1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Kernel's linker/loader
28 */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/systm.h>
34 #include <sys/user.h>
35 #include <sys/kmem.h>
36 #include <sys/reboot.h>
37 #include <sys/bootconf.h>
38 #include <sys/debug.h>
39 #include <sys/uio.h>
40 #include <sys/file.h>
41 #include <sys/vnode.h>
42 #include <sys/user.h>
43 #include <sys/mman.h>
44 #include <vm/as.h>
45 #include <vm/seg_kp.h>
46 #include <vm/seg_kmem.h>
47 #include <sys/elf.h>
48 #include <sys/elf_notes.h>
49 #include <sys/vmsystm.h>
50 #include <sys/kdi.h>
51 #include <sys/atomic.h>
52 #include <sys/kmdb.h>
53
54 #include <sys/link.h>
55 #include <sys/kobj.h>
56 #include <sys/ksyms.h>
57 #include <sys/disp.h>
58 #include <sys/modctl.h>
59 #include <sys/varargs.h>
60 #include <sys/kstat.h>
61 #include <sys/kobj_impl.h>
62 #include <sys/fs/decomp.h>
63 #include <sys/callb.h>
64 #include <sys/cmn_err.h>
65 #include <sys/tnf_probe.h>
66 #include <sys/zmod.h>
67
68 #include <krtld/reloc.h>
69 #include <krtld/kobj_kdi.h>
70 #include <sys/sha1.h>
71 #include <sys/crypto/elfsign.h>
72
73 #if !defined(_OBP)
74 #include <sys/bootvfs.h>
75 #endif
76
77 /*
78 * do_symbols() error codes
79 */
80 #define DOSYM_UNDEF -1 /* undefined symbol */
81 #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */
82
83 #if !defined(_OBP)
84 static void synthetic_bootaux(char *, val_t *);
85 #endif
86
87 static struct module *load_exec(val_t *, char *);
88 static void load_linker(val_t *);
89 static struct modctl *add_primary(const char *filename, int);
90 static int bind_primary(val_t *, int);
91 static int load_primary(struct module *, int);
92 static int load_kmdb(val_t *);
93 static int get_progbits(struct module *, struct _buf *);
94 static int get_syms(struct module *, struct _buf *);
95 static int get_ctf(struct module *, struct _buf *);
96 static void get_signature(struct module *, struct _buf *);
97 static int do_common(struct module *);
98 static void add_dependent(struct module *, struct module *);
99 static int do_dependents(struct modctl *, char *, size_t);
100 static int do_symbols(struct module *, Elf64_Addr);
101 static void module_assign(struct modctl *, struct module *);
102 static void free_module_data(struct module *);
103 static char *depends_on(struct module *);
104 static char *getmodpath(const char *);
105 static char *basename(char *);
106 static void attr_val(val_t *);
107 static char *find_libmacro(char *);
108 static char *expand_libmacro(char *, char *, char *);
109 static int read_bootflags(void);
110 static int kobj_comp_setup(struct _buf *, struct compinfo *);
111 static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t);
112 static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t);
113 static int kobj_boot_open(char *, int);
114 static int kobj_boot_close(int);
115 static int kobj_boot_seek(int, off_t, off_t);
116 static int kobj_boot_read(int, caddr_t, size_t);
117 static int kobj_boot_fstat(int, struct bootstat *);
118 static int kobj_boot_compinfo(int, struct compinfo *);
119
120 static Sym *lookup_one(struct module *, const char *);
121 static void sym_insert(struct module *, char *, symid_t);
122 static Sym *sym_lookup(struct module *, Sym *);
123
124 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
125 static void kobjopen_free(struct kobjopen_tctl *ltp);
126 static void kobjopen_thread(struct kobjopen_tctl *ltp);
127 static int kobj_is_compressed(intptr_t);
128
129 extern int kcopy(const void *, void *, size_t);
130 extern int elf_mach_ok(Ehdr *);
131 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
132
133 #if !defined(_OBP)
134 extern int kobj_boot_mountroot(void);
135 #endif
136
137 static void tnf_unsplice_probes(uint_t, struct modctl *);
138 extern tnf_probe_control_t *__tnf_probe_list_head;
139 extern tnf_tag_data_t *__tnf_tag_list_head;
140
141 extern int modrootloaded;
142 extern int swaploaded;
143 extern int bop_io_quiesced;
144 extern int last_module_id;
145
146 extern char stubs_base[];
147 extern char stubs_end[];
148
149 #ifdef KOBJ_DEBUG
150 /*
151 * Values that can be or'd in to kobj_debug and their effects:
152 *
153 * D_DEBUG - misc. debugging information.
