1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/InstructionCost.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/TargetParser/Triple.h" 104 #include "llvm/Transforms/Utils/Local.h" 105 #include <cstddef> 106 #include <limits> 107 #include <optional> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 SDValue InChain, 158 std::optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue 166 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 167 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 168 SDValue InChain, 169 std::optional<CallingConv::ID> CC = std::nullopt, 170 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 171 // Let the target assemble the parts if it wants to 172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 173 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 174 PartVT, ValueVT, CC)) 175 return Val; 176 177 if (ValueVT.isVector()) 178 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 179 InChain, CC); 180 181 assert(NumParts > 0 && "No parts to assemble!"); 182 SDValue Val = Parts[0]; 183 184 if (NumParts > 1) { 185 // Assemble the value from multiple parts. 186 if (ValueVT.isInteger()) { 187 unsigned PartBits = PartVT.getSizeInBits(); 188 unsigned ValueBits = ValueVT.getSizeInBits(); 189 190 // Assemble the power of 2 part. 191 unsigned RoundParts = llvm::bit_floor(NumParts); 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 201 InChain); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 203 PartVT, HalfVT, V, InChain); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, InChain, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getShiftAmountTy( 230 TotalVT, DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 250 InChain, CC); 251 } 252 } 253 254 // There is now one part, held in Val. Correct it to match ValueVT. 255 // PartEVT is the type of the register class that holds the value. 256 // ValueVT is the type of the inline asm operation. 257 EVT PartEVT = Val.getValueType(); 258 259 if (PartEVT == ValueVT) 260 return Val; 261 262 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 263 ValueVT.bitsLT(PartEVT)) { 264 // For an FP value in an integer part, we need to truncate to the right 265 // width first. 266 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 267 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 268 } 269 270 // Handle types that have the same size. 271 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 272 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 273 274 // Handle types with different sizes. 275 if (PartEVT.isInteger() && ValueVT.isInteger()) { 276 if (ValueVT.bitsLT(PartEVT)) { 277 // For a truncate, see if we have any information to 278 // indicate whether the truncated bits will always be 279 // zero or sign-extension. 280 if (AssertOp) 281 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 282 DAG.getValueType(ValueVT)); 283 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 284 } 285 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 286 } 287 288 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 289 // FP_ROUND's are always exact here. 290 if (ValueVT.bitsLT(Val.getValueType())) { 291 292 SDValue NoChange = 293 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 294 295 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 296 llvm::Attribute::StrictFP)) { 297 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 298 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 299 NoChange); 300 } 301 302 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 303 } 304 305 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 306 } 307 308 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 309 // then truncating. 310 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 311 ValueVT.bitsLT(PartEVT)) { 312 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 313 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 314 } 315 316 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 317 } 318 319 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 320 const Twine &ErrMsg) { 321 const Instruction *I = dyn_cast_or_null<Instruction>(V); 322 if (!I) 323 return Ctx.emitError(ErrMsg); 324 325 if (const CallInst *CI = dyn_cast<CallInst>(I)) 326 if (CI->isInlineAsm()) { 327 return Ctx.diagnose(DiagnosticInfoInlineAsm( 328 *CI, ErrMsg + ", possible invalid constraint for vector type")); 329 } 330 331 return Ctx.emitError(I, ErrMsg); 332 } 333 334 /// getCopyFromPartsVector - Create a value that contains the specified legal 335 /// parts combined into the value they represent. If the parts combine to a 336 /// type larger than ValueVT then AssertOp can be used to specify whether the 337 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 338 /// ValueVT (ISD::AssertSext). 339 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 340 const SDValue *Parts, unsigned NumParts, 341 MVT PartVT, EVT ValueVT, const Value *V, 342 SDValue InChain, 343 std::optional<CallingConv::ID> CallConv) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const bool IsABIRegCopy = CallConv.has_value(); 347 348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 349 SDValue Val = Parts[0]; 350 351 // Handle a multi-element vector. 352 if (NumParts > 1) { 353 EVT IntermediateVT; 354 MVT RegisterVT; 355 unsigned NumIntermediates; 356 unsigned NumRegs; 357 358 if (IsABIRegCopy) { 359 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 360 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 361 NumIntermediates, RegisterVT); 362 } else { 363 NumRegs = 364 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 365 NumIntermediates, RegisterVT); 366 } 367 368 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 369 NumParts = NumRegs; // Silence a compiler warning. 370 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 371 assert(RegisterVT.getSizeInBits() == 372 Parts[0].getSimpleValueType().getSizeInBits() && 373 "Part type sizes don't match!"); 374 375 // Assemble the parts into intermediate operands. 376 SmallVector<SDValue, 8> Ops(NumIntermediates); 377 if (NumIntermediates == NumParts) { 378 // If the register was not expanded, truncate or copy the value, 379 // as appropriate. 380 for (unsigned i = 0; i != NumParts; ++i) 381 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 382 V, InChain, CallConv); 383 } else if (NumParts > 0) { 384 // If the intermediate type was expanded, build the intermediate 385 // operands from the parts. 386 assert(NumParts % NumIntermediates == 0 && 387 "Must expand into a divisible number of parts!"); 388 unsigned Factor = NumParts / NumIntermediates; 389 for (unsigned i = 0; i != NumIntermediates; ++i) 390 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 391 IntermediateVT, V, InChain, CallConv); 392 } 393 394 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 395 // intermediate operands. 396 EVT BuiltVectorTy = 397 IntermediateVT.isVector() 398 ? EVT::getVectorVT( 399 *DAG.getContext(), IntermediateVT.getScalarType(), 400 IntermediateVT.getVectorElementCount() * NumParts) 401 : EVT::getVectorVT(*DAG.getContext(), 402 IntermediateVT.getScalarType(), 403 NumIntermediates); 404 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 405 : ISD::BUILD_VECTOR, 406 DL, BuiltVectorTy, Ops); 407 } 408 409 // There is now one part, held in Val. Correct it to match ValueVT. 410 EVT PartEVT = Val.getValueType(); 411 412 if (PartEVT == ValueVT) 413 return Val; 414 415 if (PartEVT.isVector()) { 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 // If the parts vector has more elements than the value vector, then we 421 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 422 // Extract the elements we want. 423 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 424 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 425 ValueVT.getVectorElementCount().getKnownMinValue()) && 426 (PartEVT.getVectorElementCount().isScalable() == 427 ValueVT.getVectorElementCount().isScalable()) && 428 "Cannot narrow, it would be a lossy transformation"); 429 PartEVT = 430 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 431 ValueVT.getVectorElementCount()); 432 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 433 DAG.getVectorIdxConstant(0, DL)); 434 if (PartEVT == ValueVT) 435 return Val; 436 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 439 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } 443 444 // Promoted vector extract 445 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 446 } 447 448 // Trivial bitcast if the types are the same size and the destination 449 // vector type is legal. 450 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 451 TLI.isTypeLegal(ValueVT)) 452 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 453 454 if (ValueVT.getVectorNumElements() != 1) { 455 // Certain ABIs require that vectors are passed as integers. For vectors 456 // are the same size, this is an obvious bitcast. 457 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 458 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 459 } else if (ValueVT.bitsLT(PartEVT)) { 460 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 461 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 462 // Drop the extra bits. 463 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 464 return DAG.getBitcast(ValueVT, Val); 465 } 466 467 diagnosePossiblyInvalidConstraint( 468 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 469 return DAG.getUNDEF(ValueVT); 470 } 471 472 // Handle cases such as i8 -> <1 x i1> 473 EVT ValueSVT = ValueVT.getVectorElementType(); 474 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 475 unsigned ValueSize = ValueSVT.getSizeInBits(); 476 if (ValueSize == PartEVT.getSizeInBits()) { 477 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 478 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 479 // It's possible a scalar floating point type gets softened to integer and 480 // then promoted to a larger integer. If PartEVT is the larger integer 481 // we need to truncate it and then bitcast to the FP type. 482 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 483 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 484 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 485 Val = DAG.getBitcast(ValueSVT, Val); 486 } else { 487 Val = ValueVT.isFloatingPoint() 488 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 } 491 } 492 493 return DAG.getBuildVector(ValueVT, DL, Val); 494 } 495 496 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 497 SDValue Val, SDValue *Parts, unsigned NumParts, 498 MVT PartVT, const Value *V, 499 std::optional<CallingConv::ID> CallConv); 500 501 /// getCopyToParts - Create a series of nodes that contain the specified value 502 /// split into legal parts. If the parts contain more bits than Val, then, for 503 /// integers, ExtendKind can be used to specify how to generate the extra bits. 504 static void 505 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 506 unsigned NumParts, MVT PartVT, const Value *V, 507 std::optional<CallingConv::ID> CallConv = std::nullopt, 508 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 509 // Let the target split the parts if it wants to 510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 511 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 512 CallConv)) 513 return; 514 EVT ValueVT = Val.getValueType(); 515 516 // Handle the vector case separately. 517 if (ValueVT.isVector()) 518 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 519 CallConv); 520 521 unsigned OrigNumParts = NumParts; 522 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 523 "Copying to an illegal type!"); 524 525 if (NumParts == 0) 526 return; 527 528 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 529 EVT PartEVT = PartVT; 530 if (PartEVT == ValueVT) { 531 assert(NumParts == 1 && "No-op copy with multiple parts!"); 532 Parts[0] = Val; 533 return; 534 } 535 536 unsigned PartBits = PartVT.getSizeInBits(); 537 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 538 // If the parts cover more bits than the value has, promote the value. 539 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 540 assert(NumParts == 1 && "Do not know what to promote to!"); 541 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 542 } else { 543 if (ValueVT.isFloatingPoint()) { 544 // FP values need to be bitcast, then extended if they are being put 545 // into a larger container. 546 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 547 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 548 } 549 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 550 ValueVT.isInteger() && 551 "Unknown mismatch!"); 552 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 553 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 554 if (PartVT == MVT::x86mmx) 555 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 556 } 557 } else if (PartBits == ValueVT.getSizeInBits()) { 558 // Different types of the same size. 559 assert(NumParts == 1 && PartEVT != ValueVT); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 562 // If the parts cover less bits than value has, truncate the value. 563 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 564 ValueVT.isInteger() && 565 "Unknown mismatch!"); 566 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 567 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 568 if (PartVT == MVT::x86mmx) 569 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 570 } 571 572 // The value may have changed - recompute ValueVT. 573 ValueVT = Val.getValueType(); 574 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 575 "Failed to tile the value with PartVT!"); 576 577 if (NumParts == 1) { 578 if (PartEVT != ValueVT) { 579 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 580 "scalar-to-vector conversion failed"); 581 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 582 } 583 584 Parts[0] = Val; 585 return; 586 } 587 588 // Expand the value into multiple parts. 589 if (NumParts & (NumParts - 1)) { 590 // The number of parts is not a power of 2. Split off and copy the tail. 591 assert(PartVT.isInteger() && ValueVT.isInteger() && 592 "Do not know what to expand to!"); 593 unsigned RoundParts = llvm::bit_floor(NumParts); 594 unsigned RoundBits = RoundParts * PartBits; 595 unsigned OddParts = NumParts - RoundParts; 596 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 597 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 598 599 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 600 CallConv); 601 602 if (DAG.getDataLayout().isBigEndian()) 603 // The odd parts were reversed by getCopyToParts - unreverse them. 604 std::reverse(Parts + RoundParts, Parts + NumParts); 605 606 NumParts = RoundParts; 607 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 608 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 609 } 610 611 // The number of parts is a power of 2. Repeatedly bisect the value using 612 // EXTRACT_ELEMENT. 613 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 614 EVT::getIntegerVT(*DAG.getContext(), 615 ValueVT.getSizeInBits()), 616 Val); 617 618 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 619 for (unsigned i = 0; i < NumParts; i += StepSize) { 620 unsigned ThisBits = StepSize * PartBits / 2; 621 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 622 SDValue &Part0 = Parts[i]; 623 SDValue &Part1 = Parts[i+StepSize/2]; 624 625 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 627 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 628 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 629 630 if (ThisBits == PartBits && ThisVT != PartVT) { 631 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 632 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 633 } 634 } 635 } 636 637 if (DAG.getDataLayout().isBigEndian()) 638 std::reverse(Parts, Parts + OrigNumParts); 639 } 640 641 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 642 const SDLoc &DL, EVT PartVT) { 643 if (!PartVT.isVector()) 644 return SDValue(); 645 646 EVT ValueVT = Val.getValueType(); 647 EVT PartEVT = PartVT.getVectorElementType(); 648 EVT ValueEVT = ValueVT.getVectorElementType(); 649 ElementCount PartNumElts = PartVT.getVectorElementCount(); 650 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 651 652 // We only support widening vectors with equivalent element types and 653 // fixed/scalable properties. If a target needs to widen a fixed-length type 654 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 655 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 656 PartNumElts.isScalable() != ValueNumElts.isScalable()) 657 return SDValue(); 658 659 // Have a try for bf16 because some targets share its ABI with fp16. 660 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 661 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 662 "Cannot widen to illegal type"); 663 Val = DAG.getNode(ISD::BITCAST, DL, 664 ValueVT.changeVectorElementType(MVT::f16), Val); 665 } else if (PartEVT != ValueEVT) { 666 return SDValue(); 667 } 668 669 // Widening a scalable vector to another scalable vector is done by inserting 670 // the vector into a larger undef one. 671 if (PartNumElts.isScalable()) 672 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 673 Val, DAG.getVectorIdxConstant(0, DL)); 674 675 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 676 // undef elements. 677 SmallVector<SDValue, 16> Ops; 678 DAG.ExtractVectorElements(Val, Ops); 679 SDValue EltUndef = DAG.getUNDEF(PartEVT); 680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 681 682 // FIXME: Use CONCAT for 2x -> 4x. 683 return DAG.getBuildVector(PartVT, DL, Ops); 684 } 685 686 /// getCopyToPartsVector - Create a series of nodes that contain the specified 687 /// value split into legal parts. 688 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 689 SDValue Val, SDValue *Parts, unsigned NumParts, 690 MVT PartVT, const Value *V, 691 std::optional<CallingConv::ID> CallConv) { 692 EVT ValueVT = Val.getValueType(); 693 assert(ValueVT.isVector() && "Not a vector"); 694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 695 const bool IsABIRegCopy = CallConv.has_value(); 696 697 if (NumParts == 1) { 698 EVT PartEVT = PartVT; 699 if (PartEVT == ValueVT) { 700 // Nothing to do. 701 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 702 // Bitconvert vector->vector case. 703 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 704 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 705 Val = Widened; 706 } else if (PartVT.isVector() && 707 PartEVT.getVectorElementType().bitsGE( 708 ValueVT.getVectorElementType()) && 709 PartEVT.getVectorElementCount() == 710 ValueVT.getVectorElementCount()) { 711 712 // Promoted vector extract 713 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 714 } else if (PartEVT.isVector() && 715 PartEVT.getVectorElementType() != 716 ValueVT.getVectorElementType() && 717 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 718 TargetLowering::TypeWidenVector) { 719 // Combination of widening and promotion. 720 EVT WidenVT = 721 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 722 PartVT.getVectorElementCount()); 723 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 724 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 725 } else { 726 // Don't extract an integer from a float vector. This can happen if the 727 // FP type gets softened to integer and then promoted. The promotion 728 // prevents it from being picked up by the earlier bitcast case. 729 if (ValueVT.getVectorElementCount().isScalar() && 730 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 731 // If we reach this condition and PartVT is FP, this means that 732 // ValueVT is also FP and both have a different size, otherwise we 733 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here 734 // would be invalid since that would mean the smaller FP type has to 735 // be extended to the larger one. 736 if (PartVT.isFloatingPoint()) { 737 Val = DAG.getBitcast(ValueVT.getScalarType(), Val); 738 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 739 } else 740 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 741 DAG.getVectorIdxConstant(0, DL)); 742 } else { 743 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 744 assert(PartVT.getFixedSizeInBits() > ValueSize && 745 "lossy conversion of vector to scalar type"); 746 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 747 Val = DAG.getBitcast(IntermediateType, Val); 748 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 749 } 750 } 751 752 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 753 Parts[0] = Val; 754 return; 755 } 756 757 // Handle a multi-element vector. 758 EVT IntermediateVT; 759 MVT RegisterVT; 760 unsigned NumIntermediates; 761 unsigned NumRegs; 762 if (IsABIRegCopy) { 763 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 764 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 765 RegisterVT); 766 } else { 767 NumRegs = 768 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 769 NumIntermediates, RegisterVT); 770 } 771 772 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 773 NumParts = NumRegs; // Silence a compiler warning. 774 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 775 776 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 777 "Mixing scalable and fixed vectors when copying in parts"); 778 779 std::optional<ElementCount> DestEltCnt; 780 781 if (IntermediateVT.isVector()) 782 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 783 else 784 DestEltCnt = ElementCount::getFixed(NumIntermediates); 785 786 EVT BuiltVectorTy = EVT::getVectorVT( 787 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 788 789 if (ValueVT == BuiltVectorTy) { 790 // Nothing to do. 791 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 792 // Bitconvert vector->vector case. 793 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 794 } else { 795 if (BuiltVectorTy.getVectorElementType().bitsGT( 796 ValueVT.getVectorElementType())) { 797 // Integer promotion. 798 ValueVT = EVT::getVectorVT(*DAG.getContext(), 799 BuiltVectorTy.getVectorElementType(), 800 ValueVT.getVectorElementCount()); 801 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 802 } 803 804 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 805 Val = Widened; 806 } 807 } 808 809 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 810 811 // Split the vector into intermediate operands. 812 SmallVector<SDValue, 8> Ops(NumIntermediates); 813 for (unsigned i = 0; i != NumIntermediates; ++i) { 814 if (IntermediateVT.isVector()) { 815 // This does something sensible for scalable vectors - see the 816 // definition of EXTRACT_SUBVECTOR for further details. 817 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 818 Ops[i] = 819 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 820 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 821 } else { 822 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 823 DAG.getVectorIdxConstant(i, DL)); 824 } 825 } 826 827 // Split the intermediate operands into legal parts. 828 if (NumParts == NumIntermediates) { 829 // If the register was not expanded, promote or copy the value, 830 // as appropriate. 831 for (unsigned i = 0; i != NumParts; ++i) 832 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 833 } else if (NumParts > 0) { 834 // If the intermediate type was expanded, split each the value into 835 // legal parts. 836 assert(NumIntermediates != 0 && "division by zero"); 837 assert(NumParts % NumIntermediates == 0 && 838 "Must expand into a divisible number of parts!"); 839 unsigned Factor = NumParts / NumIntermediates; 840 for (unsigned i = 0; i != NumIntermediates; ++i) 841 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 842 CallConv); 843 } 844 } 845 846 RegsForValue::RegsForValue(const SmallVector<Register, 4> ®s, MVT regvt, 847 EVT valuevt, std::optional<CallingConv::ID> CC) 848 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 849 RegCount(1, regs.size()), CallConv(CC) {} 850 851 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 852 const DataLayout &DL, Register Reg, Type *Ty, 853 std::optional<CallingConv::ID> CC) { 854 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 855 856 CallConv = CC; 857 858 for (EVT ValueVT : ValueVTs) { 859 unsigned NumRegs = 860 isABIMangled() 861 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 862 : TLI.getNumRegisters(Context, ValueVT); 863 MVT RegisterVT = 864 isABIMangled() 865 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 866 : TLI.getRegisterType(Context, ValueVT); 867 for (unsigned i = 0; i != NumRegs; ++i) 868 Regs.push_back(Reg + i); 869 RegVTs.push_back(RegisterVT); 870 RegCount.push_back(NumRegs); 871 Reg = Reg.id() + NumRegs; 872 } 873 } 874 875 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 876 FunctionLoweringInfo &FuncInfo, 877 const SDLoc &dl, SDValue &Chain, 878 SDValue *Glue, const Value *V) const { 879 // A Value with type {} or [0 x %t] needs no registers. 880 if (ValueVTs.empty()) 881 return SDValue(); 882 883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 884 885 // Assemble the legal parts into the final values. 886 SmallVector<SDValue, 4> Values(ValueVTs.size()); 887 SmallVector<SDValue, 8> Parts; 888 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 889 // Copy the legal parts from the registers. 890 EVT ValueVT = ValueVTs[Value]; 891 unsigned NumRegs = RegCount[Value]; 892 MVT RegisterVT = isABIMangled() 893 ? TLI.getRegisterTypeForCallingConv( 894 *DAG.getContext(), *CallConv, RegVTs[Value]) 895 : RegVTs[Value]; 896 897 Parts.resize(NumRegs); 898 for (unsigned i = 0; i != NumRegs; ++i) { 899 SDValue P; 900 if (!Glue) { 901 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 902 } else { 903 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 904 *Glue = P.getValue(2); 905 } 906 907 Chain = P.getValue(1); 908 Parts[i] = P; 909 910 // If the source register was virtual and if we know something about it, 911 // add an assert node. 912 if (!Register::isVirtualRegister(Regs[Part + i]) || 913 !RegisterVT.isInteger()) 914 continue; 915 916 const FunctionLoweringInfo::LiveOutInfo *LOI = 917 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 918 if (!LOI) 919 continue; 920 921 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 922 unsigned NumSignBits = LOI->NumSignBits; 923 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 924 925 if (NumZeroBits == RegSize) { 926 // The current value is a zero. 927 // Explicitly express that as it would be easier for 928 // optimizations to kick in. 929 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 930 continue; 931 } 932 933 // FIXME: We capture more information than the dag can represent. For 934 // now, just use the tightest assertzext/assertsext possible. 935 bool isSExt; 936 EVT FromVT(MVT::Other); 937 if (NumZeroBits) { 938 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 939 isSExt = false; 940 } else if (NumSignBits > 1) { 941 FromVT = 942 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 943 isSExt = true; 944 } else { 945 continue; 946 } 947 // Add an assertion node. 948 assert(FromVT != MVT::Other); 949 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 950 RegisterVT, P, DAG.getValueType(FromVT)); 951 } 952 953 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 954 RegisterVT, ValueVT, V, Chain, CallConv); 955 Part += NumRegs; 956 Parts.clear(); 957 } 958 959 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 960 } 961 962 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 963 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 964 const Value *V, 965 ISD::NodeType PreferredExtendType) const { 966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 967 ISD::NodeType ExtendKind = PreferredExtendType; 968 969 // Get the list of the values's legal parts. 970 unsigned NumRegs = Regs.size(); 971 SmallVector<SDValue, 8> Parts(NumRegs); 972 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 973 unsigned NumParts = RegCount[Value]; 974 975 MVT RegisterVT = isABIMangled() 976 ? TLI.getRegisterTypeForCallingConv( 977 *DAG.getContext(), *CallConv, RegVTs[Value]) 978 : RegVTs[Value]; 979 980 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 981 ExtendKind = ISD::ZERO_EXTEND; 982 983 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 984 NumParts, RegisterVT, V, CallConv, ExtendKind); 985 Part += NumParts; 986 } 987 988 // Copy the parts into the registers. 989 SmallVector<SDValue, 8> Chains(NumRegs); 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 SDValue Part; 992 if (!Glue) { 993 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 994 } else { 995 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 996 *Glue = Part.getValue(1); 997 } 998 999 Chains[i] = Part.getValue(0); 1000 } 1001 1002 if (NumRegs == 1 || Glue) 1003 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 1004 // flagged to it. That is the CopyToReg nodes and the user are considered 1005 // a single scheduling unit. If we create a TokenFactor and return it as 1006 // chain, then the TokenFactor is both a predecessor (operand) of the 1007 // user as well as a successor (the TF operands are flagged to the user). 1008 // c1, f1 = CopyToReg 1009 // c2, f2 = CopyToReg 1010 // c3 = TokenFactor c1, c2 1011 // ... 1012 // = op c3, ..., f2 1013 Chain = Chains[NumRegs-1]; 1014 else 1015 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1016 } 1017 1018 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1019 unsigned MatchingIdx, const SDLoc &dl, 1020 SelectionDAG &DAG, 1021 std::vector<SDValue> &Ops) const { 1022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1023 1024 InlineAsm::Flag Flag(Code, Regs.size()); 1025 if (HasMatching) 1026 Flag.setMatchingOp(MatchingIdx); 1027 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1028 // Put the register class of the virtual registers in the flag word. That 1029 // way, later passes can recompute register class constraints for inline 1030 // assembly as well as normal instructions. 1031 // Don't do this for tied operands that can use the regclass information 1032 // from the def. 1033 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1034 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1035 Flag.setRegClass(RC->getID()); 1036 } 1037 1038 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1039 Ops.push_back(Res); 1040 1041 if (Code == InlineAsm::Kind::Clobber) { 1042 // Clobbers should always have a 1:1 mapping with registers, and may 1043 // reference registers that have illegal (e.g. vector) types. Hence, we 1044 // shouldn't try to apply any sort of splitting logic to them. 1045 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1046 "No 1:1 mapping from clobbers to regs?"); 1047 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1048 (void)SP; 1049 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1050 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1051 assert( 1052 (Regs[I] != SP || 1053 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1054 "If we clobbered the stack pointer, MFI should know about it."); 1055 } 1056 return; 1057 } 1058 1059 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1060 MVT RegisterVT = RegVTs[Value]; 1061 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1062 RegisterVT); 1063 for (unsigned i = 0; i != NumRegs; ++i) { 1064 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1065 unsigned TheReg = Regs[Reg++]; 1066 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1067 } 1068 } 1069 } 1070 1071 SmallVector<std::pair<Register, TypeSize>, 4> 1072 RegsForValue::getRegsAndSizes() const { 1073 SmallVector<std::pair<Register, TypeSize>, 4> OutVec; 1074 unsigned I = 0; 1075 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1076 unsigned RegCount = std::get<0>(CountAndVT); 1077 MVT RegisterVT = std::get<1>(CountAndVT); 1078 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1079 for (unsigned E = I + RegCount; I != E; ++I) 1080 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1081 } 1082 return OutVec; 1083 } 1084 1085 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, BatchAAResults *aa, 1086 AssumptionCache *ac, 1087 const TargetLibraryInfo *li) { 1088 BatchAA = aa; 1089 AC = ac; 1090 GFI = gfi; 1091 LibInfo = li; 1092 Context = DAG.getContext(); 1093 LPadToCallSiteMap.clear(); 1094 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1095 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1096 *DAG.getMachineFunction().getFunction().getParent()); 1097 } 1098 1099 void SelectionDAGBuilder::clear() { 1100 NodeMap.clear(); 1101 UnusedArgNodeMap.clear(); 1102 PendingLoads.clear(); 1103 PendingExports.clear(); 1104 PendingConstrainedFP.clear(); 1105 PendingConstrainedFPStrict.clear(); 1106 CurInst = nullptr; 1107 HasTailCall = false; 1108 SDNodeOrder = LowestSDNodeOrder; 1109 StatepointLowering.clear(); 1110 } 1111 1112 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1113 DanglingDebugInfoMap.clear(); 1114 } 1115 1116 // Update DAG root to include dependencies on Pending chains. 1117 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1118 SDValue Root = DAG.getRoot(); 1119 1120 if (Pending.empty()) 1121 return Root; 1122 1123 // Add current root to PendingChains, unless we already indirectly 1124 // depend on it. 1125 if (Root.getOpcode() != ISD::EntryToken) { 1126 unsigned i = 0, e = Pending.size(); 1127 for (; i != e; ++i) { 1128 assert(Pending[i].getNode()->getNumOperands() > 1); 1129 if (Pending[i].getNode()->getOperand(0) == Root) 1130 break; // Don't add the root if we already indirectly depend on it. 1131 } 1132 1133 if (i == e) 1134 Pending.push_back(Root); 1135 } 1136 1137 if (Pending.size() == 1) 1138 Root = Pending[0]; 1139 else 1140 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1141 1142 DAG.setRoot(Root); 1143 Pending.clear(); 1144 return Root; 1145 } 1146 1147 SDValue SelectionDAGBuilder::getMemoryRoot() { 1148 return updateRoot(PendingLoads); 1149 } 1150 1151 SDValue SelectionDAGBuilder::getRoot() { 1152 // Chain up all pending constrained intrinsics together with all 1153 // pending loads, by simply appending them to PendingLoads and 1154 // then calling getMemoryRoot(). 1155 PendingLoads.reserve(PendingLoads.size() + 1156 PendingConstrainedFP.size() + 1157 PendingConstrainedFPStrict.size()); 1158 PendingLoads.append(PendingConstrainedFP.begin(), 1159 PendingConstrainedFP.end()); 1160 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1161 PendingConstrainedFPStrict.end()); 1162 PendingConstrainedFP.clear(); 1163 PendingConstrainedFPStrict.clear(); 1164 return getMemoryRoot(); 1165 } 1166 1167 SDValue SelectionDAGBuilder::getControlRoot() { 1168 // We need to emit pending fpexcept.strict constrained intrinsics, 1169 // so append them to the PendingExports list. 1170 PendingExports.append(PendingConstrainedFPStrict.begin(), 1171 PendingConstrainedFPStrict.end()); 1172 PendingConstrainedFPStrict.clear(); 1173 return updateRoot(PendingExports); 1174 } 1175 1176 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1177 DILocalVariable *Variable, 1178 DIExpression *Expression, 1179 DebugLoc DL) { 1180 assert(Variable && "Missing variable"); 1181 1182 // Check if address has undef value. 1183 if (!Address || isa<UndefValue>(Address) || 1184 (Address->use_empty() && !isa<Argument>(Address))) { 1185 LLVM_DEBUG( 1186 dbgs() 1187 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1188 return; 1189 } 1190 1191 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1192 1193 SDValue &N = NodeMap[Address]; 1194 if (!N.getNode() && isa<Argument>(Address)) 1195 // Check unused arguments map. 1196 N = UnusedArgNodeMap[Address]; 1197 SDDbgValue *SDV; 1198 if (N.getNode()) { 1199 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1200 Address = BCI->getOperand(0); 1201 // Parameters are handled specially. 1202 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1203 if (IsParameter && FINode) { 1204 // Byval parameter. We have a frame index at this point. 1205 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1206 /*IsIndirect*/ true, DL, SDNodeOrder); 1207 } else if (isa<Argument>(Address)) { 1208 // Address is an argument, so try to emit its dbg value using 1209 // virtual register info from the FuncInfo.ValueMap. 1210 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1211 FuncArgumentDbgValueKind::Declare, N); 1212 return; 1213 } else { 1214 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1215 true, DL, SDNodeOrder); 1216 } 1217 DAG.AddDbgValue(SDV, IsParameter); 1218 } else { 1219 // If Address is an argument then try to emit its dbg value using 1220 // virtual register info from the FuncInfo.ValueMap. 1221 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1222 FuncArgumentDbgValueKind::Declare, N)) { 1223 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1224 << " (could not emit func-arg dbg_value)\n"); 1225 } 1226 } 1227 } 1228 1229 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1230 // Add SDDbgValue nodes for any var locs here. Do so before updating 1231 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1232 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1233 // Add SDDbgValue nodes for any var locs here. Do so before updating 1234 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1235 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1236 It != End; ++It) { 1237 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1238 dropDanglingDebugInfo(Var, It->Expr); 1239 if (It->Values.isKillLocation(It->Expr)) { 1240 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1241 continue; 1242 } 1243 SmallVector<Value *> Values(It->Values.location_ops()); 1244 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1245 It->Values.hasArgList())) { 1246 SmallVector<Value *, 4> Vals(It->Values.location_ops()); 1247 addDanglingDebugInfo(Vals, 1248 FnVarLocs->getDILocalVariable(It->VariableID), 1249 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1250 } 1251 } 1252 } 1253 1254 // We must skip DbgVariableRecords if they've already been processed above as 1255 // we have just emitted the debug values resulting from assignment tracking 1256 // analysis, making any existing DbgVariableRecords redundant (and probably 1257 // less correct). We still need to process DbgLabelRecords. This does sink 1258 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1259 // be important as it does so deterministcally and ordering between 1260 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1261 // printing). 1262 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1263 // Is there is any debug-info attached to this instruction, in the form of 1264 // DbgRecord non-instruction debug-info records. 1265 for (DbgRecord &DR : I.getDbgRecordRange()) { 1266 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1267 assert(DLR->getLabel() && "Missing label"); 1268 SDDbgLabel *SDV = 1269 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1270 DAG.AddDbgLabel(SDV); 1271 continue; 1272 } 1273 1274 if (SkipDbgVariableRecords) 1275 continue; 1276 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1277 DILocalVariable *Variable = DVR.getVariable(); 1278 DIExpression *Expression = DVR.getExpression(); 1279 dropDanglingDebugInfo(Variable, Expression); 1280 1281 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1282 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1283 continue; 1284 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1285 << "\n"); 1286 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1287 DVR.getDebugLoc()); 1288 continue; 1289 } 1290 1291 // A DbgVariableRecord with no locations is a kill location. 1292 SmallVector<Value *, 4> Values(DVR.location_ops()); 1293 if (Values.empty()) { 1294 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1295 SDNodeOrder); 1296 continue; 1297 } 1298 1299 // A DbgVariableRecord with an undef or absent location is also a kill 1300 // location. 1301 if (llvm::any_of(Values, 1302 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1303 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1304 SDNodeOrder); 1305 continue; 1306 } 1307 1308 bool IsVariadic = DVR.hasArgList(); 1309 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1310 SDNodeOrder, IsVariadic)) { 1311 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1312 DVR.getDebugLoc(), SDNodeOrder); 1313 } 1314 } 1315 } 1316 1317 void SelectionDAGBuilder::visit(const Instruction &I) { 1318 visitDbgInfo(I); 1319 1320 // Set up outgoing PHI node register values before emitting the terminator. 1321 if (I.isTerminator()) { 1322 HandlePHINodesInSuccessorBlocks(I.getParent()); 1323 } 1324 1325 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1326 if (!isa<DbgInfoIntrinsic>(I)) 1327 ++SDNodeOrder; 1328 1329 CurInst = &I; 1330 1331 // Set inserted listener only if required. 1332 bool NodeInserted = false; 1333 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1334 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1335 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1336 if (PCSectionsMD || MMRA) { 1337 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1338 DAG, [&](SDNode *) { NodeInserted = true; }); 1339 } 1340 1341 visit(I.getOpcode(), I); 1342 1343 if (!I.isTerminator() && !HasTailCall && 1344 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1345 CopyToExportRegsIfNeeded(&I); 1346 1347 // Handle metadata. 1348 if (PCSectionsMD || MMRA) { 1349 auto It = NodeMap.find(&I); 1350 if (It != NodeMap.end()) { 1351 if (PCSectionsMD) 1352 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1353 if (MMRA) 1354 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1355 } else if (NodeInserted) { 1356 // This should not happen; if it does, don't let it go unnoticed so we can 1357 // fix it. Relevant visit*() function is probably missing a setValue(). 1358 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1359 << I.getModule()->getName() << "]\n"; 1360 LLVM_DEBUG(I.dump()); 1361 assert(false); 1362 } 1363 } 1364 1365 CurInst = nullptr; 1366 } 1367 1368 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1369 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1370 } 1371 1372 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1373 // Note: this doesn't use InstVisitor, because it has to work with 1374 // ConstantExpr's in addition to instructions. 1375 switch (Opcode) { 1376 default: llvm_unreachable("Unknown instruction type encountered!"); 1377 // Build the switch statement using the Instruction.def file. 1378 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1379 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1380 #include "llvm/IR/Instruction.def" 1381 } 1382 } 1383 1384 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1385 DILocalVariable *Variable, 1386 DebugLoc DL, unsigned Order, 1387 SmallVectorImpl<Value *> &Values, 1388 DIExpression *Expression) { 1389 // For variadic dbg_values we will now insert an undef. 1390 // FIXME: We can potentially recover these! 1391 SmallVector<SDDbgOperand, 2> Locs; 1392 for (const Value *V : Values) { 1393 auto *Undef = UndefValue::get(V->getType()); 1394 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1395 } 1396 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1397 /*IsIndirect=*/false, DL, Order, 1398 /*IsVariadic=*/true); 1399 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1400 return true; 1401 } 1402 1403 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1404 DILocalVariable *Var, 1405 DIExpression *Expr, 1406 bool IsVariadic, DebugLoc DL, 1407 unsigned Order) { 1408 if (IsVariadic) { 1409 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1410 return; 1411 } 1412 // TODO: Dangling debug info will eventually either be resolved or produce 1413 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1414 // between the original dbg.value location and its resolved DBG_VALUE, 1415 // which we should ideally fill with an extra Undef DBG_VALUE. 1416 assert(Values.size() == 1); 1417 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1418 } 1419 1420 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1421 const DIExpression *Expr) { 1422 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1423 DIVariable *DanglingVariable = DDI.getVariable(); 1424 DIExpression *DanglingExpr = DDI.getExpression(); 1425 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1426 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1427 << printDDI(nullptr, DDI) << "\n"); 1428 return true; 1429 } 1430 return false; 1431 }; 1432 1433 for (auto &DDIMI : DanglingDebugInfoMap) { 1434 DanglingDebugInfoVector &DDIV = DDIMI.second; 1435 1436 // If debug info is to be dropped, run it through final checks to see 1437 // whether it can be salvaged. 1438 for (auto &DDI : DDIV) 1439 if (isMatchingDbgValue(DDI)) 1440 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1441 1442 erase_if(DDIV, isMatchingDbgValue); 1443 } 1444 } 1445 1446 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1447 // generate the debug data structures now that we've seen its definition. 1448 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1449 SDValue Val) { 1450 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1451 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1452 return; 1453 1454 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1455 for (auto &DDI : DDIV) { 1456 DebugLoc DL = DDI.getDebugLoc(); 1457 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1458 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1459 DILocalVariable *Variable = DDI.getVariable(); 1460 DIExpression *Expr = DDI.getExpression(); 1461 assert(Variable->isValidLocationForIntrinsic(DL) && 1462 "Expected inlined-at fields to agree"); 1463 SDDbgValue *SDV; 1464 if (Val.getNode()) { 1465 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1466 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1467 // we couldn't resolve it directly when examining the DbgValue intrinsic 1468 // in the first place we should not be more successful here). Unless we 1469 // have some test case that prove this to be correct we should avoid 1470 // calling EmitFuncArgumentDbgValue here. 1471 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1472 FuncArgumentDbgValueKind::Value, Val)) { 1473 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1474 << printDDI(V, DDI) << "\n"); 1475 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1476 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1477 // inserted after the definition of Val when emitting the instructions 1478 // after ISel. An alternative could be to teach 1479 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1480 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1481 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1482 << ValSDNodeOrder << "\n"); 1483 SDV = getDbgValue(Val, Variable, Expr, DL, 1484 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1485 DAG.AddDbgValue(SDV, false); 1486 } else 1487 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1488 << printDDI(V, DDI) 1489 << " in EmitFuncArgumentDbgValue\n"); 1490 } else { 1491 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1492 << "\n"); 1493 auto Undef = UndefValue::get(V->getType()); 1494 auto SDV = 1495 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1496 DAG.AddDbgValue(SDV, false); 1497 } 1498 } 1499 DDIV.clear(); 1500 } 1501 1502 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1503 DanglingDebugInfo &DDI) { 1504 // TODO: For the variadic implementation, instead of only checking the fail 1505 // state of `handleDebugValue`, we need know specifically which values were 1506 // invalid, so that we attempt to salvage only those values when processing 1507 // a DIArgList. 1508 const Value *OrigV = V; 1509 DILocalVariable *Var = DDI.getVariable(); 1510 DIExpression *Expr = DDI.getExpression(); 1511 DebugLoc DL = DDI.getDebugLoc(); 1512 unsigned SDOrder = DDI.getSDNodeOrder(); 1513 1514 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1515 // that DW_OP_stack_value is desired. 1516 bool StackValue = true; 1517 1518 // Can this Value can be encoded without any further work? 1519 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1520 return; 1521 1522 // Attempt to salvage back through as many instructions as possible. Bail if 1523 // a non-instruction is seen, such as a constant expression or global 1524 // variable. FIXME: Further work could recover those too. 1525 while (isa<Instruction>(V)) { 1526 const Instruction &VAsInst = *cast<const Instruction>(V); 1527 // Temporary "0", awaiting real implementation. 1528 SmallVector<uint64_t, 16> Ops; 1529 SmallVector<Value *, 4> AdditionalValues; 1530 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1531 Expr->getNumLocationOperands(), Ops, 1532 AdditionalValues); 1533 // If we cannot salvage any further, and haven't yet found a suitable debug 1534 // expression, bail out. 1535 if (!V) 1536 break; 1537 1538 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1539 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1540 // here for variadic dbg_values, remove that condition. 1541 if (!AdditionalValues.empty()) 1542 break; 1543 1544 // New value and expr now represent this debuginfo. 1545 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1546 1547 // Some kind of simplification occurred: check whether the operand of the 1548 // salvaged debug expression can be encoded in this DAG. 1549 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1550 LLVM_DEBUG( 1551 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1552 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1553 return; 1554 } 1555 } 1556 1557 // This was the final opportunity to salvage this debug information, and it 1558 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1559 // any earlier variable location. 1560 assert(OrigV && "V shouldn't be null"); 1561 auto *Undef = UndefValue::get(OrigV->getType()); 1562 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1563 DAG.AddDbgValue(SDV, false); 1564 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1565 << printDDI(OrigV, DDI) << "\n"); 1566 } 1567 1568 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1569 DIExpression *Expr, 1570 DebugLoc DbgLoc, 1571 unsigned Order) { 1572 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1573 DIExpression *NewExpr = 1574 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1575 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1576 /*IsVariadic*/ false); 1577 } 1578 1579 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1580 DILocalVariable *Var, 1581 DIExpression *Expr, DebugLoc DbgLoc, 1582 unsigned Order, bool IsVariadic) { 1583 if (Values.empty()) 1584 return true; 1585 1586 // Filter EntryValue locations out early. 1587 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1588 return true; 1589 1590 SmallVector<SDDbgOperand> LocationOps; 1591 SmallVector<SDNode *> Dependencies; 1592 for (const Value *V : Values) { 1593 // Constant value. 1594 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1595 isa<ConstantPointerNull>(V)) { 1596 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1597 continue; 1598 } 1599 1600 // Look through IntToPtr constants. 1601 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1602 if (CE->getOpcode() == Instruction::IntToPtr) { 1603 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1604 continue; 1605 } 1606 1607 // If the Value is a frame index, we can create a FrameIndex debug value 1608 // without relying on the DAG at all. 1609 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1610 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1611 if (SI != FuncInfo.StaticAllocaMap.end()) { 1612 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1613 continue; 1614 } 1615 } 1616 1617 // Do not use getValue() in here; we don't want to generate code at 1618 // this point if it hasn't been done yet. 1619 SDValue N = NodeMap[V]; 1620 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1621 N = UnusedArgNodeMap[V]; 1622 1623 if (N.getNode()) { 1624 // Only emit func arg dbg value for non-variadic dbg.values for now. 1625 if (!IsVariadic && 1626 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1627 FuncArgumentDbgValueKind::Value, N)) 1628 return true; 1629 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1630 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1631 // describe stack slot locations. 1632 // 1633 // Consider "int x = 0; int *px = &x;". There are two kinds of 1634 // interesting debug values here after optimization: 1635 // 1636 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1637 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1638 // 1639 // Both describe the direct values of their associated variables. 1640 Dependencies.push_back(N.getNode()); 1641 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1642 continue; 1643 } 1644 LocationOps.emplace_back( 1645 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1646 continue; 1647 } 1648 1649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1650 // Special rules apply for the first dbg.values of parameter variables in a 1651 // function. Identify them by the fact they reference Argument Values, that 1652 // they're parameters, and they are parameters of the current function. We 1653 // need to let them dangle until they get an SDNode. 1654 bool IsParamOfFunc = 1655 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1656 if (IsParamOfFunc) 1657 return false; 1658 1659 // The value is not used in this block yet (or it would have an SDNode). 1660 // We still want the value to appear for the user if possible -- if it has 1661 // an associated VReg, we can refer to that instead. 1662 auto VMI = FuncInfo.ValueMap.find(V); 1663 if (VMI != FuncInfo.ValueMap.end()) { 1664 unsigned Reg = VMI->second; 1665 // If this is a PHI node, it may be split up into several MI PHI nodes 1666 // (in FunctionLoweringInfo::set). 1667 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1668 V->getType(), std::nullopt); 1669 if (RFV.occupiesMultipleRegs()) { 1670 // FIXME: We could potentially support variadic dbg_values here. 1671 if (IsVariadic) 1672 return false; 1673 unsigned Offset = 0; 1674 unsigned BitsToDescribe = 0; 1675 if (auto VarSize = Var->getSizeInBits()) 1676 BitsToDescribe = *VarSize; 1677 if (auto Fragment = Expr->getFragmentInfo()) 1678 BitsToDescribe = Fragment->SizeInBits; 1679 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1680 // Bail out if all bits are described already. 1681 if (Offset >= BitsToDescribe) 1682 break; 1683 // TODO: handle scalable vectors. 1684 unsigned RegisterSize = RegAndSize.second; 1685 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1686 ? BitsToDescribe - Offset 1687 : RegisterSize; 1688 auto FragmentExpr = DIExpression::createFragmentExpression( 1689 Expr, Offset, FragmentSize); 1690 if (!FragmentExpr) 1691 continue; 1692 SDDbgValue *SDV = DAG.getVRegDbgValue( 1693 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1694 DAG.AddDbgValue(SDV, false); 1695 Offset += RegisterSize; 1696 } 1697 return true; 1698 } 1699 // We can use simple vreg locations for variadic dbg_values as well. 1700 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1701 continue; 1702 } 1703 // We failed to create a SDDbgOperand for V. 1704 return false; 1705 } 1706 1707 // We have created a SDDbgOperand for each Value in Values. 1708 assert(!LocationOps.empty()); 1709 SDDbgValue *SDV = 1710 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1711 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1712 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1713 return true; 1714 } 1715 1716 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1717 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1718 for (auto &Pair : DanglingDebugInfoMap) 1719 for (auto &DDI : Pair.second) 1720 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1721 clearDanglingDebugInfo(); 1722 } 1723 1724 /// getCopyFromRegs - If there was virtual register allocated for the value V 1725 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1726 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1727 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1728 SDValue Result; 1729 1730 if (It != FuncInfo.ValueMap.end()) { 1731 Register InReg = It->second; 1732 1733 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1734 DAG.getDataLayout(), InReg, Ty, 1735 std::nullopt); // This is not an ABI copy. 1736 SDValue Chain = DAG.getEntryNode(); 1737 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1738 V); 1739 resolveDanglingDebugInfo(V, Result); 1740 } 1741 1742 return Result; 1743 } 1744 1745 /// getValue - Return an SDValue for the given Value. 1746 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1747 // If we already have an SDValue for this value, use it. It's important 1748 // to do this first, so that we don't create a CopyFromReg if we already 1749 // have a regular SDValue. 1750 SDValue &N = NodeMap[V]; 1751 if (N.getNode()) return N; 1752 1753 // If there's a virtual register allocated and initialized for this 1754 // value, use it. 1755 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1756 return copyFromReg; 1757 1758 // Otherwise create a new SDValue and remember it. 1759 SDValue Val = getValueImpl(V); 1760 NodeMap[V] = Val; 1761 resolveDanglingDebugInfo(V, Val); 1762 return Val; 1763 } 1764 1765 /// getNonRegisterValue - Return an SDValue for the given Value, but 1766 /// don't look in FuncInfo.ValueMap for a virtual register. 1767 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1768 // If we already have an SDValue for this value, use it. 1769 SDValue &N = NodeMap[V]; 1770 if (N.getNode()) { 1771 if (isIntOrFPConstant(N)) { 1772 // Remove the debug location from the node as the node is about to be used 1773 // in a location which may differ from the original debug location. This 1774 // is relevant to Constant and ConstantFP nodes because they can appear 1775 // as constant expressions inside PHI nodes. 1776 N->setDebugLoc(DebugLoc()); 1777 } 1778 return N; 1779 } 1780 1781 // Otherwise create a new SDValue and remember it. 1782 SDValue Val = getValueImpl(V); 1783 NodeMap[V] = Val; 1784 resolveDanglingDebugInfo(V, Val); 1785 return Val; 1786 } 1787 1788 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1789 /// Create an SDValue for the given value. 