1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file defines the SparseSet class derived from the version described in 11 /// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters 12 /// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. 13 /// 14 /// A sparse set holds a small number of objects identified by integer keys from 15 /// a moderately sized universe. The sparse set uses more memory than other 16 /// containers in order to provide faster operations. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_ADT_SPARSESET_H 21 #define LLVM_ADT_SPARSESET_H 22 23 #include "llvm/ADT/identity.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/AllocatorBase.h" 26 #include <cassert> 27 #include <cstdint> 28 #include <cstdlib> 29 #include <limits> 30 #include <utility> 31 32 namespace llvm { 33 34 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can 35 /// be uniquely converted to a small integer less than the set's universe. This 36 /// class allows the set to hold values that differ from the set's key type as 37 /// long as an index can still be derived from the value. SparseSet never 38 /// directly compares ValueT, only their indices, so it can map keys to 39 /// arbitrary values. SparseSetValTraits computes the index from the value 40 /// object. To compute the index from a key, SparseSet uses a separate 41 /// KeyFunctorT template argument. 42 /// 43 /// A simple type declaration, SparseSet<Type>, handles these cases: 44 /// - unsigned key, identity index, identity value 45 /// - unsigned key, identity index, fat value providing getSparseSetIndex() 46 /// 47 /// The type declaration SparseSet<Type, UnaryFunction> handles: 48 /// - unsigned key, remapped index, identity value (virtual registers) 49 /// - pointer key, pointer-derived index, identity value (node+ID) 50 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() 51 /// 52 /// Only other, unexpected cases require specializing SparseSetValTraits. 53 /// 54 /// For best results, ValueT should not require a destructor. 55 /// 56 template<typename ValueT> 57 struct SparseSetValTraits { 58 static unsigned getValIndex(const ValueT &Val) { 59 return Val.getSparseSetIndex(); 60 } 61 }; 62 63 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The 64 /// generic implementation handles ValueT classes which either provide 65 /// getSparseSetIndex() or specialize SparseSetValTraits<>. 66 /// 67 template<typename KeyT, typename ValueT, typename KeyFunctorT> 68 struct SparseSetValFunctor { 69 unsigned operator()(const ValueT &Val) const { 70 return SparseSetValTraits<ValueT>::getValIndex(Val); 71 } 72 }; 73 74 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of 75 /// identity key/value sets. 76 template<typename KeyT, typename KeyFunctorT> 77 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { 78 unsigned operator()(const KeyT &Key) const { 79 return KeyFunctorT()(Key); 80 } 81 }; 82 83 /// SparseSet - Fast set implementation for objects that can be identified by 84 /// small unsigned keys. 85 /// 86 /// SparseSet allocates memory proportional to the size of the key universe, so 87 /// it is not recommended for building composite data structures. It is useful 88 /// for algorithms that require a single set with fast operations. 89 /// 90 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast 91 /// clear() and iteration as fast as a vector. The find(), insert(), and 92 /// erase() operations are all constant time, and typically faster than a hash 93 /// table. The iteration order doesn't depend on numerical key values, it only 94 /// depends on the order of insert() and erase() operations. When no elements 95 /// have been erased, the iteration order is the insertion order. 96 /// 97 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but 98 /// offers constant-time clear() and size() operations as well as fast 99 /// iteration independent on the size of the universe. 100 /// 101 /// SparseSet contains a dense vector holding all the objects and a sparse 102 /// array holding indexes into the dense vector. Most of the memory is used by 103 /// the sparse array which is the size of the key universe. The SparseT 104 /// template parameter provides a space/speed tradeoff for sets holding many 105 /// elements. 106 /// 107 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse 108 /// array uses 4 x Universe bytes. 109 /// 110 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache 111 /// lines, but the sparse array is 4x smaller. N is the number of elements in 112 /// the set. 113 /// 114 /// For sets that may grow to thousands of elements, SparseT should be set to 115 /// uint16_t or uint32_t. 116 /// 117 /// @tparam ValueT The type of objects in the set. 118 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. 119 /// @tparam SparseT An unsigned integer type. See above. 120 /// 121 template<typename ValueT, 122 typename KeyFunctorT = identity<unsigned>, 123 typename SparseT = uint8_t> 124 class SparseSet { 125 static_assert(std::is_unsigned_v<SparseT>, 126 "SparseT must be an unsigned integer type"); 127 128 using KeyT = typename KeyFunctorT::argument_type; 129 using DenseT = SmallVector<ValueT, 8>; 130 using size_type = unsigned; 131 DenseT Dense; 132 133 struct Deleter { 134 void operator()(SparseT *S) { free(S); } 135 }; 136 std::unique_ptr<SparseT[], Deleter> Sparse; 137 138 unsigned Universe = 0; 139 KeyFunctorT KeyIndexOf; 140 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; 141 142 public: 143 using value_type = ValueT; 144 using reference = ValueT &; 145 using const_reference = const ValueT &; 146 using pointer = ValueT *; 147 using const_pointer = const ValueT *; 148 149 SparseSet() = default; 150 SparseSet(const SparseSet &) = delete; 151 SparseSet &operator=(const SparseSet &) = delete; 152 SparseSet(SparseSet &&) = default; 153 154 /// setUniverse - Set the universe size which determines the largest key the 155 /// set can hold. The universe must be sized before any elements can be 156 /// added. 