154 * D_SYMBOLS - list symbols and their values as they are entered
155 * into the hash table
156 * D_RELOCATIONS - display relocation processing information
157 * D_LOADING - display information about each module as it
158 * is loaded.
159 */
160 int kobj_debug = 0;
161
162 #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \
163 (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s))
164 #else
165 #define KOBJ_MARK(s) /* discard */
166 #endif
167
168 #define MODPATH_PROPNAME "module-path"
169
170 #ifdef MODDIR_SUFFIX
171 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
172 #else
173 #define slash_moddir_suffix_slash ""
174 #endif
175
176 #define _moddebug get_weakish_int(&moddebug)
177 #define _modrootloaded get_weakish_int(&modrootloaded)
178 #define _swaploaded get_weakish_int(&swaploaded)
179 #define _ioquiesced get_weakish_int(&bop_io_quiesced)
180
181 #define mod(X) (struct module *)((X)->modl_modp->mod_mp)
182
183 void *romp; /* rom vector (opaque to us) */
184 struct bootops *ops; /* bootops vector */
185 void *dbvec; /* debug vector */
186
187 /*
188 * kobjopen thread control structure
189 */
190 struct kobjopen_tctl {
191 ksema_t sema;
192 char *name; /* name of file */
193 struct vnode *vp; /* vnode return from vn_open() */
194 int Errno; /* error return from vnopen */
195 };
196
197 /*
198 * Structure for defining dynamically expandable library macros
199 */
200
201 struct lib_macro_info {
202 char *lmi_list; /* ptr to list of possible choices */
203 char *lmi_macroname; /* pointer to macro name */
204 ushort_t lmi_ba_index; /* index into bootaux vector */
205 ushort_t lmi_macrolen; /* macro length */
206 } libmacros[] = {
207 { NULL, "CPU", BA_CPU, 0 },
208 { NULL, "MMU", BA_MMU, 0 }
209 };
210
211 #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info)
212
213 char *boot_cpu_compatible_list; /* make $CPU available */
214
215 char *kobj_module_path; /* module search path */
216 vmem_t *text_arena; /* module text arena */
217 static vmem_t *data_arena; /* module data & bss arena */
218 static vmem_t *ctf_arena; /* CTF debug data arena */
219 static struct modctl *kobj_modules = NULL; /* modules loaded */
220 int kobj_mmu_pagesize; /* system pagesize */
221 static int lg_pagesize; /* "large" pagesize */
222 static int kobj_last_module_id = 0; /* id assignment */
223 static kmutex_t kobj_lock; /* protects mach memory list */
224
225 /*
226 * The following functions have been implemented by the kernel.
227 * However, many 3rd party drivers provide their own implementations
228 * of these functions. When such drivers are loaded, messages
229 * indicating that these symbols have been multiply defined will be
230 * emitted to the console. To avoid alarming customers for no good
231 * reason, we simply suppress such warnings for the following set of
232 * functions.
233 */
234 static char *suppress_sym_list[] =
235 {
236 "strstr",
237 "strncat",
238 "strlcat",
239 "strlcpy",
240 "strspn",
241 "memcpy",
242 "memset",
243 "memmove",
244 "memcmp",
245 "memchr",
246 "__udivdi3",
247 "__divdi3",
248 "__umoddi3",
249 "__moddi3",
250 NULL /* This entry must exist */
251 };
252
253 /* indexed by KOBJ_NOTIFY_* */
254 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
255
256 /*
257 * TNF probe management globals
258 */
259 tnf_probe_control_t *__tnf_probe_list_head = NULL;
260 tnf_tag_data_t *__tnf_tag_list_head = NULL;
261 int tnf_changed_probe_list = 0;
262
263 /*
264 * Prefix for statically defined tracing (SDT) DTrace probes.