1790 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1791 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1792 1793 if (const Constant *C = dyn_cast<Constant>(V)) { 1794 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1795 1796 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1797 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1798 1799 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1800 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1801 1802 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) { 1803 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT, 1804 getValue(CPA->getPointer()), getValue(CPA->getKey()), 1805 getValue(CPA->getAddrDiscriminator()), 1806 getValue(CPA->getDiscriminator())); 1807 } 1808 1809 if (isa<ConstantPointerNull>(C)) { 1810 unsigned AS = V->getType()->getPointerAddressSpace(); 1811 return DAG.getConstant(0, getCurSDLoc(), 1812 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1813 } 1814 1815 if (match(C, m_VScale())) 1816 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1817 1818 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1819 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1820 1821 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1822 return DAG.getUNDEF(VT); 1823 1824 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1825 visit(CE->getOpcode(), *CE); 1826 SDValue N1 = NodeMap[V]; 1827 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1828 return N1; 1829 } 1830 1831 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1832 SmallVector<SDValue, 4> Constants; 1833 for (const Use &U : C->operands()) { 1834 SDNode *Val = getValue(U).getNode(); 1835 // If the operand is an empty aggregate, there are no values. 1836 if (!Val) continue; 1837 // Add each leaf value from the operand to the Constants list 1838 // to form a flattened list of all the values. 1839 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1840 Constants.push_back(SDValue(Val, i)); 1841 } 1842 1843 return DAG.getMergeValues(Constants, getCurSDLoc()); 1844 } 1845 1846 if (const ConstantDataSequential *CDS = 1847 dyn_cast<ConstantDataSequential>(C)) { 1848 SmallVector<SDValue, 4> Ops; 1849 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1850 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1851 // Add each leaf value from the operand to the Constants list 1852 // to form a flattened list of all the values. 1853 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1854 Ops.push_back(SDValue(Val, i)); 1855 } 1856 1857 if (isa<ArrayType>(CDS->getType())) 1858 return DAG.getMergeValues(Ops, getCurSDLoc()); 1859 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1860 } 1861 1862 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1863 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1864 "Unknown struct or array constant!"); 1865 1866 SmallVector<EVT, 4> ValueVTs; 1867 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1868 unsigned NumElts = ValueVTs.size(); 1869 if (NumElts == 0) 1870 return SDValue(); // empty struct 1871 SmallVector<SDValue, 4> Constants(NumElts); 1872 for (unsigned i = 0; i != NumElts; ++i) { 1873 EVT EltVT = ValueVTs[i]; 1874 if (isa<UndefValue>(C)) 1875 Constants[i] = DAG.getUNDEF(EltVT); 1876 else if (EltVT.isFloatingPoint()) 1877 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1878 else 1879 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1880 } 1881 1882 return DAG.getMergeValues(Constants, getCurSDLoc()); 1883 } 1884 1885 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1886 return DAG.getBlockAddress(BA, VT); 1887 1888 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1889 return getValue(Equiv->getGlobalValue()); 1890 1891 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1892 return getValue(NC->getGlobalValue()); 1893 1894 if (VT == MVT::aarch64svcount) { 1895 assert(C->isNullValue() && "Can only zero this target type!"); 1896 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1897 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1898 } 1899 1900 if (VT.isRISCVVectorTuple()) { 1901 assert(C->isNullValue() && "Can only zero this target type!"); 1902 return NodeMap[V] = DAG.getNode( 1903 ISD::BITCAST, getCurSDLoc(), VT, 1904 DAG.getNode( 1905 ISD::SPLAT_VECTOR, getCurSDLoc(), 1906 EVT::getVectorVT(*DAG.getContext(), MVT::i8, 1907 VT.getSizeInBits().getKnownMinValue() / 8, 1908 true), 1909 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8)))); 1910 } 1911 1912 VectorType *VecTy = cast<VectorType>(V->getType()); 1913 1914 // Now that we know the number and type of the elements, get that number of 1915 // elements into the Ops array based on what kind of constant it is. 1916 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1917 SmallVector<SDValue, 16> Ops; 1918 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1919 for (unsigned i = 0; i != NumElements; ++i) 1920 Ops.push_back(getValue(CV->getOperand(i))); 1921 1922 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1923 } 1924 1925 if (isa<ConstantAggregateZero>(C)) { 1926 EVT EltVT = 1927 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1928 1929 SDValue Op; 1930 if (EltVT.isFloatingPoint()) 1931 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1932 else 1933 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1934 1935 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1936 } 1937 1938 llvm_unreachable("Unknown vector constant"); 1939 } 1940 1941 // If this is a static alloca, generate it as the frameindex instead of 1942 // computation. 1943 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1944 DenseMap<const AllocaInst*, int>::iterator SI = 1945 FuncInfo.StaticAllocaMap.find(AI); 1946 if (SI != FuncInfo.StaticAllocaMap.end()) 1947 return DAG.getFrameIndex( 1948 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1949 } 1950 1951 // If this is an instruction which fast-isel has deferred, select it now. 1952 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1953 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1954 1955 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1956 Inst->getType(), std::nullopt); 1957 SDValue Chain = DAG.getEntryNode(); 1958 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1959 } 1960 1961 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1962 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1963 1964 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1965 return DAG.getBasicBlock(FuncInfo.getMBB(BB)); 1966 1967 llvm_unreachable("Can't get register for value!"); 1968 } 1969 1970 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1971 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1972 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1973 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1974 bool IsSEH = isAsynchronousEHPersonality(Pers); 1975 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1976 if (!IsSEH) 1977 CatchPadMBB->setIsEHScopeEntry(); 1978 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1979 if (IsMSVCCXX || IsCoreCLR) 1980 CatchPadMBB->setIsEHFuncletEntry(); 1981 } 1982 1983 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1984 // Update machine-CFG edge. 1985 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor()); 1986 FuncInfo.MBB->addSuccessor(TargetMBB); 1987 TargetMBB->setIsEHCatchretTarget(true); 1988 DAG.getMachineFunction().setHasEHCatchret(true); 1989 1990 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1991 bool IsSEH = isAsynchronousEHPersonality(Pers); 1992 if (IsSEH) { 1993 // If this is not a fall-through branch or optimizations are switched off, 1994 // emit the branch. 1995 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1996 TM.getOptLevel() == CodeGenOptLevel::None) 1997 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1998 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1999 return; 2000 } 2001 2002 // Figure out the funclet membership for the catchret's successor. 2003 // This will be used by the FuncletLayout pass to determine how to order the 2004 // BB's. 2005 // A 'catchret' returns to the outer scope's color. 2006 Value *ParentPad = I.getCatchSwitchParentPad(); 2007 const BasicBlock *SuccessorColor; 2008 if (isa<ConstantTokenNone>(ParentPad)) 2009 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 2010 else 2011 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 2012 assert(SuccessorColor && "No parent funclet for catchret!"); 2013 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor); 2014 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 2015 2016 // Create the terminator node. 2017 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 2018 getControlRoot(), DAG.getBasicBlock(TargetMBB), 2019 DAG.getBasicBlock(SuccessorColorMBB)); 2020 DAG.setRoot(Ret); 2021 } 2022 2023 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 2024 // Don't emit any special code for the cleanuppad instruction. It just marks 2025 // the start of an EH scope/funclet. 2026 FuncInfo.MBB->setIsEHScopeEntry(); 2027 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2028 if (Pers != EHPersonality::Wasm_CXX) { 2029 FuncInfo.MBB->setIsEHFuncletEntry(); 2030 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2031 } 2032 } 2033 2034 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2035 // not match, it is OK to add only the first unwind destination catchpad to the 2036 // successors, because there will be at least one invoke instruction within the 2037 // catch scope that points to the next unwind destination, if one exists, so 2038 // CFGSort cannot mess up with BB sorting order. 2039 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2040 // call within them, and catchpads only consisting of 'catch (...)' have a 2041 // '__cxa_end_catch' call within them, both of which generate invokes in case 2042 // the next unwind destination exists, i.e., the next unwind destination is not 2043 // the caller.) 2044 // 2045 // Having at most one EH pad successor is also simpler and helps later 2046 // transformations. 2047 // 2048 // For example, 2049 // current: 2050 // invoke void @foo to ... unwind label %catch.dispatch 2051 // catch.dispatch: 2052 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2053 // catch.start: 2054 // ... 2055 // ... in this BB or some other child BB dominated by this BB there will be an 2056 // invoke that points to 'next' BB as an unwind destination 2057 // 2058 // next: ; We don't need to add this to 'current' BB's successor 2059 // ... 2060 static void findWasmUnwindDestinations( 2061 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2062 BranchProbability Prob, 2063 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2064 &UnwindDests) { 2065 while (EHPadBB) { 2066 BasicBlock::const_iterator Pad = EHPadBB->getFirstNonPHIIt(); 2067 if (isa<CleanupPadInst>(Pad)) { 2068 // Stop on cleanup pads. 2069 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2070 UnwindDests.back().first->setIsEHScopeEntry(); 2071 break; 2072 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2073 // Add the catchpad handlers to the possible destinations. We don't 2074 // continue to the unwind destination of the catchswitch for wasm. 2075 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2076 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2077 UnwindDests.back().first->setIsEHScopeEntry(); 2078 } 2079 break; 2080 } else { 2081 continue; 2082 } 2083 } 2084 } 2085 2086 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2087 /// many places it could ultimately go. In the IR, we have a single unwind 2088 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2089 /// This function skips over imaginary basic blocks that hold catchswitch 2090 /// instructions, and finds all the "real" machine 2091 /// basic block destinations. As those destinations may not be successors of 2092 /// EHPadBB, here we also calculate the edge probability to those destinations. 2093 /// The passed-in Prob is the edge probability to EHPadBB. 2094 static void findUnwindDestinations( 2095 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2096 BranchProbability Prob, 2097 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2098 &UnwindDests) { 2099 EHPersonality Personality = 2100 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2101 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2102 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2103 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2104 bool IsSEH = isAsynchronousEHPersonality(Personality); 2105 2106 if (IsWasmCXX) { 2107 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2108 assert(UnwindDests.size() <= 1 && 2109 "There should be at most one unwind destination for wasm"); 2110 return; 2111 } 2112 2113 while (EHPadBB) { 2114 BasicBlock::const_iterator Pad = EHPadBB->getFirstNonPHIIt(); 2115 BasicBlock *NewEHPadBB = nullptr; 2116 if (isa<LandingPadInst>(Pad)) { 2117 // Stop on landingpads. They are not funclets. 2118 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2119 break; 2120 } else if (isa<CleanupPadInst>(Pad)) { 2121 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2122 // personalities. 2123 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob); 2124 UnwindDests.back().first->setIsEHScopeEntry(); 2125 UnwindDests.back().first->setIsEHFuncletEntry(); 2126 break; 2127 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2128 // Add the catchpad handlers to the possible destinations. 2129 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2130 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob); 2131 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2132 if (IsMSVCCXX || IsCoreCLR) 2133 UnwindDests.back().first->setIsEHFuncletEntry(); 2134 if (!IsSEH) 2135 UnwindDests.back().first->setIsEHScopeEntry(); 2136 } 2137 NewEHPadBB = CatchSwitch->getUnwindDest(); 2138 } else { 2139 continue; 2140 } 2141 2142 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2143 if (BPI && NewEHPadBB) 2144 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2145 EHPadBB = NewEHPadBB; 2146 } 2147 } 2148 2149 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2150 // Update successor info. 2151 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2152 auto UnwindDest = I.getUnwindDest(); 2153 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2154 BranchProbability UnwindDestProb = 2155 (BPI && UnwindDest) 2156 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2157 : BranchProbability::getZero(); 2158 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2159 for (auto &UnwindDest : UnwindDests) { 2160 UnwindDest.first->setIsEHPad(); 2161 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2162 } 2163 FuncInfo.MBB->normalizeSuccProbs(); 2164 2165 // Create the terminator node. 2166 MachineBasicBlock *CleanupPadMBB = 2167 FuncInfo.getMBB(I.getCleanupPad()->getParent()); 2168 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, 2169 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB)); 2170 DAG.setRoot(Ret); 2171 } 2172 2173 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2174 report_fatal_error("visitCatchSwitch not yet implemented!"); 2175 } 2176 2177 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2179 auto &DL = DAG.getDataLayout(); 2180 SDValue Chain = getControlRoot(); 2181 SmallVector<ISD::OutputArg, 8> Outs; 2182 SmallVector<SDValue, 8> OutVals; 2183 2184 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2185 // lower 2186 // 2187 // %val = call <ty> @llvm.experimental.deoptimize() 2188 // ret <ty> %val 2189 // 2190 // differently. 2191 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2192 LowerDeoptimizingReturn(); 2193 return; 2194 } 2195 2196 if (!FuncInfo.CanLowerReturn) { 2197 Register DemoteReg = FuncInfo.DemoteRegister; 2198 2199 // Emit a store of the return value through the virtual register. 2200 // Leave Outs empty so that LowerReturn won't try to load return 2201 // registers the usual way. 2202 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace()); 2203 SDValue RetPtr = 2204 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT); 2205 SDValue RetOp = getValue(I.getOperand(0)); 2206 2207 SmallVector<EVT, 4> ValueVTs, MemVTs; 2208 SmallVector<uint64_t, 4> Offsets; 2209 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2210 &Offsets, 0); 2211 unsigned NumValues = ValueVTs.size(); 2212 2213 SmallVector<SDValue, 4> Chains(NumValues); 2214 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2215 for (unsigned i = 0; i != NumValues; ++i) { 2216 // An aggregate return value cannot wrap around the address space, so 2217 // offsets to its parts don't wrap either. 2218 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2219 TypeSize::getFixed(Offsets[i])); 2220 2221 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2222 if (MemVTs[i] != ValueVTs[i]) 2223 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2224 Chains[i] = DAG.getStore( 2225 Chain, getCurSDLoc(), Val, 2226 // FIXME: better loc info would be nice. 2227 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2228 commonAlignment(BaseAlign, Offsets[i])); 2229 } 2230 2231 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2232 MVT::Other, Chains); 2233 } else if (I.getNumOperands() != 0) { 2234 SmallVector<EVT, 4> ValueVTs; 2235 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2236 unsigned NumValues = ValueVTs.size(); 2237 if (NumValues) { 2238 SDValue RetOp = getValue(I.getOperand(0)); 2239 2240 const Function *F = I.getParent()->getParent(); 2241 2242 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2243 I.getOperand(0)->getType(), F->getCallingConv(), 2244 /*IsVarArg*/ false, DL); 2245 2246 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2247 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2248 ExtendKind = ISD::SIGN_EXTEND; 2249 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2250 ExtendKind = ISD::ZERO_EXTEND; 2251 2252 LLVMContext &Context = F->getContext(); 2253 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2254 2255 for (unsigned j = 0; j != NumValues; ++j) { 2256 EVT VT = ValueVTs[j]; 2257 2258 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2259 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2260 2261 CallingConv::ID CC = F->getCallingConv(); 2262 2263 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2264 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2265 SmallVector<SDValue, 4> Parts(NumParts); 2266 getCopyToParts(DAG, getCurSDLoc(), 2267 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2268 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2269 2270 // 'inreg' on function refers to return value 2271 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2272 if (RetInReg) 2273 Flags.setInReg(); 2274 2275 if (I.getOperand(0)->getType()->isPointerTy()) { 2276 Flags.setPointer(); 2277 Flags.setPointerAddrSpace( 2278 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2279 } 2280 2281 if (NeedsRegBlock) { 2282 Flags.setInConsecutiveRegs(); 2283 if (j == NumValues - 1) 2284 Flags.setInConsecutiveRegsLast(); 2285 } 2286 2287 // Propagate extension type if any 2288 if (ExtendKind == ISD::SIGN_EXTEND) 2289 Flags.setSExt(); 2290 else if (ExtendKind == ISD::ZERO_EXTEND) 2291 Flags.setZExt(); 2292 else if (F->getAttributes().hasRetAttr(Attribute::NoExt)) 2293 Flags.setNoExt(); 2294 2295 for (unsigned i = 0; i < NumParts; ++i) { 2296 Outs.push_back(ISD::OutputArg(Flags, 2297 Parts[i].getValueType().getSimpleVT(), 2298 VT, /*isfixed=*/true, 0, 0)); 2299 OutVals.push_back(Parts[i]); 2300 } 2301 } 2302 } 2303 } 2304 2305 // Push in swifterror virtual register as the last element of Outs. This makes 2306 // sure swifterror virtual register will be returned in the swifterror 2307 // physical register. 2308 const Function *F = I.getParent()->getParent(); 2309 if (TLI.supportSwiftError() && 2310 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2311 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2312 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2313 Flags.setSwiftError(); 2314 Outs.push_back(ISD::OutputArg( 2315 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2316 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2317 // Create SDNode for the swifterror virtual register. 2318 OutVals.push_back( 2319 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2320 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2321 EVT(TLI.getPointerTy(DL)))); 2322 } 2323 2324 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2325 CallingConv::ID CallConv = 2326 DAG.getMachineFunction().getFunction().getCallingConv(); 2327 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2328 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2329 2330 // Verify that the target's LowerReturn behaved as expected. 2331 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2332 "LowerReturn didn't return a valid chain!"); 2333 2334 // Update the DAG with the new chain value resulting from return lowering. 2335 DAG.setRoot(Chain); 2336 } 2337 2338 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2339 /// created for it, emit nodes to copy the value into the virtual 2340 /// registers. 2341 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2342 // Skip empty types 2343 if (V->getType()->isEmptyTy()) 2344 return; 2345 2346 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2347 if (VMI != FuncInfo.ValueMap.end()) { 2348 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2349 "Unused value assigned virtual registers!"); 2350 CopyValueToVirtualRegister(V, VMI->second); 2351 } 2352 } 2353 2354 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2355 /// the current basic block, add it to ValueMap now so that we'll get a 2356 /// CopyTo/FromReg. 2357 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2358 // No need to export constants. 2359 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2360 2361 // Already exported? 2362 if (FuncInfo.isExportedInst(V)) return; 2363 2364 Register Reg = FuncInfo.InitializeRegForValue(V); 2365 CopyValueToVirtualRegister(V, Reg); 2366 } 2367 2368 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2369 const BasicBlock *FromBB) { 2370 // The operands of the setcc have to be in this block. We don't know 2371 // how to export them from some other block. 2372 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2373 // Can export from current BB. 2374 if (VI->getParent() == FromBB) 2375 return true; 2376 2377 // Is already exported, noop. 2378 return FuncInfo.isExportedInst(V); 2379 } 2380 2381 // If this is an argument, we can export it if the BB is the entry block or 2382 // if it is already exported. 2383 if (isa<Argument>(V)) { 2384 if (FromBB->isEntryBlock()) 2385 return true; 2386 2387 // Otherwise, can only export this if it is already exported. 2388 return FuncInfo.isExportedInst(V); 2389 } 2390 2391 // Otherwise, constants can always be exported. 2392 return true; 2393 } 2394 2395 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2396 BranchProbability 2397 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2398 const MachineBasicBlock *Dst) const { 2399 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2400 const BasicBlock *SrcBB = Src->getBasicBlock(); 2401 const BasicBlock *DstBB = Dst->getBasicBlock(); 2402 if (!BPI) { 2403 // If BPI is not available, set the default probability as 1 / N, where N is 2404 // the number of successors. 2405 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2406 return BranchProbability(1, SuccSize); 2407 } 2408 return BPI->getEdgeProbability(SrcBB, DstBB); 2409 } 2410 2411 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2412 MachineBasicBlock *Dst, 2413 BranchProbability Prob) { 2414 if (!FuncInfo.BPI) 2415 Src->addSuccessorWithoutProb(Dst); 2416 else { 2417 if (Prob.isUnknown()) 2418 Prob = getEdgeProbability(Src, Dst); 2419 Src->addSuccessor(Dst, Prob); 2420 } 2421 } 2422 2423 static bool InBlock(const Value *V, const BasicBlock *BB) { 2424 if (const Instruction *I = dyn_cast<Instruction>(V)) 2425 return I->getParent() == BB; 2426 return true; 2427 } 2428 2429 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2430 /// This function emits a branch and is used at the leaves of an OR or an 2431 /// AND operator tree. 2432 void 2433 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2434 MachineBasicBlock *TBB, 2435 MachineBasicBlock *FBB, 2436 MachineBasicBlock *CurBB, 2437 MachineBasicBlock *SwitchBB, 2438 BranchProbability TProb, 2439 BranchProbability FProb, 2440 bool InvertCond) { 2441 const BasicBlock *BB = CurBB->getBasicBlock(); 2442 2443 // If the leaf of the tree is a comparison, merge the condition into 2444 // the caseblock. 2445 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2446 // The operands of the cmp have to be in this block. We don't know 2447 // how to export them from some other block. If this is the first block 2448 // of the sequence, no exporting is needed. 2449 if (CurBB == SwitchBB || 2450 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2451 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2452 ISD::CondCode Condition; 2453 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2454 ICmpInst::Predicate Pred = 2455 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2456 Condition = getICmpCondCode(Pred); 2457 } else { 2458 const FCmpInst *FC = cast<FCmpInst>(Cond); 2459 FCmpInst::Predicate Pred = 2460 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2461 Condition = getFCmpCondCode(Pred); 2462 if (TM.Options.NoNaNsFPMath) 2463 Condition = getFCmpCodeWithoutNaN(Condition); 2464 } 2465 2466 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2467 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2468 SL->SwitchCases.push_back(CB); 2469 return; 2470 } 2471 } 2472 2473 // Create a CaseBlock record representing this branch. 2474 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2475 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2476 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2477 SL->SwitchCases.push_back(CB); 2478 } 2479 2480 // Collect dependencies on V recursively. This is used for the cost analysis in 2481 // `shouldKeepJumpConditionsTogether`. 2482 static bool collectInstructionDeps( 2483 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2484 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2485 unsigned Depth = 0) { 2486 // Return false if we have an incomplete count. 2487 if (Depth >= SelectionDAG::MaxRecursionDepth) 2488 return false; 2489 2490 auto *I = dyn_cast<Instruction>(V); 2491 if (I == nullptr) 2492 return true; 2493 2494 if (Necessary != nullptr) { 2495 // This instruction is necessary for the other side of the condition so 2496 // don't count it. 2497 if (Necessary->contains(I)) 2498 return true; 2499 } 2500 2501 // Already added this dep. 2502 if (!Deps->try_emplace(I, false).second) 2503 return true; 2504 2505 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2506 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2507 Depth + 1)) 2508 return false; 2509 return true; 2510 } 2511 2512 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2513 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2514 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2515 TargetLoweringBase::CondMergingParams Params) const { 2516 if (I.getNumSuccessors() != 2) 2517 return false; 2518 2519 if (!I.isConditional()) 2520 return false; 2521 2522 if (Params.BaseCost < 0) 2523 return false; 2524 2525 // Baseline cost. 2526 InstructionCost CostThresh = Params.BaseCost; 2527 2528 BranchProbabilityInfo *BPI = nullptr; 2529 if (Params.LikelyBias || Params.UnlikelyBias) 2530 BPI = FuncInfo.BPI; 2531 if (BPI != nullptr) { 2532 // See if we are either likely to get an early out or compute both lhs/rhs 2533 // of the condition. 2534 BasicBlock *IfFalse = I.getSuccessor(0); 2535 BasicBlock *IfTrue = I.getSuccessor(1); 2536 2537 std::optional<bool> Likely; 2538 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2539 Likely = true; 2540 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2541 Likely = false; 2542 2543 if (Likely) { 2544 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2545 // Its likely we will have to compute both lhs and rhs of condition 2546 CostThresh += Params.LikelyBias; 2547 else { 2548 if (Params.UnlikelyBias < 0) 2549 return false; 2550 // Its likely we will get an early out. 2551 CostThresh -= Params.UnlikelyBias; 2552 } 2553 } 2554 } 2555 2556 if (CostThresh <= 0) 2557 return false; 2558 2559 // Collect "all" instructions that lhs condition is dependent on. 2560 // Use map for stable iteration (to avoid non-determanism of iteration of 2561 // SmallPtrSet). The `bool` value is just a dummy. 2562 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2563 collectInstructionDeps(&LhsDeps, Lhs); 2564 // Collect "all" instructions that rhs condition is dependent on AND are 2565 // dependencies of lhs. This gives us an estimate on which instructions we 2566 // stand to save by splitting the condition. 2567 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2568 return false; 2569 // Add the compare instruction itself unless its a dependency on the LHS. 2570 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2571 if (!LhsDeps.contains(RhsI)) 2572 RhsDeps.try_emplace(RhsI, false); 2573 2574 const auto &TLI = DAG.getTargetLoweringInfo(); 2575 const auto &TTI = 2576 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2577 2578 InstructionCost CostOfIncluding = 0; 2579 // See if this instruction will need to computed independently of whether RHS 2580 // is. 2581 Value *BrCond = I.getCondition(); 2582 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2583 for (const auto *U : Ins->users()) { 2584 // If user is independent of RHS calculation we don't need to count it. 2585 if (auto *UIns = dyn_cast<Instruction>(U)) 2586 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2587 return false; 2588 } 2589 return true; 2590 }; 2591 2592 // Prune instructions from RHS Deps that are dependencies of unrelated 2593 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2594 // arbitrary and just meant to cap the how much time we spend in the pruning 2595 // loop. Its highly unlikely to come into affect. 2596 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2597 // Stop after a certain point. No incorrectness from including too many 2598 // instructions. 2599 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2600 const Instruction *ToDrop = nullptr; 2601 for (const auto &InsPair : RhsDeps) { 2602 if (!ShouldCountInsn(InsPair.first)) { 2603 ToDrop = InsPair.first; 2604 break; 2605 } 2606 } 2607 if (ToDrop == nullptr) 2608 break; 2609 RhsDeps.erase(ToDrop); 2610 } 2611 2612 for (const auto &InsPair : RhsDeps) { 2613 // Finally accumulate latency that we can only attribute to computing the 2614 // RHS condition. Use latency because we are essentially trying to calculate 2615 // the cost of the dependency chain. 2616 // Possible TODO: We could try to estimate ILP and make this more precise. 2617 CostOfIncluding += 2618 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2619 2620 if (CostOfIncluding > CostThresh) 2621 return false; 2622 } 2623 return true; 2624 } 2625 2626 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2627 MachineBasicBlock *TBB, 2628 MachineBasicBlock *FBB, 2629 MachineBasicBlock *CurBB, 2630 MachineBasicBlock *SwitchBB, 2631 Instruction::BinaryOps Opc, 2632 BranchProbability TProb, 2633 BranchProbability FProb, 2634 bool InvertCond) { 2635 // Skip over not part of the tree and remember to invert op and operands at 2636 // next level. 2637 Value *NotCond; 2638 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2639 InBlock(NotCond, CurBB->getBasicBlock())) { 2640 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2641 !InvertCond); 2642 return; 2643 } 2644 2645 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2646 const Value *BOpOp0, *BOpOp1; 2647 // Compute the effective opcode for Cond, taking into account whether it needs 2648 // to be inverted, e.g. 2649 // and (not (or A, B)), C 2650 // gets lowered as 2651 // and (and (not A, not B), C) 2652 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2653 if (BOp) { 2654 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2655 ? Instruction::And 2656 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2657 ? Instruction::Or 2658 : (Instruction::BinaryOps)0); 2659 if (InvertCond) { 2660 if (BOpc == Instruction::And) 2661 BOpc = Instruction::Or; 2662 else if (BOpc == Instruction::Or) 2663 BOpc = Instruction::And; 2664 } 2665 } 2666 2667 // If this node is not part of the or/and tree, emit it as a branch. 2668 // Note that all nodes in the tree should have same opcode. 2669 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2670 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2671 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2672 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2673 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2674 TProb, FProb, InvertCond); 2675 return; 2676 } 2677 2678 // Create TmpBB after CurBB. 2679 MachineFunction::iterator BBI(CurBB); 2680 MachineFunction &MF = DAG.getMachineFunction(); 2681 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2682 CurBB->getParent()->insert(++BBI, TmpBB); 2683 2684 if (Opc == Instruction::Or) { 2685 // Codegen X | Y as: 2686 // BB1: 2687 // jmp_if_X TBB 2688 // jmp TmpBB 2689 // TmpBB: 2690 // jmp_if_Y TBB 2691 // jmp FBB 2692 // 2693 2694 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2695 // The requirement is that 2696 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2697 // = TrueProb for original BB. 2698 // Assuming the original probabilities are A and B, one choice is to set 2699 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2700 // A/(1+B) and 2B/(1+B). This choice assumes that 2701 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2702 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2703 // TmpBB, but the math is more complicated. 2704 2705 auto NewTrueProb = TProb / 2; 2706 auto NewFalseProb = TProb / 2 + FProb; 2707 // Emit the LHS condition. 2708 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2709 NewFalseProb, InvertCond); 2710 2711 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2712 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2713 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2714 // Emit the RHS condition into TmpBB. 2715 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2716 Probs[1], InvertCond); 2717 } else { 2718 assert(Opc == Instruction::And && "Unknown merge op!"); 2719 // Codegen X & Y as: 2720 // BB1: 2721 // jmp_if_X TmpBB 2722 // jmp FBB 2723 // TmpBB: 2724 // jmp_if_Y TBB 2725 // jmp FBB 2726 // 2727 // This requires creation of TmpBB after CurBB. 2728 2729 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2730 // The requirement is that 2731 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2732 // = FalseProb for original BB. 2733 // Assuming the original probabilities are A and B, one choice is to set 2734 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2735 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2736 // TrueProb for BB1 * FalseProb for TmpBB. 2737 2738 auto NewTrueProb = TProb + FProb / 2; 2739 auto NewFalseProb = FProb / 2; 2740 // Emit the LHS condition. 2741 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2742 NewFalseProb, InvertCond); 2743 2744 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2745 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2746 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2747 // Emit the RHS condition into TmpBB. 2748 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2749 Probs[1], InvertCond); 2750 } 2751 } 2752 2753 /// If the set of cases should be emitted as a series of branches, return true. 2754 /// If we should emit this as a bunch of and/or'd together conditions, return 2755 /// false. 2756 bool 2757 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2758 if (Cases.size() != 2) return true; 2759 2760 // If this is two comparisons of the same values or'd or and'd together, they 2761 // will get folded into a single comparison, so don't emit two blocks. 2762 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2763 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2764 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2765 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2766 return false; 2767 } 2768 2769 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2770 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2771 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2772 Cases[0].CC == Cases[1].CC && 2773 isa<Constant>(Cases[0].CmpRHS) && 2774 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2775 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2776 return false; 2777 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2778 return false; 2779 } 2780 2781 return true; 2782 } 2783 2784 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2785 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2786 2787 // Update machine-CFG edges. 2788 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0)); 2789 2790 if (I.isUnconditional()) { 2791 // Update machine-CFG edges. 2792 BrMBB->addSuccessor(Succ0MBB); 2793 2794 // If this is not a fall-through branch or optimizations are switched off, 2795 // emit the branch. 2796 if (Succ0MBB != NextBlock(BrMBB) || 2797 TM.getOptLevel() == CodeGenOptLevel::None) { 2798 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2799 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2800 setValue(&I, Br); 2801 DAG.setRoot(Br); 2802 } 2803 2804 return; 2805 } 2806 2807 // If this condition is one of the special cases we handle, do special stuff 2808 // now. 2809 const Value *CondVal = I.getCondition(); 2810 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1)); 2811 2812 // If this is a series of conditions that are or'd or and'd together, emit 2813 // this as a sequence of branches instead of setcc's with and/or operations. 2814 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2815 // unpredictable branches, and vector extracts because those jumps are likely 2816 // expensive for any target), this should improve performance. 2817 // For example, instead of something like: 2818 // cmp A, B 2819 // C = seteq 2820 // cmp D, E 2821 // F = setle 2822 // or C, F 2823 // jnz foo 2824 // Emit: 2825 // cmp A, B 2826 // je foo 2827 // cmp D, E 2828 // jle foo 2829 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable); 2830 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2831 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2832 BOp->hasOneUse() && !IsUnpredictable) { 2833 Value *Vec; 2834 const Value *BOp0, *BOp1; 2835 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2836 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2837 Opcode = Instruction::And; 2838 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2839 Opcode = Instruction::Or; 2840 2841 if (Opcode && 2842 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2843 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2844 !shouldKeepJumpConditionsTogether( 2845 FuncInfo, I, Opcode, BOp0, BOp1, 2846 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2847 Opcode, BOp0, BOp1))) { 2848 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2849 getEdgeProbability(BrMBB, Succ0MBB), 2850 getEdgeProbability(BrMBB, Succ1MBB), 2851 /*InvertCond=*/false); 2852 // If the compares in later blocks need to use values not currently 2853 // exported from this block, export them now. This block should always 2854 // be the first entry. 2855 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2856 2857 // Allow some cases to be rejected. 2858 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2859 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2860 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2861 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2862 } 2863 2864 // Emit the branch for this block. 2865 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2866 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2867 return; 2868 } 2869 2870 // Okay, we decided not to do this, remove any inserted MBB's and clear 2871 // SwitchCases. 2872 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2873 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2874 2875 SL->SwitchCases.clear(); 2876 } 2877 } 2878 2879 // Create a CaseBlock record representing this branch. 2880 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2881 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(), 2882 BranchProbability::getUnknown(), BranchProbability::getUnknown(), 2883 IsUnpredictable); 2884 2885 // Use visitSwitchCase to actually insert the fast branch sequence for this 2886 // cond branch. 2887 visitSwitchCase(CB, BrMBB); 2888 } 2889 2890 /// visitSwitchCase - Emits the necessary code to represent a single node in 2891 /// the binary search tree resulting from lowering a switch instruction. 2892 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2893 MachineBasicBlock *SwitchBB) { 2894 SDValue Cond; 2895 SDValue CondLHS = getValue(CB.CmpLHS); 2896 SDLoc dl = CB.DL; 2897 2898 if (CB.CC == ISD::SETTRUE) { 2899 // Branch or fall through to TrueBB. 2900 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2901 SwitchBB->normalizeSuccProbs(); 2902 if (CB.TrueBB != NextBlock(SwitchBB)) { 2903 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2904 DAG.getBasicBlock(CB.TrueBB))); 2905 } 2906 return; 2907 } 2908 2909 auto &TLI = DAG.getTargetLoweringInfo(); 2910 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2911 2912 // Build the setcc now. 2913 if (!CB.CmpMHS) { 2914 // Fold "(X == true)" to X and "(X == false)" to !X to 2915 // handle common cases produced by branch lowering. 2916 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2917 CB.CC == ISD::SETEQ) 2918 Cond = CondLHS; 2919 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2920 CB.CC == ISD::SETEQ) { 2921 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2922 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2923 } else { 2924 SDValue CondRHS = getValue(CB.CmpRHS); 2925 2926 // If a pointer's DAG type is larger than its memory type then the DAG 2927 // values are zero-extended. This breaks signed comparisons so truncate 2928 // back to the underlying type before doing the compare. 2929 if (CondLHS.getValueType() != MemVT) { 2930 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2931 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2932 } 2933 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2934 } 2935 } else { 2936 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2937 2938 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2939 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2940 2941 SDValue CmpOp = getValue(CB.CmpMHS); 2942 EVT VT = CmpOp.getValueType(); 2943 2944 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2945 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2946 ISD::SETLE); 2947 } else { 2948 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2949 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2950 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2951 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2952 } 2953 } 2954 2955 // Update successor info 2956 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2957 // TrueBB and FalseBB are always different unless the incoming IR is 2958 // degenerate. This only happens when running llc on weird IR. 2959 if (CB.TrueBB != CB.FalseBB) 2960 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2961 SwitchBB->normalizeSuccProbs(); 2962 2963 // If the lhs block is the next block, invert the condition so that we can 2964 // fall through to the lhs instead of the rhs block. 2965 if (CB.TrueBB == NextBlock(SwitchBB)) { 2966 std::swap(CB.TrueBB, CB.FalseBB); 2967 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2968 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2969 } 2970 2971 SDNodeFlags Flags; 2972 Flags.setUnpredictable(CB.IsUnpredictable); 2973 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), 2974 Cond, DAG.getBasicBlock(CB.TrueBB), Flags); 2975 2976 setValue(CurInst, BrCond); 2977 2978 // Insert the false branch. Do this even if it's a fall through branch, 2979 // this makes it easier to do DAG optimizations which require inverting 2980 // the branch condition. 2981 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2982 DAG.getBasicBlock(CB.FalseBB)); 2983 2984 DAG.setRoot(BrCond); 2985 } 2986 2987 /// visitJumpTable - Emit JumpTable node in the current MBB 2988 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2989 // Emit the code for the jump table 2990 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2991 assert(JT.Reg && "Should lower JT Header first!"); 2992 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout()); 2993 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2994 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2995 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2996 Index.getValue(1), Table, Index); 2997 DAG.setRoot(BrJumpTable); 2998 } 2999 3000 /// visitJumpTableHeader - This function emits necessary code to produce index 3001 /// in the JumpTable from switch case. 3002 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 3003 JumpTableHeader &JTH, 3004 MachineBasicBlock *SwitchBB) { 3005 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 3006 const SDLoc &dl = *JT.SL; 3007 3008 // Subtract the lowest switch case value from the value being switched on. 3009 SDValue SwitchOp = getValue(JTH.SValue); 3010 EVT VT = SwitchOp.getValueType(); 3011 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 3012 DAG.getConstant(JTH.First, dl, VT)); 3013 3014 // The SDNode we just created, which holds the value being switched on minus 3015 // the smallest case value, needs to be copied to a virtual register so it 3016 // can be used as an index into the jump table in a subsequent basic block. 3017 // This value may be smaller or larger than the target's pointer type, and 3018 // therefore require extension or truncating. 3019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3020 SwitchOp = 3021 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout())); 3022 3023 Register JumpTableReg = 3024 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout())); 3025 SDValue CopyTo = 3026 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); 3027 JT.Reg = JumpTableReg; 3028 3029 if (!JTH.FallthroughUnreachable) { 3030 // Emit the range check for the jump table, and branch to the default block 3031 // for the switch statement if the value being switched on exceeds the 3032 // largest case in the switch. 3033 SDValue CMP = DAG.getSetCC( 3034 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3035 Sub.getValueType()), 3036 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3037 3038 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3039 MVT::Other, CopyTo, CMP, 3040 DAG.getBasicBlock(JT.Default)); 3041 3042 // Avoid emitting unnecessary branches to the next block. 3043 if (JT.MBB != NextBlock(SwitchBB)) 3044 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3045 DAG.getBasicBlock(JT.MBB)); 3046 3047 DAG.setRoot(BrCond); 3048 } else { 3049 // Avoid emitting unnecessary branches to the next block. 3050 if (JT.MBB != NextBlock(SwitchBB)) 3051 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3052 DAG.getBasicBlock(JT.MBB))); 3053 else 3054 DAG.setRoot(CopyTo); 3055 } 3056 } 3057 3058 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3059 /// variable if there exists one. 3060 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3061 SDValue &Chain) { 3062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3063 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3064 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3065 MachineFunction &MF = DAG.getMachineFunction(); 3066 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3067 MachineSDNode *Node = 3068 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3069 if (Global) { 3070 MachinePointerInfo MPInfo(Global); 3071 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3072 MachineMemOperand::MODereferenceable; 3073 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3074 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3075 DAG.getEVTAlign(PtrTy)); 3076 DAG.setNodeMemRefs(Node, {MemRef}); 3077 } 3078 if (PtrTy != PtrMemTy) 3079 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3080 return SDValue(Node, 0); 3081 } 3082 3083 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3084 /// tail spliced into a stack protector check success bb. 3085 /// 3086 /// For a high level explanation of how this fits into the stack protector 3087 /// generation see the comment on the declaration of class 3088 /// StackProtectorDescriptor. 3089 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3090 MachineBasicBlock *ParentBB) { 3091 3092 // First create the loads to the guard/stack slot for the comparison. 3093 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3094 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3095 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3096 3097 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3098 int FI = MFI.getStackProtectorIndex(); 3099 3100 SDValue Guard; 3101 SDLoc dl = getCurSDLoc(); 3102 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3103 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3104 Align Align = 3105 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3106 3107 // Generate code to load the content of the guard slot. 3108 SDValue GuardVal = DAG.getLoad( 3109 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3110 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3111 MachineMemOperand::MOVolatile); 3112 3113 if (TLI.useStackGuardXorFP()) 3114 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3115 3116 // Retrieve guard check function, nullptr if instrumentation is inlined. 3117 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3118 // The target provides a guard check function to validate the guard value. 3119 // Generate a call to that function with the content of the guard slot as 3120 // argument. 3121 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3122 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3123 3124 TargetLowering::ArgListTy Args; 3125 TargetLowering::ArgListEntry Entry; 3126 Entry.Node = GuardVal; 3127 Entry.Ty = FnTy->getParamType(0); 3128 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3129 Entry.IsInReg = true; 3130 Args.push_back(Entry); 3131 3132 TargetLowering::CallLoweringInfo CLI(DAG); 3133 CLI.setDebugLoc(getCurSDLoc()) 3134 .setChain(DAG.getEntryNode()) 3135 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3136 getValue(GuardCheckFn), std::move(Args)); 3137 3138 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3139 DAG.setRoot(Result.second); 3140 return; 3141 } 3142 3143 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3144 // Otherwise, emit a volatile load to retrieve the stack guard value. 3145 SDValue Chain = DAG.getEntryNode(); 3146 if (TLI.useLoadStackGuardNode(M)) { 3147 Guard = getLoadStackGuard(DAG, dl, Chain); 3148 } else { 3149 const Value *IRGuard = TLI.getSDagStackGuard(M); 3150 SDValue GuardPtr = getValue(IRGuard); 3151 3152 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3153 MachinePointerInfo(IRGuard, 0), Align, 3154 MachineMemOperand::MOVolatile); 3155 } 3156 3157 // Perform the comparison via a getsetcc. 3158 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3159 *DAG.getContext(), 3160 Guard.getValueType()), 3161 Guard, GuardVal, ISD::SETNE); 3162 3163 // If the guard/stackslot do not equal, branch to failure MBB. 3164 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3165 MVT::Other, GuardVal.getOperand(0), 3166 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3167 // Otherwise branch to success MBB. 3168 SDValue Br = DAG.getNode(ISD::BR, dl, 3169 MVT::Other, BrCond, 3170 DAG.getBasicBlock(SPD.getSuccessMBB())); 3171 3172 DAG.setRoot(Br); 3173 } 3174 3175 /// Codegen the failure basic block for a stack protector check. 3176 /// 3177 /// A failure stack protector machine basic block consists simply of a call to 3178 /// __stack_chk_fail(). 3179 /// 3180 /// For a high level explanation of how this fits into the stack protector 3181 /// generation see the comment on the declaration of class 3182 /// StackProtectorDescriptor. 3183 void 3184 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3186 TargetLowering::MakeLibCallOptions CallOptions; 3187 CallOptions.setDiscardResult(true); 3188 SDValue Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 3189 MVT::isVoid, {}, CallOptions, getCurSDLoc()) 3190 .second; 3191 3192 // Emit a trap instruction if we are required to do so. 3193 const TargetOptions &TargetOpts = DAG.getTarget().Options; 3194 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn) 3195 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3196 3197 DAG.setRoot(Chain); 3198 } 3199 3200 /// visitBitTestHeader - This function emits necessary code to produce value 3201 /// suitable for "bit tests" 3202 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3203 MachineBasicBlock *SwitchBB) { 3204 SDLoc dl = getCurSDLoc(); 3205 3206 // Subtract the minimum value. 3207 SDValue SwitchOp = getValue(B.SValue); 3208 EVT VT = SwitchOp.getValueType(); 3209 SDValue RangeSub = 3210 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3211 3212 // Determine the type of the test operands. 3213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3214 bool UsePtrType = false; 3215 if (!TLI.isTypeLegal(VT)) { 3216 UsePtrType = true; 3217 } else { 3218 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3219 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3220 // Switch table case range are encoded into series of masks. 3221 // Just use pointer type, it's guaranteed to fit. 3222 UsePtrType = true; 3223 break; 3224 } 3225 } 3226 SDValue Sub = RangeSub; 3227 if (UsePtrType) { 3228 VT = TLI.getPointerTy(DAG.getDataLayout()); 3229 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3230 } 3231 3232 B.RegVT = VT.getSimpleVT(); 3233 B.Reg = FuncInfo.CreateReg(B.RegVT); 3234 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3235 3236 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3237 3238 if (!B.FallthroughUnreachable) 3239 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3240 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3241 SwitchBB->normalizeSuccProbs(); 3242 3243 SDValue Root = CopyTo; 3244 if (!B.FallthroughUnreachable) { 3245 // Conditional branch to the default block. 3246 SDValue RangeCmp = DAG.getSetCC(dl, 3247 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3248 RangeSub.getValueType()), 3249 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3250 ISD::SETUGT); 3251 3252 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3253 DAG.getBasicBlock(B.Default)); 3254 } 3255 3256 // Avoid emitting unnecessary branches to the next block. 3257 if (MBB != NextBlock(SwitchBB)) 3258 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3259 3260 DAG.setRoot(Root); 3261 } 3262 3263 /// visitBitTestCase - this function produces one "bit test" 3264 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3265 MachineBasicBlock *NextMBB, 3266 BranchProbability BranchProbToNext, 3267 Register Reg, BitTestCase &B, 3268 MachineBasicBlock *SwitchBB) { 3269 SDLoc dl = getCurSDLoc(); 3270 MVT VT = BB.RegVT; 3271 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3272 SDValue Cmp; 3273 unsigned PopCount = llvm::popcount(B.Mask); 3274 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3275 if (PopCount == 1) { 3276 // Testing for a single bit; just compare the shift count with what it 3277 // would need to be to shift a 1 bit in that position. 3278 Cmp = DAG.getSetCC( 3279 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3280 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3281 ISD::SETEQ); 3282 } else if (PopCount == BB.Range) { 3283 // There is only one zero bit in the range, test for it directly. 3284 Cmp = DAG.getSetCC( 3285 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3286 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3287 } else { 3288 // Make desired shift 3289 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3290 DAG.getConstant(1, dl, VT), ShiftOp); 3291 3292 // Emit bit tests and jumps 3293 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3294 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3295 Cmp = DAG.getSetCC( 3296 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3297 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3298 } 3299 3300 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3301 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3302 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3303 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3304 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3305 // one as they are relative probabilities (and thus work more like weights), 3306 // and hence we need to normalize them to let the sum of them become one. 3307 SwitchBB->normalizeSuccProbs(); 3308 3309 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3310 MVT::Other, getControlRoot(), 3311 Cmp, DAG.getBasicBlock(B.TargetBB)); 3312 3313 // Avoid emitting unnecessary branches to the next block. 3314 if (NextMBB != NextBlock(SwitchBB)) 3315 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3316 DAG.getBasicBlock(NextMBB)); 3317 3318 DAG.setRoot(BrAnd); 3319 } 3320 3321 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3322 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3323 3324 // Retrieve successors. Look through artificial IR level blocks like 3325 // catchswitch for successors. 3326 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0)); 3327 const BasicBlock *EHPadBB = I.getSuccessor(1); 3328 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB); 3329 3330 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3331 // have to do anything here to lower funclet bundles. 