xref: /llvm-project/llvm/include/llvm/ADT/SparseSet.h (revision dde9477d8c0b85d445f10b08b0120f3d361cb77f)
1 //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the SparseSet class derived from the version described in
11 /// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
12 /// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993.
13 ///
14 /// A sparse set holds a small number of objects identified by integer keys from
15 /// a moderately sized universe. The sparse set uses more memory than other
16 /// containers in order to provide faster operations.
17 ///
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ADT_SPARSESET_H
21 #define LLVM_ADT_SPARSESET_H
22 
23 #include "llvm/ADT/identity.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/AllocatorBase.h"
26 #include <cassert>
27 #include <cstdint>
28 #include <cstdlib>
29 #include <limits>
30 #include <utility>
31 
32 namespace llvm {
33 
34 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
35 /// be uniquely converted to a small integer less than the set's universe. This
36 /// class allows the set to hold values that differ from the set's key type as
37 /// long as an index can still be derived from the value. SparseSet never
38 /// directly compares ValueT, only their indices, so it can map keys to
39 /// arbitrary values. SparseSetValTraits computes the index from the value
40 /// object. To compute the index from a key, SparseSet uses a separate
41 /// KeyFunctorT template argument.
42 ///
43 /// A simple type declaration, SparseSet<Type>, handles these cases:
44 /// - unsigned key, identity index, identity value
45 /// - unsigned key, identity index, fat value providing getSparseSetIndex()
46 ///
47 /// The type declaration SparseSet<Type, UnaryFunction> handles:
48 /// - unsigned key, remapped index, identity value (virtual registers)
49 /// - pointer key, pointer-derived index, identity value (node+ID)
50 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
51 ///
52 /// Only other, unexpected cases require specializing SparseSetValTraits.
53 ///
54 /// For best results, ValueT should not require a destructor.
55 ///
56 template<typename ValueT>
57 struct SparseSetValTraits {
58   static unsigned getValIndex(const ValueT &Val) {
59     return Val.getSparseSetIndex();
60   }
61 };
62 
63 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
64 /// generic implementation handles ValueT classes which either provide
65 /// getSparseSetIndex() or specialize SparseSetValTraits<>.
66 ///
67 template<typename KeyT, typename ValueT, typename KeyFunctorT>
68 struct SparseSetValFunctor {
69   unsigned operator()(const ValueT &Val) const {
70     return SparseSetValTraits<ValueT>::getValIndex(Val);
71   }
72 };
73 
74 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
75 /// identity key/value sets.
76 template<typename KeyT, typename KeyFunctorT>
77 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
78   unsigned operator()(const KeyT &Key) const {
79     return KeyFunctorT()(Key);
80   }
81 };
82 
83 /// SparseSet - Fast set implementation for objects that can be identified by
84 /// small unsigned keys.
85 ///
86 /// SparseSet allocates memory proportional to the size of the key universe, so
87 /// it is not recommended for building composite data structures.  It is useful
88 /// for algorithms that require a single set with fast operations.
89 ///
90 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
91 /// clear() and iteration as fast as a vector.  The find(), insert(), and
92 /// erase() operations are all constant time, and typically faster than a hash
93 /// table.  The iteration order doesn't depend on numerical key values, it only
94 /// depends on the order of insert() and erase() operations.  When no elements
95 /// have been erased, the iteration order is the insertion order.
96 ///
97 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
98 /// offers constant-time clear() and size() operations as well as fast
99 /// iteration independent on the size of the universe.
100 ///
101 /// SparseSet contains a dense vector holding all the objects and a sparse
102 /// array holding indexes into the dense vector.  Most of the memory is used by
103 /// the sparse array which is the size of the key universe.  The SparseT
104 /// template parameter provides a space/speed tradeoff for sets holding many
105 /// elements.
106 ///
107 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
108 /// array uses 4 x Universe bytes.
109 ///
110 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
111 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
112 /// the set.
113 ///
114 /// For sets that may grow to thousands of elements, SparseT should be set to
115 /// uint16_t or uint32_t.
116 ///
117 /// @tparam ValueT      The type of objects in the set.
118 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
119 /// @tparam SparseT     An unsigned integer type. See above.
120 ///
121 template<typename ValueT,
122          typename KeyFunctorT = identity<unsigned>,
123          typename SparseT = uint8_t>
124 class SparseSet {
125   static_assert(std::is_unsigned_v<SparseT>,
126                 "SparseT must be an unsigned integer type");
127 
128   using KeyT = typename KeyFunctorT::argument_type;
129   using DenseT = SmallVector<ValueT, 8>;
130   using size_type = unsigned;
131   DenseT Dense;
132 
133   struct Deleter {
134     void operator()(SparseT *S) { free(S); }
135   };
136   std::unique_ptr<SparseT[], Deleter> Sparse;
137 
138   unsigned Universe = 0;
139   KeyFunctorT KeyIndexOf;
140   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
141 
142 public:
143   using value_type = ValueT;
144   using reference = ValueT &;
145   using const_reference = const ValueT &;
146   using pointer = ValueT *;
147   using const_pointer = const ValueT *;
148 
149   SparseSet() = default;
150   SparseSet(const SparseSet &) = delete;
151   SparseSet &operator=(const SparseSet &) = delete;
152   SparseSet(SparseSet &&) = default;
153 
154   /// setUniverse - Set the universe size which determines the largest key the
155   /// set can hold.  The universe must be sized before any elements can be
156   /// added.
157   ///
158   /// @param U Universe size. All object keys must be less than U.