265 */
266 const char *sdt_prefix = "__dtrace_probe_";
267
268 /*
269 * Beginning and end of the kernel's dynamic text/data segments.
270 */
271 static caddr_t _text;
272 static caddr_t _etext;
273 static caddr_t _data;
274
275 /*
276 * The sparc linker doesn't create a memory location
277 * for a variable named _edata, so _edata can only be
278 * referred to, not modified. krtld needs a static
279 * variable to modify it - within krtld, of course -
280 * outside of krtld, e_data is used in all kernels.
281 */
282 #if defined(__sparc)
283 static caddr_t _edata;
284 #else
285 extern caddr_t _edata;
286 #endif
287
288 Addr dynseg = 0; /* load address of "dynamic" segment */
289 size_t dynsize; /* "dynamic" segment size */
290
291
292 int standalone = 1; /* an unwholey kernel? */
293 int use_iflush; /* iflush after relocations */
294
295 /*
296 * _kobj_printf()
297 *
298 * Common printf function pointer. Can handle only one conversion
299 * specification in the format string. Some of the functions invoked
300 * through this function pointer cannot handle more that one conversion
301 * specification in the format string.
302 */
303 void (*_kobj_printf)(void *, const char *, ...); /* printf routine */
304
305 /*
306 * Standalone function pointers for use within krtld.
307 * Many platforms implement optimized platmod versions of
308 * utilities such as bcopy and any such are not yet available
309 * until the kernel is more completely stitched together.
310 * See kobj_impl.h
311 */
312 void (*kobj_bcopy)(const void *, void *, size_t);
313 void (*kobj_bzero)(void *, size_t);
314 size_t (*kobj_strlcat)(char *, const char *, size_t);
315
316 static kobj_stat_t kobj_stat;
317
318 #define MINALIGN 8 /* at least a double-word */
319
320 int
get_weakish_int(int * ip)321 get_weakish_int(int *ip)
322 {
323 if (standalone)
324 return (0);
325 return (ip == NULL ? 0 : *ip);
326 }
327
328 static void *
get_weakish_pointer(void ** ptrp)329 get_weakish_pointer(void **ptrp)
330 {
331 if (standalone)
332 return (0);
333 return (ptrp == NULL ? 0 : *ptrp);
334 }
335
336 /*
337 * XXX fix dependencies on "kernel"; this should work
338 * for other standalone binaries as well.
339 *
340 * XXX Fix hashing code to use one pointer to
341 * hash entries.
342 * |----------|
343 * | nbuckets |
344 * |----------|
345 * | nchains |
346 * |----------|
347 * | bucket[] |
348 * |----------|
349 * | chain[] |
350 * |----------|
351 */
352
353 /*
354 * Load, bind and relocate all modules that
355 * form the primary kernel. At this point, our
356 * externals have not been relocated.
357 */
358 void
kobj_init(void * romvec,void * dvec,struct bootops * bootvec,val_t * bootaux)359 kobj_init(
360 void *romvec,
361 void *dvec,
362 struct bootops *bootvec,
363 val_t *bootaux)
364 {
365 struct module *mp;
366 struct modctl *modp;
367 Addr entry;
368 char filename[MAXPATHLEN];
369
370 /*
371 * Save these to pass on to
372 * the booted standalone.
373 */
374 romp = romvec;
375 dbvec = dvec;
376
377 ops = bootvec;
378 kobj_setup_standalone_vectors();
379
380 KOBJ_MARK("Entered kobj_init()");
381
382 (void) BOP_GETPROP(ops, "whoami", filename);
383
384 /*
385 * We don't support standalone debuggers anymore. The use of kadb
386 * will interfere with the later use of kmdb. Let the user mend
387 * their ways now. Users will reach this message if they still
388 * have the kadb binary on their system (perhaps they used an old
389 * bfu, or maybe they intentionally copied it there) and have
390 * specified its use in a way that eluded our checking in the boot
391 * program.
