses &PA,
427                   FunctionAnalysisManager::Invalidator &);
428 
429   // Most of the public interface is provided via LoopInfoBase.
430 
431   /// Update LoopInfo after removing the last backedge from a loop. This updates
432   /// the loop forest and parent loops for each block so that \c L is no longer
433   /// referenced, but does not actually delete \c L immediately. The pointer
434   /// will remain valid until this LoopInfo's memory is released.
435   void erase(Loop *L);
436 
437   /// Returns true if replacing From with To everywhere is guaranteed to
438   /// preserve LCSSA form.
439   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
440     // Preserving LCSSA form is only problematic if the replacing value is an
441     // instruction.
442     Instruction *I = dyn_cast<Instruction>(To);
443     if (!I)
444       return true;
445     // If both instructions are defined in the same basic block then replacement
446     // cannot break LCSSA form.
447     if (I->getParent() == From->getParent())
448       return true;
449     // If the instruction is not defined in a loop then it can safely replace
450     // anything.
451     Loop *ToLoop = getLoopFor(I->getParent());
452     if (!ToLoop)
453       return true;
454     // If the replacing instruction is defined in the same loop as the original
455     // instruction, or in a loop that contains it as an inner loop, then using
456     // it as a replacement will not break LCSSA form.
457     return ToLoop->contains(getLoopFor(From->getParent()));
458   }
459 
460   /// Checks if moving a specific instruction can break LCSSA in any loop.
461   ///
462   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
463   /// assuming that the function containing \p Inst and \p NewLoc is currently
464   /// in LCSSA form.
465   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
466     assert(Inst->getFunction() == NewLoc->getFunction() &&
467            "Can't reason about IPO!");
468 
469     auto *OldBB = Inst->getParent();
470     auto *NewBB = NewLoc->getParent();
471 
472     // Movement within the same loop does not break LCSSA (the equality check is
473     // to avoid doing a hashtable lookup in case of intra-block movement).
474     if (OldBB == NewBB)
475       return true;
476 
477     auto *OldLoop = getLoopFor(OldBB);
478     auto *NewLoop = getLoopFor(NewBB);
479 
480     if (OldLoop == NewLoop)
481       return true;
482 
483     // Check if Outer contains Inner; with the null loop counting as the
484     // "outermost" loop.
485     auto Contains = [](const Loop *Outer, const Loop *Inner) {
486       return !Outer || Outer->contains(Inner);
487     };
488 
489     // To check that the movement of Inst to before NewLoc does not break LCSSA,
490     // we need to check two sets of uses for possible LCSSA violations at
491     // NewLoc: the users of NewInst, and the operands of NewInst.
492 
493     // If we know we're hoisting Inst out of an inner loop to an outer loop,
494     // then the uses *of* Inst don't need to be checked.
495 
496     if (!Contains(NewLoop, OldLoop)) {
497       for (Use &U : Inst->uses()) {
498         auto *UI = cast<Instruction>(U.getUser());
499         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
500                                      : UI->getParent();
501         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
502           return false;
503       }
504     }
505 
506     // If we know we're sinking Inst from an outer loop into an inner loop, then
507     // the *operands* of Inst don't need to be checked.
508 
509     if (!Contains(OldLoop, NewLoop)) {
510       // See below on why we can't handle phi nodes here.
511       if (isa<PHINode>(Inst))
512         return false;
513 
514       for (Use &U : Inst->operands()) {
515         auto *DefI = dyn_cast<Instruction>(U.get());
516         if (!DefI)
517           return false;
518 
519         // This would need adjustment if we allow Inst to be a phi node -- the
520         // new use block won't simply be NewBB.
521 
522         auto *DefBlock = DefI->getParent();
523         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
524           return false;
525       }
526     }
527 
528     return true;
529   }
530 
531   // Return true if a new use of V added in ExitBB would require an LCSSA PHI
532   // to be inserted at the begining of the block.  Note that V is assumed to
533   // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
534   // IR is assumed to be in LCSSA form before the planned insertion.
535   bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
536                                          const BasicBlock *ExitBB) const;
537 };
538 
539 /// Enable verification of loop info.
540 ///
541 /// The flag enables checks which are expensive and are disabled by default
542 /// unless the `EXPENSIVE_CHECKS` macro is defined.  The `-verify-loop-info`
543 /// flag allows the checks to be enabled selectively without re-compilation.
544 extern bool VerifyLoopInfo;
545 
546 // Allow clients to walk the list of nested loops...
547 template <> struct GraphTraits<const Loop *> {
548   typedef const Loop *NodeRef;
549   typedef LoopInfo::iterator ChildIteratorType;
550 
551   static NodeRef getEntryNode(const Loop *L) { return L; }
552   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
553   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
554 };
555 
556 template <> struct GraphTraits<Loop *> {
557   typedef Loop *NodeRef;
558   typedef LoopInfo::iterator ChildIteratorType;
559 
560   static NodeRef getEntryNode(Loop *L) { return L; }
561   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
562   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
563 };
564 
565 /// Analysis pass that exposes the \c LoopInfo for a function.