159   ///
160   void setUniverse(unsigned U) {
161     // It's not hard to resize the universe on a non-empty set, but it doesn't
162     // seem like a likely use case, so we can add that code when we need it.
163     assert(empty() && "Can only resize universe on an empty map");
164     // Hysteresis prevents needless reallocations.
165     if (U >= Universe/4 && U <= Universe)
166       return;
167     // The Sparse array doesn't actually need to be initialized, so malloc
168     // would be enough here, but that will cause tools like valgrind to
169     // complain about branching on uninitialized data.
170     Sparse.reset(static_cast<SparseT *>(safe_calloc(U, sizeof(SparseT))));
171     Universe = U;
172   }
173 
174   // Import trivial vector stuff from DenseT.
175   using iterator = typename DenseT::iterator;
176   using const_iterator = typename DenseT::const_iterator;
177 
178   const_iterator begin() const { return Dense.begin(); }
179   const_iterator end() const { return Dense.end(); }
180   iterator begin() { return Dense.begin(); }
181   iterator end() { return Dense.end(); }
182 
183   /// empty - Returns true if the set is empty.
184   ///
185   /// This is not the same as BitVector::empty().
186   ///
187   bool empty() const { return Dense.empty(); }
188 
189   /// size - Returns the number of elements in the set.
190   ///
191   /// This is not the same as BitVector::size() which returns the size of the
192   /// universe.
193   ///
194   size_type size() const { return Dense.size(); }
195 
196   /// clear - Clears the set.  This is a very fast constant time operation.
197   ///
198   void clear() {
199     // Sparse does not need to be cleared, see find().
200     Dense.clear();
201   }
202 
203   /// findIndex - Find an element by its index.
204   ///
205   /// @param   Idx A valid index to find.
206   /// @returns An iterator to the element identified by key, or end().
207   ///
208   iterator findIndex(unsigned Idx) {
209     assert(Idx < Universe && "Key out of range");
210     assert(Sparse != nullptr && "Invalid sparse type");
211     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
212     for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
213       const unsigned FoundIdx = ValIndexOf(Dense[i]);
214       assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
215       if (Idx == FoundIdx)
216         return begin() + i;
217       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
218       if (!Stride)
219         break;
220     }
221     return end();
222   }
223 
224   /// find - Find an element by its key.
225   ///
226   /// @param   Key A valid key to find.
227   /// @returns An iterator to the element identified by key, or end().
228   ///
229   iterator find(const KeyT &Key) {
230     return findIndex(KeyIndexOf(Key));
231   }
232 
233   const_iterator find(const KeyT &Key) const {
234     return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
235   }
236 
237   /// Check if the set contains the given \c Key.
238   ///
239   /// @param Key A valid key to find.
240   bool contains(const KeyT &Key) const { return find(Key) != end(); }
241 
242   /// count - Returns 1 if this set contains an element identified by Key,
243   /// 0 otherwise.
244   ///
245   size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; }
246 
247   /// insert - Attempts to insert a new element.
248   ///
249   /// If Val is successfully inserted, return (I, true), where I is an iterator
250   /// pointing to the newly inserted element.
251   ///
252   /// If the set already contains an element with the same key as Val, return
253   /// (I, false), where I is an iterator pointing to the existing element.
254   ///
255   /// Insertion invalidates all iterators.
256   ///
257   std::pair<iterator, bool> insert(const ValueT &Val) {
258     unsigned Idx = ValIndexOf(Val);
259     iterator I = findIndex(Idx);
260     if (I != end())
261       return std::make_pair(I, false);
262     Sparse[Idx] = size();
263     Dense.push_back(Val);
264     return std::make_pair(end() - 1, true);
265   }
266 
267   /// array subscript - If an element already exists with this key, return it.
268   /// Otherwise, automatically construct a new value from Key, insert it,
269   /// and return the newly inserted element.
270   ValueT &operator[](const KeyT &Key) {
271     return *insert(ValueT(Key)).first;
272   }
273 
274   ValueT pop_back_val() {
275     // Sparse does not need to be cleared, see find().
276     return Dense.pop_back_val();
277   }
278 
279   /// erase - Erases an existing element identified by a valid iterator.
280   ///
281   /// This invalidates all iterators, but erase() returns an iterator pointing
282   /// to the next element.  This makes it possible to erase selected elements
283   /// while iterating over the set:
284   ///
285   ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();)
286   ///     if (test(*I))
287   ///       I = Set.erase(I);
288   ///     else
289   ///       ++I;
290   ///
291   /// Note that end() changes when elements are erased, unlike std::list.
292   ///
293   iterator erase(iterator I) {
294     assert(unsigned(I - begin()) < size() && "Invalid iterator");
295     if (I != end() - 1) {
296       *I = Dense.back();
297       unsigned BackIdx = ValIndexOf(Dense.back());
298       assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
299       Sparse[BackIdx] = I - begin();
300     }
301     // This depends on SmallVector::pop_back() not invalidating iterators.
302     // std::vector::pop_back() doesn't give that guarantee.
303     Dense.pop_back();
304     return I;
305   }
306 
307   /// erase - Erases an element identified by Key, if it exists.
308   ///
309   /// @param   Key The key identifying the element to erase.
310   /// @returns True when an element was erased, false if no element was found.
311   ///
312   bool erase(const KeyT &Key) {
313     iterator I = find(Key);
314     if (I == end())
315       return false;
316     erase(I);
317     return true;
318   }
319 };
320 
321 } // end namespace llvm
322 
323 #endif // LLVM_ADT_SPARSESET_H
324