3332 assert(!I.hasOperandBundlesOtherThan( 3333 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3334 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3335 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3336 LLVMContext::OB_clang_arc_attachedcall}) && 3337 "Cannot lower invokes with arbitrary operand bundles yet!"); 3338 3339 const Value *Callee(I.getCalledOperand()); 3340 const Function *Fn = dyn_cast<Function>(Callee); 3341 if (isa<InlineAsm>(Callee)) 3342 visitInlineAsm(I, EHPadBB); 3343 else if (Fn && Fn->isIntrinsic()) { 3344 switch (Fn->getIntrinsicID()) { 3345 default: 3346 llvm_unreachable("Cannot invoke this intrinsic"); 3347 case Intrinsic::donothing: 3348 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3349 case Intrinsic::seh_try_begin: 3350 case Intrinsic::seh_scope_begin: 3351 case Intrinsic::seh_try_end: 3352 case Intrinsic::seh_scope_end: 3353 if (EHPadMBB) 3354 // a block referenced by EH table 3355 // so dtor-funclet not removed by opts 3356 EHPadMBB->setMachineBlockAddressTaken(); 3357 break; 3358 case Intrinsic::experimental_patchpoint_void: 3359 case Intrinsic::experimental_patchpoint: 3360 visitPatchpoint(I, EHPadBB); 3361 break; 3362 case Intrinsic::experimental_gc_statepoint: 3363 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3364 break; 3365 case Intrinsic::wasm_rethrow: { 3366 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3367 // special because it can be invoked, so we manually lower it to a DAG 3368 // node here. 3369 SmallVector<SDValue, 8> Ops; 3370 Ops.push_back(getControlRoot()); // inchain for the terminator node 3371 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3372 Ops.push_back( 3373 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3374 TLI.getPointerTy(DAG.getDataLayout()))); 3375 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3376 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3377 break; 3378 } 3379 } 3380 } else if (I.hasDeoptState()) { 3381 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3382 // Eventually we will support lowering the @llvm.experimental.deoptimize 3383 // intrinsic, and right now there are no plans to support other intrinsics 3384 // with deopt state. 3385 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3386 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3387 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3388 } else { 3389 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3390 } 3391 3392 // If the value of the invoke is used outside of its defining block, make it 3393 // available as a virtual register. 3394 // We already took care of the exported value for the statepoint instruction 3395 // during call to the LowerStatepoint. 3396 if (!isa<GCStatepointInst>(I)) { 3397 CopyToExportRegsIfNeeded(&I); 3398 } 3399 3400 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3401 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3402 BranchProbability EHPadBBProb = 3403 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3404 : BranchProbability::getZero(); 3405 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3406 3407 // Update successor info. 3408 addSuccessorWithProb(InvokeMBB, Return); 3409 for (auto &UnwindDest : UnwindDests) { 3410 UnwindDest.first->setIsEHPad(); 3411 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3412 } 3413 InvokeMBB->normalizeSuccProbs(); 3414 3415 // Drop into normal successor. 3416 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3417 DAG.getBasicBlock(Return))); 3418 } 3419 3420 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3421 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3422 3423 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3424 // have to do anything here to lower funclet bundles. 3425 assert(!I.hasOperandBundlesOtherThan( 3426 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3427 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3428 3429 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3430 visitInlineAsm(I); 3431 CopyToExportRegsIfNeeded(&I); 3432 3433 // Retrieve successors. 3434 SmallPtrSet<BasicBlock *, 8> Dests; 3435 Dests.insert(I.getDefaultDest()); 3436 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest()); 3437 3438 // Update successor info. 3439 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3440 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3441 BasicBlock *Dest = I.getIndirectDest(i); 3442 MachineBasicBlock *Target = FuncInfo.getMBB(Dest); 3443 Target->setIsInlineAsmBrIndirectTarget(); 3444 Target->setMachineBlockAddressTaken(); 3445 Target->setLabelMustBeEmitted(); 3446 // Don't add duplicate machine successors. 3447 if (Dests.insert(Dest).second) 3448 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3449 } 3450 CallBrMBB->normalizeSuccProbs(); 3451 3452 // Drop into default successor. 3453 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3454 MVT::Other, getControlRoot(), 3455 DAG.getBasicBlock(Return))); 3456 } 3457 3458 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3459 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3460 } 3461 3462 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3463 assert(FuncInfo.MBB->isEHPad() && 3464 "Call to landingpad not in landing pad!"); 3465 3466 // If there aren't registers to copy the values into (e.g., during SjLj 3467 // exceptions), then don't bother to create these DAG nodes. 3468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3469 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3470 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3471 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3472 return; 3473 3474 // If landingpad's return type is token type, we don't create DAG nodes 3475 // for its exception pointer and selector value. The extraction of exception 3476 // pointer or selector value from token type landingpads is not currently 3477 // supported. 3478 if (LP.getType()->isTokenTy()) 3479 return; 3480 3481 SmallVector<EVT, 2> ValueVTs; 3482 SDLoc dl = getCurSDLoc(); 3483 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3484 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3485 3486 // Get the two live-in registers as SDValues. The physregs have already been 3487 // copied into virtual registers. 3488 SDValue Ops[2]; 3489 if (FuncInfo.ExceptionPointerVirtReg) { 3490 Ops[0] = DAG.getZExtOrTrunc( 3491 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3492 FuncInfo.ExceptionPointerVirtReg, 3493 TLI.getPointerTy(DAG.getDataLayout())), 3494 dl, ValueVTs[0]); 3495 } else { 3496 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3497 } 3498 Ops[1] = DAG.getZExtOrTrunc( 3499 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3500 FuncInfo.ExceptionSelectorVirtReg, 3501 TLI.getPointerTy(DAG.getDataLayout())), 3502 dl, ValueVTs[1]); 3503 3504 // Merge into one. 3505 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3506 DAG.getVTList(ValueVTs), Ops); 3507 setValue(&LP, Res); 3508 } 3509 3510 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3511 MachineBasicBlock *Last) { 3512 // Update JTCases. 3513 for (JumpTableBlock &JTB : SL->JTCases) 3514 if (JTB.first.HeaderBB == First) 3515 JTB.first.HeaderBB = Last; 3516 3517 // Update BitTestCases. 3518 for (BitTestBlock &BTB : SL->BitTestCases) 3519 if (BTB.Parent == First) 3520 BTB.Parent = Last; 3521 } 3522 3523 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3524 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3525 3526 // Update machine-CFG edges with unique successors. 3527 SmallSet<BasicBlock*, 32> Done; 3528 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3529 BasicBlock *BB = I.getSuccessor(i); 3530 bool Inserted = Done.insert(BB).second; 3531 if (!Inserted) 3532 continue; 3533 3534 MachineBasicBlock *Succ = FuncInfo.getMBB(BB); 3535 addSuccessorWithProb(IndirectBrMBB, Succ); 3536 } 3537 IndirectBrMBB->normalizeSuccProbs(); 3538 3539 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3540 MVT::Other, getControlRoot(), 3541 getValue(I.getAddress()))); 3542 } 3543 3544 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3545 if (!DAG.getTarget().Options.TrapUnreachable) 3546 return; 3547 3548 // We may be able to ignore unreachable behind a noreturn call. 3549 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode()); 3550 Call && Call->doesNotReturn()) { 3551 if (DAG.getTarget().Options.NoTrapAfterNoreturn) 3552 return; 3553 // Do not emit an additional trap instruction. 3554 if (Call->isNonContinuableTrap()) 3555 return; 3556 } 3557 3558 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3559 } 3560 3561 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3562 SDNodeFlags Flags; 3563 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3564 Flags.copyFMF(*FPOp); 3565 3566 SDValue Op = getValue(I.getOperand(0)); 3567 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3568 Op, Flags); 3569 setValue(&I, UnNodeValue); 3570 } 3571 3572 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3573 SDNodeFlags Flags; 3574 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3575 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3576 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3577 } 3578 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3579 Flags.setExact(ExactOp->isExact()); 3580 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3581 Flags.setDisjoint(DisjointOp->isDisjoint()); 3582 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3583 Flags.copyFMF(*FPOp); 3584 3585 SDValue Op1 = getValue(I.getOperand(0)); 3586 SDValue Op2 = getValue(I.getOperand(1)); 3587 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3588 Op1, Op2, Flags); 3589 setValue(&I, BinNodeValue); 3590 } 3591 3592 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3593 SDValue Op1 = getValue(I.getOperand(0)); 3594 SDValue Op2 = getValue(I.getOperand(1)); 3595 3596 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3597 Op1.getValueType(), DAG.getDataLayout()); 3598 3599 // Coerce the shift amount to the right type if we can. This exposes the 3600 // truncate or zext to optimization early. 3601 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3602 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3603 "Unexpected shift type"); 3604 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3605 } 3606 3607 bool nuw = false; 3608 bool nsw = false; 3609 bool exact = false; 3610 3611 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3612 3613 if (const OverflowingBinaryOperator *OFBinOp = 3614 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3615 nuw = OFBinOp->hasNoUnsignedWrap(); 3616 nsw = OFBinOp->hasNoSignedWrap(); 3617 } 3618 if (const PossiblyExactOperator *ExactOp = 3619 dyn_cast<const PossiblyExactOperator>(&I)) 3620 exact = ExactOp->isExact(); 3621 } 3622 SDNodeFlags Flags; 3623 Flags.setExact(exact); 3624 Flags.setNoSignedWrap(nsw); 3625 Flags.setNoUnsignedWrap(nuw); 3626 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3627 Flags); 3628 setValue(&I, Res); 3629 } 3630 3631 void SelectionDAGBuilder::visitSDiv(const User &I) { 3632 SDValue Op1 = getValue(I.getOperand(0)); 3633 SDValue Op2 = getValue(I.getOperand(1)); 3634 3635 SDNodeFlags Flags; 3636 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3637 cast<PossiblyExactOperator>(&I)->isExact()); 3638 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3639 Op2, Flags)); 3640 } 3641 3642 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3643 ICmpInst::Predicate predicate = I.getPredicate(); 3644 SDValue Op1 = getValue(I.getOperand(0)); 3645 SDValue Op2 = getValue(I.getOperand(1)); 3646 ISD::CondCode Opcode = getICmpCondCode(predicate); 3647 3648 auto &TLI = DAG.getTargetLoweringInfo(); 3649 EVT MemVT = 3650 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3651 3652 // If a pointer's DAG type is larger than its memory type then the DAG values 3653 // are zero-extended. This breaks signed comparisons so truncate back to the 3654 // underlying type before doing the compare. 3655 if (Op1.getValueType() != MemVT) { 3656 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3657 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3658 } 3659 3660 SDNodeFlags Flags; 3661 Flags.setSameSign(I.hasSameSign()); 3662 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3663 3664 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3665 I.getType()); 3666 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3667 } 3668 3669 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3670 FCmpInst::Predicate predicate = I.getPredicate(); 3671 SDValue Op1 = getValue(I.getOperand(0)); 3672 SDValue Op2 = getValue(I.getOperand(1)); 3673 3674 ISD::CondCode Condition = getFCmpCondCode(predicate); 3675 auto *FPMO = cast<FPMathOperator>(&I); 3676 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3677 Condition = getFCmpCodeWithoutNaN(Condition); 3678 3679 SDNodeFlags Flags; 3680 Flags.copyFMF(*FPMO); 3681 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3682 3683 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3684 I.getType()); 3685 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3686 } 3687 3688 // Check if the condition of the select has one use or two users that are both 3689 // selects with the same condition. 3690 static bool hasOnlySelectUsers(const Value *Cond) { 3691 return llvm::all_of(Cond->users(), [](const Value *V) { 3692 return isa<SelectInst>(V); 3693 }); 3694 } 3695 3696 void SelectionDAGBuilder::visitSelect(const User &I) { 3697 SmallVector<EVT, 4> ValueVTs; 3698 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3699 ValueVTs); 3700 unsigned NumValues = ValueVTs.size(); 3701 if (NumValues == 0) return; 3702 3703 SmallVector<SDValue, 4> Values(NumValues); 3704 SDValue Cond = getValue(I.getOperand(0)); 3705 SDValue LHSVal = getValue(I.getOperand(1)); 3706 SDValue RHSVal = getValue(I.getOperand(2)); 3707 SmallVector<SDValue, 1> BaseOps(1, Cond); 3708 ISD::NodeType OpCode = 3709 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3710 3711 bool IsUnaryAbs = false; 3712 bool Negate = false; 3713 3714 SDNodeFlags Flags; 3715 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3716 Flags.copyFMF(*FPOp); 3717 3718 Flags.setUnpredictable( 3719 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3720 3721 // Min/max matching is only viable if all output VTs are the same. 3722 if (all_equal(ValueVTs)) { 3723 EVT VT = ValueVTs[0]; 3724 LLVMContext &Ctx = *DAG.getContext(); 3725 auto &TLI = DAG.getTargetLoweringInfo(); 3726 3727 // We care about the legality of the operation after it has been type 3728 // legalized. 3729 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3730 VT = TLI.getTypeToTransformTo(Ctx, VT); 3731 3732 // If the vselect is legal, assume we want to leave this as a vector setcc + 3733 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3734 // min/max is legal on the scalar type. 3735 bool UseScalarMinMax = VT.isVector() && 3736 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3737 3738 // ValueTracking's select pattern matching does not account for -0.0, 3739 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3740 // -0.0 is less than +0.0. 3741 const Value *LHS, *RHS; 3742 auto SPR = matchSelectPattern(&I, LHS, RHS); 3743 ISD::NodeType Opc = ISD::DELETED_NODE; 3744 switch (SPR.Flavor) { 3745 case SPF_UMAX: Opc = ISD::UMAX; break; 3746 case SPF_UMIN: Opc = ISD::UMIN; break; 3747 case SPF_SMAX: Opc = ISD::SMAX; break; 3748 case SPF_SMIN: Opc = ISD::SMIN; break; 3749 case SPF_FMINNUM: 3750 switch (SPR.NaNBehavior) { 3751 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3752 case SPNB_RETURNS_NAN: break; 3753 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3754 case SPNB_RETURNS_ANY: 3755 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3756 (UseScalarMinMax && 3757 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3758 Opc = ISD::FMINNUM; 3759 break; 3760 } 3761 break; 3762 case SPF_FMAXNUM: 3763 switch (SPR.NaNBehavior) { 3764 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3765 case SPNB_RETURNS_NAN: break; 3766 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3767 case SPNB_RETURNS_ANY: 3768 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3769 (UseScalarMinMax && 3770 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3771 Opc = ISD::FMAXNUM; 3772 break; 3773 } 3774 break; 3775 case SPF_NABS: 3776 Negate = true; 3777 [[fallthrough]]; 3778 case SPF_ABS: 3779 IsUnaryAbs = true; 3780 Opc = ISD::ABS; 3781 break; 3782 default: break; 3783 } 3784 3785 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3786 (TLI.isOperationLegalOrCustom(Opc, VT) || 3787 (UseScalarMinMax && 3788 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3789 // If the underlying comparison instruction is used by any other 3790 // instruction, the consumed instructions won't be destroyed, so it is 3791 // not profitable to convert to a min/max. 3792 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3793 OpCode = Opc; 3794 LHSVal = getValue(LHS); 3795 RHSVal = getValue(RHS); 3796 BaseOps.clear(); 3797 } 3798 3799 if (IsUnaryAbs) { 3800 OpCode = Opc; 3801 LHSVal = getValue(LHS); 3802 BaseOps.clear(); 3803 } 3804 } 3805 3806 if (IsUnaryAbs) { 3807 for (unsigned i = 0; i != NumValues; ++i) { 3808 SDLoc dl = getCurSDLoc(); 3809 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3810 Values[i] = 3811 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3812 if (Negate) 3813 Values[i] = DAG.getNegative(Values[i], dl, VT); 3814 } 3815 } else { 3816 for (unsigned i = 0; i != NumValues; ++i) { 3817 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3818 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3819 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3820 Values[i] = DAG.getNode( 3821 OpCode, getCurSDLoc(), 3822 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3823 } 3824 } 3825 3826 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3827 DAG.getVTList(ValueVTs), Values)); 3828 } 3829 3830 void SelectionDAGBuilder::visitTrunc(const User &I) { 3831 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3832 SDValue N = getValue(I.getOperand(0)); 3833 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3834 I.getType()); 3835 SDNodeFlags Flags; 3836 if (auto *Trunc = dyn_cast<TruncInst>(&I)) { 3837 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap()); 3838 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap()); 3839 } 3840 3841 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags)); 3842 } 3843 3844 void SelectionDAGBuilder::visitZExt(const User &I) { 3845 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3846 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3847 SDValue N = getValue(I.getOperand(0)); 3848 auto &TLI = DAG.getTargetLoweringInfo(); 3849 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3850 3851 SDNodeFlags Flags; 3852 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3853 Flags.setNonNeg(PNI->hasNonNeg()); 3854 3855 // Eagerly use nonneg information to canonicalize towards sign_extend if 3856 // that is the target's preference. 3857 // TODO: Let the target do this later. 3858 if (Flags.hasNonNeg() && 3859 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3860 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3861 return; 3862 } 3863 3864 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3865 } 3866 3867 void SelectionDAGBuilder::visitSExt(const User &I) { 3868 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3869 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3870 SDValue N = getValue(I.getOperand(0)); 3871 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3872 I.getType()); 3873 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3874 } 3875 3876 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3877 // FPTrunc is never a no-op cast, no need to check 3878 SDValue N = getValue(I.getOperand(0)); 3879 SDLoc dl = getCurSDLoc(); 3880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3881 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3882 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3883 DAG.getTargetConstant( 3884 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3885 } 3886 3887 void SelectionDAGBuilder::visitFPExt(const User &I) { 3888 // FPExt is never a no-op cast, no need to check 3889 SDValue N = getValue(I.getOperand(0)); 3890 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3891 I.getType()); 3892 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3893 } 3894 3895 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3896 // FPToUI is never a no-op cast, no need to check 3897 SDValue N = getValue(I.getOperand(0)); 3898 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3899 I.getType()); 3900 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3901 } 3902 3903 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3904 // FPToSI is never a no-op cast, no need to check 3905 SDValue N = getValue(I.getOperand(0)); 3906 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3907 I.getType()); 3908 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3909 } 3910 3911 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3912 // UIToFP is never a no-op cast, no need to check 3913 SDValue N = getValue(I.getOperand(0)); 3914 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3915 I.getType()); 3916 SDNodeFlags Flags; 3917 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3918 Flags.setNonNeg(PNI->hasNonNeg()); 3919 3920 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3921 } 3922 3923 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3924 // SIToFP is never a no-op cast, no need to check 3925 SDValue N = getValue(I.getOperand(0)); 3926 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3927 I.getType()); 3928 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3929 } 3930 3931 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3932 // What to do depends on the size of the integer and the size of the pointer. 3933 // We can either truncate, zero extend, or no-op, accordingly. 3934 SDValue N = getValue(I.getOperand(0)); 3935 auto &TLI = DAG.getTargetLoweringInfo(); 3936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3937 I.getType()); 3938 EVT PtrMemVT = 3939 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3940 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3941 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3942 setValue(&I, N); 3943 } 3944 3945 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3946 // What to do depends on the size of the integer and the size of the pointer. 3947 // We can either truncate, zero extend, or no-op, accordingly. 3948 SDValue N = getValue(I.getOperand(0)); 3949 auto &TLI = DAG.getTargetLoweringInfo(); 3950 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3951 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3952 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3953 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3954 setValue(&I, N); 3955 } 3956 3957 void SelectionDAGBuilder::visitBitCast(const User &I) { 3958 SDValue N = getValue(I.getOperand(0)); 3959 SDLoc dl = getCurSDLoc(); 3960 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3961 I.getType()); 3962 3963 // BitCast assures us that source and destination are the same size so this is 3964 // either a BITCAST or a no-op. 3965 if (DestVT != N.getValueType()) 3966 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3967 DestVT, N)); // convert types. 3968 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3969 // might fold any kind of constant expression to an integer constant and that 3970 // is not what we are looking for. Only recognize a bitcast of a genuine 3971 // constant integer as an opaque constant. 3972 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3973 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3974 /*isOpaque*/true)); 3975 else 3976 setValue(&I, N); // noop cast. 3977 } 3978 3979 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3980 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3981 const Value *SV = I.getOperand(0); 3982 SDValue N = getValue(SV); 3983 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3984 3985 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3986 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3987 3988 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3989 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3990 3991 setValue(&I, N); 3992 } 3993 3994 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3996 SDValue InVec = getValue(I.getOperand(0)); 3997 SDValue InVal = getValue(I.getOperand(1)); 3998 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3999 TLI.getVectorIdxTy(DAG.getDataLayout())); 4000 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 4001 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4002 InVec, InVal, InIdx)); 4003 } 4004 4005 void SelectionDAGBuilder::visitExtractElement(const User &I) { 4006 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4007 SDValue InVec = getValue(I.getOperand(0)); 4008 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 4009 TLI.getVectorIdxTy(DAG.getDataLayout())); 4010 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 4011 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4012 InVec, InIdx)); 4013 } 4014 4015 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 4016 SDValue Src1 = getValue(I.getOperand(0)); 4017 SDValue Src2 = getValue(I.getOperand(1)); 4018 ArrayRef<int> Mask; 4019 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 4020 Mask = SVI->getShuffleMask(); 4021 else 4022 Mask = cast<ConstantExpr>(I).getShuffleMask(); 4023 SDLoc DL = getCurSDLoc(); 4024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4025 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4026 EVT SrcVT = Src1.getValueType(); 4027 4028 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 4029 VT.isScalableVector()) { 4030 // Canonical splat form of first element of first input vector. 4031 SDValue FirstElt = 4032 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4033 DAG.getVectorIdxConstant(0, DL)); 4034 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4035 return; 4036 } 4037 4038 // For now, we only handle splats for scalable vectors. 4039 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4040 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4041 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4042 4043 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4044 unsigned MaskNumElts = Mask.size(); 4045 4046 if (SrcNumElts == MaskNumElts) { 4047 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4048 return; 4049 } 4050 4051 // Normalize the shuffle vector since mask and vector length don't match. 4052 if (SrcNumElts < MaskNumElts) { 4053 // Mask is longer than the source vectors. We can use concatenate vector to 4054 // make the mask and vectors lengths match. 4055 4056 if (MaskNumElts % SrcNumElts == 0) { 4057 // Mask length is a multiple of the source vector length. 4058 // Check if the shuffle is some kind of concatenation of the input 4059 // vectors. 4060 unsigned NumConcat = MaskNumElts / SrcNumElts; 4061 bool IsConcat = true; 4062 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4063 for (unsigned i = 0; i != MaskNumElts; ++i) { 4064 int Idx = Mask[i]; 4065 if (Idx < 0) 4066 continue; 4067 // Ensure the indices in each SrcVT sized piece are sequential and that 4068 // the same source is used for the whole piece. 4069 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4070 (ConcatSrcs[i / SrcNumElts] >= 0 && 4071 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4072 IsConcat = false; 4073 break; 4074 } 4075 // Remember which source this index came from. 4076 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4077 } 4078 4079 // The shuffle is concatenating multiple vectors together. Just emit 4080 // a CONCAT_VECTORS operation. 4081 if (IsConcat) { 4082 SmallVector<SDValue, 8> ConcatOps; 4083 for (auto Src : ConcatSrcs) { 4084 if (Src < 0) 4085 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4086 else if (Src == 0) 4087 ConcatOps.push_back(Src1); 4088 else 4089 ConcatOps.push_back(Src2); 4090 } 4091 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4092 return; 4093 } 4094 } 4095 4096 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4097 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4098 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4099 PaddedMaskNumElts); 4100 4101 // Pad both vectors with undefs to make them the same length as the mask. 4102 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4103 4104 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4105 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4106 MOps1[0] = Src1; 4107 MOps2[0] = Src2; 4108 4109 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4110 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4111 4112 // Readjust mask for new input vector length. 4113 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4114 for (unsigned i = 0; i != MaskNumElts; ++i) { 4115 int Idx = Mask[i]; 4116 if (Idx >= (int)SrcNumElts) 4117 Idx -= SrcNumElts - PaddedMaskNumElts; 4118 MappedOps[i] = Idx; 4119 } 4120 4121 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4122 4123 // If the concatenated vector was padded, extract a subvector with the 4124 // correct number of elements. 4125 if (MaskNumElts != PaddedMaskNumElts) 4126 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4127 DAG.getVectorIdxConstant(0, DL)); 4128 4129 setValue(&I, Result); 4130 return; 4131 } 4132 4133 assert(SrcNumElts > MaskNumElts); 4134 4135 // Analyze the access pattern of the vector to see if we can extract 4136 // two subvectors and do the shuffle. 4137 int StartIdx[2] = {-1, -1}; // StartIdx to extract from 4138 bool CanExtract = true; 4139 for (int Idx : Mask) { 4140 unsigned Input = 0; 4141 if (Idx < 0) 4142 continue; 4143 4144 if (Idx >= (int)SrcNumElts) { 4145 Input = 1; 4146 Idx -= SrcNumElts; 4147 } 4148 4149 // If all the indices come from the same MaskNumElts sized portion of 4150 // the sources we can use extract. Also make sure the extract wouldn't 4151 // extract past the end of the source. 4152 int NewStartIdx = alignDown(Idx, MaskNumElts); 4153 if (NewStartIdx + MaskNumElts > SrcNumElts || 4154 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4155 CanExtract = false; 4156 // Make sure we always update StartIdx as we use it to track if all 4157 // elements are undef. 4158 StartIdx[Input] = NewStartIdx; 4159 } 4160 4161 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4162 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4163 return; 4164 } 4165 if (CanExtract) { 4166 // Extract appropriate subvector and generate a vector shuffle 4167 for (unsigned Input = 0; Input < 2; ++Input) { 4168 SDValue &Src = Input == 0 ? Src1 : Src2; 4169 if (StartIdx[Input] < 0) 4170 Src = DAG.getUNDEF(VT); 4171 else { 4172 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4173 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4174 } 4175 } 4176 4177 // Calculate new mask. 4178 SmallVector<int, 8> MappedOps(Mask); 4179 for (int &Idx : MappedOps) { 4180 if (Idx >= (int)SrcNumElts) 4181 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4182 else if (Idx >= 0) 4183 Idx -= StartIdx[0]; 4184 } 4185 4186 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4187 return; 4188 } 4189 4190 // We can't use either concat vectors or extract subvectors so fall back to 4191 // replacing the shuffle with extract and build vector. 4192 // to insert and build vector. 4193 EVT EltVT = VT.getVectorElementType(); 4194 SmallVector<SDValue,8> Ops; 4195 for (int Idx : Mask) { 4196 SDValue Res; 4197 4198 if (Idx < 0) { 4199 Res = DAG.getUNDEF(EltVT); 4200 } else { 4201 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4202 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4203 4204 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4205 DAG.getVectorIdxConstant(Idx, DL)); 4206 } 4207 4208 Ops.push_back(Res); 4209 } 4210 4211 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4212 } 4213 4214 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4215 ArrayRef<unsigned> Indices = I.getIndices(); 4216 const Value *Op0 = I.getOperand(0); 4217 const Value *Op1 = I.getOperand(1); 4218 Type *AggTy = I.getType(); 4219 Type *ValTy = Op1->getType(); 4220 bool IntoUndef = isa<UndefValue>(Op0); 4221 bool FromUndef = isa<UndefValue>(Op1); 4222 4223 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4224 4225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4226 SmallVector<EVT, 4> AggValueVTs; 4227 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4228 SmallVector<EVT, 4> ValValueVTs; 4229 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4230 4231 unsigned NumAggValues = AggValueVTs.size(); 4232 unsigned NumValValues = ValValueVTs.size(); 4233 SmallVector<SDValue, 4> Values(NumAggValues); 4234 4235 // Ignore an insertvalue that produces an empty object 4236 if (!NumAggValues) { 4237 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4238 return; 4239 } 4240 4241 SDValue Agg = getValue(Op0); 4242 unsigned i = 0; 4243 // Copy the beginning value(s) from the original aggregate. 4244 for (; i != LinearIndex; ++i) 4245 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4246 SDValue(Agg.getNode(), Agg.getResNo() + i); 4247 // Copy values from the inserted value(s). 4248 if (NumValValues) { 4249 SDValue Val = getValue(Op1); 4250 for (; i != LinearIndex + NumValValues; ++i) 4251 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4252 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4253 } 4254 // Copy remaining value(s) from the original aggregate. 4255 for (; i != NumAggValues; ++i) 4256 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4257 SDValue(Agg.getNode(), Agg.getResNo() + i); 4258 4259 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4260 DAG.getVTList(AggValueVTs), Values)); 4261 } 4262 4263 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4264 ArrayRef<unsigned> Indices = I.getIndices(); 4265 const Value *Op0 = I.getOperand(0); 4266 Type *AggTy = Op0->getType(); 4267 Type *ValTy = I.getType(); 4268 bool OutOfUndef = isa<UndefValue>(Op0); 4269 4270 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4271 4272 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4273 SmallVector<EVT, 4> ValValueVTs; 4274 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4275 4276 unsigned NumValValues = ValValueVTs.size(); 4277 4278 // Ignore a extractvalue that produces an empty object 4279 if (!NumValValues) { 4280 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4281 return; 4282 } 4283 4284 SmallVector<SDValue, 4> Values(NumValValues); 4285 4286 SDValue Agg = getValue(Op0); 4287 // Copy out the selected value(s). 4288 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4289 Values[i - LinearIndex] = 4290 OutOfUndef ? 4291 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4292 SDValue(Agg.getNode(), Agg.getResNo() + i); 4293 4294 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4295 DAG.getVTList(ValValueVTs), Values)); 4296 } 4297 4298 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4299 Value *Op0 = I.getOperand(0); 4300 // Note that the pointer operand may be a vector of pointers. Take the scalar 4301 // element which holds a pointer. 4302 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4303 SDValue N = getValue(Op0); 4304 SDLoc dl = getCurSDLoc(); 4305 auto &TLI = DAG.getTargetLoweringInfo(); 4306 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags(); 4307 4308 // Normalize Vector GEP - all scalar operands should be converted to the 4309 // splat vector. 4310 bool IsVectorGEP = I.getType()->isVectorTy(); 4311 ElementCount VectorElementCount = 4312 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4313 : ElementCount::getFixed(0); 4314 4315 if (IsVectorGEP && !N.getValueType().isVector()) { 4316 LLVMContext &Context = *DAG.getContext(); 4317 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4318 N = DAG.getSplat(VT, dl, N); 4319 } 4320 4321 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4322 GTI != E; ++GTI) { 4323 const Value *Idx = GTI.getOperand(); 4324 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4325 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4326 if (Field) { 4327 // N = N + Offset 4328 uint64_t Offset = 4329 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4330 4331 // In an inbounds GEP with an offset that is nonnegative even when 4332 // interpreted as signed, assume there is no unsigned overflow. 4333 SDNodeFlags Flags; 4334 if (NW.hasNoUnsignedWrap() || 4335 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap())) 4336 Flags |= SDNodeFlags::NoUnsignedWrap; 4337 4338 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4339 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4340 } 4341 } else { 4342 // IdxSize is the width of the arithmetic according to IR semantics. 4343 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4344 // (and fix up the result later). 4345 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4346 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4347 TypeSize ElementSize = 4348 GTI.getSequentialElementStride(DAG.getDataLayout()); 4349 // We intentionally mask away the high bits here; ElementSize may not 4350 // fit in IdxTy. 4351 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(), 4352 /*isSigned=*/false, /*implicitTrunc=*/true); 4353 bool ElementScalable = ElementSize.isScalable(); 4354 4355 // If this is a scalar constant or a splat vector of constants, 4356 // handle it quickly. 4357 const auto *C = dyn_cast<Constant>(Idx); 4358 if (C && isa<VectorType>(C->getType())) 4359 C = C->getSplatValue(); 4360 4361 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4362 if (CI && CI->isZero()) 4363 continue; 4364 if (CI && !ElementScalable) { 4365 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4366 LLVMContext &Context = *DAG.getContext(); 4367 SDValue OffsVal; 4368 if (IsVectorGEP) 4369 OffsVal = DAG.getConstant( 4370 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4371 else 4372 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4373 4374 // In an inbounds GEP with an offset that is nonnegative even when 4375 // interpreted as signed, assume there is no unsigned overflow. 4376 SDNodeFlags Flags; 4377 if (NW.hasNoUnsignedWrap() || 4378 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap())) 4379 Flags.setNoUnsignedWrap(true); 4380 4381 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4382 4383 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4384 continue; 4385 } 4386 4387 // N = N + Idx * ElementMul; 4388 SDValue IdxN = getValue(Idx); 4389 4390 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4391 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4392 VectorElementCount); 4393 IdxN = DAG.getSplat(VT, dl, IdxN); 4394 } 4395 4396 // If the index is smaller or larger than intptr_t, truncate or extend 4397 // it. 4398 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4399 4400 SDNodeFlags ScaleFlags; 4401 // The multiplication of an index by the type size does not wrap the 4402 // pointer index type in a signed sense (mul nsw). 4403 ScaleFlags.setNoSignedWrap(NW.hasNoUnsignedSignedWrap()); 4404 4405 // The multiplication of an index by the type size does not wrap the 4406 // pointer index type in an unsigned sense (mul nuw). 4407 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4408 4409 if (ElementScalable) { 4410 EVT VScaleTy = N.getValueType().getScalarType(); 4411 SDValue VScale = DAG.getNode( 4412 ISD::VSCALE, dl, VScaleTy, 4413 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4414 if (IsVectorGEP) 4415 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4416 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale, 4417 ScaleFlags); 4418 } else { 4419 // If this is a multiply by a power of two, turn it into a shl 4420 // immediately. This is a very common case. 4421 if (ElementMul != 1) { 4422 if (ElementMul.isPowerOf2()) { 4423 unsigned Amt = ElementMul.logBase2(); 4424 IdxN = DAG.getNode(ISD::SHL, dl, N.getValueType(), IdxN, 4425 DAG.getConstant(Amt, dl, IdxN.getValueType()), 4426 ScaleFlags); 4427 } else { 4428 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4429 IdxN.getValueType()); 4430 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale, 4431 ScaleFlags); 4432 } 4433 } 4434 } 4435 4436 // The successive addition of the current address, truncated to the 4437 // pointer index type and interpreted as an unsigned number, and each 4438 // offset, also interpreted as an unsigned number, does not wrap the 4439 // pointer index type (add nuw). 4440 SDNodeFlags AddFlags; 4441 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap()); 4442 4443 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, IdxN, AddFlags); 4444 } 4445 } 4446 4447 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4448 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4449 if (IsVectorGEP) { 4450 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4451 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4452 } 4453 4454 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4455 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4456 4457 setValue(&I, N); 4458 } 4459 4460 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4461 // If this is a fixed sized alloca in the entry block of the function, 4462 // allocate it statically on the stack. 4463 if (FuncInfo.StaticAllocaMap.count(&I)) 4464 return; // getValue will auto-populate this. 4465 4466 SDLoc dl = getCurSDLoc(); 4467 Type *Ty = I.getAllocatedType(); 4468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4469 auto &DL = DAG.getDataLayout(); 4470 TypeSize TySize = DL.getTypeAllocSize(Ty); 4471 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4472 4473 SDValue AllocSize = getValue(I.getArraySize()); 4474 4475 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4476 if (AllocSize.getValueType() != IntPtr) 4477 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4478 4479 if (TySize.isScalable()) 4480 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4481 DAG.getVScale(dl, IntPtr, 4482 APInt(IntPtr.getScalarSizeInBits(), 4483 TySize.getKnownMinValue()))); 4484 else { 4485 SDValue TySizeValue = 4486 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4487 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4488 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4489 } 4490 4491 // Handle alignment. If the requested alignment is less than or equal to 4492 // the stack alignment, ignore it. If the size is greater than or equal to 4493 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4494 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4495 if (*Alignment <= StackAlign) 4496 Alignment = std::nullopt; 4497 4498 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4499 // Round the size of the allocation up to the stack alignment size 4500 // by add SA-1 to the size. This doesn't overflow because we're computing 4501 // an address inside an alloca. 4502 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4503 DAG.getConstant(StackAlignMask, dl, IntPtr), 4504 SDNodeFlags::NoUnsignedWrap); 4505 4506 // Mask out the low bits for alignment purposes. 4507 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4508 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr)); 4509 4510 SDValue Ops[] = { 4511 getRoot(), AllocSize, 4512 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4513 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4514 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4515 setValue(&I, DSA); 4516 DAG.setRoot(DSA.getValue(1)); 4517 4518 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4519 } 4520 4521 static const MDNode *getRangeMetadata(const Instruction &I) { 4522 // If !noundef is not present, then !range violation results in a poison 4523 // value rather than immediate undefined behavior. In theory, transferring 4524 // these annotations to SDAG is fine, but in practice there are key SDAG 4525 // transforms that are known not to be poison-safe, such as folding logical 4526 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4527 // also present. 4528 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4529 return nullptr; 4530 return I.getMetadata(LLVMContext::MD_range); 4531 } 4532 4533 static std::optional<ConstantRange> getRange(const Instruction &I) { 4534 if (const auto *CB = dyn_cast<CallBase>(&I)) { 4535 // see comment in getRangeMetadata about this check 4536 if (CB->hasRetAttr(Attribute::NoUndef)) 4537 return CB->getRange(); 4538 } 4539 if (const MDNode *Range = getRangeMetadata(I)) 4540 return getConstantRangeFromMetadata(*Range); 4541 return std::nullopt; 4542 } 4543 4544 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4545 if (I.isAtomic()) 4546 return visitAtomicLoad(I); 4547 4548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4549 const Value *SV = I.getOperand(0); 4550 if (TLI.supportSwiftError()) { 4551 // Swifterror values can come from either a function parameter with 4552 // swifterror attribute or an alloca with swifterror attribute. 4553 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4554 if (Arg->hasSwiftErrorAttr()) 4555 return visitLoadFromSwiftError(I); 4556 } 4557 4558 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4559 if (Alloca->isSwiftError()) 4560 return visitLoadFromSwiftError(I); 4561 } 4562 } 4563 4564 SDValue Ptr = getValue(SV); 4565 4566 Type *Ty = I.getType(); 4567 SmallVector<EVT, 4> ValueVTs, MemVTs; 4568 SmallVector<TypeSize, 4> Offsets; 4569 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4570 unsigned NumValues = ValueVTs.size(); 4571 if (NumValues == 0) 4572 return; 4573 4574 Align Alignment = I.getAlign(); 4575 AAMDNodes AAInfo = I.getAAMetadata(); 4576 const MDNode *Ranges = getRangeMetadata(I); 4577 bool isVolatile = I.isVolatile(); 4578 MachineMemOperand::Flags MMOFlags = 4579 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4580 4581 SDValue Root; 4582 bool ConstantMemory = false; 4583 if (isVolatile) 4584 // Serialize volatile loads with other side effects. 4585 Root = getRoot(); 4586 else if (NumValues > MaxParallelChains) 4587 Root = getMemoryRoot(); 4588 else if (BatchAA && 4589 BatchAA->pointsToConstantMemory(MemoryLocation( 4590 SV, 4591 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4592 AAInfo))) { 4593 // Do not serialize (non-volatile) loads of constant memory with anything. 4594 Root = DAG.getEntryNode(); 4595 ConstantMemory = true; 4596 MMOFlags |= MachineMemOperand::MOInvariant; 4597 } else { 4598 // Do not serialize non-volatile loads against each other. 4599 Root = DAG.getRoot(); 4600 } 4601 4602 SDLoc dl = getCurSDLoc(); 4603 4604 if (isVolatile) 4605 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4606 4607 SmallVector<SDValue, 4> Values(NumValues); 4608 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4609 4610 unsigned ChainI = 0; 4611 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4612 // Serializing loads here may result in excessive register pressure, and 4613 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4614 // could recover a bit by hoisting nodes upward in the chain by recognizing 4615 // they are side-effect free or do not alias. The optimizer should really 4616 // avoid this case by converting large object/array copies to llvm.memcpy 4617 // (MaxParallelChains should always remain as failsafe). 4618 if (ChainI == MaxParallelChains) { 4619 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4620 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4621 ArrayRef(Chains.data(), ChainI)); 4622 Root = Chain; 4623 ChainI = 0; 4624 } 4625 4626 // TODO: MachinePointerInfo only supports a fixed length offset. 4627 MachinePointerInfo PtrInfo = 4628 !Offsets[i].isScalable() || Offsets[i].isZero() 4629 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4630 : MachinePointerInfo(); 4631 4632 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4633 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4634 MMOFlags, AAInfo, Ranges); 4635 Chains[ChainI] = L.getValue(1); 4636 4637 if (MemVTs[i] != ValueVTs[i]) 4638 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4639 4640 Values[i] = L; 4641 } 4642 4643 if (!ConstantMemory) { 4644 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4645 ArrayRef(Chains.data(), ChainI)); 4646 if (isVolatile) 4647 DAG.setRoot(Chain); 4648 else 4649 PendingLoads.push_back(Chain); 4650 } 4651 4652 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4653 DAG.getVTList(ValueVTs), Values)); 4654 } 4655 4656 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4657 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4658 "call visitStoreToSwiftError when backend supports swifterror"); 4659 4660 SmallVector<EVT, 4> ValueVTs; 4661 SmallVector<uint64_t, 4> Offsets; 4662 const Value *SrcV = I.getOperand(0); 4663 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4664 SrcV->getType(), ValueVTs, &Offsets, 0); 4665 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4666 "expect a single EVT for swifterror"); 4667 4668 SDValue Src = getValue(SrcV); 4669 // Create a virtual register, then update the virtual register. 4670 Register VReg = 4671 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4672 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4673 // Chain can be getRoot or getControlRoot. 4674 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4675 SDValue(Src.getNode(), Src.getResNo())); 4676 DAG.setRoot(CopyNode); 4677 } 4678 4679 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4680 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4681 "call visitLoadFromSwiftError when backend supports swifterror"); 4682 4683 assert(!I.isVolatile() && 4684 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4685 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4686 "Support volatile, non temporal, invariant for load_from_swift_error"); 4687 4688 const Value *SV = I.getOperand(0); 4689 Type *Ty = I.getType(); 4690 assert( 4691 (!BatchAA || 4692 !BatchAA->pointsToConstantMemory(MemoryLocation( 4693 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4694 I.getAAMetadata()))) && 4695 "load_from_swift_error should not be constant memory"); 4696 4697 SmallVector<EVT, 4> ValueVTs; 4698 SmallVector<uint64_t, 4> Offsets; 4699 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4700 ValueVTs, &Offsets, 0); 4701 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4702 "expect a single EVT for swifterror"); 4703 4704 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4705 SDValue L = DAG.getCopyFromReg( 4706 getRoot(), getCurSDLoc(), 4707 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4708 4709 setValue(&I, L); 4710 } 4711 4712 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4713 if (I.isAtomic()) 4714 return visitAtomicStore(I); 4715 4716 const Value *SrcV = I.getOperand(0); 4717 const Value *PtrV = I.getOperand(1); 4718 4719 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4720 if (TLI.supportSwiftError()) { 4721 // Swifterror values can come from either a function parameter with 4722 // swifterror attribute or an alloca with swifterror attribute. 4723 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4724 if (Arg->hasSwiftErrorAttr()) 4725 return visitStoreToSwiftError(I); 4726 } 4727 4728 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4729 if (Alloca->isSwiftError()) 4730 return visitStoreToSwiftError(I); 4731 } 4732 } 4733 4734 SmallVector<EVT, 4> ValueVTs, MemVTs; 4735 SmallVector<TypeSize, 4> Offsets; 4736 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4737 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4738 unsigned NumValues = ValueVTs.size(); 4739 if (NumValues == 0) 4740 return; 4741 4742 // Get the lowered operands. Note that we do this after 4743 // checking if NumResults is zero, because with zero results 4744 // the operands won't have values in the map. 4745 SDValue Src = getValue(SrcV); 4746 SDValue Ptr = getValue(PtrV); 4747 4748 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4749 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4750 SDLoc dl = getCurSDLoc(); 4751 Align Alignment = I.getAlign(); 4752 AAMDNodes AAInfo = I.getAAMetadata(); 4753 4754 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4755 4756 unsigned ChainI = 0; 4757 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4758 // See visitLoad comments. 4759 if (ChainI == MaxParallelChains) { 4760 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4761 ArrayRef(Chains.data(), ChainI)); 4762 Root = Chain; 4763 ChainI = 0; 4764 } 4765 4766 // TODO: MachinePointerInfo only supports a fixed length offset. 4767 MachinePointerInfo PtrInfo = 4768 !Offsets[i].isScalable() || Offsets[i].isZero() 4769 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4770 : MachinePointerInfo(); 4771 4772 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4773 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4774 if (MemVTs[i] != ValueVTs[i]) 4775 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4776 SDValue St = 4777 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4778 Chains[ChainI] = St; 4779 } 4780 4781 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4782 ArrayRef(Chains.data(), ChainI)); 4783 setValue(&I, StoreNode); 4784 DAG.setRoot(StoreNode); 4785 } 4786 4787 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4788 bool IsCompressing) { 4789 SDLoc sdl = getCurSDLoc(); 4790 4791 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4792 Align &Alignment) { 4793 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4794 Src0 = I.getArgOperand(0); 4795 Ptr = I.getArgOperand(1); 4796 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4797 Mask = I.getArgOperand(3); 4798 }; 4799 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4800 Align &Alignment) { 4801 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4802 Src0 = I.getArgOperand(0); 4803 Ptr = I.getArgOperand(1); 4804 Mask = I.getArgOperand(2); 4805 Alignment = I.getParamAlign(1).valueOrOne(); 4806 }; 4807 4808 Value *PtrOperand, *MaskOperand, *Src0Operand; 4809 Align Alignment; 4810 if (IsCompressing) 4811 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4812 else 4813 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4814 4815 SDValue Ptr = getValue(PtrOperand); 4816 SDValue Src0 = getValue(Src0Operand); 4817 SDValue Mask = getValue(MaskOperand); 4818 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4819 4820 EVT VT = Src0.getValueType(); 4821 4822 auto MMOFlags = MachineMemOperand::MOStore; 4823 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4824 MMOFlags |= MachineMemOperand::MONonTemporal; 4825 4826 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4827 MachinePointerInfo(PtrOperand), MMOFlags, 4828 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4829 4830 const auto &TLI = DAG.getTargetLoweringInfo(); 4831 const auto &TTI = 4832 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 4833 SDValue StoreNode = 4834 !IsCompressing && 4835 TTI.hasConditionalLoadStoreForType(I.getArgOperand(0)->getType()) 4836 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0, 4837 Mask) 4838 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, 4839 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false, 4840 IsCompressing); 4841 DAG.setRoot(StoreNode); 4842 setValue(&I, StoreNode); 4843 } 4844 4845 // Get a uniform base for the Gather/Scatter intrinsic. 4846 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4847 // We try to represent it as a base pointer + vector of indices. 4848 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4849 // The first operand of the GEP may be a single pointer or a vector of pointers 4850 // Example: 4851 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4852 // or 4853 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4854 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4855 // 4856 // When the first GEP operand is a single pointer - it is the uniform base we 4857 // are looking for. If first operand of the GEP is a splat vector - we 4858 // extract the splat value and use it as a uniform base. 4859 // In all other cases the function returns 'false'. 4860 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4861 ISD::MemIndexType &IndexType, SDValue &Scale, 4862 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4863 uint64_t ElemSize) { 4864 SelectionDAG& DAG = SDB->DAG; 4865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4866 const DataLayout &DL = DAG.getDataLayout(); 4867 4868 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4869 4870 // Handle splat constant pointer. 4871 if (auto *C = dyn_cast<Constant>(Ptr)) { 4872 C = C->getSplatValue(); 4873 if (!C) 4874 return false; 4875 4876 Base = SDB->getValue(C); 4877 4878 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4879 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4880 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4881 IndexType = ISD::SIGNED_SCALED; 4882 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4883 return true; 4884 } 4885 4886 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4887 if (!GEP || GEP->getParent() != CurBB) 4888 return false; 4889 4890 if (GEP->getNumOperands() != 2) 4891 return false; 4892 4893 const Value *BasePtr = GEP->getPointerOperand(); 4894 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4895 4896 // Make sure the base is scalar and the index is a vector. 4897 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4898 return false; 4899 4900 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4901 if (ScaleVal.isScalable()) 4902 return false; 4903 4904 // Target may not support the required addressing mode. 4905 if (ScaleVal != 1 && 4906 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4907 return false; 4908 4909 Base = SDB->getValue(BasePtr); 4910 Index = SDB->getValue(IndexVal); 4911 IndexType = ISD::SIGNED_SCALED; 4912 4913 Scale = 4914 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4915 return true; 4916 } 4917 4918 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4919 SDLoc sdl = getCurSDLoc(); 4920 4921 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4922 const Value *Ptr = I.getArgOperand(1); 4923 SDValue Src0 = getValue(I.getArgOperand(0)); 4924 SDValue Mask = getValue(I.getArgOperand(3)); 4925 EVT VT = Src0.getValueType(); 4926 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4927 ->getMaybeAlignValue() 4928 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4929 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4930 4931 SDValue Base; 4932 SDValue Index; 4933 ISD::MemIndexType IndexType; 4934 SDValue Scale; 4935 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4936 I.getParent(), VT.getScalarStoreSize()); 4937 4938 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4939 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4940 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4941 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4942 if (!UniformBase) { 4943 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4944 Index = getValue(Ptr); 4945 IndexType = ISD::SIGNED_SCALED; 4946 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4947 } 4948 4949 EVT IdxVT = Index.getValueType(); 4950 EVT EltTy = IdxVT.getVectorElementType(); 4951 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4952 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4953 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4954 } 4955 4956 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4957 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4958 Ops, MMO, IndexType, false); 4959 DAG.setRoot(Scatter); 4960 setValue(&I, Scatter); 4961 } 4962 4963 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4964 SDLoc sdl = getCurSDLoc(); 4965 4966 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4967 Align &Alignment) { 4968 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4969 Ptr = I.getArgOperand(0); 4970 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4971 Mask = I.getArgOperand(2); 4972 Src0 = I.getArgOperand(3); 4973 }; 4974 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4975 Align &Alignment) { 4976 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4977 Ptr = I.getArgOperand(0); 4978 Alignment = I.getParamAlign(0).valueOrOne(); 4979 Mask = I.getArgOperand(1); 4980 Src0 = I.getArgOperand(2); 4981 }; 4982 4983 Value *PtrOperand, *MaskOperand, *Src0Operand; 4984 Align Alignment; 4985 if (IsExpanding) 4986 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4987 else 4988 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4989 4990 SDValue Ptr = getValue(PtrOperand); 4991 SDValue Src0 = getValue(Src0Operand); 4992 SDValue Mask = getValue(MaskOperand); 4993 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4994 4995 EVT VT = Src0.getValueType(); 4996 AAMDNodes AAInfo = I.getAAMetadata(); 4997 const MDNode *Ranges = getRangeMetadata(I); 4998 4999 // Do not serialize masked loads of constant memory with anything. 