392 */
393 if (dvec != NULL) {
394 _kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
395 "kadb are no longer supported\n\n");
396 goto fail;
397 }
398
399 #if defined(_OBP)
400 /*
401 * OBP allows us to read both the ramdisk and
402 * the underlying root fs when root is a disk.
403 * This can lower incidences of unbootable systems
404 * when the archive is out-of-date with the /etc
405 * state files.
406 */
407 if (BOP_MOUNTROOT() != BOOT_SVC_OK) {
408 _kobj_printf(ops, "can't mount boot fs\n");
409 goto fail;
410 }
411 #else
412 {
413 /* on x86, we always boot with a ramdisk */
414 (void) kobj_boot_mountroot();
415
416 /*
417 * Now that the ramdisk is mounted, finish boot property
418 * initialization.
419 */
420 boot_prop_finish();
421 }
422
423 #if !defined(_UNIX_KRTLD)
424 /*
425 * 'unix' is linked together with 'krtld' into one executable and
426 * the early boot code does -not- hand us any of the dynamic metadata
427 * about the executable. In particular, it does not read in, map or
428 * otherwise look at the program headers. We fake all that up now.
429 *
430 * We do this early as DTrace static probes and tnf probes both call
431 * undefined references. We have to process those relocations before
432 * calling any of them.
433 *
434 * OBP tells kobj_start() where the ELF image is in memory, so it
435 * synthesized bootaux before kobj_init() was called
436 */
437 if (bootaux[BA_PHDR].ba_ptr == NULL)
438 synthetic_bootaux(filename, bootaux);
439
440 #endif /* !_UNIX_KRTLD */
441 #endif /* _OBP */
442
443 /*
444 * Save the interesting attribute-values
445 * (scanned by kobj_boot).
446 */
447 attr_val(bootaux);
448
449 /*
450 * Set the module search path.
451 */
452 kobj_module_path = getmodpath(filename);
453
454 boot_cpu_compatible_list = find_libmacro("CPU");
455
456 /*
457 * These two modules have actually been
458 * loaded by boot, but we finish the job
459 * by introducing them into the world of
460 * loadable modules.
461 */
462
463 mp = load_exec(bootaux, filename);
464 load_linker(bootaux);
465
466 /*
467 * Load all the primary dependent modules.
468 */
469 if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
470 goto fail;
471
472 /*
473 * Glue it together.
474 */
475 if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
476 goto fail;
477
478 entry = bootaux[BA_ENTRY].ba_val;
479
480 /*
481 * Get the boot flags
482 */
483 bootflags(ops);
484
485 if (boothowto & RB_VERBOSE)
486 kobj_lm_dump(KOBJ_LM_PRIMARY);
487
488 kobj_kdi_init();
489
490 if (boothowto & RB_KMDB) {
491 if (load_kmdb(bootaux) < 0)
492 goto fail;
493 }
494
495 /*
496 * Post setup.
497 */
498 s_text = _text;
499 e_text = _etext;
500 s_data = _data;
501 e_data = _edata;
502
503 kobj_sync_instruction_memory(s_text, e_text - s_text);
504
505 #ifdef KOBJ_DEBUG
506 if (kobj_debug & D_DEBUG)
507 _kobj_printf(ops,
508 "krtld: transferring control to: 0x%p\n", entry);
509 #endif
510
511 /*
512 * Make sure the mod system knows about the modules already loaded.