157 /// 158 /// @param U Universe size. All object keys must be less than U. 159 /// 160 void setUniverse(unsigned U) { 161 // It's not hard to resize the universe on a non-empty set, but it doesn't 162 // seem like a likely use case, so we can add that code when we need it. 163 assert(empty() && "Can only resize universe on an empty map"); 164 // Hysteresis prevents needless reallocations. 165 if (U >= Universe/4 && U <= Universe) 166 return; 167 // The Sparse array doesn't actually need to be initialized, so malloc 168 // would be enough here, but that will cause tools like valgrind to 169 // complain about branching on uninitialized data. 170 Sparse.reset(static_cast<SparseT *>(safe_calloc(U, sizeof(SparseT)))); 171 Universe = U; 172 } 173 174 // Import trivial vector stuff from DenseT. 175 using iterator = typename DenseT::iterator; 176 using const_iterator = typename DenseT::const_iterator; 177 178 const_iterator begin() const { return Dense.begin(); } 179 const_iterator end() const { return Dense.end(); } 180 iterator begin() { return Dense.begin(); } 181 iterator end() { return Dense.end(); } 182 183 /// empty - Returns true if the set is empty. 184 /// 185 /// This is not the same as BitVector::empty(). 186 /// 187 bool empty() const { return Dense.empty(); } 188 189 /// size - Returns the number of elements in the set. 190 /// 191 /// This is not the same as BitVector::size() which returns the size of the 192 /// universe. 193 /// 194 size_type size() const { return Dense.size(); } 195 196 /// clear - Clears the set. This is a very fast constant time operation. 197 /// 198 void clear() { 199 // Sparse does not need to be cleared, see find(). 200 Dense.clear(); 201 } 202 203 /// findIndex - Find an element by its index. 204 /// 205 /// @param Idx A valid index to find. 206 /// @returns An iterator to the element identified by key, or end(). 207 /// 208 iterator findIndex(unsigned Idx) { 209 assert(Idx < Universe && "Key out of range"); 210 assert(Sparse != nullptr && "Invalid sparse type"); 211 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; 212 for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { 213 const unsigned FoundIdx = ValIndexOf(Dense[i]); 214 assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); 215 if (Idx == FoundIdx) 216 return begin() + i; 217 // Stride is 0 when SparseT >= unsigned. We don't need to loop. 218 if (!Stride) 219 break; 220 } 221 return end(); 222 } 223 224 /// find - Find an element by its key. 225 /// 226 /// @param Key A valid key to find. 227 /// @returns An iterator to the element identified by key, or end(). 228 /// 229 iterator find(const KeyT &Key) { 230 return findIndex(KeyIndexOf(Key)); 231 } 232 233 const_iterator find(const KeyT &Key) const { 234 return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); 235 } 236 237 /// Check if the set contains the given \c Key. 238 /// 239 /// @param Key A valid key to find. 240 bool contains(const KeyT &Key) const { return find(Key) != end(); } 241 242 /// count - Returns 1 if this set contains an element identified by Key, 243 /// 0 otherwise. 244 /// 245 size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; } 246 247 /// insert - Attempts to insert a new element. 248 /// 249 /// If Val is successfully inserted, return (I, true), where I is an iterator 250 /// pointing to the newly inserted element. 251 /// 252 /// If the set already contains an element with the same key as Val, return 253 /// (I, false), where I is an iterator pointing to the existing element. 254 /// 255 /// Insertion invalidates all iterators. 256 /// 257 std::pair<iterator, bool> insert(const ValueT &Val) { 258 unsigned Idx = ValIndexOf(Val); 259 iterator I = findIndex(Idx); 260 if (I != end()) 261 return std::make_pair(I, false); 262 Sparse[Idx] = size(); 263 Dense.push_back(Val); 264 return std::make_pair(end() - 1, true); 265 } 266 267 /// array subscript - If an element already exists with this key, return it. 268 /// Otherwise, automatically construct a new value from Key, insert it, 269 /// and return the newly inserted element. 270 ValueT &operator[](const KeyT &Key) { 271 return *insert(ValueT(Key)).first; 272 } 273 274 ValueT pop_back_val() { 275 // Sparse does not need to be cleared, see find(). 276 return Dense.pop_back_val(); 277 } 278 279 /// erase - Erases an existing element identified by a valid iterator. 280 /// 281 /// This invalidates all iterators, but erase() returns an iterator pointing 282 /// to the next element. This makes it possible to erase selected elements 283 /// while iterating over the set: 284 /// 285 /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) 286 /// if (test(*I)) 287 /// I = Set.erase(I); 288 /// else 289 /// ++I; 290 /// 291 /// Note that end() changes when elements are erased, unlike std::list. 292 /// 293 iterator erase(iterator I) { 294 assert(unsigned(I - begin()) < size() && "Invalid iterator"); 295 if (I != end() - 1) { 296 *I = Dense.back(); 297 unsigned BackIdx = ValIndexOf(Dense.back()); 298 assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); 299 Sparse[BackIdx] = I - begin(); 300 } 301 // This depends on SmallVector::pop_back() not invalidating iterators. 302 // std::vector::pop_back() doesn't give that guarantee. 303 Dense.pop_back(); 304 return I; 305 } 306 307 /// erase - Erases an element identified by Key, if it exists. 308 /// 309 /// @param Key The key identifying the element to erase. 310 /// @returns True when an element was erased, false if no element was found. 311 /// 312 bool erase(const KeyT &Key) { 313 iterator I = find(Key); 314 if (I == end()) 315 return false; 316 erase(I); 317 return true; 318 } 319 }; 320 321 } // end namespace llvm 322 323 #endif // LLVM_ADT_SPARSESET_H 324