5000 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 5001 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML); 5002 5003 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 5004 5005 auto MMOFlags = MachineMemOperand::MOLoad; 5006 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 5007 MMOFlags |= MachineMemOperand::MONonTemporal; 5008 5009 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5010 MachinePointerInfo(PtrOperand), MMOFlags, 5011 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 5012 5013 const auto &TLI = DAG.getTargetLoweringInfo(); 5014 const auto &TTI = 5015 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 5016 // The Load/Res may point to different values and both of them are output 5017 // variables. 5018 SDValue Load; 5019 SDValue Res; 5020 if (!IsExpanding && 5021 TTI.hasConditionalLoadStoreForType(Src0Operand->getType())) 5022 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask); 5023 else 5024 Res = Load = 5025 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 5026 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 5027 if (AddToChain) 5028 PendingLoads.push_back(Load.getValue(1)); 5029 setValue(&I, Res); 5030 } 5031 5032 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 5033 SDLoc sdl = getCurSDLoc(); 5034 5035 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 5036 const Value *Ptr = I.getArgOperand(0); 5037 SDValue Src0 = getValue(I.getArgOperand(3)); 5038 SDValue Mask = getValue(I.getArgOperand(2)); 5039 5040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5041 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5042 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 5043 ->getMaybeAlignValue() 5044 .value_or(DAG.getEVTAlign(VT.getScalarType())); 5045 5046 const MDNode *Ranges = getRangeMetadata(I); 5047 5048 SDValue Root = DAG.getRoot(); 5049 SDValue Base; 5050 SDValue Index; 5051 ISD::MemIndexType IndexType; 5052 SDValue Scale; 5053 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 5054 I.getParent(), VT.getScalarStoreSize()); 5055 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 5056 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5057 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 5058 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 5059 Ranges); 5060 5061 if (!UniformBase) { 5062 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5063 Index = getValue(Ptr); 5064 IndexType = ISD::SIGNED_SCALED; 5065 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 5066 } 5067 5068 EVT IdxVT = Index.getValueType(); 5069 EVT EltTy = IdxVT.getVectorElementType(); 5070 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 5071 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 5072 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 5073 } 5074 5075 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 5076 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 5077 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 5078 5079 PendingLoads.push_back(Gather.getValue(1)); 5080 setValue(&I, Gather); 5081 } 5082 5083 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5084 SDLoc dl = getCurSDLoc(); 5085 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5086 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5087 SyncScope::ID SSID = I.getSyncScopeID(); 5088 5089 SDValue InChain = getRoot(); 5090 5091 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5092 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5093 5094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5095 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5096 5097 MachineFunction &MF = DAG.getMachineFunction(); 5098 MachineMemOperand *MMO = MF.getMachineMemOperand( 5099 MachinePointerInfo(I.getPointerOperand()), Flags, 5100 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5101 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5102 5103 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5104 dl, MemVT, VTs, InChain, 5105 getValue(I.getPointerOperand()), 5106 getValue(I.getCompareOperand()), 5107 getValue(I.getNewValOperand()), MMO); 5108 5109 SDValue OutChain = L.getValue(2); 5110 5111 setValue(&I, L); 5112 DAG.setRoot(OutChain); 5113 } 5114 5115 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5116 SDLoc dl = getCurSDLoc(); 5117 ISD::NodeType NT; 5118 switch (I.getOperation()) { 5119 default: llvm_unreachable("Unknown atomicrmw operation"); 5120 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5121 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5122 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5123 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5124 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5125 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5126 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5127 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5128 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5129 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5130 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5131 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5132 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5133 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5134 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5135 case AtomicRMWInst::UIncWrap: 5136 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5137 break; 5138 case AtomicRMWInst::UDecWrap: 5139 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5140 break; 5141 case AtomicRMWInst::USubCond: 5142 NT = ISD::ATOMIC_LOAD_USUB_COND; 5143 break; 5144 case AtomicRMWInst::USubSat: 5145 NT = ISD::ATOMIC_LOAD_USUB_SAT; 5146 break; 5147 } 5148 AtomicOrdering Ordering = I.getOrdering(); 5149 SyncScope::ID SSID = I.getSyncScopeID(); 5150 5151 SDValue InChain = getRoot(); 5152 5153 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5155 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5156 5157 MachineFunction &MF = DAG.getMachineFunction(); 5158 MachineMemOperand *MMO = MF.getMachineMemOperand( 5159 MachinePointerInfo(I.getPointerOperand()), Flags, 5160 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5161 AAMDNodes(), nullptr, SSID, Ordering); 5162 5163 SDValue L = 5164 DAG.getAtomic(NT, dl, MemVT, InChain, 5165 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5166 MMO); 5167 5168 SDValue OutChain = L.getValue(1); 5169 5170 setValue(&I, L); 5171 DAG.setRoot(OutChain); 5172 } 5173 5174 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5175 SDLoc dl = getCurSDLoc(); 5176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5177 SDValue Ops[3]; 5178 Ops[0] = getRoot(); 5179 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5180 TLI.getFenceOperandTy(DAG.getDataLayout())); 5181 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5182 TLI.getFenceOperandTy(DAG.getDataLayout())); 5183 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5184 setValue(&I, N); 5185 DAG.setRoot(N); 5186 } 5187 5188 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5189 SDLoc dl = getCurSDLoc(); 5190 AtomicOrdering Order = I.getOrdering(); 5191 SyncScope::ID SSID = I.getSyncScopeID(); 5192 5193 SDValue InChain = getRoot(); 5194 5195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5196 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5197 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5198 5199 if (!TLI.supportsUnalignedAtomics() && 5200 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5201 report_fatal_error("Cannot generate unaligned atomic load"); 5202 5203 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5204 5205 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5206 MachinePointerInfo(I.getPointerOperand()), Flags, 5207 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5208 nullptr, SSID, Order); 5209 5210 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5211 5212 SDValue Ptr = getValue(I.getPointerOperand()); 5213 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5214 Ptr, MMO); 5215 5216 SDValue OutChain = L.getValue(1); 5217 if (MemVT != VT) 5218 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5219 5220 setValue(&I, L); 5221 DAG.setRoot(OutChain); 5222 } 5223 5224 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5225 SDLoc dl = getCurSDLoc(); 5226 5227 AtomicOrdering Ordering = I.getOrdering(); 5228 SyncScope::ID SSID = I.getSyncScopeID(); 5229 5230 SDValue InChain = getRoot(); 5231 5232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5233 EVT MemVT = 5234 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5235 5236 if (!TLI.supportsUnalignedAtomics() && 5237 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5238 report_fatal_error("Cannot generate unaligned atomic store"); 5239 5240 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5241 5242 MachineFunction &MF = DAG.getMachineFunction(); 5243 MachineMemOperand *MMO = MF.getMachineMemOperand( 5244 MachinePointerInfo(I.getPointerOperand()), Flags, 5245 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5246 nullptr, SSID, Ordering); 5247 5248 SDValue Val = getValue(I.getValueOperand()); 5249 if (Val.getValueType() != MemVT) 5250 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5251 SDValue Ptr = getValue(I.getPointerOperand()); 5252 5253 SDValue OutChain = 5254 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5255 5256 setValue(&I, OutChain); 5257 DAG.setRoot(OutChain); 5258 } 5259 5260 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5261 /// node. 5262 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5263 unsigned Intrinsic) { 5264 // Ignore the callsite's attributes. A specific call site may be marked with 5265 // readnone, but the lowering code will expect the chain based on the 5266 // definition. 5267 const Function *F = I.getCalledFunction(); 5268 bool HasChain = !F->doesNotAccessMemory(); 5269 bool OnlyLoad = 5270 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow(); 5271 5272 // Build the operand list. 5273 SmallVector<SDValue, 8> Ops; 5274 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5275 if (OnlyLoad) { 5276 // We don't need to serialize loads against other loads. 5277 Ops.push_back(DAG.getRoot()); 5278 } else { 5279 Ops.push_back(getRoot()); 5280 } 5281 } 5282 5283 // Info is set by getTgtMemIntrinsic 5284 TargetLowering::IntrinsicInfo Info; 5285 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5286 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5287 DAG.getMachineFunction(), 5288 Intrinsic); 5289 5290 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5291 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5292 Info.opc == ISD::INTRINSIC_W_CHAIN) 5293 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5294 TLI.getPointerTy(DAG.getDataLayout()))); 5295 5296 // Add all operands of the call to the operand list. 5297 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5298 const Value *Arg = I.getArgOperand(i); 5299 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5300 Ops.push_back(getValue(Arg)); 5301 continue; 5302 } 5303 5304 // Use TargetConstant instead of a regular constant for immarg. 5305 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5306 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5307 assert(CI->getBitWidth() <= 64 && 5308 "large intrinsic immediates not handled"); 5309 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5310 } else { 5311 Ops.push_back( 5312 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5313 } 5314 } 5315 5316 SmallVector<EVT, 4> ValueVTs; 5317 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5318 5319 if (HasChain) 5320 ValueVTs.push_back(MVT::Other); 5321 5322 SDVTList VTs = DAG.getVTList(ValueVTs); 5323 5324 // Propagate fast-math-flags from IR to node(s). 5325 SDNodeFlags Flags; 5326 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5327 Flags.copyFMF(*FPMO); 5328 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5329 5330 // Create the node. 5331 SDValue Result; 5332 5333 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5334 auto *Token = Bundle->Inputs[0].get(); 5335 SDValue ConvControlToken = getValue(Token); 5336 assert(Ops.back().getValueType() != MVT::Glue && 5337 "Did not expected another glue node here."); 5338 ConvControlToken = 5339 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5340 Ops.push_back(ConvControlToken); 5341 } 5342 5343 // In some cases, custom collection of operands from CallInst I may be needed. 5344 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5345 if (IsTgtIntrinsic) { 5346 // This is target intrinsic that touches memory 5347 // 5348 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5349 // didn't yield anything useful. 5350 MachinePointerInfo MPI; 5351 if (Info.ptrVal) 5352 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5353 else if (Info.fallbackAddressSpace) 5354 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5355 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5356 Info.memVT, MPI, Info.align, Info.flags, 5357 Info.size, I.getAAMetadata()); 5358 } else if (!HasChain) { 5359 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5360 } else if (!I.getType()->isVoidTy()) { 5361 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5362 } else { 5363 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5364 } 5365 5366 if (HasChain) { 5367 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5368 if (OnlyLoad) 5369 PendingLoads.push_back(Chain); 5370 else 5371 DAG.setRoot(Chain); 5372 } 5373 5374 if (!I.getType()->isVoidTy()) { 5375 if (!isa<VectorType>(I.getType())) 5376 Result = lowerRangeToAssertZExt(DAG, I, Result); 5377 5378 MaybeAlign Alignment = I.getRetAlign(); 5379 5380 // Insert `assertalign` node if there's an alignment. 5381 if (InsertAssertAlign && Alignment) { 5382 Result = 5383 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5384 } 5385 } 5386 5387 setValue(&I, Result); 5388 } 5389 5390 /// GetSignificand - Get the significand and build it into a floating-point 5391 /// number with exponent of 1: 5392 /// 5393 /// Op = (Op & 0x007fffff) | 0x3f800000; 5394 /// 5395 /// where Op is the hexadecimal representation of floating point value. 5396 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5397 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5398 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5399 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5400 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5401 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5402 } 5403 5404 /// GetExponent - Get the exponent: 5405 /// 5406 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5407 /// 5408 /// where Op is the hexadecimal representation of floating point value. 5409 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5410 const TargetLowering &TLI, const SDLoc &dl) { 5411 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5412 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5413 SDValue t1 = DAG.getNode( 5414 ISD::SRL, dl, MVT::i32, t0, 5415 DAG.getConstant(23, dl, 5416 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5417 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5418 DAG.getConstant(127, dl, MVT::i32)); 5419 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5420 } 5421 5422 /// getF32Constant - Get 32-bit floating point constant. 5423 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5424 const SDLoc &dl) { 5425 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5426 MVT::f32); 5427 } 5428 5429 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5430 SelectionDAG &DAG) { 5431 // TODO: What fast-math-flags should be set on the floating-point nodes? 5432 5433 // IntegerPartOfX = ((int32_t)(t0); 5434 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5435 5436 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5437 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5438 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5439 5440 // IntegerPartOfX <<= 23; 5441 IntegerPartOfX = 5442 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5443 DAG.getConstant(23, dl, 5444 DAG.getTargetLoweringInfo().getShiftAmountTy( 5445 MVT::i32, DAG.getDataLayout()))); 5446 5447 SDValue TwoToFractionalPartOfX; 5448 if (LimitFloatPrecision <= 6) { 5449 // For floating-point precision of 6: 5450 // 5451 // TwoToFractionalPartOfX = 5452 // 0.997535578f + 5453 // (0.735607626f + 0.252464424f * x) * x; 5454 // 5455 // error 0.0144103317, which is 6 bits 5456 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5457 getF32Constant(DAG, 0x3e814304, dl)); 5458 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5459 getF32Constant(DAG, 0x3f3c50c8, dl)); 5460 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5461 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5462 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5463 } else if (LimitFloatPrecision <= 12) { 5464 // For floating-point precision of 12: 5465 // 5466 // TwoToFractionalPartOfX = 5467 // 0.999892986f + 5468 // (0.696457318f + 5469 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5470 // 5471 // error 0.000107046256, which is 13 to 14 bits 5472 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5473 getF32Constant(DAG, 0x3da235e3, dl)); 5474 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5475 getF32Constant(DAG, 0x3e65b8f3, dl)); 5476 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5477 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5478 getF32Constant(DAG, 0x3f324b07, dl)); 5479 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5480 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5481 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5482 } else { // LimitFloatPrecision <= 18 5483 // For floating-point precision of 18: 5484 // 5485 // TwoToFractionalPartOfX = 5486 // 0.999999982f + 5487 // (0.693148872f + 5488 // (0.240227044f + 5489 // (0.554906021e-1f + 5490 // (0.961591928e-2f + 5491 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5492 // error 2.47208000*10^(-7), which is better than 18 bits 5493 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5494 getF32Constant(DAG, 0x3924b03e, dl)); 5495 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5496 getF32Constant(DAG, 0x3ab24b87, dl)); 5497 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5498 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5499 getF32Constant(DAG, 0x3c1d8c17, dl)); 5500 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5501 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5502 getF32Constant(DAG, 0x3d634a1d, dl)); 5503 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5504 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5505 getF32Constant(DAG, 0x3e75fe14, dl)); 5506 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5507 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5508 getF32Constant(DAG, 0x3f317234, dl)); 5509 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5510 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5511 getF32Constant(DAG, 0x3f800000, dl)); 5512 } 5513 5514 // Add the exponent into the result in integer domain. 5515 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5516 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5517 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5518 } 5519 5520 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5521 /// limited-precision mode. 5522 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5523 const TargetLowering &TLI, SDNodeFlags Flags) { 5524 if (Op.getValueType() == MVT::f32 && 5525 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5526 5527 // Put the exponent in the right bit position for later addition to the 5528 // final result: 5529 // 5530 // t0 = Op * log2(e) 5531 5532 // TODO: What fast-math-flags should be set here? 5533 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5534 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5535 return getLimitedPrecisionExp2(t0, dl, DAG); 5536 } 5537 5538 // No special expansion. 5539 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5540 } 5541 5542 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5543 /// limited-precision mode. 5544 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5545 const TargetLowering &TLI, SDNodeFlags Flags) { 5546 // TODO: What fast-math-flags should be set on the floating-point nodes? 5547 5548 if (Op.getValueType() == MVT::f32 && 5549 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5550 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5551 5552 // Scale the exponent by log(2). 5553 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5554 SDValue LogOfExponent = 5555 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5556 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5557 5558 // Get the significand and build it into a floating-point number with 5559 // exponent of 1. 5560 SDValue X = GetSignificand(DAG, Op1, dl); 5561 5562 SDValue LogOfMantissa; 5563 if (LimitFloatPrecision <= 6) { 5564 // For floating-point precision of 6: 5565 // 5566 // LogofMantissa = 5567 // -1.1609546f + 5568 // (1.4034025f - 0.23903021f * x) * x; 5569 // 5570 // error 0.0034276066, which is better than 8 bits 5571 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5572 getF32Constant(DAG, 0xbe74c456, dl)); 5573 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5574 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5575 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5576 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5577 getF32Constant(DAG, 0x3f949a29, dl)); 5578 } else if (LimitFloatPrecision <= 12) { 5579 // For floating-point precision of 12: 5580 // 5581 // LogOfMantissa = 5582 // -1.7417939f + 5583 // (2.8212026f + 5584 // (-1.4699568f + 5585 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5586 // 5587 // error 0.000061011436, which is 14 bits 5588 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5589 getF32Constant(DAG, 0xbd67b6d6, dl)); 5590 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5591 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5592 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5593 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5594 getF32Constant(DAG, 0x3fbc278b, dl)); 5595 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5596 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5597 getF32Constant(DAG, 0x40348e95, dl)); 5598 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5599 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5600 getF32Constant(DAG, 0x3fdef31a, dl)); 5601 } else { // LimitFloatPrecision <= 18 5602 // For floating-point precision of 18: 5603 // 5604 // LogOfMantissa = 5605 // -2.1072184f + 5606 // (4.2372794f + 5607 // (-3.7029485f + 5608 // (2.2781945f + 5609 // (-0.87823314f + 5610 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5611 // 5612 // error 0.0000023660568, which is better than 18 bits 5613 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5614 getF32Constant(DAG, 0xbc91e5ac, dl)); 5615 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5616 getF32Constant(DAG, 0x3e4350aa, dl)); 5617 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5618 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5619 getF32Constant(DAG, 0x3f60d3e3, dl)); 5620 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5621 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5622 getF32Constant(DAG, 0x4011cdf0, dl)); 5623 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5624 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5625 getF32Constant(DAG, 0x406cfd1c, dl)); 5626 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5627 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5628 getF32Constant(DAG, 0x408797cb, dl)); 5629 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5630 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5631 getF32Constant(DAG, 0x4006dcab, dl)); 5632 } 5633 5634 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5635 } 5636 5637 // No special expansion. 5638 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5639 } 5640 5641 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5642 /// limited-precision mode. 5643 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5644 const TargetLowering &TLI, SDNodeFlags Flags) { 5645 // TODO: What fast-math-flags should be set on the floating-point nodes? 5646 5647 if (Op.getValueType() == MVT::f32 && 5648 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5649 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5650 5651 // Get the exponent. 5652 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5653 5654 // Get the significand and build it into a floating-point number with 5655 // exponent of 1. 5656 SDValue X = GetSignificand(DAG, Op1, dl); 5657 5658 // Different possible minimax approximations of significand in 5659 // floating-point for various degrees of accuracy over [1,2]. 5660 SDValue Log2ofMantissa; 5661 if (LimitFloatPrecision <= 6) { 5662 // For floating-point precision of 6: 5663 // 5664 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5665 // 5666 // error 0.0049451742, which is more than 7 bits 5667 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5668 getF32Constant(DAG, 0xbeb08fe0, dl)); 5669 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5670 getF32Constant(DAG, 0x40019463, dl)); 5671 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5672 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5673 getF32Constant(DAG, 0x3fd6633d, dl)); 5674 } else if (LimitFloatPrecision <= 12) { 5675 // For floating-point precision of 12: 5676 // 5677 // Log2ofMantissa = 5678 // -2.51285454f + 5679 // (4.07009056f + 5680 // (-2.12067489f + 5681 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5682 // 5683 // error 0.0000876136000, which is better than 13 bits 5684 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5685 getF32Constant(DAG, 0xbda7262e, dl)); 5686 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5687 getF32Constant(DAG, 0x3f25280b, dl)); 5688 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5689 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5690 getF32Constant(DAG, 0x4007b923, dl)); 5691 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5692 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5693 getF32Constant(DAG, 0x40823e2f, dl)); 5694 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5695 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5696 getF32Constant(DAG, 0x4020d29c, dl)); 5697 } else { // LimitFloatPrecision <= 18 5698 // For floating-point precision of 18: 5699 // 5700 // Log2ofMantissa = 5701 // -3.0400495f + 5702 // (6.1129976f + 5703 // (-5.3420409f + 5704 // (3.2865683f + 5705 // (-1.2669343f + 5706 // (0.27515199f - 5707 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5708 // 5709 // error 0.0000018516, which is better than 18 bits 5710 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5711 getF32Constant(DAG, 0xbcd2769e, dl)); 5712 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5713 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5714 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5715 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5716 getF32Constant(DAG, 0x3fa22ae7, dl)); 5717 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5718 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5719 getF32Constant(DAG, 0x40525723, dl)); 5720 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5721 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5722 getF32Constant(DAG, 0x40aaf200, dl)); 5723 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5724 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5725 getF32Constant(DAG, 0x40c39dad, dl)); 5726 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5727 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5728 getF32Constant(DAG, 0x4042902c, dl)); 5729 } 5730 5731 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5732 } 5733 5734 // No special expansion. 5735 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5736 } 5737 5738 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5739 /// limited-precision mode. 5740 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5741 const TargetLowering &TLI, SDNodeFlags Flags) { 5742 // TODO: What fast-math-flags should be set on the floating-point nodes? 5743 5744 if (Op.getValueType() == MVT::f32 && 5745 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5746 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5747 5748 // Scale the exponent by log10(2) [0.30102999f]. 5749 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5750 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5751 getF32Constant(DAG, 0x3e9a209a, dl)); 5752 5753 // Get the significand and build it into a floating-point number with 5754 // exponent of 1. 5755 SDValue X = GetSignificand(DAG, Op1, dl); 5756 5757 SDValue Log10ofMantissa; 5758 if (LimitFloatPrecision <= 6) { 5759 // For floating-point precision of 6: 5760 // 5761 // Log10ofMantissa = 5762 // -0.50419619f + 5763 // (0.60948995f - 0.10380950f * x) * x; 5764 // 5765 // error 0.0014886165, which is 6 bits 5766 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5767 getF32Constant(DAG, 0xbdd49a13, dl)); 5768 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5769 getF32Constant(DAG, 0x3f1c0789, dl)); 5770 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5771 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5772 getF32Constant(DAG, 0x3f011300, dl)); 5773 } else if (LimitFloatPrecision <= 12) { 5774 // For floating-point precision of 12: 5775 // 5776 // Log10ofMantissa = 5777 // -0.64831180f + 5778 // (0.91751397f + 5779 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5780 // 5781 // error 0.00019228036, which is better than 12 bits 5782 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5783 getF32Constant(DAG, 0x3d431f31, dl)); 5784 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5785 getF32Constant(DAG, 0x3ea21fb2, dl)); 5786 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5787 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5788 getF32Constant(DAG, 0x3f6ae232, dl)); 5789 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5790 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5791 getF32Constant(DAG, 0x3f25f7c3, dl)); 5792 } else { // LimitFloatPrecision <= 18 5793 // For floating-point precision of 18: 5794 // 5795 // Log10ofMantissa = 5796 // -0.84299375f + 5797 // (1.5327582f + 5798 // (-1.0688956f + 5799 // (0.49102474f + 5800 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5801 // 5802 // error 0.0000037995730, which is better than 18 bits 5803 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5804 getF32Constant(DAG, 0x3c5d51ce, dl)); 5805 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5806 getF32Constant(DAG, 0x3e00685a, dl)); 5807 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5808 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5809 getF32Constant(DAG, 0x3efb6798, dl)); 5810 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5811 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5812 getF32Constant(DAG, 0x3f88d192, dl)); 5813 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5814 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5815 getF32Constant(DAG, 0x3fc4316c, dl)); 5816 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5817 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5818 getF32Constant(DAG, 0x3f57ce70, dl)); 5819 } 5820 5821 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5822 } 5823 5824 // No special expansion. 5825 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5826 } 5827 5828 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5829 /// limited-precision mode. 5830 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5831 const TargetLowering &TLI, SDNodeFlags Flags) { 5832 if (Op.getValueType() == MVT::f32 && 5833 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5834 return getLimitedPrecisionExp2(Op, dl, DAG); 5835 5836 // No special expansion. 5837 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5838 } 5839 5840 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5841 /// limited-precision mode with x == 10.0f. 5842 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5843 SelectionDAG &DAG, const TargetLowering &TLI, 5844 SDNodeFlags Flags) { 5845 bool IsExp10 = false; 5846 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5847 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5848 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5849 APFloat Ten(10.0f); 5850 IsExp10 = LHSC->isExactlyValue(Ten); 5851 } 5852 } 5853 5854 // TODO: What fast-math-flags should be set on the FMUL node? 5855 if (IsExp10) { 5856 // Put the exponent in the right bit position for later addition to the 5857 // final result: 5858 // 5859 // #define LOG2OF10 3.3219281f 5860 // t0 = Op * LOG2OF10; 5861 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5862 getF32Constant(DAG, 0x40549a78, dl)); 5863 return getLimitedPrecisionExp2(t0, dl, DAG); 5864 } 5865 5866 // No special expansion. 5867 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5868 } 5869 5870 /// ExpandPowI - Expand a llvm.powi intrinsic. 5871 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5872 SelectionDAG &DAG) { 5873 // If RHS is a constant, we can expand this out to a multiplication tree if 5874 // it's beneficial on the target, otherwise we end up lowering to a call to 5875 // __powidf2 (for example). 5876 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5877 unsigned Val = RHSC->getSExtValue(); 5878 5879 // powi(x, 0) -> 1.0 5880 if (Val == 0) 5881 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5882 5883 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5884 Val, DAG.shouldOptForSize())) { 5885 // Get the exponent as a positive value. 5886 if ((int)Val < 0) 5887 Val = -Val; 5888 // We use the simple binary decomposition method to generate the multiply 5889 // sequence. There are more optimal ways to do this (for example, 5890 // powi(x,15) generates one more multiply than it should), but this has 5891 // the benefit of being both really simple and much better than a libcall. 5892 SDValue Res; // Logically starts equal to 1.0 5893 SDValue CurSquare = LHS; 5894 // TODO: Intrinsics should have fast-math-flags that propagate to these 5895 // nodes. 5896 while (Val) { 5897 if (Val & 1) { 5898 if (Res.getNode()) 5899 Res = 5900 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5901 else 5902 Res = CurSquare; // 1.0*CurSquare. 5903 } 5904 5905 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5906 CurSquare, CurSquare); 5907 Val >>= 1; 5908 } 5909 5910 // If the original was negative, invert the result, producing 1/(x*x*x). 5911 if (RHSC->getSExtValue() < 0) 5912 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5913 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5914 return Res; 5915 } 5916 } 5917 5918 // Otherwise, expand to a libcall. 5919 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5920 } 5921 5922 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5923 SDValue LHS, SDValue RHS, SDValue Scale, 5924 SelectionDAG &DAG, const TargetLowering &TLI) { 5925 EVT VT = LHS.getValueType(); 5926 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5927 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5928 LLVMContext &Ctx = *DAG.getContext(); 5929 5930 // If the type is legal but the operation isn't, this node might survive all 5931 // the way to operation legalization. If we end up there and we do not have 5932 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5933 // node. 5934 5935 // Coax the legalizer into expanding the node during type legalization instead 5936 // by bumping the size by one bit. This will force it to Promote, enabling the 5937 // early expansion and avoiding the need to expand later. 5938 5939 // We don't have to do this if Scale is 0; that can always be expanded, unless 5940 // it's a saturating signed operation. Those can experience true integer 5941 // division overflow, a case which we must avoid. 5942 5943 // FIXME: We wouldn't have to do this (or any of the early 5944 // expansion/promotion) if it was possible to expand a libcall of an 5945 // illegal type during operation legalization. But it's not, so things 5946 // get a bit hacky. 5947 unsigned ScaleInt = Scale->getAsZExtVal(); 5948 if ((ScaleInt > 0 || (Saturating && Signed)) && 5949 (TLI.isTypeLegal(VT) || 5950 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5951 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5952 Opcode, VT, ScaleInt); 5953 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5954 EVT PromVT; 5955 if (VT.isScalarInteger()) 5956 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5957 else if (VT.isVector()) { 5958 PromVT = VT.getVectorElementType(); 5959 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5960 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5961 } else 5962 llvm_unreachable("Wrong VT for DIVFIX?"); 5963 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5964 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5965 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5966 // For saturating operations, we need to shift up the LHS to get the 5967 // proper saturation width, and then shift down again afterwards. 5968 if (Saturating) 5969 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5970 DAG.getConstant(1, DL, ShiftTy)); 5971 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5972 if (Saturating) 5973 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5974 DAG.getConstant(1, DL, ShiftTy)); 5975 return DAG.getZExtOrTrunc(Res, DL, VT); 5976 } 5977 } 5978 5979 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5980 } 5981 5982 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5983 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5984 static void 5985 getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs, 5986 const SDValue &N) { 5987 switch (N.getOpcode()) { 5988 case ISD::CopyFromReg: { 5989 SDValue Op = N.getOperand(1); 5990 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5991 Op.getValueType().getSizeInBits()); 5992 return; 5993 } 5994 case ISD::BITCAST: 5995 case ISD::AssertZext: 5996 case ISD::AssertSext: 5997 case ISD::TRUNCATE: 5998 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5999 return; 6000 case ISD::BUILD_PAIR: 6001 case ISD::BUILD_VECTOR: 6002 case ISD::CONCAT_VECTORS: 6003 for (SDValue Op : N->op_values()) 6004 getUnderlyingArgRegs(Regs, Op); 6005 return; 6006 default: 6007 return; 6008 } 6009 } 6010 6011 /// If the DbgValueInst is a dbg_value of a function argument, create the 6012 /// corresponding DBG_VALUE machine instruction for it now. At the end of 6013 /// instruction selection, they will be inserted to the entry BB. 6014 /// We don't currently support this for variadic dbg_values, as they shouldn't 6015 /// appear for function arguments or in the prologue. 6016 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 6017 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 6018 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 6019 const Argument *Arg = dyn_cast<Argument>(V); 6020 if (!Arg) 6021 return false; 6022 6023 MachineFunction &MF = DAG.getMachineFunction(); 6024 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6025 6026 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 6027 // we've been asked to pursue. 6028 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 6029 bool Indirect) { 6030 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 6031 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 6032 // pointing at the VReg, which will be patched up later. 6033 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 6034 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 6035 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 6036 /* isKill */ false, /* isDead */ false, 6037 /* isUndef */ false, /* isEarlyClobber */ false, 6038 /* SubReg */ 0, /* isDebug */ true)}); 6039 6040 auto *NewDIExpr = FragExpr; 6041 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 6042 // the DIExpression. 6043 if (Indirect) 6044 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 6045 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 6046 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 6047 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 6048 } else { 6049 // Create a completely standard DBG_VALUE. 6050 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 6051 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 6052 } 6053 }; 6054 6055 if (Kind == FuncArgumentDbgValueKind::Value) { 6056 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6057 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 6058 // the entry block. 6059 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 6060 if (!IsInEntryBlock) 6061 return false; 6062 6063 // ArgDbgValues are hoisted to the beginning of the entry block. So we 6064 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 6065 // variable that also is a param. 6066 // 6067 // Although, if we are at the top of the entry block already, we can still 6068 // emit using ArgDbgValue. This might catch some situations when the 6069 // dbg.value refers to an argument that isn't used in the entry block, so 6070 // any CopyToReg node would be optimized out and the only way to express 6071 // this DBG_VALUE is by using the physical reg (or FI) as done in this 6072 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 6073 // we should only emit as ArgDbgValue if the Variable is an argument to the 6074 // current function, and the dbg.value intrinsic is found in the entry 6075 // block. 6076 bool VariableIsFunctionInputArg = Variable->isParameter() && 6077 !DL->getInlinedAt(); 6078 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 6079 if (!IsInPrologue && !VariableIsFunctionInputArg) 6080 return false; 6081 6082 // Here we assume that a function argument on IR level only can be used to 6083 // describe one input parameter on source level. If we for example have 6084 // source code like this 6085 // 6086 // struct A { long x, y; }; 6087 // void foo(struct A a, long b) { 6088 // ... 6089 // b = a.x; 6090 // ... 6091 // } 6092 // 6093 // and IR like this 6094 // 6095 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6096 // entry: 6097 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6098 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6099 // call void @llvm.dbg.value(metadata i32 %b, "b", 6100 // ... 6101 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6102 // ... 6103 // 6104 // then the last dbg.value is describing a parameter "b" using a value that 6105 // is an argument. But since we already has used %a1 to describe a parameter 6106 // we should not handle that last dbg.value here (that would result in an 6107 // incorrect hoisting of the DBG_VALUE to the function entry). 6108 // Notice that we allow one dbg.value per IR level argument, to accommodate 6109 // for the situation with fragments above. 6110 // If there is no node for the value being handled, we return true to skip 6111 // the normal generation of debug info, as it would kill existing debug 6112 // info for the parameter in case of duplicates. 6113 if (VariableIsFunctionInputArg) { 6114 unsigned ArgNo = Arg->getArgNo(); 6115 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6116 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6117 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6118 return !NodeMap[V].getNode(); 6119 FuncInfo.DescribedArgs.set(ArgNo); 6120 } 6121 } 6122 6123 bool IsIndirect = false; 6124 std::optional<MachineOperand> Op; 6125 // Some arguments' frame index is recorded during argument lowering. 6126 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6127 if (FI != std::numeric_limits<int>::max()) 6128 Op = MachineOperand::CreateFI(FI); 6129 6130 SmallVector<std::pair<Register, TypeSize>, 8> ArgRegsAndSizes; 6131 if (!Op && N.getNode()) { 6132 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6133 Register Reg; 6134 if (ArgRegsAndSizes.size() == 1) 6135 Reg = ArgRegsAndSizes.front().first; 6136 6137 if (Reg && Reg.isVirtual()) { 6138 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6139 Register PR = RegInfo.getLiveInPhysReg(Reg); 6140 if (PR) 6141 Reg = PR; 6142 } 6143 if (Reg) { 6144 Op = MachineOperand::CreateReg(Reg, false); 6145 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6146 } 6147 } 6148 6149 if (!Op && N.getNode()) { 6150 // Check if frame index is available. 6151 SDValue LCandidate = peekThroughBitcasts(N); 6152 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6153 if (FrameIndexSDNode *FINode = 6154 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6155 Op = MachineOperand::CreateFI(FINode->getIndex()); 6156 } 6157 6158 if (!Op) { 6159 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6160 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<Register, TypeSize>> 6161 SplitRegs) { 6162 unsigned Offset = 0; 6163 for (const auto &RegAndSize : SplitRegs) { 6164 // If the expression is already a fragment, the current register 6165 // offset+size might extend beyond the fragment. In this case, only 6166 // the register bits that are inside the fragment are relevant. 6167 int RegFragmentSizeInBits = RegAndSize.second; 6168 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6169 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6170 // The register is entirely outside the expression fragment, 6171 // so is irrelevant for debug info. 6172 if (Offset >= ExprFragmentSizeInBits) 6173 break; 6174 // The register is partially outside the expression fragment, only 6175 // the low bits within the fragment are relevant for debug info. 6176 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6177 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6178 } 6179 } 6180 6181 auto FragmentExpr = DIExpression::createFragmentExpression( 6182 Expr, Offset, RegFragmentSizeInBits); 6183 Offset += RegAndSize.second; 6184 // If a valid fragment expression cannot be created, the variable's 6185 // correct value cannot be determined and so it is set as Undef. 6186 if (!FragmentExpr) { 6187 SDDbgValue *SDV = DAG.getConstantDbgValue( 6188 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6189 DAG.AddDbgValue(SDV, false); 6190 continue; 6191 } 6192 MachineInstr *NewMI = 6193 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6194 Kind != FuncArgumentDbgValueKind::Value); 6195 FuncInfo.ArgDbgValues.push_back(NewMI); 6196 } 6197 }; 6198 6199 // Check if ValueMap has reg number. 6200 DenseMap<const Value *, Register>::const_iterator 6201 VMI = FuncInfo.ValueMap.find(V); 6202 if (VMI != FuncInfo.ValueMap.end()) { 6203 const auto &TLI = DAG.getTargetLoweringInfo(); 6204 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6205 V->getType(), std::nullopt); 6206 if (RFV.occupiesMultipleRegs()) { 6207 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6208 return true; 6209 } 6210 6211 Op = MachineOperand::CreateReg(VMI->second, false); 6212 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6213 } else if (ArgRegsAndSizes.size() > 1) { 6214 // This was split due to the calling convention, and no virtual register 6215 // mapping exists for the value. 6216 splitMultiRegDbgValue(ArgRegsAndSizes); 6217 return true; 6218 } 6219 } 6220 6221 if (!Op) 6222 return false; 6223 6224 assert(Variable->isValidLocationForIntrinsic(DL) && 6225 "Expected inlined-at fields to agree"); 6226 MachineInstr *NewMI = nullptr; 6227 6228 if (Op->isReg()) 6229 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6230 else 6231 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6232 Variable, Expr); 6233 6234 // Otherwise, use ArgDbgValues. 6235 FuncInfo.ArgDbgValues.push_back(NewMI); 6236 return true; 6237 } 6238 6239 /// Return the appropriate SDDbgValue based on N. 6240 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6241 DILocalVariable *Variable, 6242 DIExpression *Expr, 6243 const DebugLoc &dl, 6244 unsigned DbgSDNodeOrder) { 6245 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6246 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6247 // stack slot locations. 6248 // 6249 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6250 // debug values here after optimization: 6251 // 6252 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6253 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6254 // 6255 // Both describe the direct values of their associated variables. 6256 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6257 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6258 } 6259 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6260 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6261 } 6262 6263 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6264 switch (Intrinsic) { 6265 case Intrinsic::smul_fix: 6266 return ISD::SMULFIX; 6267 case Intrinsic::umul_fix: 6268 return ISD::UMULFIX; 6269 case Intrinsic::smul_fix_sat: 6270 return ISD::SMULFIXSAT; 6271 case Intrinsic::umul_fix_sat: 6272 return ISD::UMULFIXSAT; 6273 case Intrinsic::sdiv_fix: 6274 return ISD::SDIVFIX; 6275 case Intrinsic::udiv_fix: 6276 return ISD::UDIVFIX; 6277 case Intrinsic::sdiv_fix_sat: 6278 return ISD::SDIVFIXSAT; 6279 case Intrinsic::udiv_fix_sat: 6280 return ISD::UDIVFIXSAT; 6281 default: 6282 llvm_unreachable("Unhandled fixed point intrinsic"); 6283 } 6284 } 6285 6286 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6287 const char *FunctionName) { 6288 assert(FunctionName && "FunctionName must not be nullptr"); 6289 SDValue Callee = DAG.getExternalSymbol( 6290 FunctionName, 6291 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6292 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6293 } 6294 6295 /// Given a @llvm.call.preallocated.setup, return the corresponding 6296 /// preallocated call. 6297 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6298 assert(cast<CallBase>(PreallocatedSetup) 6299 ->getCalledFunction() 6300 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6301 "expected call_preallocated_setup Value"); 6302 for (const auto *U : PreallocatedSetup->users()) { 6303 auto *UseCall = cast<CallBase>(U); 6304 const Function *Fn = UseCall->getCalledFunction(); 6305 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6306 return UseCall; 6307 } 6308 } 6309 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6310 } 6311 6312 /// If DI is a debug value with an EntryValue expression, lower it using the 6313 /// corresponding physical register of the associated Argument value 6314 /// (guaranteed to exist by the verifier). 6315 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6316 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6317 DIExpression *Expr, DebugLoc DbgLoc) { 6318 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6319 return false; 6320 6321 // These properties are guaranteed by the verifier. 6322 const Argument *Arg = cast<Argument>(Values[0]); 6323 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6324 6325 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6326 if (ArgIt == FuncInfo.ValueMap.end()) { 6327 LLVM_DEBUG( 6328 dbgs() << "Dropping dbg.value: expression is entry_value but " 6329 "couldn't find an associated register for the Argument\n"); 6330 return true; 6331 } 6332 Register ArgVReg = ArgIt->getSecond(); 6333 6334 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6335 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6336 SDDbgValue *SDV = DAG.getVRegDbgValue( 6337 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6338 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6339 return true; 6340 } 6341 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6342 "couldn't find a physical register\n"); 6343 return true; 6344 } 6345 6346 /// Lower the call to the specified intrinsic function. 6347 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6348 unsigned Intrinsic) { 6349 SDLoc sdl = getCurSDLoc(); 6350 switch (Intrinsic) { 6351 case Intrinsic::experimental_convergence_anchor: 6352 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6353 break; 6354 case Intrinsic::experimental_convergence_entry: 6355 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6356 break; 6357 case Intrinsic::experimental_convergence_loop: { 6358 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6359 auto *Token = Bundle->Inputs[0].get(); 6360 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6361 getValue(Token))); 6362 break; 6363 } 6364 } 6365 } 6366 6367 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6368 unsigned IntrinsicID) { 6369 // For now, we're only lowering an 'add' histogram. 6370 // We can add others later, e.g. saturating adds, min/max. 6371 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6372 "Tried to lower unsupported histogram type"); 6373 SDLoc sdl = getCurSDLoc(); 6374 Value *Ptr = I.getOperand(0); 6375 SDValue Inc = getValue(I.getOperand(1)); 6376 SDValue Mask = getValue(I.getOperand(2)); 6377 6378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6379 DataLayout TargetDL = DAG.getDataLayout(); 6380 EVT VT = Inc.getValueType(); 6381 Align Alignment = DAG.getEVTAlign(VT); 6382 6383 const MDNode *Ranges = getRangeMetadata(I); 6384 6385 SDValue Root = DAG.getRoot(); 6386 SDValue Base; 6387 SDValue Index; 6388 ISD::MemIndexType IndexType; 6389 SDValue Scale; 6390 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6391 I.getParent(), VT.getScalarStoreSize()); 6392 6393 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6394 6395 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6396 MachinePointerInfo(AS), 6397 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6398 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6399 6400 if (!UniformBase) { 6401 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6402 Index = getValue(Ptr); 6403 IndexType = ISD::SIGNED_SCALED; 6404 Scale = 6405 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6406 } 6407 6408 EVT IdxVT = Index.getValueType(); 6409 EVT EltTy = IdxVT.getVectorElementType(); 6410 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6411 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6412 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6413 } 6414 6415 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6416 6417 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6418 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6419 Ops, MMO, IndexType); 6420 6421 setValue(&I, Histogram); 6422 DAG.setRoot(Histogram); 6423 } 6424 6425 void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I, 6426 unsigned Intrinsic) { 6427 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active && 6428 "Tried lowering invalid vector extract last"); 6429 SDLoc sdl = getCurSDLoc(); 6430 const DataLayout &Layout = DAG.getDataLayout(); 6431 SDValue Data = getValue(I.getOperand(0)); 6432 SDValue Mask = getValue(I.getOperand(1)); 6433 6434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6435 EVT ResVT = TLI.getValueType(Layout, I.getType()); 6436 6437 EVT ExtVT = TLI.getVectorIdxTy(Layout); 6438 SDValue Idx = DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask); 6439 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ResVT, Data, Idx); 6440 6441 Value *Default = I.getOperand(2); 6442 if (!isa<PoisonValue>(Default) && !isa<UndefValue>(Default)) { 6443 SDValue PassThru = getValue(Default); 6444 EVT BoolVT = Mask.getValueType().getScalarType(); 6445 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask); 6446 Result = DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru); 6447 } 6448 6449 setValue(&I, Result); 6450 } 6451 6452 /// Lower the call to the specified intrinsic function. 