566 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
567   friend AnalysisInfoMixin<LoopAnalysis>;
568   static AnalysisKey Key;
569 
570 public:
571   typedef LoopInfo Result;
572 
573   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
574 };
575 
576 /// Printer pass for the \c LoopAnalysis results.
577 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
578   raw_ostream &OS;
579 
580 public:
581   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
582   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
583   static bool isRequired() { return true; }
584 };
585 
586 /// Verifier pass for the \c LoopAnalysis results.
587 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
588   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
589   static bool isRequired() { return true; }
590 };
591 
592 /// The legacy pass manager's analysis pass to compute loop information.
593 class LoopInfoWrapperPass : public FunctionPass {
594   LoopInfo LI;
595 
596 public:
597   static char ID; // Pass identification, replacement for typeid
598 
599   LoopInfoWrapperPass();
600 
601   LoopInfo &getLoopInfo() { return LI; }
602   const LoopInfo &getLoopInfo() const { return LI; }
603 
604   /// Calculate the natural loop information for a given function.
605   bool runOnFunction(Function &F) override;
606 
607   void verifyAnalysis() const override;
608 
609   void releaseMemory() override { LI.releaseMemory(); }
610 
611   void print(raw_ostream &O, const Module *M = nullptr) const override;
612 
613   void getAnalysisUsage(AnalysisUsage &AU) const override;
614 };
615 
616 /// Function to print a loop's contents as LLVM's text IR assembly.
617 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
618 
619 /// Find and return the loop attribute node for the attribute @p Name in
620 /// @p LoopID. Return nullptr if there is no such attribute.
621 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
622 
623 /// Find string metadata for a loop.
624 ///
625 /// Returns the MDNode where the first operand is the metadata's name. The
626 /// following operands are the metadata's values. If no metadata with @p Name is
627 /// found, return nullptr.
628 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
629 
630 std::optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
631                                                  StringRef Name);
632 
633 /// Returns true if Name is applied to TheLoop and enabled.
634 bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name);
635 
636 /// Find named metadata for a loop with an integer value.
637 std::optional<int> getOptionalIntLoopAttribute(const Loop *TheLoop,
638                                                StringRef Name);
639 
640 /// Find named metadata for a loop with an integer value. Return \p Default if
641 /// not set.
642 int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0);
643 
644 /// Find string metadata for loop
645 ///
646 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
647 /// operand or null otherwise.  If the string metadata is not found return
648 /// Optional's not-a-value.
649 std::optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop,
650                                                            StringRef Name);
651 
652 /// Find the convergence heart of the loop.
653 CallBase *getLoopConvergenceHeart(const Loop *TheLoop);
654 
655 /// Look for the loop attribute that requires progress within the loop.
656 /// Note: Most consumers probably want "isMustProgress" which checks
657 /// the containing function attribute too.
658 bool hasMustProgress(const Loop *L);
659 
660 /// Return true if this loop can be assumed to make progress.  (i.e. can't
661 /// be infinite without side effects without also being undefined)
662 bool isMustProgress(const Loop *L);
663 
664 /// Return true if this loop can be assumed to run for a finite number of
665 /// iterations.
666 bool isFinite(const Loop *L);
667 
668 /// Return whether an MDNode might represent an access group.
669 ///
670 /// Access group metadata nodes have to be distinct and empty. Being
671 /// always-empty ensures that it never needs to be changed (which -- because
672 /// MDNodes are designed immutable -- would require creating a new MDNode). Note
673 /// that this is not a sufficient condition: not every distinct and empty NDNode
674 /// is representing an access group.
675 bool isValidAsAccessGroup(MDNode *AccGroup);
676 
677 /// Create a new LoopID after the loop has been transformed.
678 ///
679 /// This can be used when no follow-up loop attributes are defined
680 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be
681 /// applied again.
682 ///
683 /// @param Context        The LLVMContext in which to create the new LoopID.
684 /// @param OrigLoopID     The original LoopID; can be nullptr if the original
685 ///                       loop has no LoopID.
686 /// @param RemovePrefixes Remove all loop attributes that have these prefixes.
687 ///                       Use to remove metadata of the transformation that has
688 ///                       been applied.
689 /// @param AddAttrs       Add these loop attributes to the new LoopID.
690 ///
691 /// @return A new LoopID that can be applied using Loop::setLoopID().
692 llvm::MDNode *
693 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
694                                llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
695                                llvm::ArrayRef<llvm::MDNode *> AddAttrs);
696 } // namespace llvm
697 
698 #endif
699