6453 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6454 unsigned Intrinsic) { 6455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6456 SDLoc sdl = getCurSDLoc(); 6457 DebugLoc dl = getCurDebugLoc(); 6458 SDValue Res; 6459 6460 SDNodeFlags Flags; 6461 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6462 Flags.copyFMF(*FPOp); 6463 6464 switch (Intrinsic) { 6465 default: 6466 // By default, turn this into a target intrinsic node. 6467 visitTargetIntrinsic(I, Intrinsic); 6468 return; 6469 case Intrinsic::vscale: { 6470 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6471 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6472 return; 6473 } 6474 case Intrinsic::vastart: visitVAStart(I); return; 6475 case Intrinsic::vaend: visitVAEnd(I); return; 6476 case Intrinsic::vacopy: visitVACopy(I); return; 6477 case Intrinsic::returnaddress: 6478 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6479 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6480 getValue(I.getArgOperand(0)))); 6481 return; 6482 case Intrinsic::addressofreturnaddress: 6483 setValue(&I, 6484 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6485 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6486 return; 6487 case Intrinsic::sponentry: 6488 setValue(&I, 6489 DAG.getNode(ISD::SPONENTRY, sdl, 6490 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6491 return; 6492 case Intrinsic::frameaddress: 6493 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6494 TLI.getFrameIndexTy(DAG.getDataLayout()), 6495 getValue(I.getArgOperand(0)))); 6496 return; 6497 case Intrinsic::read_volatile_register: 6498 case Intrinsic::read_register: { 6499 Value *Reg = I.getArgOperand(0); 6500 SDValue Chain = getRoot(); 6501 SDValue RegName = 6502 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6503 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6504 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6505 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6506 setValue(&I, Res); 6507 DAG.setRoot(Res.getValue(1)); 6508 return; 6509 } 6510 case Intrinsic::write_register: { 6511 Value *Reg = I.getArgOperand(0); 6512 Value *RegValue = I.getArgOperand(1); 6513 SDValue Chain = getRoot(); 6514 SDValue RegName = 6515 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6516 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6517 RegName, getValue(RegValue))); 6518 return; 6519 } 6520 case Intrinsic::memcpy: { 6521 const auto &MCI = cast<MemCpyInst>(I); 6522 SDValue Op1 = getValue(I.getArgOperand(0)); 6523 SDValue Op2 = getValue(I.getArgOperand(1)); 6524 SDValue Op3 = getValue(I.getArgOperand(2)); 6525 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6526 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6527 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6528 Align Alignment = std::min(DstAlign, SrcAlign); 6529 bool isVol = MCI.isVolatile(); 6530 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6531 // node. 6532 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6533 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6534 /* AlwaysInline */ false, &I, std::nullopt, 6535 MachinePointerInfo(I.getArgOperand(0)), 6536 MachinePointerInfo(I.getArgOperand(1)), 6537 I.getAAMetadata(), BatchAA); 6538 updateDAGForMaybeTailCall(MC); 6539 return; 6540 } 6541 case Intrinsic::memcpy_inline: { 6542 const auto &MCI = cast<MemCpyInlineInst>(I); 6543 SDValue Dst = getValue(I.getArgOperand(0)); 6544 SDValue Src = getValue(I.getArgOperand(1)); 6545 SDValue Size = getValue(I.getArgOperand(2)); 6546 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6547 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6548 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6549 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6550 Align Alignment = std::min(DstAlign, SrcAlign); 6551 bool isVol = MCI.isVolatile(); 6552 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6553 // node. 6554 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6555 /* AlwaysInline */ true, &I, std::nullopt, 6556 MachinePointerInfo(I.getArgOperand(0)), 6557 MachinePointerInfo(I.getArgOperand(1)), 6558 I.getAAMetadata(), BatchAA); 6559 updateDAGForMaybeTailCall(MC); 6560 return; 6561 } 6562 case Intrinsic::memset: { 6563 const auto &MSI = cast<MemSetInst>(I); 6564 SDValue Op1 = getValue(I.getArgOperand(0)); 6565 SDValue Op2 = getValue(I.getArgOperand(1)); 6566 SDValue Op3 = getValue(I.getArgOperand(2)); 6567 // @llvm.memset defines 0 and 1 to both mean no alignment. 6568 Align Alignment = MSI.getDestAlign().valueOrOne(); 6569 bool isVol = MSI.isVolatile(); 6570 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6571 SDValue MS = DAG.getMemset( 6572 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6573 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6574 updateDAGForMaybeTailCall(MS); 6575 return; 6576 } 6577 case Intrinsic::memset_inline: { 6578 const auto &MSII = cast<MemSetInlineInst>(I); 6579 SDValue Dst = getValue(I.getArgOperand(0)); 6580 SDValue Value = getValue(I.getArgOperand(1)); 6581 SDValue Size = getValue(I.getArgOperand(2)); 6582 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6583 // @llvm.memset defines 0 and 1 to both mean no alignment. 6584 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6585 bool isVol = MSII.isVolatile(); 6586 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6587 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6588 /* AlwaysInline */ true, &I, 6589 MachinePointerInfo(I.getArgOperand(0)), 6590 I.getAAMetadata()); 6591 updateDAGForMaybeTailCall(MC); 6592 return; 6593 } 6594 case Intrinsic::memmove: { 6595 const auto &MMI = cast<MemMoveInst>(I); 6596 SDValue Op1 = getValue(I.getArgOperand(0)); 6597 SDValue Op2 = getValue(I.getArgOperand(1)); 6598 SDValue Op3 = getValue(I.getArgOperand(2)); 6599 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6600 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6601 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6602 Align Alignment = std::min(DstAlign, SrcAlign); 6603 bool isVol = MMI.isVolatile(); 6604 // FIXME: Support passing different dest/src alignments to the memmove DAG 6605 // node. 6606 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6607 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I, 6608 /* OverrideTailCall */ std::nullopt, 6609 MachinePointerInfo(I.getArgOperand(0)), 6610 MachinePointerInfo(I.getArgOperand(1)), 6611 I.getAAMetadata(), BatchAA); 6612 updateDAGForMaybeTailCall(MM); 6613 return; 6614 } 6615 case Intrinsic::memcpy_element_unordered_atomic: { 6616 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6617 SDValue Dst = getValue(MI.getRawDest()); 6618 SDValue Src = getValue(MI.getRawSource()); 6619 SDValue Length = getValue(MI.getLength()); 6620 6621 Type *LengthTy = MI.getLength()->getType(); 6622 unsigned ElemSz = MI.getElementSizeInBytes(); 6623 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6624 SDValue MC = 6625 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6626 isTC, MachinePointerInfo(MI.getRawDest()), 6627 MachinePointerInfo(MI.getRawSource())); 6628 updateDAGForMaybeTailCall(MC); 6629 return; 6630 } 6631 case Intrinsic::memmove_element_unordered_atomic: { 6632 auto &MI = cast<AtomicMemMoveInst>(I); 6633 SDValue Dst = getValue(MI.getRawDest()); 6634 SDValue Src = getValue(MI.getRawSource()); 6635 SDValue Length = getValue(MI.getLength()); 6636 6637 Type *LengthTy = MI.getLength()->getType(); 6638 unsigned ElemSz = MI.getElementSizeInBytes(); 6639 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6640 SDValue MC = 6641 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6642 isTC, MachinePointerInfo(MI.getRawDest()), 6643 MachinePointerInfo(MI.getRawSource())); 6644 updateDAGForMaybeTailCall(MC); 6645 return; 6646 } 6647 case Intrinsic::memset_element_unordered_atomic: { 6648 auto &MI = cast<AtomicMemSetInst>(I); 6649 SDValue Dst = getValue(MI.getRawDest()); 6650 SDValue Val = getValue(MI.getValue()); 6651 SDValue Length = getValue(MI.getLength()); 6652 6653 Type *LengthTy = MI.getLength()->getType(); 6654 unsigned ElemSz = MI.getElementSizeInBytes(); 6655 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6656 SDValue MC = 6657 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6658 isTC, MachinePointerInfo(MI.getRawDest())); 6659 updateDAGForMaybeTailCall(MC); 6660 return; 6661 } 6662 case Intrinsic::call_preallocated_setup: { 6663 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6664 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6665 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6666 getRoot(), SrcValue); 6667 setValue(&I, Res); 6668 DAG.setRoot(Res); 6669 return; 6670 } 6671 case Intrinsic::call_preallocated_arg: { 6672 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6673 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6674 SDValue Ops[3]; 6675 Ops[0] = getRoot(); 6676 Ops[1] = SrcValue; 6677 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6678 MVT::i32); // arg index 6679 SDValue Res = DAG.getNode( 6680 ISD::PREALLOCATED_ARG, sdl, 6681 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6682 setValue(&I, Res); 6683 DAG.setRoot(Res.getValue(1)); 6684 return; 6685 } 6686 case Intrinsic::dbg_declare: { 6687 const auto &DI = cast<DbgDeclareInst>(I); 6688 // Debug intrinsics are handled separately in assignment tracking mode. 6689 // Some intrinsics are handled right after Argument lowering. 6690 if (AssignmentTrackingEnabled || 6691 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6692 return; 6693 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6694 DILocalVariable *Variable = DI.getVariable(); 6695 DIExpression *Expression = DI.getExpression(); 6696 dropDanglingDebugInfo(Variable, Expression); 6697 // Assume dbg.declare can not currently use DIArgList, i.e. 6698 // it is non-variadic. 6699 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6700 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6701 DI.getDebugLoc()); 6702 return; 6703 } 6704 case Intrinsic::dbg_label: { 6705 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6706 DILabel *Label = DI.getLabel(); 6707 assert(Label && "Missing label"); 6708 6709 SDDbgLabel *SDV; 6710 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6711 DAG.AddDbgLabel(SDV); 6712 return; 6713 } 6714 case Intrinsic::dbg_assign: { 6715 // Debug intrinsics are handled separately in assignment tracking mode. 6716 if (AssignmentTrackingEnabled) 6717 return; 6718 // If assignment tracking hasn't been enabled then fall through and treat 6719 // the dbg.assign as a dbg.value. 6720 [[fallthrough]]; 6721 } 6722 case Intrinsic::dbg_value: { 6723 // Debug intrinsics are handled separately in assignment tracking mode. 6724 if (AssignmentTrackingEnabled) 6725 return; 6726 const DbgValueInst &DI = cast<DbgValueInst>(I); 6727 assert(DI.getVariable() && "Missing variable"); 6728 6729 DILocalVariable *Variable = DI.getVariable(); 6730 DIExpression *Expression = DI.getExpression(); 6731 dropDanglingDebugInfo(Variable, Expression); 6732 6733 if (DI.isKillLocation()) { 6734 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6735 return; 6736 } 6737 6738 SmallVector<Value *, 4> Values(DI.getValues()); 6739 if (Values.empty()) 6740 return; 6741 6742 bool IsVariadic = DI.hasArgList(); 6743 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6744 SDNodeOrder, IsVariadic)) 6745 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6746 DI.getDebugLoc(), SDNodeOrder); 6747 return; 6748 } 6749 6750 case Intrinsic::eh_typeid_for: { 6751 // Find the type id for the given typeinfo. 6752 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6753 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6754 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6755 setValue(&I, Res); 6756 return; 6757 } 6758 6759 case Intrinsic::eh_return_i32: 6760 case Intrinsic::eh_return_i64: 6761 DAG.getMachineFunction().setCallsEHReturn(true); 6762 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6763 MVT::Other, 6764 getControlRoot(), 6765 getValue(I.getArgOperand(0)), 6766 getValue(I.getArgOperand(1)))); 6767 return; 6768 case Intrinsic::eh_unwind_init: 6769 DAG.getMachineFunction().setCallsUnwindInit(true); 6770 return; 6771 case Intrinsic::eh_dwarf_cfa: 6772 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6773 TLI.getPointerTy(DAG.getDataLayout()), 6774 getValue(I.getArgOperand(0)))); 6775 return; 6776 case Intrinsic::eh_sjlj_callsite: { 6777 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6778 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6779 6780 FuncInfo.setCurrentCallSite(CI->getZExtValue()); 6781 return; 6782 } 6783 case Intrinsic::eh_sjlj_functioncontext: { 6784 // Get and store the index of the function context. 6785 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6786 AllocaInst *FnCtx = 6787 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6788 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6789 MFI.setFunctionContextIndex(FI); 6790 return; 6791 } 6792 case Intrinsic::eh_sjlj_setjmp: { 6793 SDValue Ops[2]; 6794 Ops[0] = getRoot(); 6795 Ops[1] = getValue(I.getArgOperand(0)); 6796 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6797 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6798 setValue(&I, Op.getValue(0)); 6799 DAG.setRoot(Op.getValue(1)); 6800 return; 6801 } 6802 case Intrinsic::eh_sjlj_longjmp: 6803 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6804 getRoot(), getValue(I.getArgOperand(0)))); 6805 return; 6806 case Intrinsic::eh_sjlj_setup_dispatch: 6807 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6808 getRoot())); 6809 return; 6810 case Intrinsic::masked_gather: 6811 visitMaskedGather(I); 6812 return; 6813 case Intrinsic::masked_load: 6814 visitMaskedLoad(I); 6815 return; 6816 case Intrinsic::masked_scatter: 6817 visitMaskedScatter(I); 6818 return; 6819 case Intrinsic::masked_store: 6820 visitMaskedStore(I); 6821 return; 6822 case Intrinsic::masked_expandload: 6823 visitMaskedLoad(I, true /* IsExpanding */); 6824 return; 6825 case Intrinsic::masked_compressstore: 6826 visitMaskedStore(I, true /* IsCompressing */); 6827 return; 6828 case Intrinsic::powi: 6829 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6830 getValue(I.getArgOperand(1)), DAG)); 6831 return; 6832 case Intrinsic::log: 6833 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6834 return; 6835 case Intrinsic::log2: 6836 setValue(&I, 6837 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6838 return; 6839 case Intrinsic::log10: 6840 setValue(&I, 6841 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6842 return; 6843 case Intrinsic::exp: 6844 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6845 return; 6846 case Intrinsic::exp2: 6847 setValue(&I, 6848 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6849 return; 6850 case Intrinsic::pow: 6851 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6852 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6853 return; 6854 case Intrinsic::sqrt: 6855 case Intrinsic::fabs: 6856 case Intrinsic::sin: 6857 case Intrinsic::cos: 6858 case Intrinsic::tan: 6859 case Intrinsic::asin: 6860 case Intrinsic::acos: 6861 case Intrinsic::atan: 6862 case Intrinsic::sinh: 6863 case Intrinsic::cosh: 6864 case Intrinsic::tanh: 6865 case Intrinsic::exp10: 6866 case Intrinsic::floor: 6867 case Intrinsic::ceil: 6868 case Intrinsic::trunc: 6869 case Intrinsic::rint: 6870 case Intrinsic::nearbyint: 6871 case Intrinsic::round: 6872 case Intrinsic::roundeven: 6873 case Intrinsic::canonicalize: { 6874 unsigned Opcode; 6875 // clang-format off 6876 switch (Intrinsic) { 6877 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6878 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6879 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6880 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6881 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6882 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6883 case Intrinsic::asin: Opcode = ISD::FASIN; break; 6884 case Intrinsic::acos: Opcode = ISD::FACOS; break; 6885 case Intrinsic::atan: Opcode = ISD::FATAN; break; 6886 case Intrinsic::sinh: Opcode = ISD::FSINH; break; 6887 case Intrinsic::cosh: Opcode = ISD::FCOSH; break; 6888 case Intrinsic::tanh: Opcode = ISD::FTANH; break; 6889 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6890 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6891 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6892 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6893 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6894 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6895 case Intrinsic::round: Opcode = ISD::FROUND; break; 6896 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6897 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6898 } 6899 // clang-format on 6900 6901 setValue(&I, DAG.getNode(Opcode, sdl, 6902 getValue(I.getArgOperand(0)).getValueType(), 6903 getValue(I.getArgOperand(0)), Flags)); 6904 return; 6905 } 6906 case Intrinsic::atan2: 6907 setValue(&I, DAG.getNode(ISD::FATAN2, sdl, 6908 getValue(I.getArgOperand(0)).getValueType(), 6909 getValue(I.getArgOperand(0)), 6910 getValue(I.getArgOperand(1)), Flags)); 6911 return; 6912 case Intrinsic::lround: 6913 case Intrinsic::llround: 6914 case Intrinsic::lrint: 6915 case Intrinsic::llrint: { 6916 unsigned Opcode; 6917 // clang-format off 6918 switch (Intrinsic) { 6919 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6920 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6921 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6922 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6923 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6924 } 6925 // clang-format on 6926 6927 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6928 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6929 getValue(I.getArgOperand(0)))); 6930 return; 6931 } 6932 case Intrinsic::minnum: 6933 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6934 getValue(I.getArgOperand(0)).getValueType(), 6935 getValue(I.getArgOperand(0)), 6936 getValue(I.getArgOperand(1)), Flags)); 6937 return; 6938 case Intrinsic::maxnum: 6939 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6940 getValue(I.getArgOperand(0)).getValueType(), 6941 getValue(I.getArgOperand(0)), 6942 getValue(I.getArgOperand(1)), Flags)); 6943 return; 6944 case Intrinsic::minimum: 6945 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6946 getValue(I.getArgOperand(0)).getValueType(), 6947 getValue(I.getArgOperand(0)), 6948 getValue(I.getArgOperand(1)), Flags)); 6949 return; 6950 case Intrinsic::maximum: 6951 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6952 getValue(I.getArgOperand(0)).getValueType(), 6953 getValue(I.getArgOperand(0)), 6954 getValue(I.getArgOperand(1)), Flags)); 6955 return; 6956 case Intrinsic::minimumnum: 6957 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl, 6958 getValue(I.getArgOperand(0)).getValueType(), 6959 getValue(I.getArgOperand(0)), 6960 getValue(I.getArgOperand(1)), Flags)); 6961 return; 6962 case Intrinsic::maximumnum: 6963 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl, 6964 getValue(I.getArgOperand(0)).getValueType(), 6965 getValue(I.getArgOperand(0)), 6966 getValue(I.getArgOperand(1)), Flags)); 6967 return; 6968 case Intrinsic::copysign: 6969 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6970 getValue(I.getArgOperand(0)).getValueType(), 6971 getValue(I.getArgOperand(0)), 6972 getValue(I.getArgOperand(1)), Flags)); 6973 return; 6974 case Intrinsic::ldexp: 6975 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6976 getValue(I.getArgOperand(0)).getValueType(), 6977 getValue(I.getArgOperand(0)), 6978 getValue(I.getArgOperand(1)), Flags)); 6979 return; 6980 case Intrinsic::sincos: 6981 case Intrinsic::frexp: { 6982 unsigned Opcode; 6983 switch (Intrinsic) { 6984 default: 6985 llvm_unreachable("unexpected intrinsic"); 6986 case Intrinsic::sincos: 6987 Opcode = ISD::FSINCOS; 6988 break; 6989 case Intrinsic::frexp: 6990 Opcode = ISD::FFREXP; 6991 break; 6992 } 6993 SmallVector<EVT, 2> ValueVTs; 6994 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6995 SDVTList VTs = DAG.getVTList(ValueVTs); 6996 setValue( 6997 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags)); 6998 return; 6999 } 7000 case Intrinsic::arithmetic_fence: { 7001 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 7002 getValue(I.getArgOperand(0)).getValueType(), 7003 getValue(I.getArgOperand(0)), Flags)); 7004 return; 7005 } 7006 case Intrinsic::fma: 7007 setValue(&I, DAG.getNode( 7008 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 7009 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 7010 getValue(I.getArgOperand(2)), Flags)); 7011 return; 7012 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 7013 case Intrinsic::INTRINSIC: 7014 #include "llvm/IR/ConstrainedOps.def" 7015 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 7016 return; 7017 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7018 #include "llvm/IR/VPIntrinsics.def" 7019 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 7020 return; 7021 case Intrinsic::fptrunc_round: { 7022 // Get the last argument, the metadata and convert it to an integer in the 7023 // call 7024 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 7025 std::optional<RoundingMode> RoundMode = 7026 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 7027 7028 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7029 7030 // Propagate fast-math-flags from IR to node(s). 7031 SDNodeFlags Flags; 7032 Flags.copyFMF(*cast<FPMathOperator>(&I)); 7033 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 7034 7035 SDValue Result; 7036 Result = DAG.getNode( 7037 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 7038 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32)); 7039 setValue(&I, Result); 7040 7041 return; 7042 } 7043 case Intrinsic::fmuladd: { 7044 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7045 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7046 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7047 setValue(&I, DAG.getNode(ISD::FMA, sdl, 7048 getValue(I.getArgOperand(0)).getValueType(), 7049 getValue(I.getArgOperand(0)), 7050 getValue(I.getArgOperand(1)), 7051 getValue(I.getArgOperand(2)), Flags)); 7052 } else { 7053 // TODO: Intrinsic calls should have fast-math-flags. 7054 SDValue Mul = DAG.getNode( 7055 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 7056 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 7057 SDValue Add = DAG.getNode(ISD::FADD, sdl, 7058 getValue(I.getArgOperand(0)).getValueType(), 7059 Mul, getValue(I.getArgOperand(2)), Flags); 7060 setValue(&I, Add); 7061 } 7062 return; 7063 } 7064 case Intrinsic::convert_to_fp16: 7065 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 7066 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 7067 getValue(I.getArgOperand(0)), 7068 DAG.getTargetConstant(0, sdl, 7069 MVT::i32)))); 7070 return; 7071 case Intrinsic::convert_from_fp16: 7072 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 7073 TLI.getValueType(DAG.getDataLayout(), I.getType()), 7074 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 7075 getValue(I.getArgOperand(0))))); 7076 return; 7077 case Intrinsic::fptosi_sat: { 7078 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7079 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 7080 getValue(I.getArgOperand(0)), 7081 DAG.getValueType(VT.getScalarType()))); 7082 return; 7083 } 7084 case Intrinsic::fptoui_sat: { 7085 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7086 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 7087 getValue(I.getArgOperand(0)), 7088 DAG.getValueType(VT.getScalarType()))); 7089 return; 7090 } 7091 case Intrinsic::set_rounding: 7092 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 7093 {getRoot(), getValue(I.getArgOperand(0))}); 7094 setValue(&I, Res); 7095 DAG.setRoot(Res.getValue(0)); 7096 return; 7097 case Intrinsic::is_fpclass: { 7098 const DataLayout DLayout = DAG.getDataLayout(); 7099 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 7100 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 7101 FPClassTest Test = static_cast<FPClassTest>( 7102 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 7103 MachineFunction &MF = DAG.getMachineFunction(); 7104 const Function &F = MF.getFunction(); 7105 SDValue Op = getValue(I.getArgOperand(0)); 7106 SDNodeFlags Flags; 7107 Flags.setNoFPExcept( 7108 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 7109 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 7110 // expansion can use illegal types. Making expansion early allows 7111 // legalizing these types prior to selection. 7112 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) && 7113 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) { 7114 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 7115 setValue(&I, Result); 7116 return; 7117 } 7118 7119 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 7120 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 7121 setValue(&I, V); 7122 return; 7123 } 7124 case Intrinsic::get_fpenv: { 7125 const DataLayout DLayout = DAG.getDataLayout(); 7126 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 7127 Align TempAlign = DAG.getEVTAlign(EnvVT); 7128 SDValue Chain = getRoot(); 7129 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 7130 // and temporary storage in stack. 7131 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 7132 Res = DAG.getNode( 7133 ISD::GET_FPENV, sdl, 7134 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7135 MVT::Other), 7136 Chain); 7137 } else { 7138 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7139 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7140 auto MPI = 7141 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7142 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7143 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 7144 TempAlign); 7145 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7146 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 7147 } 7148 setValue(&I, Res); 7149 DAG.setRoot(Res.getValue(1)); 7150 return; 7151 } 7152 case Intrinsic::set_fpenv: { 7153 const DataLayout DLayout = DAG.getDataLayout(); 7154 SDValue Env = getValue(I.getArgOperand(0)); 7155 EVT EnvVT = Env.getValueType(); 7156 Align TempAlign = DAG.getEVTAlign(EnvVT); 7157 SDValue Chain = getRoot(); 7158 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7159 // environment from memory. 7160 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7161 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7162 } else { 7163 // Allocate space in stack, copy environment bits into it and use this 7164 // memory in SET_FPENV_MEM. 7165 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7166 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7167 auto MPI = 7168 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7169 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7170 MachineMemOperand::MOStore); 7171 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7172 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7173 TempAlign); 7174 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7175 } 7176 DAG.setRoot(Chain); 7177 return; 7178 } 7179 case Intrinsic::reset_fpenv: 7180 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7181 return; 7182 case Intrinsic::get_fpmode: 7183 Res = DAG.getNode( 7184 ISD::GET_FPMODE, sdl, 7185 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7186 MVT::Other), 7187 DAG.getRoot()); 7188 setValue(&I, Res); 7189 DAG.setRoot(Res.getValue(1)); 7190 return; 7191 case Intrinsic::set_fpmode: 7192 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7193 getValue(I.getArgOperand(0))); 7194 DAG.setRoot(Res); 7195 return; 7196 case Intrinsic::reset_fpmode: { 7197 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7198 DAG.setRoot(Res); 7199 return; 7200 } 7201 case Intrinsic::pcmarker: { 7202 SDValue Tmp = getValue(I.getArgOperand(0)); 7203 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7204 return; 7205 } 7206 case Intrinsic::readcyclecounter: { 7207 SDValue Op = getRoot(); 7208 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7209 DAG.getVTList(MVT::i64, MVT::Other), Op); 7210 setValue(&I, Res); 7211 DAG.setRoot(Res.getValue(1)); 7212 return; 7213 } 7214 case Intrinsic::readsteadycounter: { 7215 SDValue Op = getRoot(); 7216 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7217 DAG.getVTList(MVT::i64, MVT::Other), Op); 7218 setValue(&I, Res); 7219 DAG.setRoot(Res.getValue(1)); 7220 return; 7221 } 7222 case Intrinsic::bitreverse: 7223 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7224 getValue(I.getArgOperand(0)).getValueType(), 7225 getValue(I.getArgOperand(0)))); 7226 return; 7227 case Intrinsic::bswap: 7228 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7229 getValue(I.getArgOperand(0)).getValueType(), 7230 getValue(I.getArgOperand(0)))); 7231 return; 7232 case Intrinsic::cttz: { 7233 SDValue Arg = getValue(I.getArgOperand(0)); 7234 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7235 EVT Ty = Arg.getValueType(); 7236 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7237 sdl, Ty, Arg)); 7238 return; 7239 } 7240 case Intrinsic::ctlz: { 7241 SDValue Arg = getValue(I.getArgOperand(0)); 7242 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7243 EVT Ty = Arg.getValueType(); 7244 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7245 sdl, Ty, Arg)); 7246 return; 7247 } 7248 case Intrinsic::ctpop: { 7249 SDValue Arg = getValue(I.getArgOperand(0)); 7250 EVT Ty = Arg.getValueType(); 7251 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7252 return; 7253 } 7254 case Intrinsic::fshl: 7255 case Intrinsic::fshr: { 7256 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7257 SDValue X = getValue(I.getArgOperand(0)); 7258 SDValue Y = getValue(I.getArgOperand(1)); 7259 SDValue Z = getValue(I.getArgOperand(2)); 7260 EVT VT = X.getValueType(); 7261 7262 if (X == Y) { 7263 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7264 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7265 } else { 7266 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7267 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7268 } 7269 return; 7270 } 7271 case Intrinsic::sadd_sat: { 7272 SDValue Op1 = getValue(I.getArgOperand(0)); 7273 SDValue Op2 = getValue(I.getArgOperand(1)); 7274 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7275 return; 7276 } 7277 case Intrinsic::uadd_sat: { 7278 SDValue Op1 = getValue(I.getArgOperand(0)); 7279 SDValue Op2 = getValue(I.getArgOperand(1)); 7280 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7281 return; 7282 } 7283 case Intrinsic::ssub_sat: { 7284 SDValue Op1 = getValue(I.getArgOperand(0)); 7285 SDValue Op2 = getValue(I.getArgOperand(1)); 7286 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7287 return; 7288 } 7289 case Intrinsic::usub_sat: { 7290 SDValue Op1 = getValue(I.getArgOperand(0)); 7291 SDValue Op2 = getValue(I.getArgOperand(1)); 7292 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7293 return; 7294 } 7295 case Intrinsic::sshl_sat: { 7296 SDValue Op1 = getValue(I.getArgOperand(0)); 7297 SDValue Op2 = getValue(I.getArgOperand(1)); 7298 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7299 return; 7300 } 7301 case Intrinsic::ushl_sat: { 7302 SDValue Op1 = getValue(I.getArgOperand(0)); 7303 SDValue Op2 = getValue(I.getArgOperand(1)); 7304 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7305 return; 7306 } 7307 case Intrinsic::smul_fix: 7308 case Intrinsic::umul_fix: 7309 case Intrinsic::smul_fix_sat: 7310 case Intrinsic::umul_fix_sat: { 7311 SDValue Op1 = getValue(I.getArgOperand(0)); 7312 SDValue Op2 = getValue(I.getArgOperand(1)); 7313 SDValue Op3 = getValue(I.getArgOperand(2)); 7314 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7315 Op1.getValueType(), Op1, Op2, Op3)); 7316 return; 7317 } 7318 case Intrinsic::sdiv_fix: 7319 case Intrinsic::udiv_fix: 7320 case Intrinsic::sdiv_fix_sat: 7321 case Intrinsic::udiv_fix_sat: { 7322 SDValue Op1 = getValue(I.getArgOperand(0)); 7323 SDValue Op2 = getValue(I.getArgOperand(1)); 7324 SDValue Op3 = getValue(I.getArgOperand(2)); 7325 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7326 Op1, Op2, Op3, DAG, TLI)); 7327 return; 7328 } 7329 case Intrinsic::smax: { 7330 SDValue Op1 = getValue(I.getArgOperand(0)); 7331 SDValue Op2 = getValue(I.getArgOperand(1)); 7332 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7333 return; 7334 } 7335 case Intrinsic::smin: { 7336 SDValue Op1 = getValue(I.getArgOperand(0)); 7337 SDValue Op2 = getValue(I.getArgOperand(1)); 7338 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7339 return; 7340 } 7341 case Intrinsic::umax: { 7342 SDValue Op1 = getValue(I.getArgOperand(0)); 7343 SDValue Op2 = getValue(I.getArgOperand(1)); 7344 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7345 return; 7346 } 7347 case Intrinsic::umin: { 7348 SDValue Op1 = getValue(I.getArgOperand(0)); 7349 SDValue Op2 = getValue(I.getArgOperand(1)); 7350 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7351 return; 7352 } 7353 case Intrinsic::abs: { 7354 // TODO: Preserve "int min is poison" arg in SDAG? 7355 SDValue Op1 = getValue(I.getArgOperand(0)); 7356 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7357 return; 7358 } 7359 case Intrinsic::scmp: { 7360 SDValue Op1 = getValue(I.getArgOperand(0)); 7361 SDValue Op2 = getValue(I.getArgOperand(1)); 7362 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7363 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2)); 7364 break; 7365 } 7366 case Intrinsic::ucmp: { 7367 SDValue Op1 = getValue(I.getArgOperand(0)); 7368 SDValue Op2 = getValue(I.getArgOperand(1)); 7369 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7370 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2)); 7371 break; 7372 } 7373 case Intrinsic::stacksave: { 7374 SDValue Op = getRoot(); 7375 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7376 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7377 setValue(&I, Res); 7378 DAG.setRoot(Res.getValue(1)); 7379 return; 7380 } 7381 case Intrinsic::stackrestore: 7382 Res = getValue(I.getArgOperand(0)); 7383 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7384 return; 7385 case Intrinsic::get_dynamic_area_offset: { 7386 SDValue Op = getRoot(); 7387 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7388 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7389 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7390 // target. 7391 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7392 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7393 " intrinsic!"); 7394 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7395 Op); 7396 DAG.setRoot(Op); 7397 setValue(&I, Res); 7398 return; 7399 } 7400 case Intrinsic::stackguard: { 7401 MachineFunction &MF = DAG.getMachineFunction(); 7402 const Module &M = *MF.getFunction().getParent(); 7403 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7404 SDValue Chain = getRoot(); 7405 if (TLI.useLoadStackGuardNode(M)) { 7406 Res = getLoadStackGuard(DAG, sdl, Chain); 7407 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7408 } else { 7409 const Value *Global = TLI.getSDagStackGuard(M); 7410 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7411 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7412 MachinePointerInfo(Global, 0), Align, 7413 MachineMemOperand::MOVolatile); 7414 } 7415 if (TLI.useStackGuardXorFP()) 7416 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7417 DAG.setRoot(Chain); 7418 setValue(&I, Res); 7419 return; 7420 } 7421 case Intrinsic::stackprotector: { 7422 // Emit code into the DAG to store the stack guard onto the stack. 7423 MachineFunction &MF = DAG.getMachineFunction(); 7424 MachineFrameInfo &MFI = MF.getFrameInfo(); 7425 const Module &M = *MF.getFunction().getParent(); 7426 SDValue Src, Chain = getRoot(); 7427 7428 if (TLI.useLoadStackGuardNode(M)) 7429 Src = getLoadStackGuard(DAG, sdl, Chain); 7430 else 7431 Src = getValue(I.getArgOperand(0)); // The guard's value. 7432 7433 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7434 7435 int FI = FuncInfo.StaticAllocaMap[Slot]; 7436 MFI.setStackProtectorIndex(FI); 7437 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7438 7439 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7440 7441 // Store the stack protector onto the stack. 7442 Res = DAG.getStore( 7443 Chain, sdl, Src, FIN, 7444 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7445 MaybeAlign(), MachineMemOperand::MOVolatile); 7446 setValue(&I, Res); 7447 DAG.setRoot(Res); 7448 return; 7449 } 7450 case Intrinsic::objectsize: 7451 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7452 7453 case Intrinsic::is_constant: 7454 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7455 7456 case Intrinsic::annotation: 7457 case Intrinsic::ptr_annotation: 7458 case Intrinsic::launder_invariant_group: 7459 case Intrinsic::strip_invariant_group: 7460 // Drop the intrinsic, but forward the value 7461 setValue(&I, getValue(I.getOperand(0))); 7462 return; 7463 7464 case Intrinsic::assume: 7465 case Intrinsic::experimental_noalias_scope_decl: 7466 case Intrinsic::var_annotation: 7467 case Intrinsic::sideeffect: 7468 // Discard annotate attributes, noalias scope declarations, assumptions, and 7469 // artificial side-effects. 7470 return; 7471 7472 case Intrinsic::codeview_annotation: { 7473 // Emit a label associated with this metadata. 7474 MachineFunction &MF = DAG.getMachineFunction(); 7475 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true); 7476 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7477 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7478 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7479 DAG.setRoot(Res); 7480 return; 7481 } 7482 7483 case Intrinsic::init_trampoline: { 7484 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7485 7486 SDValue Ops[6]; 7487 Ops[0] = getRoot(); 7488 Ops[1] = getValue(I.getArgOperand(0)); 7489 Ops[2] = getValue(I.getArgOperand(1)); 7490 Ops[3] = getValue(I.getArgOperand(2)); 7491 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7492 Ops[5] = DAG.getSrcValue(F); 7493 7494 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7495 7496 DAG.setRoot(Res); 7497 return; 7498 } 7499 case Intrinsic::adjust_trampoline: 7500 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7501 TLI.getPointerTy(DAG.getDataLayout()), 7502 getValue(I.getArgOperand(0)))); 7503 return; 7504 case Intrinsic::gcroot: { 7505 assert(DAG.getMachineFunction().getFunction().hasGC() && 7506 "only valid in functions with gc specified, enforced by Verifier"); 7507 assert(GFI && "implied by previous"); 7508 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7509 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7510 7511 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7512 GFI->addStackRoot(FI->getIndex(), TypeMap); 7513 return; 7514 } 7515 case Intrinsic::gcread: 7516 case Intrinsic::gcwrite: 7517 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7518 case Intrinsic::get_rounding: 7519 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7520 setValue(&I, Res); 7521 DAG.setRoot(Res.getValue(1)); 7522 return; 7523 7524 case Intrinsic::expect: 7525 case Intrinsic::expect_with_probability: 7526 // Just replace __builtin_expect(exp, c) and 7527 // __builtin_expect_with_probability(exp, c, p) with EXP. 7528 setValue(&I, getValue(I.getArgOperand(0))); 7529 return; 7530 7531 case Intrinsic::ubsantrap: 7532 case Intrinsic::debugtrap: 7533 case Intrinsic::trap: { 7534 StringRef TrapFuncName = 7535 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7536 if (TrapFuncName.empty()) { 7537 switch (Intrinsic) { 7538 case Intrinsic::trap: 7539 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7540 break; 7541 case Intrinsic::debugtrap: 7542 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7543 break; 7544 case Intrinsic::ubsantrap: 7545 DAG.setRoot(DAG.getNode( 7546 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7547 DAG.getTargetConstant( 7548 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7549 MVT::i32))); 7550 break; 7551 default: llvm_unreachable("unknown trap intrinsic"); 7552 } 7553 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(), 7554 I.hasFnAttr(Attribute::NoMerge)); 7555 return; 7556 } 7557 TargetLowering::ArgListTy Args; 7558 if (Intrinsic == Intrinsic::ubsantrap) { 7559 Args.push_back(TargetLoweringBase::ArgListEntry()); 7560 Args[0].Val = I.getArgOperand(0); 7561 Args[0].Node = getValue(Args[0].Val); 7562 Args[0].Ty = Args[0].Val->getType(); 7563 } 7564 7565 TargetLowering::CallLoweringInfo CLI(DAG); 7566 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7567 CallingConv::C, I.getType(), 7568 DAG.getExternalSymbol(TrapFuncName.data(), 7569 TLI.getPointerTy(DAG.getDataLayout())), 7570 std::move(Args)); 7571 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge); 7572 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7573 DAG.setRoot(Result.second); 7574 return; 7575 } 7576 7577 case Intrinsic::allow_runtime_check: 7578 case Intrinsic::allow_ubsan_check: 7579 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7580 return; 7581 7582 case Intrinsic::uadd_with_overflow: 7583 case Intrinsic::sadd_with_overflow: 7584 case Intrinsic::usub_with_overflow: 7585 case Intrinsic::ssub_with_overflow: 7586 case Intrinsic::umul_with_overflow: 7587 case Intrinsic::smul_with_overflow: { 7588 ISD::NodeType Op; 7589 switch (Intrinsic) { 7590 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7591 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7592 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7593 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7594 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7595 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7596 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7597 } 7598 SDValue Op1 = getValue(I.getArgOperand(0)); 7599 SDValue Op2 = getValue(I.getArgOperand(1)); 7600 7601 EVT ResultVT = Op1.getValueType(); 7602 EVT OverflowVT = MVT::i1; 7603 if (ResultVT.isVector()) 7604 OverflowVT = EVT::getVectorVT( 7605 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7606 7607 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7608 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7609 return; 7610 } 7611 case Intrinsic::prefetch: { 7612 SDValue Ops[5]; 7613 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7614 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7615 Ops[0] = DAG.getRoot(); 7616 Ops[1] = getValue(I.getArgOperand(0)); 7617 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7618 MVT::i32); 7619 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7620 MVT::i32); 7621 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7622 MVT::i32); 7623 SDValue Result = DAG.getMemIntrinsicNode( 7624 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7625 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7626 /* align */ std::nullopt, Flags); 7627 7628 // Chain the prefetch in parallel with any pending loads, to stay out of 7629 // the way of later optimizations. 7630 PendingLoads.push_back(Result); 7631 Result = getRoot(); 7632 DAG.setRoot(Result); 7633 return; 7634 } 7635 case Intrinsic::lifetime_start: 7636 case Intrinsic::lifetime_end: { 7637 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7638 // Stack coloring is not enabled in O0, discard region information. 7639 if (TM.getOptLevel() == CodeGenOptLevel::None) 7640 return; 7641 7642 const int64_t ObjectSize = 7643 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7644 Value *const ObjectPtr = I.getArgOperand(1); 7645 SmallVector<const Value *, 4> Allocas; 7646 getUnderlyingObjects(ObjectPtr, Allocas); 7647 7648 for (const Value *Alloca : Allocas) { 7649 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7650 7651 // Could not find an Alloca. 7652 if (!LifetimeObject) 7653 continue; 7654 7655 // First check that the Alloca is static, otherwise it won't have a 7656 // valid frame index. 7657 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7658 if (SI == FuncInfo.StaticAllocaMap.end()) 7659 return; 7660 7661 const int FrameIndex = SI->second; 7662 int64_t Offset; 7663 if (GetPointerBaseWithConstantOffset( 7664 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7665 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7666 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7667 Offset); 7668 DAG.setRoot(Res); 7669 } 7670 return; 7671 } 7672 case Intrinsic::pseudoprobe: { 7673 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7674 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7675 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7676 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7677 DAG.setRoot(Res); 7678 return; 7679 } 7680 case Intrinsic::invariant_start: 7681 // Discard region information. 7682 setValue(&I, 7683 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7684 return; 7685 case Intrinsic::invariant_end: 7686 // Discard region information. 7687 return; 7688 case Intrinsic::clear_cache: { 7689 SDValue InputChain = DAG.getRoot(); 7690 SDValue StartVal = getValue(I.getArgOperand(0)); 7691 SDValue EndVal = getValue(I.getArgOperand(1)); 7692 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7693 {InputChain, StartVal, EndVal}); 7694 setValue(&I, Res); 7695 DAG.setRoot(Res); 7696 return; 7697 } 7698 case Intrinsic::donothing: 7699 case Intrinsic::seh_try_begin: 7700 case Intrinsic::seh_scope_begin: 7701 case Intrinsic::seh_try_end: 7702 case Intrinsic::seh_scope_end: 7703 // ignore 7704 return; 7705 case Intrinsic::experimental_stackmap: 7706 visitStackmap(I); 7707 return; 7708 case Intrinsic::experimental_patchpoint_void: 7709 case Intrinsic::experimental_patchpoint: 7710 visitPatchpoint(I); 7711 return; 7712 case Intrinsic::experimental_gc_statepoint: 7713 LowerStatepoint(cast<GCStatepointInst>(I)); 7714 return; 7715 case Intrinsic::experimental_gc_result: 7716 visitGCResult(cast<GCResultInst>(I)); 7717 return; 7718 case Intrinsic::experimental_gc_relocate: 7719 visitGCRelocate(cast<GCRelocateInst>(I)); 7720 return; 7721 case Intrinsic::instrprof_cover: 7722 llvm_unreachable("instrprof failed to lower a cover"); 7723 case Intrinsic::instrprof_increment: 7724 llvm_unreachable("instrprof failed to lower an increment"); 7725 case Intrinsic::instrprof_timestamp: 7726 llvm_unreachable("instrprof failed to lower a timestamp"); 7727 case Intrinsic::instrprof_value_profile: 7728 llvm_unreachable("instrprof failed to lower a value profiling call"); 7729 case Intrinsic::instrprof_mcdc_parameters: 7730 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7731 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7732 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7733 case Intrinsic::localescape: { 7734 MachineFunction &MF = DAG.getMachineFunction(); 7735 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7736 7737 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7738 // is the same on all targets. 7739 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7740 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7741 if (isa<ConstantPointerNull>(Arg)) 7742 continue; // Skip null pointers. They represent a hole in index space. 7743 AllocaInst *Slot = cast<AllocaInst>(Arg); 7744 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7745 "can only escape static allocas"); 7746 int FI = FuncInfo.StaticAllocaMap[Slot]; 7747 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7748 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7749 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7750 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7751 .addSym(FrameAllocSym) 7752 .addFrameIndex(FI); 7753 } 7754 7755 return; 7756 } 7757 7758 case Intrinsic::localrecover: { 7759 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7760 MachineFunction &MF = DAG.getMachineFunction(); 7761 7762 // Get the symbol that defines the frame offset. 7763 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7764 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7765 unsigned IdxVal = 7766 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7767 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol( 7768 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7769 7770 Value *FP = I.getArgOperand(1); 7771 SDValue FPVal = getValue(FP); 7772 EVT PtrVT = FPVal.getValueType(); 7773 7774 // Create a MCSymbol for the label to avoid any target lowering 7775 // that would make this PC relative. 7776 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7777 SDValue OffsetVal = 7778 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7779 7780 // Add the offset to the FP. 7781 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7782 setValue(&I, Add); 7783 7784 return; 7785 } 7786 7787 case Intrinsic::fake_use: { 7788 Value *V = I.getArgOperand(0); 7789 SDValue Ops[2]; 7790 // For Values not declared or previously used in this basic block, the 7791 // NodeMap will not have an entry, and `getValue` will assert if V has no 7792 // valid register value. 7793 auto FakeUseValue = [&]() -> SDValue { 7794 SDValue &N = NodeMap[V]; 7795 if (N.getNode()) 7796 return N; 7797 7798 // If there's a virtual register allocated and initialized for this 7799 // value, use it. 7800 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 7801 return copyFromReg; 7802 // FIXME: Do we want to preserve constants? It seems pointless. 7803 if (isa<Constant>(V)) 7804 return getValue(V); 7805 return SDValue(); 7806 }(); 7807 if (!FakeUseValue || FakeUseValue.isUndef()) 7808 return; 7809 Ops[0] = getRoot(); 7810 Ops[1] = FakeUseValue; 7811 // Also, do not translate a fake use with an undef operand, or any other 7812 // empty SDValues. 7813 if (!Ops[1] || Ops[1].isUndef()) 7814 return; 7815 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops)); 7816 return; 7817 } 7818 7819 case Intrinsic::eh_exceptionpointer: 7820 case Intrinsic::eh_exceptioncode: { 7821 // Get the exception pointer vreg, copy from it, and resize it to fit. 7822 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7823 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7824 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7825 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7826 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7827 if (Intrinsic == Intrinsic::eh_exceptioncode) 7828 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7829 setValue(&I, N); 7830 return; 7831 } 7832 case Intrinsic::xray_customevent: { 7833 // Here we want to make sure that the intrinsic behaves as if it has a 7834 // specific calling convention. 7835 const auto &Triple = DAG.getTarget().getTargetTriple(); 7836 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7837 return; 7838 7839 SmallVector<SDValue, 8> Ops; 7840 7841 // We want to say that we always want the arguments in registers. 7842 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7843 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7844 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7845 SDValue Chain = getRoot(); 7846 Ops.push_back(LogEntryVal); 7847 Ops.push_back(StrSizeVal); 7848 Ops.push_back(Chain); 7849 7850 // We need to enforce the calling convention for the callsite, so that 7851 // argument ordering is enforced correctly, and that register allocation can 7852 // see that some registers may be assumed clobbered and have to preserve 7853 // them across calls to the intrinsic. 7854 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7855 sdl, NodeTys, Ops); 7856 SDValue patchableNode = SDValue(MN, 0); 7857 DAG.setRoot(patchableNode); 7858 setValue(&I, patchableNode); 7859 return; 7860 } 7861 case Intrinsic::xray_typedevent: { 7862 // Here we want to make sure that the intrinsic behaves as if it has a 7863 // specific calling convention. 7864 const auto &Triple = DAG.getTarget().getTargetTriple(); 7865 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7866 return; 7867 7868 SmallVector<SDValue, 8> Ops; 7869 7870 // We want to say that we always want the arguments in registers. 7871 // It's unclear to me how manipulating the selection DAG here forces callers 7872 // to provide arguments in registers instead of on the stack. 7873 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7874 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7875 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7876 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7877 SDValue Chain = getRoot(); 7878 Ops.push_back(LogTypeId); 7879 Ops.push_back(LogEntryVal); 7880 Ops.push_back(StrSizeVal); 7881 Ops.push_back(Chain); 7882 7883 // We need to enforce the calling convention for the callsite, so that 7884 // argument ordering is enforced correctly, and that register allocation can 7885 // see that some registers may be assumed clobbered and have to preserve 7886 // them across calls to the intrinsic. 7887 MachineSDNode *MN = DAG.getMachineNode( 7888 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7889 SDValue patchableNode = SDValue(MN, 0); 7890 DAG.setRoot(patchableNode); 7891 setValue(&I, patchableNode); 7892 return; 7893 } 7894 case Intrinsic::experimental_deoptimize: 7895 LowerDeoptimizeCall(&I); 7896 return; 7897 case Intrinsic::stepvector: 7898 visitStepVector(I); 7899 return; 7900 case Intrinsic::vector_reduce_fadd: 7901 case Intrinsic::vector_reduce_fmul: 7902 case Intrinsic::vector_reduce_add: 7903 case Intrinsic::vector_reduce_mul: 7904 case Intrinsic::vector_reduce_and: 7905 case Intrinsic::vector_reduce_or: 7906 case Intrinsic::vector_reduce_xor: 7907 case Intrinsic::vector_reduce_smax: 7908 case Intrinsic::vector_reduce_smin: 7909 case Intrinsic::vector_reduce_umax: 7910 case Intrinsic::vector_reduce_umin: 7911 case Intrinsic::vector_reduce_fmax: 7912 case Intrinsic::vector_reduce_fmin: 7913 case Intrinsic::vector_reduce_fmaximum: 7914 case Intrinsic::vector_reduce_fminimum: 7915 visitVectorReduce(I, Intrinsic); 7916 return; 7917 7918 case Intrinsic::icall_branch_funnel: { 7919 SmallVector<SDValue, 16> Ops; 7920 Ops.push_back(getValue(I.getArgOperand(0))); 7921 7922 int64_t Offset; 7923 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7924 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7925 if (!Base) 7926 report_fatal_error( 7927 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7928 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7929 7930 struct BranchFunnelTarget { 7931 int64_t Offset; 7932 SDValue Target; 7933 }; 7934 SmallVector<BranchFunnelTarget, 8> Targets; 7935 7936 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7937 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7938 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7939 if (ElemBase != Base) 7940 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7941 "to the same GlobalValue"); 7942 7943 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7944 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7945 if (!GA) 7946 report_fatal_error( 7947 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7948 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7949 GA->getGlobal(), sdl, Val.getValueType(), 7950 GA->getOffset())}); 7951 } 7952 llvm::sort(Targets, 7953 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7954 return T1.Offset < T2.Offset; 7955 }); 7956 7957 for (auto &T : Targets) { 7958 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7959 Ops.push_back(T.Target); 7960 } 7961 7962 Ops.push_back(DAG.getRoot()); // Chain 7963 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7964 MVT::Other, Ops), 7965 0); 7966 DAG.setRoot(N); 7967 setValue(&I, N); 7968 HasTailCall = true; 7969 return; 7970 } 7971 7972 case Intrinsic::wasm_landingpad_index: 7973 // Information this intrinsic contained has been transferred to 7974 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7975 // delete it now. 7976 return; 7977 7978 case Intrinsic::aarch64_settag: 7979 case Intrinsic::aarch64_settag_zero: { 7980 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7981 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7982 SDValue Val = TSI.EmitTargetCodeForSetTag( 7983 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7984 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7985 ZeroMemory); 7986 DAG.setRoot(Val); 7987 setValue(&I, Val); 7988 return; 7989 } 7990 case Intrinsic::amdgcn_cs_chain: { 7991 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7992 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7993 "Non-zero flags not supported yet"); 7994 7995 // At this point we don't care if it's amdgpu_cs_chain or 7996 // amdgpu_cs_chain_preserve. 7997 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7998 7999 Type *RetTy = I.getType(); 8000 assert(RetTy->isVoidTy() && "Should not return"); 8001 8002 SDValue Callee = getValue(I.getOperand(0)); 8003 8004 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 8005 // We'll also tack the value of the EXEC mask at the end. 8006 TargetLowering::ArgListTy Args; 8007 Args.reserve(3); 8008 8009 for (unsigned Idx : {2, 3, 1}) { 8010 TargetLowering::ArgListEntry Arg; 8011 Arg.Node = getValue(I.getOperand(Idx)); 8012 Arg.Ty = I.getOperand(Idx)->getType(); 8013 Arg.setAttributes(&I, Idx); 8014 Args.push_back(Arg); 8015 } 8016 8017 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 8018 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 8019 Args[2].IsInReg = true; // EXEC should be inreg 8020 8021 TargetLowering::CallLoweringInfo CLI(DAG); 8022 CLI.setDebugLoc(getCurSDLoc()) 8023 .setChain(getRoot()) 8024 .setCallee(CC, RetTy, Callee, std::move(Args)) 8025 .setNoReturn(true) 8026 .setTailCall(true) 8027 .setConvergent(I.isConvergent()); 8028 CLI.CB = &I; 8029 std::pair<SDValue, SDValue> Result = 8030 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 8031 (void)Result; 8032 assert(!Result.first.getNode() && !Result.second.getNode() && 8033 "Should've lowered as tail call"); 8034 8035 HasTailCall = true; 8036 return; 8037 } 8038 case Intrinsic::ptrmask: { 8039 SDValue Ptr = getValue(I.getOperand(0)); 8040 SDValue Mask = getValue(I.getOperand(1)); 8041 8042 // On arm64_32, pointers are 32 bits when stored in memory, but 8043 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 8044 // match the index type, but the pointer is 64 bits, so the the mask must be 8045 // zero-extended up to 64 bits to match the pointer. 8046 EVT PtrVT = 8047 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8048 EVT MemVT = 8049 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 8050 assert(PtrVT == Ptr.getValueType()); 8051 assert(MemVT == Mask.getValueType()); 8052 if (MemVT != PtrVT) 8053 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 8054 8055 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 8056 return; 8057 } 8058 case Intrinsic::threadlocal_address: { 8059 setValue(&I, getValue(I.getOperand(0))); 8060 return; 8061 } 8062 case Intrinsic::get_active_lane_mask: { 8063 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8064 SDValue Index = getValue(I.getOperand(0)); 8065 EVT ElementVT = Index.getValueType(); 8066 8067 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 8068 visitTargetIntrinsic(I, Intrinsic); 8069 return; 8070 } 8071 8072 SDValue TripCount = getValue(I.getOperand(1)); 8073 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 8074 CCVT.getVectorElementCount()); 8075 8076 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 8077 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 8078 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 8079 SDValue VectorInduction = DAG.getNode( 8080 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 8081 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 8082 VectorTripCount, ISD::CondCode::SETULT); 8083 setValue(&I, SetCC); 8084 return; 8085 } 8086 case Intrinsic::experimental_get_vector_length: { 8087 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 8088 "Expected positive VF"); 8089 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 8090 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 8091 8092 SDValue Count = getValue(I.getOperand(0)); 8093 EVT CountVT = Count.getValueType(); 8094 8095 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 8096 visitTargetIntrinsic(I, Intrinsic); 8097 return; 8098 } 8099 8100 // Expand to a umin between the trip count and the maximum elements the type 8101 // can hold. 8102 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8103 8104 // Extend the trip count to at least the result VT. 8105 if (CountVT.bitsLT(VT)) { 8106 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 8107 CountVT = VT; 8108 } 8109 8110 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 8111 ElementCount::get(VF, IsScalable)); 8112 8113 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 8114 // Clip to the result type if needed. 8115 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 8116 8117 setValue(&I, Trunc); 8118 return; 8119 } 8120 case Intrinsic::experimental_vector_partial_reduce_add: { 8121 8122 if (!TLI.shouldExpandPartialReductionIntrinsic(cast<IntrinsicInst>(&I))) { 8123 visitTargetIntrinsic(I, Intrinsic); 8124 return; 8125 } 8126 8127 setValue(&I, DAG.getPartialReduceAdd(sdl, EVT::getEVT(I.getType()), 8128 getValue(I.getOperand(0)), 8129 getValue(I.getOperand(1)))); 8130 return; 8131 } 8132 case Intrinsic::experimental_cttz_elts: { 8133 auto DL = getCurSDLoc(); 8134 SDValue Op = getValue(I.getOperand(0)); 8135 EVT OpVT = Op.getValueType(); 8136 8137 if (!TLI.shouldExpandCttzElements(OpVT)) { 8138 visitTargetIntrinsic(I, Intrinsic); 8139 return; 8140 } 8141 8142 if (OpVT.getScalarType() != MVT::i1) { 8143 // Compare the input vector elements to zero & use to count trailing zeros 8144 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 8145 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 8146 OpVT.getVectorElementCount()); 8147 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 8148 } 8149 8150 // If the zero-is-poison flag is set, we can assume the upper limit 8151 // of the result is VF-1. 8152 bool ZeroIsPoison = 8153 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 8154 ConstantRange VScaleRange(1, true); // Dummy value. 8155 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 8156 VScaleRange = getVScaleRange(I.getCaller(), 64); 8157 unsigned EltWidth = TLI.getBitWidthForCttzElements( 8158 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 8159 8160 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 8161 8162 // Create the new vector type & get the vector length 8163 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 8164 OpVT.getVectorElementCount()); 8165 8166 SDValue VL = 8167 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 8168 8169 SDValue StepVec = DAG.getStepVector(DL, NewVT); 8170 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 8171 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 8172 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 8173 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 8174 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 8175 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 8176 8177 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8178 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 8179 8180 setValue(&I, Ret); 8181 return; 8182 } 8183 case Intrinsic::vector_insert: { 8184 SDValue Vec = getValue(I.getOperand(0)); 8185 SDValue SubVec = getValue(I.getOperand(1)); 8186 SDValue Index = getValue(I.getOperand(2)); 8187 8188 // The intrinsic's index type is i64, but the SDNode requires an index type 8189 // suitable for the target. Convert the index as required. 8190 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8191 if (Index.getValueType() != VectorIdxTy) 8192 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8193 8194 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8195 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 8196 Index)); 8197 return; 8198 } 8199 case Intrinsic::vector_extract: { 8200 SDValue Vec = getValue(I.getOperand(0)); 8201 SDValue Index = getValue(I.getOperand(1)); 8202 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8203 8204 // The intrinsic's index type is i64, but the SDNode requires an index type 8205 // suitable for the target. Convert the index as required. 8206 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 8207 if (Index.getValueType() != VectorIdxTy) 8208 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 8209 8210 setValue(&I, 8211 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 8212 return; 8213 } 8214 case Intrinsic::experimental_vector_match: { 8215 SDValue Op1 = getValue(I.getOperand(0)); 8216 SDValue Op2 = getValue(I.getOperand(1)); 8217 SDValue Mask = getValue(I.getOperand(2)); 8218 EVT Op1VT = Op1.getValueType(); 8219 EVT Op2VT = Op2.getValueType(); 8220 EVT ResVT = Mask.getValueType(); 8221 unsigned SearchSize = Op2VT.getVectorNumElements(); 8222 8223 // If the target has native support for this vector match operation, lower 8224 // the intrinsic untouched; otherwise, expand it below. 8225 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) { 8226 visitTargetIntrinsic(I, Intrinsic); 8227 return; 8228 } 8229 8230 SDValue Ret = DAG.getConstant(0, sdl, ResVT); 8231 8232 for (unsigned i = 0; i < SearchSize; ++i) { 8233 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 8234 Op2VT.getVectorElementType(), Op2, 8235 DAG.getVectorIdxConstant(i, sdl)); 8236 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem); 8237 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ); 8238 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp); 8239 } 8240 8241 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask)); 8242 return; 8243 } 8244 case Intrinsic::vector_reverse: 8245 visitVectorReverse(I); 8246 return; 8247 case Intrinsic::vector_splice: 8248 visitVectorSplice(I); 8249 return; 8250 case Intrinsic::callbr_landingpad: 8251 visitCallBrLandingPad(I); 8252 return; 8253 case Intrinsic::vector_interleave2: 8254 visitVectorInterleave(I); 8255 return; 8256 case Intrinsic::vector_deinterleave2: 8257 visitVectorDeinterleave(I); 8258 return; 8259 case Intrinsic::experimental_vector_compress: 8260 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl, 8261 getValue(I.getArgOperand(0)).getValueType(), 8262 getValue(I.getArgOperand(0)), 8263 getValue(I.getArgOperand(1)), 8264 getValue(I.getArgOperand(2)), Flags)); 8265 return; 8266 case Intrinsic::experimental_convergence_anchor: 8267 case Intrinsic::experimental_convergence_entry: 8268 case Intrinsic::experimental_convergence_loop: 8269 visitConvergenceControl(I, Intrinsic); 8270 return; 8271 case Intrinsic::experimental_vector_histogram_add: { 8272 visitVectorHistogram(I, Intrinsic); 8273 return; 8274 } 8275 case Intrinsic::experimental_vector_extract_last_active: { 8276 visitVectorExtractLastActive(I, Intrinsic); 8277 return; 8278 } 8279 } 8280 } 8281 8282 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8283 const ConstrainedFPIntrinsic &FPI) { 8284 SDLoc sdl = getCurSDLoc(); 8285 8286 // We do not need to serialize constrained FP intrinsics against 8287 // each other or against (nonvolatile) loads, so they can be 8288 // chained like loads. 8289 SDValue Chain = DAG.getRoot(); 8290 SmallVector<SDValue, 4> Opers; 8291 Opers.push_back(Chain); 8292 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8293 Opers.push_back(getValue(FPI.getArgOperand(I))); 8294 8295 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8296 assert(Result.getNode()->getNumValues() == 2); 8297 8298 // Push node to the appropriate list so that future instructions can be 8299 // chained up correctly. 8300 SDValue OutChain = Result.getValue(1); 8301 switch (EB) { 8302 case fp::ExceptionBehavior::ebIgnore: 8303 // The only reason why ebIgnore nodes still need to be chained is that 8304 // they might depend on the current rounding mode, and therefore must 8305 // not be moved across instruction that may change that mode. 8306 [[fallthrough]]; 8307 case fp::ExceptionBehavior::ebMayTrap: 8308 // These must not be moved across calls or instructions that may change 8309 // floating-point exception masks. 8310 PendingConstrainedFP.push_back(OutChain); 8311 break; 8312 case fp::ExceptionBehavior::ebStrict: 8313 // These must not be moved across calls or instructions that may change 8314 // floating-point exception masks or read floating-point exception flags. 8315 // In addition, they cannot be optimized out even if unused. 8316 PendingConstrainedFPStrict.push_back(OutChain); 8317 break; 8318 } 8319 }; 8320 8321 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8322 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8323 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8324 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8325 8326 SDNodeFlags Flags; 8327 if (EB == fp::ExceptionBehavior::ebIgnore) 8328 Flags.setNoFPExcept(true); 8329 8330 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8331 Flags.copyFMF(*FPOp); 8332 8333 unsigned Opcode; 8334 switch (FPI.getIntrinsicID()) { 8335 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8336 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8337 case Intrinsic::INTRINSIC: \ 8338 Opcode = ISD::STRICT_##DAGN; \ 8339 break; 8340 #include "llvm/IR/ConstrainedOps.def" 8341 case Intrinsic::experimental_constrained_fmuladd: { 8342 Opcode = ISD::STRICT_FMA; 8343 // Break fmuladd into fmul and fadd. 8344 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8345 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8346 Opers.pop_back(); 8347 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8348 pushOutChain(Mul, EB); 8349 Opcode = ISD::STRICT_FADD; 8350 Opers.clear(); 8351 Opers.push_back(Mul.getValue(1)); 8352 Opers.push_back(Mul.getValue(0)); 8353 Opers.push_back(getValue(FPI.getArgOperand(2))); 8354 } 8355 break; 8356 } 8357 } 8358 8359 // A few strict DAG nodes carry additional operands that are not 8360 // set up by the default code above. 8361 switch (Opcode) { 8362 default: break; 8363 case ISD::STRICT_FP_ROUND: 8364 Opers.push_back( 8365 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8366 break; 8367 case ISD::STRICT_FSETCC: 8368 case ISD::STRICT_FSETCCS: { 8369 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8370 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8371 if (TM.Options.NoNaNsFPMath) 8372 Condition = getFCmpCodeWithoutNaN(Condition); 8373 Opers.push_back(DAG.getCondCode(Condition)); 8374 break; 8375 } 8376 } 8377 8378 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8379 pushOutChain(Result, EB); 8380 8381 SDValue FPResult = Result.getValue(0); 8382 setValue(&FPI, FPResult); 8383 } 8384 8385 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8386 std::optional<unsigned> ResOPC; 8387 switch (VPIntrin.getIntrinsicID()) { 8388 case Intrinsic::vp_ctlz: { 8389 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8390 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8391 break; 8392 } 8393 case Intrinsic::vp_cttz: { 8394 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8395 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8396 break; 8397 } 8398 case Intrinsic::vp_cttz_elts: { 8399 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8400 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8401 break; 8402 } 8403 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8404 case Intrinsic::VPID: \ 8405 ResOPC = ISD::VPSD; \ 8406 break; 8407 #include "llvm/IR/VPIntrinsics.def" 8408 } 8409 8410 if (!ResOPC) 8411 llvm_unreachable( 8412 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8413 8414 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8415 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8416 if (VPIntrin.getFastMathFlags().allowReassoc()) 8417 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8418 : ISD::VP_REDUCE_FMUL; 8419 } 8420 8421 return *ResOPC; 8422 } 8423 8424 void SelectionDAGBuilder::visitVPLoad( 8425 const VPIntrinsic &VPIntrin, EVT VT, 8426 const SmallVectorImpl<SDValue> &OpValues) { 8427 SDLoc DL = getCurSDLoc(); 8428 Value *PtrOperand = VPIntrin.getArgOperand(0); 8429 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8430 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8431 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8432 SDValue LD; 8433 // Do not serialize variable-length loads of constant memory with 8434 // anything. 8435 if (!Alignment) 8436 Alignment = DAG.getEVTAlign(VT); 8437 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8438 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML); 8439 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8440 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8441 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8442 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8443 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8444 MMO, false /*IsExpanding */); 8445 if (AddToChain) 8446 PendingLoads.push_back(LD.getValue(1)); 8447 setValue(&VPIntrin, LD); 8448 } 8449 8450 void SelectionDAGBuilder::visitVPGather( 8451 const VPIntrinsic &VPIntrin, EVT VT, 8452 const SmallVectorImpl<SDValue> &OpValues) { 8453 SDLoc DL = getCurSDLoc(); 8454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8455 Value *PtrOperand = VPIntrin.getArgOperand(0); 8456 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8457 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8458 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8459 SDValue LD; 8460 if (!Alignment) 8461 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8462 unsigned AS = 8463 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8464 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8465 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8466 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8467 SDValue Base, Index, Scale; 8468 ISD::MemIndexType IndexType; 8469 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8470 this, VPIntrin.getParent(), 8471 VT.getScalarStoreSize()); 8472 if (!UniformBase) { 8473 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8474 Index = getValue(PtrOperand); 8475 IndexType = ISD::SIGNED_SCALED; 8476 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8477 } 8478 EVT IdxVT = Index.getValueType(); 8479 EVT EltTy = IdxVT.getVectorElementType(); 8480 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8481 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8482 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8483 } 8484 LD = DAG.getGatherVP( 8485 DAG.getVTList(VT, MVT::Other), VT, DL, 8486 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8487 IndexType); 8488 PendingLoads.push_back(LD.getValue(1)); 8489 setValue(&VPIntrin, LD); 8490 } 8491 8492 void SelectionDAGBuilder::visitVPStore( 8493 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8494 SDLoc DL = getCurSDLoc(); 8495 Value *PtrOperand = VPIntrin.getArgOperand(1); 8496 EVT VT = OpValues[0].getValueType(); 8497 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8498 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8499 SDValue ST; 8500 if (!Alignment) 8501 Alignment = DAG.getEVTAlign(VT); 8502 SDValue Ptr = OpValues[1]; 8503 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8504 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8505 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8506 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8507 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8508 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8509 /* IsTruncating */ false, /*IsCompressing*/ false); 8510 DAG.setRoot(ST); 8511 setValue(&VPIntrin, ST); 8512 } 8513 8514 void SelectionDAGBuilder::visitVPScatter( 8515 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8516 SDLoc DL = getCurSDLoc(); 8517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8518 Value *PtrOperand = VPIntrin.getArgOperand(1); 8519 EVT VT = OpValues[0].getValueType(); 8520 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8521 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8522 SDValue ST; 8523 if (!Alignment) 8524 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8525 unsigned AS = 8526 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8527 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8528 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8529 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8530 SDValue Base, Index, Scale; 8531 ISD::MemIndexType IndexType; 8532 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8533 this, VPIntrin.getParent(), 8534 VT.getScalarStoreSize()); 8535 if (!UniformBase) { 8536 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8537 Index = getValue(PtrOperand); 8538 IndexType = ISD::SIGNED_SCALED; 8539 Scale = 8540 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8541 } 8542 EVT IdxVT = Index.getValueType(); 8543 EVT EltTy = IdxVT.getVectorElementType(); 8544 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8545 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8546 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8547 } 8548 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8549 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8550 OpValues[2], OpValues[3]}, 8551 MMO, IndexType); 8552 DAG.setRoot(ST); 8553 setValue(&VPIntrin, ST); 8554 } 8555 8556 void SelectionDAGBuilder::visitVPStridedLoad( 8557 const VPIntrinsic &VPIntrin, EVT VT, 8558 const SmallVectorImpl<SDValue> &OpValues) { 8559 SDLoc DL = getCurSDLoc(); 8560 Value *PtrOperand = VPIntrin.getArgOperand(0); 8561 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8562 if (!Alignment) 8563 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8564 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8565 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8566 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8567 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML); 8568 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8569 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8570 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8571 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8572 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8573 8574 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8575 OpValues[2], OpValues[3], MMO, 8576 false /*IsExpanding*/); 8577 8578 if (AddToChain) 8579 PendingLoads.push_back(LD.getValue(1)); 8580 setValue(&VPIntrin, LD); 8581 } 8582 8583 void SelectionDAGBuilder::visitVPStridedStore( 8584 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8585 SDLoc DL = getCurSDLoc(); 8586 Value *PtrOperand = VPIntrin.getArgOperand(1); 8587 EVT VT = OpValues[0].getValueType(); 8588 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8589 if (!Alignment) 8590 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8591 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8592 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8593 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8594 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8595 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8596 8597 SDValue ST = DAG.getStridedStoreVP( 8598 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8599 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8600 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8601 /*IsCompressing*/ false); 8602 8603 DAG.setRoot(ST); 8604 setValue(&VPIntrin, ST); 8605 } 8606 8607 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8609 SDLoc DL = getCurSDLoc(); 8610 8611 ISD::CondCode Condition; 8612 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8613 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8614 if (IsFP) { 8615 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8616 // flags, but calls that don't return floating-point types can't be 8617 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8618 Condition = getFCmpCondCode(CondCode); 8619 if (TM.Options.NoNaNsFPMath) 8620 Condition = getFCmpCodeWithoutNaN(Condition); 8621 } else { 8622 Condition = getICmpCondCode(CondCode); 8623 } 8624 8625 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8626 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8627 // #2 is the condition code 8628 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8629 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8630 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8631 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8632 "Unexpected target EVL type"); 8633 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8634 8635 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8636 VPIntrin.getType()); 8637 setValue(&VPIntrin, 8638 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8639 } 8640 8641 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8642 const VPIntrinsic &VPIntrin) { 8643 SDLoc DL = getCurSDLoc(); 8644 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8645 8646 auto IID = VPIntrin.getIntrinsicID(); 8647 8648 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8649 return visitVPCmp(*CmpI); 8650 8651 SmallVector<EVT, 4> ValueVTs; 8652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8653 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8654 SDVTList VTs = DAG.getVTList(ValueVTs); 8655 8656 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8657 8658 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8659 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8660 "Unexpected target EVL type"); 8661 8662 // Request operands. 8663 SmallVector<SDValue, 7> OpValues; 8664 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8665 auto Op = getValue(VPIntrin.getArgOperand(I)); 8666 if (I == EVLParamPos) 8667 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8668 OpValues.push_back(Op); 8669 } 8670 8671 switch (Opcode) { 8672 default: { 8673 SDNodeFlags SDFlags; 8674 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8675 SDFlags.copyFMF(*FPMO); 8676 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8677 setValue(&VPIntrin, Result); 8678 break; 8679 } 8680 case ISD::VP_LOAD: 8681 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8682 break; 8683 case ISD::VP_GATHER: 8684 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8685 break; 8686 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8687 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8688 break; 8689 case ISD::VP_STORE: 8690 visitVPStore(VPIntrin, OpValues); 8691 break; 8692 case ISD::VP_SCATTER: 8693 visitVPScatter(VPIntrin, OpValues); 8694 break; 8695 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8696 visitVPStridedStore(VPIntrin, OpValues); 8697 break; 8698 case ISD::VP_FMULADD: { 8699 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8700 SDNodeFlags SDFlags; 8701 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8702 SDFlags.copyFMF(*FPMO); 8703 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8704 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8705 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8706 } else { 8707 SDValue Mul = DAG.getNode( 8708 ISD::VP_FMUL, DL, VTs, 8709 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8710 SDValue Add = 8711 DAG.getNode(ISD::VP_FADD, DL, VTs, 8712 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8713 setValue(&VPIntrin, Add); 8714 } 8715 break; 8716 } 8717 case ISD::VP_IS_FPCLASS: { 8718 const DataLayout DLayout = DAG.getDataLayout(); 8719 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8720 auto Constant = OpValues[1]->getAsZExtVal(); 8721 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8722 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8723 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8724 setValue(&VPIntrin, V); 8725 return; 8726 } 8727 case ISD::VP_INTTOPTR: { 8728 SDValue N = OpValues[0]; 8729 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8730 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8731 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8732 OpValues[2]); 8733 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8734 OpValues[2]); 8735 setValue(&VPIntrin, N); 8736 break; 8737 } 8738 case ISD::VP_PTRTOINT: { 8739 SDValue N = OpValues[0]; 8740 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8741 VPIntrin.getType()); 8742 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8743 VPIntrin.getOperand(0)->getType()); 8744 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8745 OpValues[2]); 8746 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8747 OpValues[2]); 8748 setValue(&VPIntrin, N); 8749 break; 8750 } 8751 case ISD::VP_ABS: 8752 case ISD::VP_CTLZ: 8753 case ISD::VP_CTLZ_ZERO_UNDEF: 8754 case ISD::VP_CTTZ: 8755 case ISD::VP_CTTZ_ZERO_UNDEF: 8756 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8757 case ISD::VP_CTTZ_ELTS: { 8758 SDValue Result = 8759 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8760 setValue(&VPIntrin, Result); 8761 break; 8762 } 8763 } 8764 } 8765 8766 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8767 const BasicBlock *EHPadBB, 8768 MCSymbol *&BeginLabel) { 8769 MachineFunction &MF = DAG.getMachineFunction(); 8770 8771 // Insert a label before the invoke call to mark the try range. This can be 8772 // used to detect deletion of the invoke via the MachineModuleInfo. 8773 BeginLabel = MF.getContext().createTempSymbol(); 8774 8775 // For SjLj, keep track of which landing pads go with which invokes 8776 // so as to maintain the ordering of pads in the LSDA. 8777 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite(); 8778 if (CallSiteIndex) { 8779 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8780 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex); 8781 8782 // Now that the call site is handled, stop tracking it. 8783 FuncInfo.setCurrentCallSite(0); 8784 } 8785 8786 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8787 } 8788 8789 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8790 const BasicBlock *EHPadBB, 8791 MCSymbol *BeginLabel) { 8792 assert(BeginLabel && "BeginLabel should've been set"); 8793 8794 MachineFunction &MF = DAG.getMachineFunction(); 8795 8796 // Insert a label at the end of the invoke call to mark the try range. This 8797 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8798 MCSymbol *EndLabel = MF.getContext().createTempSymbol(); 8799 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8800 8801 // Inform MachineModuleInfo of range. 8802 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8803 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8804 // actually use outlined funclets and their LSDA info style. 8805 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8806 assert(II && "II should've been set"); 8807 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8808 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8809 } else if (!isScopedEHPersonality(Pers)) { 8810 assert(EHPadBB); 8811 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel); 8812 } 8813 8814 return Chain; 8815 } 8816 8817 std::pair<SDValue, SDValue> 8818 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8819 const BasicBlock *EHPadBB) { 8820 MCSymbol *BeginLabel = nullptr; 8821 8822 if (EHPadBB) { 8823 // Both PendingLoads and PendingExports must be flushed here; 8824 // this call might not return. 8825 (void)getRoot(); 8826 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8827 CLI.setChain(getRoot()); 8828 } 8829 8830 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8831 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8832 8833 assert((CLI.IsTailCall || Result.second.getNode()) && 8834 "Non-null chain expected with non-tail call!"); 8835 assert((Result.second.getNode() || !Result.first.getNode()) && 8836 "Null value expected with tail call!"); 8837 8838 if (!Result.second.getNode()) { 8839 // As a special case, a null chain means that a tail call has been emitted 8840 // and the DAG root is already updated. 8841 HasTailCall = true; 8842 8843 // Since there's no actual continuation from this block, nothing can be 8844 // relying on us setting vregs for them. 8845 PendingExports.clear(); 8846 } else { 8847 DAG.setRoot(Result.second); 8848 } 8849 8850 if (EHPadBB) { 8851 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8852 BeginLabel)); 8853 Result.second = getRoot(); 8854 } 8855 8856 return Result; 8857 } 8858 8859 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8860 bool isTailCall, bool isMustTailCall, 8861 const BasicBlock *EHPadBB, 8862 const TargetLowering::PtrAuthInfo *PAI) { 8863 auto &DL = DAG.getDataLayout(); 8864 FunctionType *FTy = CB.getFunctionType(); 8865 Type *RetTy = CB.getType(); 8866 8867 TargetLowering::ArgListTy Args; 8868 Args.reserve(CB.arg_size()); 8869 8870 const Value *SwiftErrorVal = nullptr; 8871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8872 8873 if (isTailCall) { 8874 // Avoid emitting tail calls in functions with the disable-tail-calls 8875 // attribute. 8876 auto *Caller = CB.getParent()->getParent(); 8877 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8878 "true" && !isMustTailCall) 8879 isTailCall = false; 8880 8881 // We can't tail call inside a function with a swifterror argument. Lowering 8882 // does not support this yet. It would have to move into the swifterror 8883 // register before the call. 8884 if (TLI.supportSwiftError() && 8885 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8886 isTailCall = false; 8887 } 8888 8889 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8890 TargetLowering::ArgListEntry Entry; 8891 const Value *V = *I; 8892 8893 // Skip empty types 8894 if (V->getType()->isEmptyTy()) 8895 continue; 8896 8897 SDValue ArgNode = getValue(V); 8898 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8899 8900 Entry.setAttributes(&CB, I - CB.arg_begin()); 8901 8902 // Use swifterror virtual register as input to the call. 8903 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8904 SwiftErrorVal = V; 8905 // We find the virtual register for the actual swifterror argument. 8906 // Instead of using the Value, we use the virtual register instead. 8907 Entry.Node = 8908 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8909 EVT(TLI.getPointerTy(DL))); 8910 } 8911 8912 Args.push_back(Entry); 8913 8914 // If we have an explicit sret argument that is an Instruction, (i.e., it 8915 // might point to function-local memory), we can't meaningfully tail-call. 8916 if (Entry.IsSRet && isa<Instruction>(V)) 8917 isTailCall = false; 8918 } 8919 8920 // If call site has a cfguardtarget operand bundle, create and add an 8921 // additional ArgListEntry. 8922 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8923 TargetLowering::ArgListEntry Entry; 8924 Value *V = Bundle->Inputs[0]; 8925 SDValue ArgNode = getValue(V); 8926 Entry.Node = ArgNode; 8927 Entry.Ty = V->getType(); 8928 Entry.IsCFGuardTarget = true; 8929 Args.push_back(Entry); 8930 } 8931 8932 // Check if target-independent constraints permit a tail call here. 8933 // Target-dependent constraints are checked within TLI->LowerCallTo. 8934 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8935 isTailCall = false; 8936 8937 // Disable tail calls if there is an swifterror argument. Targets have not 8938 // been updated to support tail calls. 8939 if (TLI.supportSwiftError() && SwiftErrorVal) 8940 isTailCall = false; 8941 8942 ConstantInt *CFIType = nullptr; 8943 if (CB.isIndirectCall()) { 8944 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8945 if (!TLI.supportKCFIBundles()) 8946 report_fatal_error( 8947 "Target doesn't support calls with kcfi operand bundles."); 8948 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8949 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8950 } 8951 } 8952 8953 SDValue ConvControlToken; 8954 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8955 auto *Token = Bundle->Inputs[0].get(); 8956 ConvControlToken = getValue(Token); 8957 } 8958 8959 TargetLowering::CallLoweringInfo CLI(DAG); 8960 CLI.setDebugLoc(getCurSDLoc()) 8961 .setChain(getRoot()) 8962 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8963 .setTailCall(isTailCall) 8964 .setConvergent(CB.isConvergent()) 8965 .setIsPreallocated( 8966 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8967 .setCFIType(CFIType) 8968 .setConvergenceControlToken(ConvControlToken); 8969 8970 // Set the pointer authentication info if we have it. 8971 if (PAI) { 8972 if (!TLI.supportPtrAuthBundles()) 8973 report_fatal_error( 8974 "This target doesn't support calls with ptrauth operand bundles."); 8975 CLI.setPtrAuth(*PAI); 8976 } 8977 8978 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8979 8980 if (Result.first.getNode()) { 8981 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8982 setValue(&CB, Result.first); 8983 } 8984 8985 // The last element of CLI.InVals has the SDValue for swifterror return. 8986 // Here we copy it to a virtual register and update SwiftErrorMap for 8987 // book-keeping. 8988 if (SwiftErrorVal && TLI.supportSwiftError()) { 8989 // Get the last element of InVals. 8990 SDValue Src = CLI.InVals.back(); 8991 Register VReg = 8992 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8993 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8994 DAG.setRoot(CopyNode); 8995 } 8996 } 8997 8998 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8999 SelectionDAGBuilder &Builder) { 9000 // Check to see if this load can be trivially constant folded, e.g. if the 9001 // input is from a string literal. 9002 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 9003 // Cast pointer to the type we really want to load. 9004 Type *LoadTy = 9005 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 9006 if (LoadVT.isVector()) 9007 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 9008 if (const Constant *LoadCst = 9009 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 9010 LoadTy, Builder.DAG.getDataLayout())) 9011 return Builder.getValue(LoadCst); 9012 } 9013 9014 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 9015 // still constant memory, the input chain can be the entry node. 9016 SDValue Root; 9017 bool ConstantMemory = false; 9018 9019 // Do not serialize (non-volatile) loads of constant memory with anything. 9020 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) { 9021 Root = Builder.DAG.getEntryNode(); 9022 ConstantMemory = true; 9023 } else { 9024 // Do not serialize non-volatile loads against each other. 9025 Root = Builder.DAG.getRoot(); 9026 } 9027 9028 SDValue Ptr = Builder.getValue(PtrVal); 9029 SDValue LoadVal = 9030 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 9031 MachinePointerInfo(PtrVal), Align(1)); 9032 9033 if (!ConstantMemory) 9034 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 9035 return LoadVal; 9036 } 9037 9038 /// Record the value for an instruction that produces an integer result, 9039 /// converting the type where necessary. 9040 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 9041 SDValue Value, 9042 bool IsSigned) { 9043 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 9044 I.getType(), true); 9045 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 9046 setValue(&I, Value); 9047 } 9048 9049 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 9050 /// true and lower it. Otherwise return false, and it will be lowered like a 9051 /// normal call. 9052 /// The caller already checked that \p I calls the appropriate LibFunc with a 9053 /// correct prototype. 9054 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 9055 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 9056 const Value *Size = I.getArgOperand(2); 9057 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 9058 if (CSize && CSize->getZExtValue() == 0) { 9059 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 9060 I.getType(), true); 9061 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 9062 return true; 9063 } 9064 9065 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9066 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 9067 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 9068 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 9069 if (Res.first.getNode()) { 9070 processIntegerCallValue(I, Res.first, true); 9071 PendingLoads.push_back(Res.second); 9072 return true; 9073 } 9074 9075 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 9076 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 9077 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 9078 return false; 9079 9080 // If the target has a fast compare for the given size, it will return a 9081 // preferred load type for that size. Require that the load VT is legal and 9082 // that the target supports unaligned loads of that type. Otherwise, return 9083 // INVALID. 9084 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 9085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9086 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 9087 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 9088 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 9089 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 9090 // TODO: Check alignment of src and dest ptrs. 9091 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 9092 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 9093 if (!TLI.isTypeLegal(LVT) || 9094 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 9095 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 9096 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 9097 } 9098 9099 return LVT; 9100 }; 9101 9102 // This turns into unaligned loads. We only do this if the target natively 9103 // supports the MVT we'll be loading or if it is small enough (<= 4) that 9104 // we'll only produce a small number of byte loads. 9105 MVT LoadVT; 9106 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 9107 switch (NumBitsToCompare) { 9108 default: 9109 return false; 9110 case 16: 9111 LoadVT = MVT::i16; 9112 break; 9113 case 32: 9114 LoadVT = MVT::i32; 9115 break; 9116 case 64: 9117 case 128: 9118 case 256: 9119 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 9120 break; 9121 } 9122 9123 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 9124 return false; 9125 9126 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 9127 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 9128 9129 // Bitcast to a wide integer type if the loads are vectors. 9130 if (LoadVT.isVector()) { 9131 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 9132 LoadL = DAG.getBitcast(CmpVT, LoadL); 9133 LoadR = DAG.getBitcast(CmpVT, LoadR); 9134 } 9135 9136 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 9137 processIntegerCallValue(I, Cmp, false); 9138 return true; 9139 } 9140 9141 /// See if we can lower a memchr call into an optimized form. If so, return 9142 /// true and lower it. Otherwise return false, and it will be lowered like a 9143 /// normal call. 9144 /// The caller already checked that \p I calls the appropriate LibFunc with a 9145 /// correct prototype. 9146 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 9147 const Value *Src = I.getArgOperand(0); 9148 const Value *Char = I.getArgOperand(1); 9149 const Value *Length = I.getArgOperand(2); 9150 9151 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9152 std::pair<SDValue, SDValue> Res = 9153 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 9154 getValue(Src), getValue(Char), getValue(Length), 9155 MachinePointerInfo(Src)); 9156 if (Res.first.getNode()) { 9157 setValue(&I, Res.first); 9158 PendingLoads.push_back(Res.second); 9159 return true; 9160 } 9161 9162 return false; 9163 } 9164 9165 /// See if we can lower a mempcpy call into an optimized form. If so, return 9166 /// true and lower it. Otherwise return false, and it will be lowered like a 9167 /// normal call. 9168 /// The caller already checked that \p I calls the appropriate LibFunc with a 9169 /// correct prototype. 9170 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 9171 SDValue Dst = getValue(I.getArgOperand(0)); 9172 SDValue Src = getValue(I.getArgOperand(1)); 9173 SDValue Size = getValue(I.getArgOperand(2)); 9174 9175 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 9176 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 9177 // DAG::getMemcpy needs Alignment to be defined. 9178 Align Alignment = std::min(DstAlign, SrcAlign); 9179 9180 SDLoc sdl = getCurSDLoc(); 9181 9182 // In the mempcpy context we need to pass in a false value for isTailCall 9183 // because the return pointer needs to be adjusted by the size of 9184 // the copied memory. 9185 SDValue Root = getMemoryRoot(); 9186 SDValue MC = DAG.getMemcpy( 9187 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr, 9188 std::nullopt, MachinePointerInfo(I.getArgOperand(0)), 9189 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); 9190 assert(MC.getNode() != nullptr && 9191 "** memcpy should not be lowered as TailCall in mempcpy context **"); 9192 DAG.setRoot(MC); 9193 9194 // Check if Size needs to be truncated or extended. 9195 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 9196 9197 // Adjust return pointer to point just past the last dst byte. 9198 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 9199 Dst, Size); 9200 setValue(&I, DstPlusSize); 9201 return true; 9202 } 9203 9204 /// See if we can lower a strcpy call into an optimized form. If so, return 9205 /// true and lower it, otherwise return false and it will be lowered like a 9206 /// normal call. 9207 /// The caller already checked that \p I calls the appropriate LibFunc with a 9208 /// correct prototype. 9209 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 9210 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9211 9212 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9213 std::pair<SDValue, SDValue> Res = 9214 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 9215 getValue(Arg0), getValue(Arg1), 9216 MachinePointerInfo(Arg0), 9217 MachinePointerInfo(Arg1), isStpcpy); 9218 if (Res.first.getNode()) { 9219 setValue(&I, Res.first); 9220 DAG.setRoot(Res.second); 9221 return true; 9222 } 9223 9224 return false; 9225 } 9226 9227 /// See if we can lower a strcmp call into an optimized form. If so, return 9228 /// true and lower it, otherwise return false and it will be lowered like a 9229 /// normal call. 9230 /// The caller already checked that \p I calls the appropriate LibFunc with a 9231 /// correct prototype. 9232 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 9233 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9234 9235 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9236 std::pair<SDValue, SDValue> Res = 9237 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 9238 getValue(Arg0), getValue(Arg1), 9239 MachinePointerInfo(Arg0), 9240 MachinePointerInfo(Arg1)); 9241 if (Res.first.getNode()) { 9242 processIntegerCallValue(I, Res.first, true); 9243 PendingLoads.push_back(Res.second); 9244 return true; 9245 } 9246 9247 return false; 9248 } 9249 9250 /// See if we can lower a strlen call into an optimized form. If so, return 9251 /// true and lower it, otherwise return false and it will be lowered like a 9252 /// normal call. 9253 /// The caller already checked that \p I calls the appropriate LibFunc with a 9254 /// correct prototype. 9255 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9256 const Value *Arg0 = I.getArgOperand(0); 9257 9258 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9259 std::pair<SDValue, SDValue> Res = 9260 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9261 getValue(Arg0), MachinePointerInfo(Arg0)); 9262 if (Res.first.getNode()) { 9263 processIntegerCallValue(I, Res.first, false); 9264 PendingLoads.push_back(Res.second); 9265 return true; 9266 } 9267 9268 return false; 9269 } 9270 9271 /// See if we can lower a strnlen call into an optimized form. If so, return 9272 /// true and lower it, otherwise return false and it will be lowered like a 9273 /// normal call. 9274 /// The caller already checked that \p I calls the appropriate LibFunc with a 9275 /// correct prototype. 9276 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9277 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9278 9279 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9280 std::pair<SDValue, SDValue> Res = 9281 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9282 getValue(Arg0), getValue(Arg1), 9283 MachinePointerInfo(Arg0)); 9284 if (Res.first.getNode()) { 9285 processIntegerCallValue(I, Res.first, false); 9286 PendingLoads.push_back(Res.second); 9287 return true; 9288 } 9289 9290 return false; 9291 } 9292 9293 /// See if we can lower a unary floating-point operation into an SDNode with 9294 /// the specified Opcode. If so, return true and lower it, otherwise return 9295 /// false and it will be lowered like a normal call. 9296 /// The caller already checked that \p I calls the appropriate LibFunc with a 9297 /// correct prototype. 9298 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9299 unsigned Opcode) { 9300 // We already checked this call's prototype; verify it doesn't modify errno. 9301 if (!I.onlyReadsMemory()) 9302 return false; 9303 9304 SDNodeFlags Flags; 9305 Flags.copyFMF(cast<FPMathOperator>(I)); 9306 9307 SDValue Tmp = getValue(I.getArgOperand(0)); 9308 setValue(&I, 9309 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9310 return true; 9311 } 9312 9313 /// See if we can lower a binary floating-point operation into an SDNode with 9314 /// the specified Opcode. If so, return true and lower it. Otherwise return 9315 /// false, and it will be lowered like a normal call. 9316 /// The caller already checked that \p I calls the appropriate LibFunc with a 9317 /// correct prototype. 9318 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9319 unsigned Opcode) { 9320 // We already checked this call's prototype; verify it doesn't modify errno. 9321 if (!I.onlyReadsMemory()) 9322 return false; 9323 9324 SDNodeFlags Flags; 9325 Flags.copyFMF(cast<FPMathOperator>(I)); 9326 9327 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9328 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9329 EVT VT = Tmp0.getValueType(); 9330 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9331 return true; 9332 } 9333 9334 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9335 // Handle inline assembly differently. 9336 if (I.isInlineAsm()) { 9337 visitInlineAsm(I); 9338 return; 9339 } 9340 9341 diagnoseDontCall(I); 9342 9343 if (Function *F = I.getCalledFunction()) { 9344 if (F->isDeclaration()) { 9345 // Is this an LLVM intrinsic or a target-specific intrinsic? 9346 unsigned IID = F->getIntrinsicID(); 9347 if (!IID) 9348 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9349 IID = II->getIntrinsicID(F); 9350 9351 if (IID) { 9352 visitIntrinsicCall(I, IID); 9353 return; 9354 } 9355 } 9356 9357 // Check for well-known libc/libm calls. If the function is internal, it 9358 // can't be a library call. Don't do the check if marked as nobuiltin for 9359 // some reason or the call site requires strict floating point semantics. 9360 LibFunc Func; 9361 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9362 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9363 LibInfo->hasOptimizedCodeGen(Func)) { 9364 switch (Func) { 9365 default: break; 9366 case LibFunc_bcmp: 9367 if (visitMemCmpBCmpCall(I)) 9368 return; 9369 break; 9370 case LibFunc_copysign: 9371 case LibFunc_copysignf: 9372 case LibFunc_copysignl: 9373 // We already checked this call's prototype; verify it doesn't modify 9374 // errno. 9375 if (I.onlyReadsMemory()) { 9376 SDValue LHS = getValue(I.getArgOperand(0)); 9377 SDValue RHS = getValue(I.getArgOperand(1)); 9378 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9379 LHS.getValueType(), LHS, RHS)); 9380 return; 9381 } 9382 break; 9383 case LibFunc_fabs: 9384 case LibFunc_fabsf: 9385 case LibFunc_fabsl: 9386 if (visitUnaryFloatCall(I, ISD::FABS)) 9387 return; 9388 break; 9389 case LibFunc_fmin: 9390 case LibFunc_fminf: 9391 case LibFunc_fminl: 9392 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9393 return; 9394 break; 9395 case LibFunc_fmax: 9396 case LibFunc_fmaxf: 9397 case LibFunc_fmaxl: 9398 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9399 return; 9400 break; 9401 case LibFunc_fminimum_num: 9402 case LibFunc_fminimum_numf: 9403 case LibFunc_fminimum_numl: 9404 if (visitBinaryFloatCall(I, ISD::FMINIMUMNUM)) 9405 return; 9406 break; 9407 case LibFunc_fmaximum_num: 9408 case LibFunc_fmaximum_numf: 9409 case LibFunc_fmaximum_numl: 9410 if (visitBinaryFloatCall(I, ISD::FMAXIMUMNUM)) 9411 return; 9412 break; 9413 case LibFunc_sin: 9414 case LibFunc_sinf: 9415 case LibFunc_sinl: 9416 if (visitUnaryFloatCall(I, ISD::FSIN)) 9417 return; 9418 break; 9419 case LibFunc_cos: 9420 case LibFunc_cosf: 9421 case LibFunc_cosl: 9422 if (visitUnaryFloatCall(I, ISD::FCOS)) 9423 return; 9424 break; 9425 case LibFunc_tan: 9426 case LibFunc_tanf: 9427 case LibFunc_tanl: 9428 if (visitUnaryFloatCall(I, ISD::FTAN)) 9429 return; 9430 break; 9431 case LibFunc_asin: 9432 case LibFunc_asinf: 9433 case LibFunc_asinl: 9434 if (visitUnaryFloatCall(I, ISD::FASIN)) 9435 return; 9436 break; 9437 case LibFunc_acos: 9438 case LibFunc_acosf: 9439 case LibFunc_acosl: 9440 if (visitUnaryFloatCall(I, ISD::FACOS)) 9441 return; 9442 break; 9443 case LibFunc_atan: 9444 case LibFunc_atanf: 9445 case LibFunc_atanl: 9446 if (visitUnaryFloatCall(I, ISD::FATAN)) 9447 return; 9448 break; 9449 case LibFunc_atan2: 9450 case LibFunc_atan2f: 9451 case LibFunc_atan2l: 9452 if (visitBinaryFloatCall(I, ISD::FATAN2)) 9453 return; 9454 break; 9455 case LibFunc_sinh: 9456 case LibFunc_sinhf: 9457 case LibFunc_sinhl: 9458 if (visitUnaryFloatCall(I, ISD::FSINH)) 9459 return; 9460 break; 9461 case LibFunc_cosh: 9462 case LibFunc_coshf: 9463 case LibFunc_coshl: 9464 if (visitUnaryFloatCall(I, ISD::FCOSH)) 9465 return; 9466 break; 9467 case LibFunc_tanh: 9468 case LibFunc_tanhf: 9469 case LibFunc_tanhl: 9470 if (visitUnaryFloatCall(I, ISD::FTANH)) 9471 return; 9472 break; 9473 case LibFunc_sqrt: 9474 case LibFunc_sqrtf: 9475 case LibFunc_sqrtl: 9476 case LibFunc_sqrt_finite: 9477 case LibFunc_sqrtf_finite: 9478 case LibFunc_sqrtl_finite: 9479 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9480 return; 9481 break; 9482 case LibFunc_floor: 9483 case LibFunc_floorf: 9484 case LibFunc_floorl: 9485 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9486 return; 9487 break; 9488 case LibFunc_nearbyint: 9489 case LibFunc_nearbyintf: 9490 case LibFunc_nearbyintl: 9491 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9492 return; 9493 break; 9494 case LibFunc_ceil: 9495 case LibFunc_ceilf: 9496 case LibFunc_ceill: 9497 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9498 return; 9499 break; 9500 case LibFunc_rint: 9501 case LibFunc_rintf: 9502 case LibFunc_rintl: 9503 if (visitUnaryFloatCall(I, ISD::FRINT)) 9504 return; 9505 break; 9506 case LibFunc_round: 9507 case LibFunc_roundf: 9508 case LibFunc_roundl: 9509 if (visitUnaryFloatCall(I, ISD::FROUND)) 9510 return; 9511 break; 9512 case LibFunc_trunc: 9513 case LibFunc_truncf: 9514 case LibFunc_truncl: 9515 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9516 return; 9517 break; 9518 case LibFunc_log2: 9519 case LibFunc_log2f: 9520 case LibFunc_log2l: 9521 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9522 return; 9523 break; 9524 case LibFunc_exp2: 9525 case LibFunc_exp2f: 9526 case LibFunc_exp2l: 9527 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9528 return; 9529 break; 9530 case LibFunc_exp10: 9531 case LibFunc_exp10f: 9532 case LibFunc_exp10l: 9533 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9534 return; 9535 break; 9536 case LibFunc_ldexp: 9537 case LibFunc_ldexpf: 9538 case LibFunc_ldexpl: 9539 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9540 return; 9541 break; 9542 case LibFunc_memcmp: 9543 if (visitMemCmpBCmpCall(I)) 9544 return; 9545 break; 9546 case LibFunc_mempcpy: 9547 if (visitMemPCpyCall(I)) 9548 return; 9549 break; 9550 case LibFunc_memchr: 9551 if (visitMemChrCall(I)) 9552 return; 9553 break; 9554 case LibFunc_strcpy: 9555 if (visitStrCpyCall(I, false)) 9556 return; 9557 break; 9558 case LibFunc_stpcpy: 9559 if (visitStrCpyCall(I, true)) 9560 return; 9561 break; 9562 case LibFunc_strcmp: 9563 if (visitStrCmpCall(I)) 9564 return; 9565 break; 9566 case LibFunc_strlen: 9567 if (visitStrLenCall(I)) 9568 return; 9569 break; 9570 case LibFunc_strnlen: 9571 if (visitStrNLenCall(I)) 9572 return; 9573 break; 9574 } 9575 } 9576 } 9577 9578 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9579 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9580 return; 9581 } 9582 9583 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9584 // have to do anything here to lower funclet bundles. 9585 // CFGuardTarget bundles are lowered in LowerCallTo. 9586 assert(!I.hasOperandBundlesOtherThan( 9587 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9588 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9589 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9590 LLVMContext::OB_convergencectrl}) && 9591 "Cannot lower calls with arbitrary operand bundles!"); 9592 9593 SDValue Callee = getValue(I.getCalledOperand()); 9594 9595 if (I.hasDeoptState()) 9596 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9597 else 9598 // Check if we can potentially perform a tail call. More detailed checking 9599 // is be done within LowerCallTo, after more information about the call is 9600 // known. 9601 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9602 } 9603 9604 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9605 const CallBase &CB, const BasicBlock *EHPadBB) { 9606 auto PAB = CB.getOperandBundle("ptrauth"); 9607 const Value *CalleeV = CB.getCalledOperand(); 9608 9609 // Gather the call ptrauth data from the operand bundle: 9610 // [ i32 <key>, i64 <discriminator> ] 9611 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9612 const Value *Discriminator = PAB->Inputs[1]; 9613 9614 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9615 assert(Discriminator->getType()->isIntegerTy(64) && 9616 "Invalid ptrauth discriminator"); 9617 9618 // Look through ptrauth constants to find the raw callee. 9619 // Do a direct unauthenticated call if we found it and everything matches. 9620 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV)) 9621 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator, 9622 DAG.getDataLayout())) 9623 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(), 9624 CB.isMustTailCall(), EHPadBB); 9625 9626 // Functions should never be ptrauth-called directly. 9627 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9628 9629 // Otherwise, do an authenticated indirect call. 9630 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9631 getValue(Discriminator)}; 9632 9633 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9634 EHPadBB, &PAI); 9635 } 9636 9637 namespace { 9638 9639 /// AsmOperandInfo - This contains information for each constraint that we are 9640 /// lowering. 9641 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9642 public: 9643 /// CallOperand - If this is the result output operand or a clobber 9644 /// this is null, otherwise it is the incoming operand to the CallInst. 9645 /// This gets modified as the asm is processed. 9646 SDValue CallOperand; 9647 9648 /// AssignedRegs - If this is a register or register class operand, this 9649 /// contains the set of register corresponding to the operand. 9650 RegsForValue AssignedRegs; 9651 9652 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9653 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9654 } 9655 9656 /// Whether or not this operand accesses memory 9657 bool hasMemory(const TargetLowering &TLI) const { 9658 // Indirect operand accesses access memory. 9659 if (isIndirect) 9660 return true; 9661 9662 for (const auto &Code : Codes) 9663 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9664 return true; 9665 9666 return false; 9667 } 9668 }; 9669 9670 9671 } // end anonymous namespace 9672 9673 /// Make sure that the output operand \p OpInfo and its corresponding input 9674 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9675 /// out). 9676 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9677 SDISelAsmOperandInfo &MatchingOpInfo, 9678 SelectionDAG &DAG) { 9679 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9680 return; 9681 9682 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9683 const auto &TLI = DAG.getTargetLoweringInfo(); 9684 9685 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9686 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9687 OpInfo.ConstraintVT); 9688 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9689 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9690 MatchingOpInfo.ConstraintVT); 9691 const bool OutOpIsIntOrFP = 9692 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint(); 9693 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() || 9694 MatchingOpInfo.ConstraintVT.isFloatingPoint(); 9695 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) { 9696 // FIXME: error out in a more elegant fashion 9697 report_fatal_error("Unsupported asm: input constraint" 9698 " with a matching output constraint of" 9699 " incompatible type!"); 9700 } 9701 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9702 } 9703 9704 /// Get a direct memory input to behave well as an indirect operand. 9705 /// This may introduce stores, hence the need for a \p Chain. 9706 /// \return The (possibly updated) chain. 9707 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9708 SDISelAsmOperandInfo &OpInfo, 9709 SelectionDAG &DAG) { 9710 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9711 9712 // If we don't have an indirect input, put it in the constpool if we can, 9713 // otherwise spill it to a stack slot. 9714 // TODO: This isn't quite right. We need to handle these according to 9715 // the addressing mode that the constraint wants. Also, this may take 9716 // an additional register for the computation and we don't want that 9717 // either. 9718 9719 // If the operand is a float, integer, or vector constant, spill to a 9720 // constant pool entry to get its address. 9721 const Value *OpVal = OpInfo.CallOperandVal; 9722 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9723 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9724 OpInfo.CallOperand = DAG.getConstantPool( 9725 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9726 return Chain; 9727 } 9728 9729 // Otherwise, create a stack slot and emit a store to it before the asm. 9730 Type *Ty = OpVal->getType(); 9731 auto &DL = DAG.getDataLayout(); 9732 TypeSize TySize = DL.getTypeAllocSize(Ty); 9733 MachineFunction &MF = DAG.getMachineFunction(); 9734 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); 9735 int StackID = 0; 9736 if (TySize.isScalable()) 9737 StackID = TFI->getStackIDForScalableVectors(); 9738 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(), 9739 DL.getPrefTypeAlign(Ty), false, 9740 nullptr, StackID); 9741 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9742 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9743 MachinePointerInfo::getFixedStack(MF, SSFI), 9744 TLI.getMemValueType(DL, Ty)); 9745 OpInfo.CallOperand = StackSlot; 9746 9747 return Chain; 9748 } 9749 9750 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9751 /// specified operand. We prefer to assign virtual registers, to allow the 9752 /// register allocator to handle the assignment process. However, if the asm 9753 /// uses features that we can't model on machineinstrs, we have SDISel do the 9754 /// allocation. This produces generally horrible, but correct, code. 9755 /// 9756 /// OpInfo describes the operand 9757 /// RefOpInfo describes the matching operand if any, the operand otherwise 9758 static std::optional<unsigned> 9759 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9760 SDISelAsmOperandInfo &OpInfo, 9761 SDISelAsmOperandInfo &RefOpInfo) { 9762 LLVMContext &Context = *DAG.getContext(); 9763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9764 9765 MachineFunction &MF = DAG.getMachineFunction(); 9766 SmallVector<Register, 4> Regs; 9767 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9768 9769 // No work to do for memory/address operands. 9770 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9771 OpInfo.ConstraintType == TargetLowering::C_Address) 9772 return std::nullopt; 9773 9774 // If this is a constraint for a single physreg, or a constraint for a 9775 // register class, find it. 9776 unsigned AssignedReg; 9777 const TargetRegisterClass *RC; 9778 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9779 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9780 // RC is unset only on failure. Return immediately. 9781 if (!RC) 9782 return std::nullopt; 9783 9784 // Get the actual register value type. This is important, because the user 9785 // may have asked for (e.g.) the AX register in i32 type. We need to 9786 // remember that AX is actually i16 to get the right extension. 9787 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9788 9789 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9790 // If this is an FP operand in an integer register (or visa versa), or more 9791 // generally if the operand value disagrees with the register class we plan 9792 // to stick it in, fix the operand type. 9793 // 9794 // If this is an input value, the bitcast to the new type is done now. 9795 // Bitcast for output value is done at the end of visitInlineAsm(). 9796 if ((OpInfo.Type == InlineAsm::isOutput || 9797 OpInfo.Type == InlineAsm::isInput) && 9798 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9799 // Try to convert to the first EVT that the reg class contains. If the 9800 // types are identical size, use a bitcast to convert (e.g. two differing 9801 // vector types). Note: output bitcast is done at the end of 9802 // visitInlineAsm(). 9803 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9804 // Exclude indirect inputs while they are unsupported because the code 9805 // to perform the load is missing and thus OpInfo.CallOperand still 9806 // refers to the input address rather than the pointed-to value. 9807 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9808 OpInfo.CallOperand = 9809 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9810 OpInfo.ConstraintVT = RegVT; 9811 // If the operand is an FP value and we want it in integer registers, 9812 // use the corresponding integer type. This turns an f64 value into 9813 // i64, which can be passed with two i32 values on a 32-bit machine. 9814 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9815 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9816 if (OpInfo.Type == InlineAsm::isInput) 9817 OpInfo.CallOperand = 9818 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9819 OpInfo.ConstraintVT = VT; 9820 } 9821 } 9822 } 9823 9824 // No need to allocate a matching input constraint since the constraint it's 9825 // matching to has already been allocated. 9826 if (OpInfo.isMatchingInputConstraint()) 9827 return std::nullopt; 9828 9829 EVT ValueVT = OpInfo.ConstraintVT; 9830 if (OpInfo.ConstraintVT == MVT::Other) 9831 ValueVT = RegVT; 9832 9833 // Initialize NumRegs. 9834 unsigned NumRegs = 1; 9835 if (OpInfo.ConstraintVT != MVT::Other) 9836 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9837 9838 // If this is a constraint for a specific physical register, like {r17}, 9839 // assign it now. 9840 9841 // If this associated to a specific register, initialize iterator to correct 9842 // place. If virtual, make sure we have enough registers 9843 9844 // Initialize iterator if necessary 9845 TargetRegisterClass::iterator I = RC->begin(); 9846 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9847 9848 // Do not check for single registers. 9849 if (AssignedReg) { 9850 I = std::find(I, RC->end(), AssignedReg); 9851 if (I == RC->end()) { 9852 // RC does not contain the selected register, which indicates a 9853 // mismatch between the register and the required type/bitwidth. 9854 return {AssignedReg}; 9855 } 9856 } 9857 9858 for (; NumRegs; --NumRegs, ++I) { 9859 assert(I != RC->end() && "Ran out of registers to allocate!"); 9860 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9861 Regs.push_back(R); 9862 } 9863 9864 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9865 return std::nullopt; 9866 } 9867 9868 static unsigned 9869 findMatchingInlineAsmOperand(unsigned OperandNo, 9870 const std::vector<SDValue> &AsmNodeOperands) { 9871 // Scan until we find the definition we already emitted of this operand. 9872 unsigned CurOp = InlineAsm::Op_FirstOperand; 9873 for (; OperandNo; --OperandNo) { 9874 // Advance to the next operand. 9875 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9876 const InlineAsm::Flag F(OpFlag); 9877 assert( 9878 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9879 "Skipped past definitions?"); 9880 CurOp += F.getNumOperandRegisters() + 1; 9881 } 9882 return CurOp; 9883 } 9884 9885 namespace { 9886 9887 class ExtraFlags { 9888 unsigned Flags = 0; 9889 9890 public: 9891 explicit ExtraFlags(const CallBase &Call) { 9892 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9893 if (IA->hasSideEffects()) 9894 Flags |= InlineAsm::Extra_HasSideEffects; 9895 if (IA->isAlignStack()) 9896 Flags |= InlineAsm::Extra_IsAlignStack; 9897 if (Call.isConvergent()) 9898 Flags |= InlineAsm::Extra_IsConvergent; 9899 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9900 } 9901 9902 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9903 // Ideally, we would only check against memory constraints. However, the 9904 // meaning of an Other constraint can be target-specific and we can't easily 9905 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9906 // for Other constraints as well. 9907 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9908 OpInfo.ConstraintType == TargetLowering::C_Other) { 9909 if (OpInfo.Type == InlineAsm::isInput) 9910 Flags |= InlineAsm::Extra_MayLoad; 9911 else if (OpInfo.Type == InlineAsm::isOutput) 9912 Flags |= InlineAsm::Extra_MayStore; 9913 else if (OpInfo.Type == InlineAsm::isClobber) 9914 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9915 } 9916 } 9917 9918 unsigned get() const { return Flags; } 9919 }; 9920 9921 } // end anonymous namespace 9922 9923 static bool isFunction(SDValue Op) { 9924 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9925 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9926 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9927 9928 // In normal "call dllimport func" instruction (non-inlineasm) it force 9929 // indirect access by specifing call opcode. And usually specially print 9930 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9931 // not do in this way now. (In fact, this is similar with "Data Access" 9932 // action). So here we ignore dllimport function. 9933 if (Fn && !Fn->hasDLLImportStorageClass()) 9934 return true; 9935 } 9936 } 9937 return false; 9938 } 9939 9940 /// visitInlineAsm - Handle a call to an InlineAsm object. 9941 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9942 const BasicBlock *EHPadBB) { 9943 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9944 9945 /// ConstraintOperands - Information about all of the constraints. 9946 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9947 9948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9949 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9950 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9951 9952 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9953 // AsmDialect, MayLoad, MayStore). 9954 bool HasSideEffect = IA->hasSideEffects(); 9955 ExtraFlags ExtraInfo(Call); 9956 9957 for (auto &T : TargetConstraints) { 9958 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9959 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9960 9961 if (OpInfo.CallOperandVal) 9962 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9963 9964 if (!HasSideEffect) 9965 HasSideEffect = OpInfo.hasMemory(TLI); 9966 9967 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9968 // FIXME: Could we compute this on OpInfo rather than T? 9969 9970 // Compute the constraint code and ConstraintType to use. 9971 TLI.ComputeConstraintToUse(T, SDValue()); 9972 9973 if (T.ConstraintType == TargetLowering::C_Immediate && 9974 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9975 // We've delayed emitting a diagnostic like the "n" constraint because 9976 // inlining could cause an integer showing up. 9977 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9978 "' expects an integer constant " 9979 "expression"); 9980 9981 ExtraInfo.update(T); 9982 } 9983 9984 // We won't need to flush pending loads if this asm doesn't touch 9985 // memory and is nonvolatile. 9986 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9987 9988 bool EmitEHLabels = isa<InvokeInst>(Call); 9989 if (EmitEHLabels) { 9990 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9991 } 9992 bool IsCallBr = isa<CallBrInst>(Call); 9993 9994 if (IsCallBr || EmitEHLabels) { 9995 // If this is a callbr or invoke we need to flush pending exports since 9996 // inlineasm_br and invoke are terminators. 9997 // We need to do this before nodes are glued to the inlineasm_br node. 9998 Chain = getControlRoot(); 9999 } 10000 10001 MCSymbol *BeginLabel = nullptr; 10002 if (EmitEHLabels) { 10003 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 10004 } 10005 10006 int OpNo = -1; 10007 SmallVector<StringRef> AsmStrs; 10008 IA->collectAsmStrs(AsmStrs); 10009 10010 // Second pass over the constraints: compute which constraint option to use. 10011 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10012 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 10013 OpNo++; 10014 10015 // If this is an output operand with a matching input operand, look up the 10016 // matching input. If their types mismatch, e.g. one is an integer, the 10017 // other is floating point, or their sizes are different, flag it as an 10018 // error. 10019 if (OpInfo.hasMatchingInput()) { 10020 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 10021 patchMatchingInput(OpInfo, Input, DAG); 10022 } 10023 10024 // Compute the constraint code and ConstraintType to use. 10025 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 10026 10027 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 10028 OpInfo.Type == InlineAsm::isClobber) || 10029 OpInfo.ConstraintType == TargetLowering::C_Address) 10030 continue; 10031 10032 // In Linux PIC model, there are 4 cases about value/label addressing: 10033 // 10034 // 1: Function call or Label jmp inside the module. 10035 // 2: Data access (such as global variable, static variable) inside module. 10036 // 3: Function call or Label jmp outside the module. 10037 // 4: Data access (such as global variable) outside the module. 10038 // 10039 // Due to current llvm inline asm architecture designed to not "recognize" 10040 // the asm code, there are quite troubles for us to treat mem addressing 10041 // differently for same value/adress used in different instuctions. 10042 // For example, in pic model, call a func may in plt way or direclty 10043 // pc-related, but lea/mov a function adress may use got. 10044 // 10045 // Here we try to "recognize" function call for the case 1 and case 3 in 10046 // inline asm. And try to adjust the constraint for them. 10047 // 10048 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 10049 // label, so here we don't handle jmp function label now, but we need to 10050 // enhance it (especilly in PIC model) if we meet meaningful requirements. 10051 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 10052 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 10053 TM.getCodeModel() != CodeModel::Large) { 10054 OpInfo.isIndirect = false; 10055 OpInfo.ConstraintType = TargetLowering::C_Address; 10056 } 10057 10058 // If this is a memory input, and if the operand is not indirect, do what we 10059 // need to provide an address for the memory input. 10060 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 10061 !OpInfo.isIndirect) { 10062 assert((OpInfo.isMultipleAlternative || 10063 (OpInfo.Type == InlineAsm::isInput)) && 10064 "Can only indirectify direct input operands!"); 10065 10066 // Memory operands really want the address of the value. 10067 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 10068 10069 // There is no longer a Value* corresponding to this operand. 10070 OpInfo.CallOperandVal = nullptr; 10071 10072 // It is now an indirect operand. 10073 OpInfo.isIndirect = true; 10074 } 10075 10076 } 10077 10078 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 10079 std::vector<SDValue> AsmNodeOperands; 10080 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 10081 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 10082 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 10083 10084 // If we have a !srcloc metadata node associated with it, we want to attach 10085 // this to the ultimately generated inline asm machineinstr. To do this, we 10086 // pass in the third operand as this (potentially null) inline asm MDNode. 10087 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 10088 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 10089 10090 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 10091 // bits as operand 3. 10092 AsmNodeOperands.push_back(DAG.getTargetConstant( 10093 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10094 10095 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 10096 // this, assign virtual and physical registers for inputs and otput. 10097 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10098 // Assign Registers. 10099 SDISelAsmOperandInfo &RefOpInfo = 10100 OpInfo.isMatchingInputConstraint() 10101 ? ConstraintOperands[OpInfo.getMatchedOperand()] 10102 : OpInfo; 10103 const auto RegError = 10104 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 10105 if (RegError) { 10106 const MachineFunction &MF = DAG.getMachineFunction(); 10107 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10108 const char *RegName = TRI.getName(*RegError); 10109 emitInlineAsmError(Call, "register '" + Twine(RegName) + 10110 "' allocated for constraint '" + 10111 Twine(OpInfo.ConstraintCode) + 10112 "' does not match required type"); 10113 return; 10114 } 10115 10116 auto DetectWriteToReservedRegister = [&]() { 10117 const MachineFunction &MF = DAG.getMachineFunction(); 10118 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10119 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 10120 if (Register::isPhysicalRegister(Reg) && 10121 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 10122 const char *RegName = TRI.getName(Reg); 10123 emitInlineAsmError(Call, "write to reserved register '" + 10124 Twine(RegName) + "'"); 10125 return true; 10126 } 10127 } 10128 return false; 10129 }; 10130 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 10131 (OpInfo.Type == InlineAsm::isInput && 10132 !OpInfo.isMatchingInputConstraint())) && 10133 "Only address as input operand is allowed."); 10134 10135 switch (OpInfo.Type) { 10136 case InlineAsm::isOutput: 10137 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10138 const InlineAsm::ConstraintCode ConstraintID = 10139 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10140 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10141 "Failed to convert memory constraint code to constraint id."); 10142 10143 // Add information to the INLINEASM node to know about this output. 10144 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 10145 OpFlags.setMemConstraint(ConstraintID); 10146 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 10147 MVT::i32)); 10148 AsmNodeOperands.push_back(OpInfo.CallOperand); 10149 } else { 10150 // Otherwise, this outputs to a register (directly for C_Register / 10151 // C_RegisterClass, and a target-defined fashion for 10152 // C_Immediate/C_Other). Find a register that we can use. 10153 if (OpInfo.AssignedRegs.Regs.empty()) { 10154 emitInlineAsmError( 10155 Call, "couldn't allocate output register for constraint '" + 10156 Twine(OpInfo.ConstraintCode) + "'"); 10157 return; 10158 } 10159 10160 if (DetectWriteToReservedRegister()) 10161 return; 10162 10163 // Add information to the INLINEASM node to know that this register is 10164 // set. 10165 OpInfo.AssignedRegs.AddInlineAsmOperands( 10166 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 10167 : InlineAsm::Kind::RegDef, 10168 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 10169 } 10170 break; 10171 10172 case InlineAsm::isInput: 10173 case InlineAsm::isLabel: { 10174 SDValue InOperandVal = OpInfo.CallOperand; 10175 10176 if (OpInfo.isMatchingInputConstraint()) { 10177 // If this is required to match an output register we have already set, 10178 // just use its register. 10179 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 10180 AsmNodeOperands); 10181 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 10182 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 10183 if (OpInfo.isIndirect) { 10184 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 10185 emitInlineAsmError(Call, "inline asm not supported yet: " 10186 "don't know how to handle tied " 10187 "indirect register inputs"); 10188 return; 10189 } 10190 10191 SmallVector<Register, 4> Regs; 10192 MachineFunction &MF = DAG.getMachineFunction(); 10193 MachineRegisterInfo &MRI = MF.getRegInfo(); 10194 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 10195 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 10196 Register TiedReg = R->getReg(); 10197 MVT RegVT = R->getSimpleValueType(0); 10198 const TargetRegisterClass *RC = 10199 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 10200 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 10201 : TRI.getMinimalPhysRegClass(TiedReg); 10202 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 10203 Regs.push_back(MRI.createVirtualRegister(RC)); 10204 10205 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 10206 10207 SDLoc dl = getCurSDLoc(); 10208 // Use the produced MatchedRegs object to 10209 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 10210 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 10211 OpInfo.getMatchedOperand(), dl, DAG, 10212 AsmNodeOperands); 10213 break; 10214 } 10215 10216 assert(Flag.isMemKind() && "Unknown matching constraint!"); 10217 assert(Flag.getNumOperandRegisters() == 1 && 10218 "Unexpected number of operands"); 10219 // Add information to the INLINEASM node to know about this input. 10220 // See InlineAsm.h isUseOperandTiedToDef. 10221 Flag.clearMemConstraint(); 10222 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 10223 AsmNodeOperands.push_back(DAG.getTargetConstant( 10224 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10225 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 10226 break; 10227 } 10228 10229 // Treat indirect 'X' constraint as memory. 10230 if (OpInfo.ConstraintType == TargetLowering::C_Other && 10231 OpInfo.isIndirect) 10232 OpInfo.ConstraintType = TargetLowering::C_Memory; 10233 10234 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 10235 OpInfo.ConstraintType == TargetLowering::C_Other) { 10236 std::vector<SDValue> Ops; 10237 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 10238 Ops, DAG); 10239 if (Ops.empty()) { 10240 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 10241 if (isa<ConstantSDNode>(InOperandVal)) { 10242 emitInlineAsmError(Call, "value out of range for constraint '" + 10243 Twine(OpInfo.ConstraintCode) + "'"); 10244 return; 10245 } 10246 10247 emitInlineAsmError(Call, 10248 "invalid operand for inline asm constraint '" + 10249 Twine(OpInfo.ConstraintCode) + "'"); 10250 return; 10251 } 10252 10253 // Add information to the INLINEASM node to know about this input. 10254 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 10255 AsmNodeOperands.push_back(DAG.getTargetConstant( 10256 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 10257 llvm::append_range(AsmNodeOperands, Ops); 10258 break; 10259 } 10260 10261 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 10262 assert((OpInfo.isIndirect || 10263 OpInfo.ConstraintType != TargetLowering::C_Memory) && 10264 "Operand must be indirect to be a mem!"); 10265 assert(InOperandVal.getValueType() == 10266 TLI.getPointerTy(DAG.getDataLayout()) && 10267 "Memory operands expect pointer values"); 10268 10269 const InlineAsm::ConstraintCode ConstraintID = 10270 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10271 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10272 "Failed to convert memory constraint code to constraint id."); 10273 10274 // Add information to the INLINEASM node to know about this input. 10275 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10276 ResOpType.setMemConstraint(ConstraintID); 10277 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 10278 getCurSDLoc(), 10279 MVT::i32)); 10280 AsmNodeOperands.push_back(InOperandVal); 10281 break; 10282 } 10283 10284 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 10285 const InlineAsm::ConstraintCode ConstraintID = 10286 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 10287 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 10288 "Failed to convert memory constraint code to constraint id."); 10289 10290 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 10291 10292 SDValue AsmOp = InOperandVal; 10293 if (isFunction(InOperandVal)) { 10294 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 10295 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 10296 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 10297 InOperandVal.getValueType(), 10298 GA->getOffset()); 10299 } 10300 10301 // Add information to the INLINEASM node to know about this input. 10302 ResOpType.setMemConstraint(ConstraintID); 10303 10304 AsmNodeOperands.push_back( 10305 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 10306 10307 AsmNodeOperands.push_back(AsmOp); 10308 break; 10309 } 10310 10311 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 10312 OpInfo.ConstraintType != TargetLowering::C_Register) { 10313 emitInlineAsmError(Call, "unknown asm constraint '" + 10314 Twine(OpInfo.ConstraintCode) + "'"); 10315 return; 10316 } 10317 10318 // TODO: Support this. 10319 if (OpInfo.isIndirect) { 10320 emitInlineAsmError( 10321 Call, "Don't know how to handle indirect register inputs yet " 10322 "for constraint '" + 10323 Twine(OpInfo.ConstraintCode) + "'"); 10324 return; 10325 } 10326 10327 // Copy the input into the appropriate registers. 10328 if (OpInfo.AssignedRegs.Regs.empty()) { 10329 emitInlineAsmError(Call, 10330 "couldn't allocate input reg for constraint '" + 10331 Twine(OpInfo.ConstraintCode) + "'"); 10332 return; 10333 } 10334 10335 if (DetectWriteToReservedRegister()) 10336 return; 10337 10338 SDLoc dl = getCurSDLoc(); 10339 10340 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10341 &Call); 10342 10343 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10344 0, dl, DAG, AsmNodeOperands); 10345 break; 10346 } 10347 case InlineAsm::isClobber: 10348 // Add the clobbered value to the operand list, so that the register 10349 // allocator is aware that the physreg got clobbered. 10350 if (!OpInfo.AssignedRegs.Regs.empty()) 10351 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10352 false, 0, getCurSDLoc(), DAG, 10353 AsmNodeOperands); 10354 break; 10355 } 10356 } 10357 10358 // Finish up input operands. Set the input chain and add the flag last. 10359 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10360 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10361 10362 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10363 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10364 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10365 Glue = Chain.getValue(1); 10366 10367 // Do additional work to generate outputs. 10368 10369 SmallVector<EVT, 1> ResultVTs; 10370 SmallVector<SDValue, 1> ResultValues; 10371 SmallVector<SDValue, 8> OutChains; 10372 10373 llvm::Type *CallResultType = Call.getType(); 10374 ArrayRef<Type *> ResultTypes; 10375 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10376 ResultTypes = StructResult->elements(); 10377 else if (!CallResultType->isVoidTy()) 10378 ResultTypes = ArrayRef(CallResultType); 10379 10380 auto CurResultType = ResultTypes.begin(); 10381 auto handleRegAssign = [&](SDValue V) { 10382 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10383 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10384 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10385 ++CurResultType; 10386 // If the type of the inline asm call site return value is different but has 10387 // same size as the type of the asm output bitcast it. One example of this 10388 // is for vectors with different width / number of elements. This can 10389 // happen for register classes that can contain multiple different value 10390 // types. The preg or vreg allocated may not have the same VT as was 10391 // expected. 10392 // 10393 // This can also happen for a return value that disagrees with the register 10394 // class it is put in, eg. a double in a general-purpose register on a 10395 // 32-bit machine. 10396 if (ResultVT != V.getValueType() && 10397 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10398 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10399 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10400 V.getValueType().isInteger()) { 10401 // If a result value was tied to an input value, the computed result 10402 // may have a wider width than the expected result. Extract the 10403 // relevant portion. 10404 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10405 } 10406 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10407 ResultVTs.push_back(ResultVT); 10408 ResultValues.push_back(V); 10409 }; 10410 10411 // Deal with output operands. 10412 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10413 if (OpInfo.Type == InlineAsm::isOutput) { 10414 SDValue Val; 10415 // Skip trivial output operands. 10416 if (OpInfo.AssignedRegs.Regs.empty()) 10417 continue; 10418 10419 switch (OpInfo.ConstraintType) { 10420 case TargetLowering::C_Register: 10421 case TargetLowering::C_RegisterClass: 10422 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10423 Chain, &Glue, &Call); 10424 break; 10425 case TargetLowering::C_Immediate: 10426 case TargetLowering::C_Other: 10427 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10428 OpInfo, DAG); 10429 break; 10430 case TargetLowering::C_Memory: 10431 break; // Already handled. 10432 case TargetLowering::C_Address: 10433 break; // Silence warning. 10434 case TargetLowering::C_Unknown: 10435 assert(false && "Unexpected unknown constraint"); 10436 } 10437 10438 // Indirect output manifest as stores. Record output chains. 10439 if (OpInfo.isIndirect) { 10440 const Value *Ptr = OpInfo.CallOperandVal; 10441 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10442 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10443 MachinePointerInfo(Ptr)); 10444 OutChains.push_back(Store); 10445 } else { 10446 // generate CopyFromRegs to associated registers. 10447 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10448 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10449 for (const SDValue &V : Val->op_values()) 10450 handleRegAssign(V); 10451 } else 10452 handleRegAssign(Val); 10453 } 10454 } 10455 } 10456 10457 // Set results. 10458 if (!ResultValues.empty()) { 10459 assert(CurResultType == ResultTypes.end() && 10460 "Mismatch in number of ResultTypes"); 10461 assert(ResultValues.size() == ResultTypes.size() && 10462 "Mismatch in number of output operands in asm result"); 10463 10464 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10465 DAG.getVTList(ResultVTs), ResultValues); 10466 setValue(&Call, V); 10467 } 10468 10469 // Collect store chains. 10470 if (!OutChains.empty()) 10471 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10472 10473 if (EmitEHLabels) { 10474 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10475 } 10476 10477 // Only Update Root if inline assembly has a memory effect. 10478 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10479 EmitEHLabels) 10480 DAG.setRoot(Chain); 10481 } 10482 10483 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10484 const Twine &Message) { 10485 LLVMContext &Ctx = *DAG.getContext(); 10486 Ctx.diagnose(DiagnosticInfoInlineAsm(Call, Message)); 10487 10488 // Make sure we leave the DAG in a valid state 10489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10490 SmallVector<EVT, 1> ValueVTs; 10491 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10492 10493 if (ValueVTs.empty()) 10494 return; 10495 10496 SmallVector<SDValue, 1> Ops; 10497 for (const EVT &VT : ValueVTs) 10498 Ops.push_back(DAG.getUNDEF(VT)); 10499 10500 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10501 } 10502 10503 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10504 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10505 MVT::Other, getRoot(), 10506 getValue(I.getArgOperand(0)), 10507 DAG.getSrcValue(I.getArgOperand(0)))); 10508 } 10509 10510 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10512 const DataLayout &DL = DAG.getDataLayout(); 10513 SDValue V = DAG.getVAArg( 10514 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10515 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10516 DL.getABITypeAlign(I.getType()).value()); 10517 DAG.setRoot(V.getValue(1)); 10518 10519 if (I.getType()->isPointerTy()) 10520 V = DAG.getPtrExtOrTrunc( 10521 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10522 setValue(&I, V); 10523 } 10524 10525 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10526 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10527 MVT::Other, getRoot(), 10528 getValue(I.getArgOperand(0)), 10529 DAG.getSrcValue(I.getArgOperand(0)))); 10530 } 10531 10532 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10533 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10534 MVT::Other, getRoot(), 10535 getValue(I.getArgOperand(0)), 10536 getValue(I.getArgOperand(1)), 10537 DAG.getSrcValue(I.getArgOperand(0)), 10538 DAG.getSrcValue(I.getArgOperand(1)))); 10539 } 10540 10541 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10542 const Instruction &I, 10543 SDValue Op) { 10544 std::optional<ConstantRange> CR = getRange(I); 10545 10546 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped()) 10547 return Op; 10548 10549 APInt Lo = CR->getUnsignedMin(); 10550 if (!Lo.isMinValue()) 10551 return Op; 10552 10553 APInt Hi = CR->getUnsignedMax(); 10554 unsigned Bits = std::max(Hi.getActiveBits(), 10555 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10556 10557 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10558 10559 SDLoc SL = getCurSDLoc(); 10560 10561 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10562 DAG.getValueType(SmallVT)); 10563 unsigned NumVals = Op.getNode()->getNumValues(); 10564 if (NumVals == 1) 10565 return ZExt; 10566 10567 SmallVector<SDValue, 4> Ops; 10568 10569 Ops.push_back(ZExt); 10570 for (unsigned I = 1; I != NumVals; ++I) 10571 Ops.push_back(Op.getValue(I)); 10572 10573 return DAG.getMergeValues(Ops, SL); 10574 } 10575 10576 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10577 /// the call being lowered. 10578 /// 10579 /// This is a helper for lowering intrinsics that follow a target calling 10580 /// convention or require stack pointer adjustment. Only a subset of the 10581 /// intrinsic's operands need to participate in the calling convention. 10582 void SelectionDAGBuilder::populateCallLoweringInfo( 10583 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10584 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10585 AttributeSet RetAttrs, bool IsPatchPoint) { 10586 TargetLowering::ArgListTy Args; 10587 Args.reserve(NumArgs); 10588 10589 // Populate the argument list. 10590 // Attributes for args start at offset 1, after the return attribute. 10591 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10592 ArgI != ArgE; ++ArgI) { 10593 const Value *V = Call->getOperand(ArgI); 10594 10595 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10596 10597 TargetLowering::ArgListEntry Entry; 10598 Entry.Node = getValue(V); 10599 Entry.Ty = V->getType(); 10600 Entry.setAttributes(Call, ArgI); 10601 Args.push_back(Entry); 10602 } 10603 10604 CLI.setDebugLoc(getCurSDLoc()) 10605 .setChain(getRoot()) 10606 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10607 RetAttrs) 10608 .setDiscardResult(Call->use_empty()) 10609 .setIsPatchPoint(IsPatchPoint) 10610 .setIsPreallocated( 10611 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10612 } 10613 10614 /// Add a stack map intrinsic call's live variable operands to a stackmap 10615 /// or patchpoint target node's operand list. 10616 /// 10617 /// Constants are converted to TargetConstants purely as an optimization to 10618 /// avoid constant materialization and register allocation. 10619 /// 10620 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10621 /// generate addess computation nodes, and so FinalizeISel can convert the 10622 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10623 /// address materialization and register allocation, but may also be required 10624 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10625 /// alloca in the entry block, then the runtime may assume that the alloca's 10626 /// StackMap location can be read immediately after compilation and that the 10627 /// location is valid at any point during execution (this is similar to the 10628 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10629 /// only available in a register, then the runtime would need to trap when 10630 /// execution reaches the StackMap in order to read the alloca's location. 10631 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10632 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10633 SelectionDAGBuilder &Builder) { 10634 SelectionDAG &DAG = Builder.DAG; 10635 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10636 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10637 10638 // Things on the stack are pointer-typed, meaning that they are already 10639 // legal and can be emitted directly to target nodes. 10640 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10641 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10642 } else { 10643 // Otherwise emit a target independent node to be legalised. 10644 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10645 } 10646 } 10647 } 10648 10649 /// Lower llvm.experimental.stackmap. 10650 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10651 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10652 // [live variables...]) 10653 10654 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10655 10656 SDValue Chain, InGlue, Callee; 10657 SmallVector<SDValue, 32> Ops; 10658 10659 SDLoc DL = getCurSDLoc(); 10660 Callee = getValue(CI.getCalledOperand()); 10661 10662 // The stackmap intrinsic only records the live variables (the arguments 10663 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10664 // intrinsic, this won't be lowered to a function call. This means we don't 10665 // have to worry about calling conventions and target specific lowering code. 10666 // Instead we perform the call lowering right here. 10667 // 10668 // chain, flag = CALLSEQ_START(chain, 0, 0) 10669 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10670 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10671 // 10672 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10673 InGlue = Chain.getValue(1); 10674 10675 // Add the STACKMAP operands, starting with DAG house-keeping. 10676 Ops.push_back(Chain); 10677 Ops.push_back(InGlue); 10678 10679 // Add the <id>, <numShadowBytes> operands. 10680 // 10681 // These do not require legalisation, and can be emitted directly to target 10682 // constant nodes. 10683 SDValue ID = getValue(CI.getArgOperand(0)); 10684 assert(ID.getValueType() == MVT::i64); 10685 SDValue IDConst = 10686 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10687 Ops.push_back(IDConst); 10688 10689 SDValue Shad = getValue(CI.getArgOperand(1)); 10690 assert(Shad.getValueType() == MVT::i32); 10691 SDValue ShadConst = 10692 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10693 Ops.push_back(ShadConst); 10694 10695 // Add the live variables. 10696 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10697 10698 // Create the STACKMAP node. 10699 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10700 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10701 InGlue = Chain.getValue(1); 10702 10703 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10704 10705 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10706 10707 // Set the root to the target-lowered call chain. 10708 DAG.setRoot(Chain); 10709 10710 // Inform the Frame Information that we have a stackmap in this function. 10711 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10712 } 10713 10714 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10715 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10716 const BasicBlock *EHPadBB) { 10717 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10718 // i32 <numBytes>, 10719 // i8* <target>, 10720 // i32 <numArgs>, 10721 // [Args...], 10722 // [live variables...]) 10723 10724 CallingConv::ID CC = CB.getCallingConv(); 10725 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10726 bool HasDef = !CB.getType()->isVoidTy(); 10727 SDLoc dl = getCurSDLoc(); 10728 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10729 10730 // Handle immediate and symbolic callees. 10731 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10732 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10733 /*isTarget=*/true); 10734 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10735 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10736 SDLoc(SymbolicCallee), 10737 SymbolicCallee->getValueType(0)); 10738 10739 // Get the real number of arguments participating in the call <numArgs> 10740 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10741 unsigned NumArgs = NArgVal->getAsZExtVal(); 10742 10743 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10744 // Intrinsics include all meta-operands up to but not including CC. 10745 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10746 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10747 "Not enough arguments provided to the patchpoint intrinsic"); 10748 10749 // For AnyRegCC the arguments are lowered later on manually. 10750 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10751 Type *ReturnTy = 10752 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10753 10754 TargetLowering::CallLoweringInfo CLI(DAG); 10755 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10756 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10757 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10758 10759 SDNode *CallEnd = Result.second.getNode(); 10760 if (CallEnd->getOpcode() == ISD::EH_LABEL) 10761 CallEnd = CallEnd->getOperand(0).getNode(); 10762 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10763 CallEnd = CallEnd->getOperand(0).getNode(); 10764 10765 /// Get a call instruction from the call sequence chain. 10766 /// Tail calls are not allowed. 10767 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10768 "Expected a callseq node."); 10769 SDNode *Call = CallEnd->getOperand(0).getNode(); 10770 bool HasGlue = Call->getGluedNode(); 10771 10772 // Replace the target specific call node with the patchable intrinsic. 10773 SmallVector<SDValue, 8> Ops; 10774 10775 // Push the chain. 10776 Ops.push_back(*(Call->op_begin())); 10777 10778 // Optionally, push the glue (if any). 10779 if (HasGlue) 10780 Ops.push_back(*(Call->op_end() - 1)); 10781 10782 // Push the register mask info. 10783 if (HasGlue) 10784 Ops.push_back(*(Call->op_end() - 2)); 10785 else 10786 Ops.push_back(*(Call->op_end() - 1)); 10787 10788 // Add the <id> and <numBytes> constants. 10789 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10790 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10791 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10792 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10793 10794 // Add the callee. 10795 Ops.push_back(Callee); 10796 10797 // Adjust <numArgs> to account for any arguments that have been passed on the 10798 // stack instead. 10799 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10800 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10801 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10802 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10803 10804 // Add the calling convention 10805 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10806 10807 // Add the arguments we omitted previously. The register allocator should 10808 // place these in any free register. 10809 if (IsAnyRegCC) 10810 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10811 Ops.push_back(getValue(CB.getArgOperand(i))); 10812 10813 // Push the arguments from the call instruction. 10814 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10815 Ops.append(Call->op_begin() + 2, e); 10816 10817 // Push live variables for the stack map. 10818 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10819 10820 SDVTList NodeTys; 10821 if (IsAnyRegCC && HasDef) { 10822 // Create the return types based on the intrinsic definition 10823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10824 SmallVector<EVT, 3> ValueVTs; 10825 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10826 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10827 10828 // There is always a chain and a glue type at the end 10829 ValueVTs.push_back(MVT::Other); 10830 ValueVTs.push_back(MVT::Glue); 10831 NodeTys = DAG.getVTList(ValueVTs); 10832 } else 10833 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10834 10835 // Replace the target specific call node with a PATCHPOINT node. 10836 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10837 10838 // Update the NodeMap. 10839 if (HasDef) { 10840 if (IsAnyRegCC) 10841 setValue(&CB, SDValue(PPV.getNode(), 0)); 10842 else 10843 setValue(&CB, Result.first); 10844 } 10845 10846 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10847 // call sequence. Furthermore the location of the chain and glue can change 10848 // when the AnyReg calling convention is used and the intrinsic returns a 10849 // value. 10850 if (IsAnyRegCC && HasDef) { 10851 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10852 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10853 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10854 } else 10855 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10856 DAG.DeleteNode(Call); 10857 10858 // Inform the Frame Information that we have a patchpoint in this function. 10859 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10860 } 10861 10862 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10863 unsigned Intrinsic) { 10864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10865 SDValue Op1 = getValue(I.getArgOperand(0)); 10866 SDValue Op2; 10867 if (I.arg_size() > 1) 10868 Op2 = getValue(I.getArgOperand(1)); 10869 SDLoc dl = getCurSDLoc(); 10870 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10871 SDValue Res; 10872 SDNodeFlags SDFlags; 10873 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10874 SDFlags.copyFMF(*FPMO); 10875 10876 switch (Intrinsic) { 10877 case Intrinsic::vector_reduce_fadd: 10878 if (SDFlags.hasAllowReassociation()) 10879 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10880 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10881 SDFlags); 10882 else 10883 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10884 break; 10885 case Intrinsic::vector_reduce_fmul: 10886 if (SDFlags.hasAllowReassociation()) 10887 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10888 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10889 SDFlags); 10890 else 10891 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10892 break; 10893 case Intrinsic::vector_reduce_add: 10894 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10895 break; 10896 case Intrinsic::vector_reduce_mul: 10897 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10898 break; 10899 case Intrinsic::vector_reduce_and: 10900 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10901 break; 10902 case Intrinsic::vector_reduce_or: 10903 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10904 break; 10905 case Intrinsic::vector_reduce_xor: 10906 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10907 break; 10908 case Intrinsic::vector_reduce_smax: 10909 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10910 break; 10911 case Intrinsic::vector_reduce_smin: 10912 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10913 break; 10914 case Intrinsic::vector_reduce_umax: 10915 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10916 break; 10917 case Intrinsic::vector_reduce_umin: 10918 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10919 break; 10920 case Intrinsic::vector_reduce_fmax: 10921 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10922 break; 10923 case Intrinsic::vector_reduce_fmin: 10924 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10925 break; 10926 case Intrinsic::vector_reduce_fmaximum: 10927 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10928 break; 10929 case Intrinsic::vector_reduce_fminimum: 10930 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10931 break; 10932 default: 10933 llvm_unreachable("Unhandled vector reduce intrinsic"); 10934 } 10935 setValue(&I, Res); 10936 } 10937 10938 /// Returns an AttributeList representing the attributes applied to the return 10939 /// value of the given call. 10940 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10941 SmallVector<Attribute::AttrKind, 2> Attrs; 10942 if (CLI.RetSExt) 10943 Attrs.push_back(Attribute::SExt); 10944 if (CLI.RetZExt) 10945 Attrs.push_back(Attribute::ZExt); 10946 if (CLI.IsInReg) 10947 Attrs.push_back(Attribute::InReg); 10948 10949 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10950 Attrs); 10951 } 10952 10953 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10954 /// implementation, which just calls LowerCall. 10955 /// FIXME: When all targets are 10956 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10957 std::pair<SDValue, SDValue> 10958 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10959 // Handle the incoming return values from the call. 10960 CLI.Ins.clear(); 10961 SmallVector<EVT, 4> RetTys; 10962 SmallVector<TypeSize, 4> Offsets; 10963 auto &DL = CLI.DAG.getDataLayout(); 10964 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10965 10966 if (CLI.IsPostTypeLegalization) { 10967 // If we are lowering a libcall after legalization, split the return type. 10968 SmallVector<EVT, 4> OldRetTys; 10969 SmallVector<TypeSize, 4> OldOffsets; 10970 RetTys.swap(OldRetTys); 10971 Offsets.swap(OldOffsets); 10972 10973 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10974 EVT RetVT = OldRetTys[i]; 10975 uint64_t Offset = OldOffsets[i]; 10976 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10977 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10978 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10979 RetTys.append(NumRegs, RegisterVT); 10980 for (unsigned j = 0; j != NumRegs; ++j) 10981 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10982 } 10983 } 10984 10985 SmallVector<ISD::OutputArg, 4> Outs; 10986 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10987 10988 bool CanLowerReturn = 10989 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10990 CLI.IsVarArg, Outs, CLI.RetTy->getContext(), CLI.RetTy); 10991 10992 SDValue DemoteStackSlot; 10993 int DemoteStackIdx = -100; 10994 if (!CanLowerReturn) { 10995 // FIXME: equivalent assert? 10996 // assert(!CS.hasInAllocaArgument() && 10997 // "sret demotion is incompatible with inalloca"); 10998 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10999 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 11000 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11001 DemoteStackIdx = 11002 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 11003 Type *StackSlotPtrType = 11004 PointerType::get(CLI.RetTy->getContext(), DL.getAllocaAddrSpace()); 11005 11006 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 11007 ArgListEntry Entry; 11008 Entry.Node = DemoteStackSlot; 11009 Entry.Ty = StackSlotPtrType; 11010 Entry.IsSExt = false; 11011 Entry.IsZExt = false; 11012 Entry.IsInReg = false; 11013 Entry.IsSRet = true; 11014 Entry.IsNest = false; 11015 Entry.IsByVal = false; 11016 Entry.IsByRef = false; 11017 Entry.IsReturned = false; 11018 Entry.IsSwiftSelf = false; 11019 Entry.IsSwiftAsync = false; 11020 Entry.IsSwiftError = false; 11021 Entry.IsCFGuardTarget = false; 11022 Entry.Alignment = Alignment; 11023 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 11024 CLI.NumFixedArgs += 1; 11025 CLI.getArgs()[0].IndirectType = CLI.RetTy; 11026 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 11027 11028 // sret demotion isn't compatible with tail-calls, since the sret argument 11029 // points into the callers stack frame. 11030 CLI.IsTailCall = false; 11031 } else { 11032 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 11033 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 11034 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 11035 ISD::ArgFlagsTy Flags; 11036 if (NeedsRegBlock) { 11037 Flags.setInConsecutiveRegs(); 11038 if (I == RetTys.size() - 1) 11039 Flags.setInConsecutiveRegsLast(); 11040 } 11041 EVT VT = RetTys[I]; 11042 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11043 CLI.CallConv, VT); 11044 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11045 CLI.CallConv, VT); 11046 for (unsigned i = 0; i != NumRegs; ++i) { 11047 ISD::InputArg MyFlags; 11048 MyFlags.Flags = Flags; 11049 MyFlags.VT = RegisterVT; 11050 MyFlags.ArgVT = VT; 11051 MyFlags.Used = CLI.IsReturnValueUsed; 11052 if (CLI.RetTy->isPointerTy()) { 11053 MyFlags.Flags.setPointer(); 11054 MyFlags.Flags.setPointerAddrSpace( 11055 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 11056 } 11057 if (CLI.RetSExt) 11058 MyFlags.Flags.setSExt(); 11059 if (CLI.RetZExt) 11060 MyFlags.Flags.setZExt(); 11061 if (CLI.IsInReg) 11062 MyFlags.Flags.setInReg(); 11063 CLI.Ins.push_back(MyFlags); 11064 } 11065 } 11066 } 11067 11068 // We push in swifterror return as the last element of CLI.Ins. 11069 ArgListTy &Args = CLI.getArgs(); 11070 if (supportSwiftError()) { 11071 for (const ArgListEntry &Arg : Args) { 11072 if (Arg.IsSwiftError) { 11073 ISD::InputArg MyFlags; 11074 MyFlags.VT = getPointerTy(DL); 11075 MyFlags.ArgVT = EVT(getPointerTy(DL)); 11076 MyFlags.Flags.setSwiftError(); 11077 CLI.Ins.push_back(MyFlags); 11078 } 11079 } 11080 } 11081 11082 // Handle all of the outgoing arguments. 11083 CLI.Outs.clear(); 11084 CLI.OutVals.clear(); 11085 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 11086 SmallVector<EVT, 4> ValueVTs; 11087 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 11088 // FIXME: Split arguments if CLI.IsPostTypeLegalization 11089 Type *FinalType = Args[i].Ty; 11090 if (Args[i].IsByVal) 11091 FinalType = Args[i].IndirectType; 11092 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 11093 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 11094 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 11095 ++Value) { 11096 EVT VT = ValueVTs[Value]; 11097 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 11098 SDValue Op = SDValue(Args[i].Node.getNode(), 11099 Args[i].Node.getResNo() + Value); 11100 ISD::ArgFlagsTy Flags; 11101 11102 // Certain targets (such as MIPS), may have a different ABI alignment 11103 // for a type depending on the context. Give the target a chance to 11104 // specify the alignment it wants. 11105 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 11106 Flags.setOrigAlign(OriginalAlignment); 11107 11108 if (Args[i].Ty->isPointerTy()) { 11109 Flags.setPointer(); 11110 Flags.setPointerAddrSpace( 11111 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 11112 } 11113 if (Args[i].IsZExt) 11114 Flags.setZExt(); 11115 if (Args[i].IsSExt) 11116 Flags.setSExt(); 11117 if (Args[i].IsNoExt) 11118 Flags.setNoExt(); 11119 if (Args[i].IsInReg) { 11120 // If we are using vectorcall calling convention, a structure that is 11121 // passed InReg - is surely an HVA 11122 if (CLI.CallConv == CallingConv::X86_VectorCall && 11123 isa<StructType>(FinalType)) { 11124 // The first value of a structure is marked 11125 if (0 == Value) 11126 Flags.setHvaStart(); 11127 Flags.setHva(); 11128 } 11129 // Set InReg Flag 11130 Flags.setInReg(); 11131 } 11132 if (Args[i].IsSRet) 11133 Flags.setSRet(); 11134 if (Args[i].IsSwiftSelf) 11135 Flags.setSwiftSelf(); 11136 if (Args[i].IsSwiftAsync) 11137 Flags.setSwiftAsync(); 11138 if (Args[i].IsSwiftError) 11139 Flags.setSwiftError(); 11140 if (Args[i].IsCFGuardTarget) 11141 Flags.setCFGuardTarget(); 11142 if (Args[i].IsByVal) 11143 Flags.setByVal(); 11144 if (Args[i].IsByRef) 11145 Flags.setByRef(); 11146 if (Args[i].IsPreallocated) { 11147 Flags.setPreallocated(); 11148 // Set the byval flag for CCAssignFn callbacks that don't know about 11149 // preallocated. This way we can know how many bytes we should've 11150 // allocated and how many bytes a callee cleanup function will pop. If 11151 // we port preallocated to more targets, we'll have to add custom 11152 // preallocated handling in the various CC lowering callbacks. 11153 Flags.setByVal(); 11154 } 11155 if (Args[i].IsInAlloca) { 11156 Flags.setInAlloca(); 11157 // Set the byval flag for CCAssignFn callbacks that don't know about 11158 // inalloca. This way we can know how many bytes we should've allocated 11159 // and how many bytes a callee cleanup function will pop. If we port 11160 // inalloca to more targets, we'll have to add custom inalloca handling 11161 // in the various CC lowering callbacks. 11162 Flags.setByVal(); 11163 } 11164 Align MemAlign; 11165 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 11166 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 11167 Flags.setByValSize(FrameSize); 11168 11169 // info is not there but there are cases it cannot get right. 11170 if (auto MA = Args[i].Alignment) 11171 MemAlign = *MA; 11172 else 11173 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL); 11174 } else if (auto MA = Args[i].Alignment) { 11175 MemAlign = *MA; 11176 } else { 11177 MemAlign = OriginalAlignment; 11178 } 11179 Flags.setMemAlign(MemAlign); 11180 if (Args[i].IsNest) 11181 Flags.setNest(); 11182 if (NeedsRegBlock) 11183 Flags.setInConsecutiveRegs(); 11184 11185 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11186 CLI.CallConv, VT); 11187 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11188 CLI.CallConv, VT); 11189 SmallVector<SDValue, 4> Parts(NumParts); 11190 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 11191 11192 if (Args[i].IsSExt) 11193 ExtendKind = ISD::SIGN_EXTEND; 11194 else if (Args[i].IsZExt) 11195 ExtendKind = ISD::ZERO_EXTEND; 11196 11197 // Conservatively only handle 'returned' on non-vectors that can be lowered, 11198 // for now. 11199 if (Args[i].IsReturned && !Op.getValueType().isVector() && 11200 CanLowerReturn) { 11201 assert((CLI.RetTy == Args[i].Ty || 11202 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 11203 CLI.RetTy->getPointerAddressSpace() == 11204 Args[i].Ty->getPointerAddressSpace())) && 11205 RetTys.size() == NumValues && "unexpected use of 'returned'"); 11206 // Before passing 'returned' to the target lowering code, ensure that 11207 // either the register MVT and the actual EVT are the same size or that 11208 // the return value and argument are extended in the same way; in these 11209 // cases it's safe to pass the argument register value unchanged as the 11210 // return register value (although it's at the target's option whether 11211 // to do so) 11212 // TODO: allow code generation to take advantage of partially preserved 11213 // registers rather than clobbering the entire register when the 11214 // parameter extension method is not compatible with the return 11215 // extension method 11216 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 11217 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 11218 CLI.RetZExt == Args[i].IsZExt)) 11219 Flags.setReturned(); 11220 } 11221 11222 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 11223 CLI.CallConv, ExtendKind); 11224 11225 for (unsigned j = 0; j != NumParts; ++j) { 11226 // if it isn't first piece, alignment must be 1 11227 // For scalable vectors the scalable part is currently handled 11228 // by individual targets, so we just use the known minimum size here. 11229 ISD::OutputArg MyFlags( 11230 Flags, Parts[j].getValueType().getSimpleVT(), VT, 11231 i < CLI.NumFixedArgs, i, 11232 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 11233 if (NumParts > 1 && j == 0) 11234 MyFlags.Flags.setSplit(); 11235 else if (j != 0) { 11236 MyFlags.Flags.setOrigAlign(Align(1)); 11237 if (j == NumParts - 1) 11238 MyFlags.Flags.setSplitEnd(); 11239 } 11240 11241 CLI.Outs.push_back(MyFlags); 11242 CLI.OutVals.push_back(Parts[j]); 11243 } 11244 11245 if (NeedsRegBlock && Value == NumValues - 1) 11246 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 11247 } 11248 } 11249 11250 SmallVector<SDValue, 4> InVals; 11251 CLI.Chain = LowerCall(CLI, InVals); 11252 11253 // Update CLI.InVals to use outside of this function. 11254 CLI.InVals = InVals; 11255 11256 // Verify that the target's LowerCall behaved as expected. 11257 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 11258 "LowerCall didn't return a valid chain!"); 11259 assert((!CLI.IsTailCall || InVals.empty()) && 11260 "LowerCall emitted a return value for a tail call!"); 11261 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 11262 "LowerCall didn't emit the correct number of values!"); 11263 11264 // For a tail call, the return value is merely live-out and there aren't 11265 // any nodes in the DAG representing it. Return a special value to 11266 // indicate that a tail call has been emitted and no more Instructions 11267 // should be processed in the current block. 11268 if (CLI.IsTailCall) { 11269 CLI.DAG.setRoot(CLI.Chain); 11270 return std::make_pair(SDValue(), SDValue()); 11271 } 11272 11273 #ifndef NDEBUG 11274 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 11275 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 11276 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 11277 "LowerCall emitted a value with the wrong type!"); 11278 } 11279 #endif 11280 11281 SmallVector<SDValue, 4> ReturnValues; 11282 if (!CanLowerReturn) { 11283 // The instruction result is the result of loading from the 11284 // hidden sret parameter. 11285 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace()); 11286 11287 unsigned NumValues = RetTys.size(); 11288 ReturnValues.resize(NumValues); 11289 SmallVector<SDValue, 4> Chains(NumValues); 11290 11291 // An aggregate return value cannot wrap around the address space, so 11292 // offsets to its parts don't wrap either. 11293 MachineFunction &MF = CLI.DAG.getMachineFunction(); 11294 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 11295 for (unsigned i = 0; i < NumValues; ++i) { 11296 SDValue Add = 11297 CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 11298 CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT), 11299 SDNodeFlags::NoUnsignedWrap); 11300 SDValue L = CLI.DAG.getLoad( 11301 RetTys[i], CLI.DL, CLI.Chain, Add, 11302 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 11303 DemoteStackIdx, Offsets[i]), 11304 HiddenSRetAlign); 11305 ReturnValues[i] = L; 11306 Chains[i] = L.getValue(1); 11307 } 11308 11309 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 11310 } else { 11311 // Collect the legal value parts into potentially illegal values 11312 // that correspond to the original function's return values. 11313 std::optional<ISD::NodeType> AssertOp; 11314 if (CLI.RetSExt) 11315 AssertOp = ISD::AssertSext; 11316 else if (CLI.RetZExt) 11317 AssertOp = ISD::AssertZext; 11318 unsigned CurReg = 0; 11319 for (EVT VT : RetTys) { 11320 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11321 CLI.CallConv, VT); 11322 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11323 CLI.CallConv, VT); 11324 11325 ReturnValues.push_back(getCopyFromParts( 11326 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11327 CLI.Chain, CLI.CallConv, AssertOp)); 11328 CurReg += NumRegs; 11329 } 11330 11331 // For a function returning void, there is no return value. We can't create 11332 // such a node, so we just return a null return value in that case. In 11333 // that case, nothing will actually look at the value. 11334 if (ReturnValues.empty()) 11335 return std::make_pair(SDValue(), CLI.Chain); 11336 } 11337 11338 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11339 CLI.DAG.getVTList(RetTys), ReturnValues); 11340 return std::make_pair(Res, CLI.Chain); 11341 } 11342 11343 /// Places new result values for the node in Results (their number 11344 /// and types must exactly match those of the original return values of 11345 /// the node), or leaves Results empty, which indicates that the node is not 11346 /// to be custom lowered after all. 11347 void TargetLowering::LowerOperationWrapper(SDNode *N, 11348 SmallVectorImpl<SDValue> &Results, 11349 SelectionDAG &DAG) const { 11350 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11351 11352 if (!Res.getNode()) 11353 return; 11354 11355 // If the original node has one result, take the return value from 11356 // LowerOperation as is. It might not be result number 0. 11357 if (N->getNumValues() == 1) { 11358 Results.push_back(Res); 11359 return; 11360 } 11361 11362 // If the original node has multiple results, then the return node should 11363 // have the same number of results. 11364 assert((N->getNumValues() == Res->getNumValues()) && 11365 "Lowering returned the wrong number of results!"); 11366 11367 // Places new result values base on N result number. 11368 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11369 Results.push_back(Res.getValue(I)); 11370 } 11371 11372 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11373 llvm_unreachable("LowerOperation not implemented for this target!"); 11374 } 11375 11376 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11377 unsigned Reg, 11378 ISD::NodeType ExtendType) { 11379 SDValue Op = getNonRegisterValue(V); 11380 assert((Op.getOpcode() != ISD::CopyFromReg || 11381 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11382 "Copy from a reg to the same reg!"); 11383 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11384 11385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11386 // If this is an InlineAsm we have to match the registers required, not the 11387 // notional registers required by the type. 11388 11389 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11390 std::nullopt); // This is not an ABI copy. 11391 SDValue Chain = DAG.getEntryNode(); 11392 11393 if (ExtendType == ISD::ANY_EXTEND) { 11394 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11395 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11396 ExtendType = PreferredExtendIt->second; 11397 } 11398 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11399 PendingExports.push_back(Chain); 11400 } 11401 11402 #include "llvm/CodeGen/SelectionDAGISel.h" 11403 11404 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11405 /// entry block, return true. This includes arguments used by switches, since 11406 /// the switch may expand into multiple basic blocks. 11407 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11408 // With FastISel active, we may be splitting blocks, so force creation 11409 // of virtual registers for all non-dead arguments. 11410 if (FastISel) 11411 return A->use_empty(); 11412 11413 const BasicBlock &Entry = A->getParent()->front(); 11414 for (const User *U : A->users()) 11415 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11416 return false; // Use not in entry block. 11417 11418 return true; 11419 } 11420 11421 using ArgCopyElisionMapTy = 11422 DenseMap<const Argument *, 11423 std::pair<const AllocaInst *, const StoreInst *>>; 11424 11425 /// Scan the entry block of the function in FuncInfo for arguments that look 11426 /// like copies into a local alloca. Record any copied arguments in 11427 /// ArgCopyElisionCandidates. 11428 static void 11429 findArgumentCopyElisionCandidates(const DataLayout &DL, 11430 FunctionLoweringInfo *FuncInfo, 11431 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11432 // Record the state of every static alloca used in the entry block. Argument 11433 // allocas are all used in the entry block, so we need approximately as many 11434 // entries as we have arguments. 11435 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11436 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11437 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11438 StaticAllocas.reserve(NumArgs * 2); 11439 11440 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11441 if (!V) 11442 return nullptr; 11443 V = V->stripPointerCasts(); 11444 const auto *AI = dyn_cast<AllocaInst>(V); 11445 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11446 return nullptr; 11447 auto Iter = StaticAllocas.insert({AI, Unknown}); 11448 return &Iter.first->second; 11449 }; 11450 11451 // Look for stores of arguments to static allocas. Look through bitcasts and 11452 // GEPs to handle type coercions, as long as the alloca is fully initialized 11453 // by the store. Any non-store use of an alloca escapes it and any subsequent 11454 // unanalyzed store might write it. 11455 // FIXME: Handle structs initialized with multiple stores. 11456 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11457 // Look for stores, and handle non-store uses conservatively. 11458 const auto *SI = dyn_cast<StoreInst>(&I); 11459 if (!SI) { 11460 // We will look through cast uses, so ignore them completely. 11461 if (I.isCast()) 11462 continue; 11463 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11464 // to allocas. 11465 if (I.isDebugOrPseudoInst()) 11466 continue; 11467 // This is an unknown instruction. Assume it escapes or writes to all 11468 // static alloca operands. 11469 for (const Use &U : I.operands()) { 11470 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11471 *Info = StaticAllocaInfo::Clobbered; 11472 } 11473 continue; 11474 } 11475 11476 // If the stored value is a static alloca, mark it as escaped. 11477 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11478 *Info = StaticAllocaInfo::Clobbered; 11479 11480 // Check if the destination is a static alloca. 11481 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11482 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11483 if (!Info) 11484 continue; 11485 const AllocaInst *AI = cast<AllocaInst>(Dst); 11486 11487 // Skip allocas that have been initialized or clobbered. 11488 if (*Info != StaticAllocaInfo::Unknown) 11489 continue; 11490 11491 // Check if the stored value is an argument, and that this store fully 11492 // initializes the alloca. 11493 // If the argument type has padding bits we can't directly forward a pointer 11494 // as the upper bits may contain garbage. 11495 // Don't elide copies from the same argument twice. 11496 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11497 const auto *Arg = dyn_cast<Argument>(Val); 11498 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11499 Arg->getType()->isEmptyTy() || 11500 DL.getTypeStoreSize(Arg->getType()) != 11501 DL.getTypeAllocSize(AI->getAllocatedType()) || 11502 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11503 ArgCopyElisionCandidates.count(Arg)) { 11504 *Info = StaticAllocaInfo::Clobbered; 11505 continue; 11506 } 11507 11508 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11509 << '\n'); 11510 11511 // Mark this alloca and store for argument copy elision. 11512 *Info = StaticAllocaInfo::Elidable; 11513 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11514 11515 // Stop scanning if we've seen all arguments. This will happen early in -O0 11516 // builds, which is useful, because -O0 builds have large entry blocks and 11517 // many allocas. 11518 if (ArgCopyElisionCandidates.size() == NumArgs) 11519 break; 11520 } 11521 } 11522 11523 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11524 /// ArgVal is a load from a suitable fixed stack object. 11525 static void tryToElideArgumentCopy( 11526 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11527 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11528 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11529 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11530 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11531 // Check if this is a load from a fixed stack object. 11532 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11533 if (!LNode) 11534 return; 11535 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11536 if (!FINode) 11537 return; 11538 11539 // Check that the fixed stack object is the right size and alignment. 11540 // Look at the alignment that the user wrote on the alloca instead of looking 11541 // at the stack object. 11542 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11543 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11544 const AllocaInst *AI = ArgCopyIter->second.first; 11545 int FixedIndex = FINode->getIndex(); 11546 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11547 int OldIndex = AllocaIndex; 11548 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11549 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11550 LLVM_DEBUG( 11551 dbgs() << " argument copy elision failed due to bad fixed stack " 11552 "object size\n"); 11553 return; 11554 } 11555 Align RequiredAlignment = AI->getAlign(); 11556 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11557 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11558 "greater than stack argument alignment (" 11559 << DebugStr(RequiredAlignment) << " vs " 11560 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11561 return; 11562 } 11563 11564 // Perform the elision. Delete the old stack object and replace its only use 11565 // in the variable info map. Mark the stack object as mutable and aliased. 11566 LLVM_DEBUG({ 11567 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11568 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11569 << '\n'; 11570 }); 11571 MFI.RemoveStackObject(OldIndex); 11572 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11573 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11574 AllocaIndex = FixedIndex; 11575 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11576 for (SDValue ArgVal : ArgVals) 11577 Chains.push_back(ArgVal.getValue(1)); 11578 11579 // Avoid emitting code for the store implementing the copy. 11580 const StoreInst *SI = ArgCopyIter->second.second; 11581 ElidedArgCopyInstrs.insert(SI); 11582 11583 // Check for uses of the argument again so that we can avoid exporting ArgVal 11584 // if it is't used by anything other than the store. 11585 for (const Value *U : Arg.users()) { 11586 if (U != SI) { 11587 ArgHasUses = true; 11588 break; 11589 } 11590 } 11591 } 11592 11593 void SelectionDAGISel::LowerArguments(const Function &F) { 11594 SelectionDAG &DAG = SDB->DAG; 11595 SDLoc dl = SDB->getCurSDLoc(); 11596 const DataLayout &DL = DAG.getDataLayout(); 11597 SmallVector<ISD::InputArg, 16> Ins; 11598 11599 // In Naked functions we aren't going to save any registers. 11600 if (F.hasFnAttribute(Attribute::Naked)) 11601 return; 11602 11603 if (!FuncInfo->CanLowerReturn) { 11604 // Put in an sret pointer parameter before all the other parameters. 11605 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace()); 11606 11607 ISD::ArgFlagsTy Flags; 11608 Flags.setSRet(); 11609 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT); 11610 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, true, 11611 ISD::InputArg::NoArgIndex, 0); 11612 Ins.push_back(RetArg); 11613 } 11614 11615 // Look for stores of arguments to static allocas. Mark such arguments with a 11616 // flag to ask the target to give us the memory location of that argument if 11617 // available. 11618 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11619 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11620 ArgCopyElisionCandidates); 11621 11622 // Set up the incoming argument description vector. 11623 for (const Argument &Arg : F.args()) { 11624 unsigned ArgNo = Arg.getArgNo(); 11625 SmallVector<EVT, 4> ValueVTs; 11626 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11627 bool isArgValueUsed = !Arg.use_empty(); 11628 unsigned PartBase = 0; 11629 Type *FinalType = Arg.getType(); 11630 if (Arg.hasAttribute(Attribute::ByVal)) 11631 FinalType = Arg.getParamByValType(); 11632 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11633 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11634 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11635 Value != NumValues; ++Value) { 11636 EVT VT = ValueVTs[Value]; 11637 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11638 ISD::ArgFlagsTy Flags; 11639 11640 11641 if (Arg.getType()->isPointerTy()) { 11642 Flags.setPointer(); 11643 Flags.setPointerAddrSpace( 11644 cast<PointerType>(Arg.getType())->getAddressSpace()); 11645 } 11646 if (Arg.hasAttribute(Attribute::ZExt)) 11647 Flags.setZExt(); 11648 if (Arg.hasAttribute(Attribute::SExt)) 11649 Flags.setSExt(); 11650 if (Arg.hasAttribute(Attribute::InReg)) { 11651 // If we are using vectorcall calling convention, a structure that is 11652 // passed InReg - is surely an HVA 11653 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11654 isa<StructType>(Arg.getType())) { 11655 // The first value of a structure is marked 11656 if (0 == Value) 11657 Flags.setHvaStart(); 11658 Flags.setHva(); 11659 } 11660 // Set InReg Flag 11661 Flags.setInReg(); 11662 } 11663 if (Arg.hasAttribute(Attribute::StructRet)) 11664 Flags.setSRet(); 11665 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11666 Flags.setSwiftSelf(); 11667 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11668 Flags.setSwiftAsync(); 11669 if (Arg.hasAttribute(Attribute::SwiftError)) 11670 Flags.setSwiftError(); 11671 if (Arg.hasAttribute(Attribute::ByVal)) 11672 Flags.setByVal(); 11673 if (Arg.hasAttribute(Attribute::ByRef)) 11674 Flags.setByRef(); 11675 if (Arg.hasAttribute(Attribute::InAlloca)) { 11676 Flags.setInAlloca(); 11677 // Set the byval flag for CCAssignFn callbacks that don't know about 11678 // inalloca. This way we can know how many bytes we should've allocated 11679 // and how many bytes a callee cleanup function will pop. If we port 11680 // inalloca to more targets, we'll have to add custom inalloca handling 11681 // in the various CC lowering callbacks. 11682 Flags.setByVal(); 11683 } 11684 if (Arg.hasAttribute(Attribute::Preallocated)) { 11685 Flags.setPreallocated(); 11686 // Set the byval flag for CCAssignFn callbacks that don't know about 11687 // preallocated. This way we can know how many bytes we should've 11688 // allocated and how many bytes a callee cleanup function will pop. If 11689 // we port preallocated to more targets, we'll have to add custom 11690 // preallocated handling in the various CC lowering callbacks. 11691 Flags.setByVal(); 11692 } 11693 11694 // Certain targets (such as MIPS), may have a different ABI alignment 11695 // for a type depending on the context. Give the target a chance to 11696 // specify the alignment it wants. 11697 const Align OriginalAlignment( 11698 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11699 Flags.setOrigAlign(OriginalAlignment); 11700 11701 Align MemAlign; 11702 Type *ArgMemTy = nullptr; 11703 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11704 Flags.isByRef()) { 11705 if (!ArgMemTy) 11706 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11707 11708 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11709 11710 // For in-memory arguments, size and alignment should be passed from FE. 11711 // BE will guess if this info is not there but there are cases it cannot 11712 // get right. 11713 if (auto ParamAlign = Arg.getParamStackAlign()) 11714 MemAlign = *ParamAlign; 11715 else if ((ParamAlign = Arg.getParamAlign())) 11716 MemAlign = *ParamAlign; 11717 else 11718 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL); 11719 if (Flags.isByRef()) 11720 Flags.setByRefSize(MemSize); 11721 else 11722 Flags.setByValSize(MemSize); 11723 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11724 MemAlign = *ParamAlign; 11725 } else { 11726 MemAlign = OriginalAlignment; 11727 } 11728 Flags.setMemAlign(MemAlign); 11729 11730 if (Arg.hasAttribute(Attribute::Nest)) 11731 Flags.setNest(); 11732 if (NeedsRegBlock) 11733 Flags.setInConsecutiveRegs(); 11734 if (ArgCopyElisionCandidates.count(&Arg)) 11735 Flags.setCopyElisionCandidate(); 11736 if (Arg.hasAttribute(Attribute::Returned)) 11737 Flags.setReturned(); 11738 11739 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11740 *CurDAG->getContext(), F.getCallingConv(), VT); 11741 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11742 *CurDAG->getContext(), F.getCallingConv(), VT); 11743 for (unsigned i = 0; i != NumRegs; ++i) { 11744 // For scalable vectors, use the minimum size; individual targets 11745 // are responsible for handling scalable vector arguments and 11746 // return values. 11747 ISD::InputArg MyFlags( 11748 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11749 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11750 if (NumRegs > 1 && i == 0) 11751 MyFlags.Flags.setSplit(); 11752 // if it isn't first piece, alignment must be 1 11753 else if (i > 0) { 11754 MyFlags.Flags.setOrigAlign(Align(1)); 11755 if (i == NumRegs - 1) 11756 MyFlags.Flags.setSplitEnd(); 11757 } 11758 Ins.push_back(MyFlags); 11759 } 11760 if (NeedsRegBlock && Value == NumValues - 1) 11761 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11762 PartBase += VT.getStoreSize().getKnownMinValue(); 11763 } 11764 } 11765 11766 // Call the target to set up the argument values. 11767 SmallVector<SDValue, 8> InVals; 11768 SDValue NewRoot = TLI->LowerFormalArguments( 11769 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11770 11771 // Verify that the target's LowerFormalArguments behaved as expected. 11772 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11773 "LowerFormalArguments didn't return a valid chain!"); 11774 assert(InVals.size() == Ins.size() && 11775 "LowerFormalArguments didn't emit the correct number of values!"); 11776 LLVM_DEBUG({ 11777 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11778 assert(InVals[i].getNode() && 11779 "LowerFormalArguments emitted a null value!"); 11780 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11781 "LowerFormalArguments emitted a value with the wrong type!"); 11782 } 11783 }); 11784 11785 // Update the DAG with the new chain value resulting from argument lowering. 11786 DAG.setRoot(NewRoot); 11787 11788 // Set up the argument values. 11789 unsigned i = 0; 11790 if (!FuncInfo->CanLowerReturn) { 11791 // Create a virtual register for the sret pointer, and put in a copy 11792 // from the sret argument into it. 11793 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace()); 11794 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11795 std::optional<ISD::NodeType> AssertOp; 11796 SDValue ArgValue = 11797 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11798 F.getCallingConv(), AssertOp); 11799 11800 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11801 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11802 Register SRetReg = 11803 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11804 FuncInfo->DemoteRegister = SRetReg; 11805 NewRoot = 11806 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11807 DAG.setRoot(NewRoot); 11808 11809 // i indexes lowered arguments. Bump it past the hidden sret argument. 11810 ++i; 11811 } 11812 11813 SmallVector<SDValue, 4> Chains; 11814 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11815 for (const Argument &Arg : F.args()) { 11816 SmallVector<SDValue, 4> ArgValues; 11817 SmallVector<EVT, 4> ValueVTs; 11818 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11819 unsigned NumValues = ValueVTs.size(); 11820 if (NumValues == 0) 11821 continue; 11822 11823 bool ArgHasUses = !Arg.use_empty(); 11824 11825 // Elide the copying store if the target loaded this argument from a 11826 // suitable fixed stack object. 11827 if (Ins[i].Flags.isCopyElisionCandidate()) { 11828 unsigned NumParts = 0; 11829 for (EVT VT : ValueVTs) 11830 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11831 F.getCallingConv(), VT); 11832 11833 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11834 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11835 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11836 } 11837 11838 // If this argument is unused then remember its value. It is used to generate 11839 // debugging information. 11840 bool isSwiftErrorArg = 11841 TLI->supportSwiftError() && 11842 Arg.hasAttribute(Attribute::SwiftError); 11843 if (!ArgHasUses && !isSwiftErrorArg) { 11844 SDB->setUnusedArgValue(&Arg, InVals[i]); 11845 11846 // Also remember any frame index for use in FastISel. 11847 if (FrameIndexSDNode *FI = 11848 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11849 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11850 } 11851 11852 for (unsigned Val = 0; Val != NumValues; ++Val) { 11853 EVT VT = ValueVTs[Val]; 11854 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11855 F.getCallingConv(), VT); 11856 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11857 *CurDAG->getContext(), F.getCallingConv(), VT); 11858 11859 // Even an apparent 'unused' swifterror argument needs to be returned. So 11860 // we do generate a copy for it that can be used on return from the 11861 // function. 11862 if (ArgHasUses || isSwiftErrorArg) { 11863 std::optional<ISD::NodeType> AssertOp; 11864 if (Arg.hasAttribute(Attribute::SExt)) 11865 AssertOp = ISD::AssertSext; 11866 else if (Arg.hasAttribute(Attribute::ZExt)) 11867 AssertOp = ISD::AssertZext; 11868 11869 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11870 PartVT, VT, nullptr, NewRoot, 11871 F.getCallingConv(), AssertOp)); 11872 } 11873 11874 i += NumParts; 11875 } 11876 11877 // We don't need to do anything else for unused arguments. 11878 if (ArgValues.empty()) 11879 continue; 11880 11881 // Note down frame index. 11882 if (FrameIndexSDNode *FI = 11883 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11884 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11885 11886 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11887 SDB->getCurSDLoc()); 11888 11889 SDB->setValue(&Arg, Res); 11890 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11891 // We want to associate the argument with the frame index, among 11892 // involved operands, that correspond to the lowest address. The 11893 // getCopyFromParts function, called earlier, is swapping the order of 11894 // the operands to BUILD_PAIR depending on endianness. The result of 11895 // that swapping is that the least significant bits of the argument will 11896 // be in the first operand of the BUILD_PAIR node, and the most 11897 // significant bits will be in the second operand. 11898 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11899 if (LoadSDNode *LNode = 11900 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11901 if (FrameIndexSDNode *FI = 11902 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11903 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11904 } 11905 11906 // Analyses past this point are naive and don't expect an assertion. 11907 if (Res.getOpcode() == ISD::AssertZext) 11908 Res = Res.getOperand(0); 11909 11910 // Update the SwiftErrorVRegDefMap. 11911 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11912 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11913 if (Reg.isVirtual()) 11914 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11915 Reg); 11916 } 11917 11918 // If this argument is live outside of the entry block, insert a copy from 11919 // wherever we got it to the vreg that other BB's will reference it as. 11920 if (Res.getOpcode() == ISD::CopyFromReg) { 11921 // If we can, though, try to skip creating an unnecessary vreg. 11922 // FIXME: This isn't very clean... it would be nice to make this more 11923 // general. 11924 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11925 if (Reg.isVirtual()) { 11926 FuncInfo->ValueMap[&Arg] = Reg; 11927 continue; 11928 } 11929 } 11930 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11931 FuncInfo->InitializeRegForValue(&Arg); 11932 SDB->CopyToExportRegsIfNeeded(&Arg); 11933 } 11934 } 11935 11936 if (!Chains.empty()) { 11937 Chains.push_back(NewRoot); 11938 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11939 } 11940 11941 DAG.setRoot(NewRoot); 11942 11943 assert(i == InVals.size() && "Argument register count mismatch!"); 11944 11945 // If any argument copy elisions occurred and we have debug info, update the 11946 // stale frame indices used in the dbg.declare variable info table. 11947 if (!ArgCopyElisionFrameIndexMap.empty()) { 11948 for (MachineFunction::VariableDbgInfo &VI : 11949 MF->getInStackSlotVariableDbgInfo()) { 11950 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11951 if (I != ArgCopyElisionFrameIndexMap.end()) 11952 VI.updateStackSlot(I->second); 11953 } 11954 } 11955 11956 // Finally, if the target has anything special to do, allow it to do so. 11957 emitFunctionEntryCode(); 11958 } 11959 11960 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11961 /// ensure constants are generated when needed. Remember the virtual registers 11962 /// that need to be added to the Machine PHI nodes as input. We cannot just 11963 /// directly add them, because expansion might result in multiple MBB's for one 11964 /// BB. As such, the start of the BB might correspond to a different MBB than 11965 /// the end. 11966 void 11967 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11968 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11969 11970 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11971 11972 // Check PHI nodes in successors that expect a value to be available from this 11973 // block. 11974 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11975 if (!isa<PHINode>(SuccBB->begin())) continue; 11976 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB); 11977 11978 // If this terminator has multiple identical successors (common for 11979 // switches), only handle each succ once. 11980 if (!SuccsHandled.insert(SuccMBB).second) 11981 continue; 11982 11983 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11984 11985 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11986 // nodes and Machine PHI nodes, but the incoming operands have not been 11987 // emitted yet. 11988 for (const PHINode &PN : SuccBB->phis()) { 11989 // Ignore dead phi's. 11990 if (PN.use_empty()) 11991 continue; 11992 11993 // Skip empty types 11994 if (PN.getType()->isEmptyTy()) 11995 continue; 11996 11997 unsigned Reg; 11998 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11999 12000 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 12001 unsigned &RegOut = ConstantsOut[C]; 12002 if (RegOut == 0) { 12003 RegOut = FuncInfo.CreateRegs(C); 12004 // We need to zero/sign extend ConstantInt phi operands to match 12005 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 12006 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 12007 if (auto *CI = dyn_cast<ConstantInt>(C)) 12008 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 12009 : ISD::ZERO_EXTEND; 12010 CopyValueToVirtualRegister(C, RegOut, ExtendType); 12011 } 12012 Reg = RegOut; 12013 } else { 12014 DenseMap<const Value *, Register>::iterator I = 12015 FuncInfo.ValueMap.find(PHIOp); 12016 if (I != FuncInfo.ValueMap.end()) 12017 Reg = I->second; 12018 else { 12019 assert(isa<AllocaInst>(PHIOp) && 12020 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 12021 "Didn't codegen value into a register!??"); 12022 Reg = FuncInfo.CreateRegs(PHIOp); 12023 CopyValueToVirtualRegister(PHIOp, Reg); 12024 } 12025 } 12026 12027 // Remember that this register needs to added to the machine PHI node as 12028 // the input for this MBB. 12029 SmallVector<EVT, 4> ValueVTs; 12030 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 12031 for (EVT VT : ValueVTs) { 12032 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 12033 for (unsigned i = 0; i != NumRegisters; ++i) 12034 FuncInfo.PHINodesToUpdate.push_back( 12035 std::make_pair(&*MBBI++, Reg + i)); 12036 Reg += NumRegisters; 12037 } 12038 } 12039 } 12040 12041 ConstantsOut.clear(); 12042 } 12043 12044 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 12045 MachineFunction::iterator I(MBB); 12046 if (++I == FuncInfo.MF->end()) 12047 return nullptr; 12048 return &*I; 12049 } 12050 12051 /// During lowering new call nodes can be created (such as memset, etc.). 12052 /// Those will become new roots of the current DAG, but complications arise 12053 /// when they are tail calls. In such cases, the call lowering will update 12054 /// the root, but the builder still needs to know that a tail call has been 12055 /// lowered in order to avoid generating an additional return. 12056 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 12057 // If the node is null, we do have a tail call. 12058 if (MaybeTC.getNode() != nullptr) 12059 DAG.setRoot(MaybeTC); 12060 else 12061 HasTailCall = true; 12062 } 12063 12064 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 12065 MachineBasicBlock *SwitchMBB, 12066 MachineBasicBlock *DefaultMBB) { 12067 MachineFunction *CurMF = FuncInfo.MF; 12068 MachineBasicBlock *NextMBB = nullptr; 12069 MachineFunction::iterator BBI(W.MBB); 12070 if (++BBI != FuncInfo.MF->end()) 12071 NextMBB = &*BBI; 12072 12073 unsigned Size = W.LastCluster - W.FirstCluster + 1; 12074 12075 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12076 12077 if (Size == 2 && W.MBB == SwitchMBB) { 12078 // If any two of the cases has the same destination, and if one value 12079 // is the same as the other, but has one bit unset that the other has set, 12080 // use bit manipulation to do two compares at once. For example: 12081 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 12082 // TODO: This could be extended to merge any 2 cases in switches with 3 12083 // cases. 12084 // TODO: Handle cases where W.CaseBB != SwitchBB. 12085 CaseCluster &Small = *W.FirstCluster; 12086 CaseCluster &Big = *W.LastCluster; 12087 12088 if (Small.Low == Small.High && Big.Low == Big.High && 12089 Small.MBB == Big.MBB) { 12090 const APInt &SmallValue = Small.Low->getValue(); 12091 const APInt &BigValue = Big.Low->getValue(); 12092 12093 // Check that there is only one bit different. 12094 APInt CommonBit = BigValue ^ SmallValue; 12095 if (CommonBit.isPowerOf2()) { 12096 SDValue CondLHS = getValue(Cond); 12097 EVT VT = CondLHS.getValueType(); 12098 SDLoc DL = getCurSDLoc(); 12099 12100 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 12101 DAG.getConstant(CommonBit, DL, VT)); 12102 SDValue Cond = DAG.getSetCC( 12103 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 12104 ISD::SETEQ); 12105 12106 // Update successor info. 12107 // Both Small and Big will jump to Small.BB, so we sum up the 12108 // probabilities. 12109 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 12110 if (BPI) 12111 addSuccessorWithProb( 12112 SwitchMBB, DefaultMBB, 12113 // The default destination is the first successor in IR. 12114 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 12115 else 12116 addSuccessorWithProb(SwitchMBB, DefaultMBB); 12117 12118 // Insert the true branch. 12119 SDValue BrCond = 12120 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 12121 DAG.getBasicBlock(Small.MBB)); 12122 // Insert the false branch. 12123 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 12124 DAG.getBasicBlock(DefaultMBB)); 12125 12126 DAG.setRoot(BrCond); 12127 return; 12128 } 12129 } 12130 } 12131 12132 if (TM.getOptLevel() != CodeGenOptLevel::None) { 12133 // Here, we order cases by probability so the most likely case will be 12134 // checked first. However, two clusters can have the same probability in 12135 // which case their relative ordering is non-deterministic. So we use Low 12136 // as a tie-breaker as clusters are guaranteed to never overlap. 12137 llvm::sort(W.FirstCluster, W.LastCluster + 1, 12138 [](const CaseCluster &a, const CaseCluster &b) { 12139 return a.Prob != b.Prob ? 12140 a.Prob > b.Prob : 12141 a.Low->getValue().slt(b.Low->getValue()); 12142 }); 12143 12144 // Rearrange the case blocks so that the last one falls through if possible 12145 // without changing the order of probabilities. 12146 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 12147 --I; 12148 if (I->Prob > W.LastCluster->Prob) 12149 break; 12150 if (I->Kind == CC_Range && I->MBB == NextMBB) { 12151 std::swap(*I, *W.LastCluster); 12152 break; 12153 } 12154 } 12155 } 12156 12157 // Compute total probability. 12158 BranchProbability DefaultProb = W.DefaultProb; 12159 BranchProbability UnhandledProbs = DefaultProb; 12160 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 12161 UnhandledProbs += I->Prob; 12162 12163 MachineBasicBlock *CurMBB = W.MBB; 12164 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 12165 bool FallthroughUnreachable = false; 12166 MachineBasicBlock *Fallthrough; 12167 if (I == W.LastCluster) { 12168 // For the last cluster, fall through to the default destination. 12169 Fallthrough = DefaultMBB; 12170 FallthroughUnreachable = isa<UnreachableInst>( 12171 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 12172 } else { 12173 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 12174 CurMF->insert(BBI, Fallthrough); 12175 // Put Cond in a virtual register to make it available from the new blocks. 12176 ExportFromCurrentBlock(Cond); 12177 } 12178 UnhandledProbs -= I->Prob; 12179 12180 switch (I->Kind) { 12181 case CC_JumpTable: { 12182 // FIXME: Optimize away range check based on pivot comparisons. 12183 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 12184 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 12185 12186 // The jump block hasn't been inserted yet; insert it here. 12187 MachineBasicBlock *JumpMBB = JT->MBB; 12188 CurMF->insert(BBI, JumpMBB); 12189 12190 auto JumpProb = I->Prob; 12191 auto FallthroughProb = UnhandledProbs; 12192 12193 // If the default statement is a target of the jump table, we evenly 12194 // distribute the default probability to successors of CurMBB. Also 12195 // update the probability on the edge from JumpMBB to Fallthrough. 12196 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 12197 SE = JumpMBB->succ_end(); 12198 SI != SE; ++SI) { 12199 if (*SI == DefaultMBB) { 12200 JumpProb += DefaultProb / 2; 12201 FallthroughProb -= DefaultProb / 2; 12202 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 12203 JumpMBB->normalizeSuccProbs(); 12204 break; 12205 } 12206 } 12207 12208 // If the default clause is unreachable, propagate that knowledge into 12209 // JTH->FallthroughUnreachable which will use it to suppress the range 12210 // check. 12211 // 12212 // However, don't do this if we're doing branch target enforcement, 12213 // because a table branch _without_ a range check can be a tempting JOP 12214 // gadget - out-of-bounds inputs that are impossible in correct 12215 // execution become possible again if an attacker can influence the 12216 // control flow. So if an attacker doesn't already have a BTI bypass 12217 // available, we don't want them to be able to get one out of this 12218 // table branch. 12219 if (FallthroughUnreachable) { 12220 Function &CurFunc = CurMF->getFunction(); 12221 if (!CurFunc.hasFnAttribute("branch-target-enforcement")) 12222 JTH->FallthroughUnreachable = true; 12223 } 12224 12225 if (!JTH->FallthroughUnreachable) 12226 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 12227 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 12228 CurMBB->normalizeSuccProbs(); 12229 12230 // The jump table header will be inserted in our current block, do the 12231 // range check, and fall through to our fallthrough block. 12232 JTH->HeaderBB = CurMBB; 12233 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 12234 12235 // If we're in the right place, emit the jump table header right now. 12236 if (CurMBB == SwitchMBB) { 12237 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 12238 JTH->Emitted = true; 12239 } 12240 break; 12241 } 12242 case CC_BitTests: { 12243 // FIXME: Optimize away range check based on pivot comparisons. 12244 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 12245 12246 // The bit test blocks haven't been inserted yet; insert them here. 12247 for (BitTestCase &BTC : BTB->Cases) 12248 CurMF->insert(BBI, BTC.ThisBB); 12249 12250 // Fill in fields of the BitTestBlock. 12251 BTB->Parent = CurMBB; 12252 BTB->Default = Fallthrough; 12253 12254 BTB->DefaultProb = UnhandledProbs; 12255 // If the cases in bit test don't form a contiguous range, we evenly 12256 // distribute the probability on the edge to Fallthrough to two 12257 // successors of CurMBB. 12258 if (!BTB->ContiguousRange) { 12259 BTB->Prob += DefaultProb / 2; 12260 BTB->DefaultProb -= DefaultProb / 2; 12261 } 12262 12263 if (FallthroughUnreachable) 12264 BTB->FallthroughUnreachable = true; 12265 12266 // If we're in the right place, emit the bit test header right now. 12267 if (CurMBB == SwitchMBB) { 12268 visitBitTestHeader(*BTB, SwitchMBB); 12269 BTB->Emitted = true; 12270 } 12271 break; 12272 } 12273 case CC_Range: { 12274 const Value *RHS, *LHS, *MHS; 12275 ISD::CondCode CC; 12276 if (I->Low == I->High) { 12277 // Check Cond == I->Low. 12278 CC = ISD::SETEQ; 12279 LHS = Cond; 12280 RHS=I->Low; 12281 MHS = nullptr; 12282 } else { 12283 // Check I->Low <= Cond <= I->High. 12284 CC = ISD::SETLE; 12285 LHS = I->Low; 12286 MHS = Cond; 12287 RHS = I->High; 12288 } 12289 12290 // If Fallthrough is unreachable, fold away the comparison. 12291 if (FallthroughUnreachable) 12292 CC = ISD::SETTRUE; 12293 12294 // The false probability is the sum of all unhandled cases. 12295 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12296 getCurSDLoc(), I->Prob, UnhandledProbs); 12297 12298 if (CurMBB == SwitchMBB) 12299 visitSwitchCase(CB, SwitchMBB); 12300 else 12301 SL->SwitchCases.push_back(CB); 12302 12303 break; 12304 } 12305 } 12306 CurMBB = Fallthrough; 12307 } 12308 } 12309 12310 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12311 const SwitchWorkListItem &W, 12312 Value *Cond, 12313 MachineBasicBlock *SwitchMBB) { 12314 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12315 "Clusters not sorted?"); 12316 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12317 12318 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12319 SL->computeSplitWorkItemInfo(W); 12320 12321 // Use the first element on the right as pivot since we will make less-than 12322 // comparisons against it. 12323 CaseClusterIt PivotCluster = FirstRight; 12324 assert(PivotCluster > W.FirstCluster); 12325 assert(PivotCluster <= W.LastCluster); 12326 12327 CaseClusterIt FirstLeft = W.FirstCluster; 12328 CaseClusterIt LastRight = W.LastCluster; 12329 12330 const ConstantInt *Pivot = PivotCluster->Low; 12331 12332 // New blocks will be inserted immediately after the current one. 12333 MachineFunction::iterator BBI(W.MBB); 12334 ++BBI; 12335 12336 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12337 // we can branch to its destination directly if it's squeezed exactly in 12338 // between the known lower bound and Pivot - 1. 12339 MachineBasicBlock *LeftMBB; 12340 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12341 FirstLeft->Low == W.GE && 12342 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12343 LeftMBB = FirstLeft->MBB; 12344 } else { 12345 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12346 FuncInfo.MF->insert(BBI, LeftMBB); 12347 WorkList.push_back( 12348 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12349 // Put Cond in a virtual register to make it available from the new blocks. 12350 ExportFromCurrentBlock(Cond); 12351 } 12352 12353 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12354 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12355 // directly if RHS.High equals the current upper bound. 12356 MachineBasicBlock *RightMBB; 12357 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12358 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12359 RightMBB = FirstRight->MBB; 12360 } else { 12361 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12362 FuncInfo.MF->insert(BBI, RightMBB); 12363 WorkList.push_back( 12364 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12365 // Put Cond in a virtual register to make it available from the new blocks. 12366 ExportFromCurrentBlock(Cond); 12367 } 12368 12369 // Create the CaseBlock record that will be used to lower the branch. 12370 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12371 getCurSDLoc(), LeftProb, RightProb); 12372 12373 if (W.MBB == SwitchMBB) 12374 visitSwitchCase(CB, SwitchMBB); 12375 else 12376 SL->SwitchCases.push_back(CB); 12377 } 12378 12379 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12380 // from the swith statement. 12381 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12382 BranchProbability PeeledCaseProb) { 12383 if (PeeledCaseProb == BranchProbability::getOne()) 12384 return BranchProbability::getZero(); 12385 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12386 12387 uint32_t Numerator = CaseProb.getNumerator(); 12388 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12389 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12390 } 12391 12392 // Try to peel the top probability case if it exceeds the threshold. 12393 // Return current MachineBasicBlock for the switch statement if the peeling 12394 // does not occur. 12395 // If the peeling is performed, return the newly created MachineBasicBlock 12396 // for the peeled switch statement. Also update Clusters to remove the peeled 12397 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12398 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12399 const SwitchInst &SI, CaseClusterVector &Clusters, 12400 BranchProbability &PeeledCaseProb) { 12401 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12402 // Don't perform if there is only one cluster or optimizing for size. 12403 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12404 TM.getOptLevel() == CodeGenOptLevel::None || 12405 SwitchMBB->getParent()->getFunction().hasMinSize()) 12406 return SwitchMBB; 12407 12408 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12409 unsigned PeeledCaseIndex = 0; 12410 bool SwitchPeeled = false; 12411 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12412 CaseCluster &CC = Clusters[Index]; 12413 if (CC.Prob < TopCaseProb) 12414 continue; 12415 TopCaseProb = CC.Prob; 12416 PeeledCaseIndex = Index; 12417 SwitchPeeled = true; 12418 } 12419 if (!SwitchPeeled) 12420 return SwitchMBB; 12421 12422 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12423 << TopCaseProb << "\n"); 12424 12425 // Record the MBB for the peeled switch statement. 12426 MachineFunction::iterator BBI(SwitchMBB); 12427 ++BBI; 12428 MachineBasicBlock *PeeledSwitchMBB = 12429 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12430 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12431 12432 ExportFromCurrentBlock(SI.getCondition()); 12433 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12434 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12435 nullptr, nullptr, TopCaseProb.getCompl()}; 12436 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12437 12438 Clusters.erase(PeeledCaseIt); 12439 for (CaseCluster &CC : Clusters) { 12440 LLVM_DEBUG( 12441 dbgs() << "Scale the probablity for one cluster, before scaling: " 12442 << CC.Prob << "\n"); 12443 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12444 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12445 } 12446 PeeledCaseProb = TopCaseProb; 12447 return PeeledSwitchMBB; 12448 } 12449 12450 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12451 // Extract cases from the switch. 12452 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12453 CaseClusterVector Clusters; 12454 Clusters.reserve(SI.getNumCases()); 12455 for (auto I : SI.cases()) { 12456 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor()); 12457 const ConstantInt *CaseVal = I.getCaseValue(); 12458 BranchProbability Prob = 12459 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12460 : BranchProbability(1, SI.getNumCases() + 1); 12461 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12462 } 12463 12464 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest()); 12465 12466 // Cluster adjacent cases with the same destination. We do this at all 12467 // optimization levels because it's cheap to do and will make codegen faster 12468 // if there are many clusters. 12469 sortAndRangeify(Clusters); 12470 12471 // The branch probablity of the peeled case. 12472 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12473 MachineBasicBlock *PeeledSwitchMBB = 12474 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12475 12476 // If there is only the default destination, jump there directly. 12477 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12478 if (Clusters.empty()) { 12479 assert(PeeledSwitchMBB == SwitchMBB); 12480 SwitchMBB->addSuccessor(DefaultMBB); 12481 if (DefaultMBB != NextBlock(SwitchMBB)) { 12482 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12483 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12484 } 12485 return; 12486 } 12487 12488 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12489 DAG.getBFI()); 12490 SL->findBitTestClusters(Clusters, &SI); 12491 12492 LLVM_DEBUG({ 12493 dbgs() << "Case clusters: "; 12494 for (const CaseCluster &C : Clusters) { 12495 if (C.Kind == CC_JumpTable) 12496 dbgs() << "JT:"; 12497 if (C.Kind == CC_BitTests) 12498 dbgs() << "BT:"; 12499 12500 C.Low->getValue().print(dbgs(), true); 12501 if (C.Low != C.High) { 12502 dbgs() << '-'; 12503 C.High->getValue().print(dbgs(), true); 12504 } 12505 dbgs() << ' '; 12506 } 12507 dbgs() << '\n'; 12508 }); 12509 12510 assert(!Clusters.empty()); 12511 SwitchWorkList WorkList; 12512 CaseClusterIt First = Clusters.begin(); 12513 CaseClusterIt Last = Clusters.end() - 1; 12514 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12515 // Scale the branchprobability for DefaultMBB if the peel occurs and 12516 // DefaultMBB is not replaced. 12517 if (PeeledCaseProb != BranchProbability::getZero() && 12518 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest())) 12519 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12520 WorkList.push_back( 12521 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12522 12523 while (!WorkList.empty()) { 12524 SwitchWorkListItem W = WorkList.pop_back_val(); 12525 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12526 12527 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12528 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12529 // For optimized builds, lower large range as a balanced binary tree. 12530 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12531 continue; 12532 } 12533 12534 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12535 } 12536 } 12537 12538 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12540 auto DL = getCurSDLoc(); 12541 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12542 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12543 } 12544 12545 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12547 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12548 12549 SDLoc DL = getCurSDLoc(); 12550 SDValue V = getValue(I.getOperand(0)); 12551 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12552 12553 if (VT.isScalableVector()) { 12554 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12555 return; 12556 } 12557 12558 // Use VECTOR_SHUFFLE for the fixed-length vector 12559 // to maintain existing behavior. 12560 SmallVector<int, 8> Mask; 12561 unsigned NumElts = VT.getVectorMinNumElements(); 12562 for (unsigned i = 0; i != NumElts; ++i) 12563 Mask.push_back(NumElts - 1 - i); 12564 12565 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12566 } 12567 12568 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12569 auto DL = getCurSDLoc(); 12570 SDValue InVec = getValue(I.getOperand(0)); 12571 EVT OutVT = 12572 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12573 12574 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12575 12576 // ISD Node needs the input vectors split into two equal parts 12577 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12578 DAG.getVectorIdxConstant(0, DL)); 12579 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12580 DAG.getVectorIdxConstant(OutNumElts, DL)); 12581 12582 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12583 // legalisation and combines. 12584 if (OutVT.isFixedLengthVector()) { 12585 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12586 createStrideMask(0, 2, OutNumElts)); 12587 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12588 createStrideMask(1, 2, OutNumElts)); 12589 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12590 setValue(&I, Res); 12591 return; 12592 } 12593 12594 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12595 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12596 setValue(&I, Res); 12597 } 12598 12599 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12600 auto DL = getCurSDLoc(); 12601 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12602 SDValue InVec0 = getValue(I.getOperand(0)); 12603 SDValue InVec1 = getValue(I.getOperand(1)); 12604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12605 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12606 12607 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12608 // legalisation and combines. 12609 if (OutVT.isFixedLengthVector()) { 12610 unsigned NumElts = InVT.getVectorMinNumElements(); 12611 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12612 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12613 createInterleaveMask(NumElts, 2))); 12614 return; 12615 } 12616 12617 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12618 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12619 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12620 Res.getValue(1)); 12621 setValue(&I, Res); 12622 } 12623 12624 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12625 SmallVector<EVT, 4> ValueVTs; 12626 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12627 ValueVTs); 12628 unsigned NumValues = ValueVTs.size(); 12629 if (NumValues == 0) return; 12630 12631 SmallVector<SDValue, 4> Values(NumValues); 12632 SDValue Op = getValue(I.getOperand(0)); 12633 12634 for (unsigned i = 0; i != NumValues; ++i) 12635 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12636 SDValue(Op.getNode(), Op.getResNo() + i)); 12637 12638 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12639 DAG.getVTList(ValueVTs), Values)); 12640 } 12641 12642 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12644 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12645 12646 SDLoc DL = getCurSDLoc(); 12647 SDValue V1 = getValue(I.getOperand(0)); 12648 SDValue V2 = getValue(I.getOperand(1)); 12649 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12650 12651 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12652 if (VT.isScalableVector()) { 12653 setValue( 12654 &I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12655 DAG.getSignedConstant( 12656 Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 12657 return; 12658 } 12659 12660 unsigned NumElts = VT.getVectorNumElements(); 12661 12662 uint64_t Idx = (NumElts + Imm) % NumElts; 12663 12664 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12665 SmallVector<int, 8> Mask; 12666 for (unsigned i = 0; i < NumElts; ++i) 12667 Mask.push_back(Idx + i); 12668 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12669 } 12670 12671 // Consider the following MIR after SelectionDAG, which produces output in 12672 // phyregs in the first case or virtregs in the second case. 12673 // 12674 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12675 // %5:gr32 = COPY $ebx 12676 // %6:gr32 = COPY $edx 12677 // %1:gr32 = COPY %6:gr32 12678 // %0:gr32 = COPY %5:gr32 12679 // 12680 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12681 // %1:gr32 = COPY %6:gr32 12682 // %0:gr32 = COPY %5:gr32 12683 // 12684 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12685 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12686 // 12687 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12688 // to a single virtreg (such as %0). The remaining outputs monotonically 12689 // increase in virtreg number from there. If a callbr has no outputs, then it 12690 // should not have a corresponding callbr landingpad; in fact, the callbr 12691 // landingpad would not even be able to refer to such a callbr. 12692 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12693 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12694 // There is definitely at least one copy. 12695 assert(MI->getOpcode() == TargetOpcode::COPY && 12696 "start of copy chain MUST be COPY"); 12697 Reg = MI->getOperand(1).getReg(); 12698 MI = MRI.def_begin(Reg)->getParent(); 12699 // There may be an optional second copy. 12700 if (MI->getOpcode() == TargetOpcode::COPY) { 12701 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12702 Reg = MI->getOperand(1).getReg(); 12703 assert(Reg.isPhysical() && "expected COPY of physical register"); 12704 MI = MRI.def_begin(Reg)->getParent(); 12705 } 12706 // The start of the chain must be an INLINEASM_BR. 12707 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12708 "end of copy chain MUST be INLINEASM_BR"); 12709 return Reg; 12710 } 12711 12712 // We must do this walk rather than the simpler 12713 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12714 // otherwise we will end up with copies of virtregs only valid along direct 12715 // edges. 12716 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12717 SmallVector<EVT, 8> ResultVTs; 12718 SmallVector<SDValue, 8> ResultValues; 12719 const auto *CBR = 12720 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12721 12722 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12723 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12724 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12725 12726 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12727 SDValue Chain = DAG.getRoot(); 12728 12729 // Re-parse the asm constraints string. 12730 TargetLowering::AsmOperandInfoVector TargetConstraints = 12731 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12732 for (auto &T : TargetConstraints) { 12733 SDISelAsmOperandInfo OpInfo(T); 12734 if (OpInfo.Type != InlineAsm::isOutput) 12735 continue; 12736 12737 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12738 // individual constraint. 12739 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12740 12741 switch (OpInfo.ConstraintType) { 12742 case TargetLowering::C_Register: 12743 case TargetLowering::C_RegisterClass: { 12744 // Fill in OpInfo.AssignedRegs.Regs. 12745 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12746 12747 // getRegistersForValue may produce 1 to many registers based on whether 12748 // the OpInfo.ConstraintVT is legal on the target or not. 12749 for (Register &Reg : OpInfo.AssignedRegs.Regs) { 12750 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12751 if (OriginalDef.isPhysical()) 12752 FuncInfo.MBB->addLiveIn(OriginalDef); 12753 // Update the assigned registers to use the original defs. 12754 Reg = OriginalDef; 12755 } 12756 12757 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12758 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12759 ResultValues.push_back(V); 12760 ResultVTs.push_back(OpInfo.ConstraintVT); 12761 break; 12762 } 12763 case TargetLowering::C_Other: { 12764 SDValue Flag; 12765 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12766 OpInfo, DAG); 12767 ++InitialDef; 12768 ResultValues.push_back(V); 12769 ResultVTs.push_back(OpInfo.ConstraintVT); 12770 break; 12771 } 12772 default: 12773 break; 12774 } 12775 } 12776 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12777 DAG.getVTList(ResultVTs), ResultValues); 12778 setValue(&I, V); 12779 } 12780