513 */
514 last_module_id = kobj_last_module_id;
515 bcopy(kobj_modules, &modules, sizeof (modules));
516 modp = &modules;
517 do {
518 if (modp->mod_next == kobj_modules)
519 modp->mod_next = &modules;
520 if (modp->mod_prev == kobj_modules)
521 modp->mod_prev = &modules;
522 } while ((modp = modp->mod_next) != &modules);
523
524 standalone = 0;
525
526 #ifdef KOBJ_DEBUG
527 if (kobj_debug & D_DEBUG)
528 _kobj_printf(ops,
529 "krtld: really transferring control to: 0x%p\n", entry);
530 #endif
531
532 /* restore printf/bcopy/bzero vectors before returning */
533 kobj_restore_vectors();
534
535 #if defined(_DBOOT)
536 /*
537 * krtld was called from a dboot ELF section, the embedded
538 * dboot code contains the real entry via bootaux
539 */
540 exitto((caddr_t)entry);
541 #else
542 /*
543 * krtld was directly called from startup
544 */
545 return;
546 #endif
547
548 fail:
549
550 _kobj_printf(ops, "krtld: error during initial load/link phase\n");
551
552 #if !defined(_UNIX_KRTLD)
553 _kobj_printf(ops, "\n");
554 _kobj_printf(ops, "krtld could neither locate nor resolve symbols"
555 " for:\n");
556 _kobj_printf(ops, " %s\n", filename);
557 _kobj_printf(ops, "in the boot archive. Please verify that this"
558 " file\n");
559 _kobj_printf(ops, "matches what is found in the boot archive.\n");
560 _kobj_printf(ops, "You may need to boot using the Solaris failsafe to"
561 " fix this.\n");
562 bop_panic("Unable to boot");
563 #endif
564 }
565
566 #if !defined(_UNIX_KRTLD) && !defined(_OBP)
567 /*
568 * Synthesize additional metadata that describes the executable if
569 * krtld's caller didn't do it.
570 *
571 * (When the dynamic executable has an interpreter, the boot program
572 * does all this for us. Where we don't have an interpreter, (or a
573 * even a boot program, perhaps) we have to do this for ourselves.)
574 */
575 static void
synthetic_bootaux(char * filename,val_t * bootaux)576 synthetic_bootaux(char *filename, val_t *bootaux)
577 {
578 Ehdr ehdr;
579 caddr_t phdrbase;
580 struct _buf *file;
581 int i, n;
582
583 /*
584 * Elf header
585 */
586 KOBJ_MARK("synthetic_bootaux()");
587 KOBJ_MARK(filename);
588 file = kobj_open_file(filename);
589 if (file == (struct _buf *)-1) {
590 _kobj_printf(ops, "krtld: failed to open '%s'\n", filename);
591 return;
592 }
593 KOBJ_MARK("reading program headers");
594 if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) {
595 _kobj_printf(ops, "krtld: %s: failed to read ehder\n",
596 filename);
597 return;
598 }
599
600 /*
601 * Program headers
602 */
603 bootaux[BA_PHNUM].ba_val = ehdr.e_phnum;
604 bootaux[BA_PHENT].ba_val = ehdr.e_phentsize;
605 n = ehdr.e_phentsize * ehdr.e_phnum;
606
607 phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP);
608
609 if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) {
610 _kobj_printf(ops, "krtld: %s: failed to read phdrs\n",
611 filename);
612 return;
613 }
614 bootaux[BA_PHDR].ba_ptr = phdrbase;
615 kobj_close_file(file);
616 KOBJ_MARK("closed file");
617
618 /*
619 * Find the dynamic section address
620 */
621 for (i = 0; i < ehdr.e_phnum; i++) {
622 Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i);
623
624 if (phdr->p_type == PT_DYNAMIC) {
625 bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr;
626 break;
627 }
628 }
629 KOBJ_MARK("synthetic_bootaux() done");
630 }
631 #endif /* !_UNIX_KRTLD && !_OBP */
632
633 /*
634 * Set up any global information derived
635 * from attribute/values in the boot or
636 * aux vector.
637 */
638 static void
attr_val(val_t * bootaux)639 attr_val(val_t *bootaux)
640 {
641 Phdr *phdr;
642 int phnum, phsize;
643 int i;
644
645 KOBJ_MARK("attr_val()");
646 kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
647 lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
648 use_iflush = bootaux[BA_IFLUSH].ba_val;
649
650 phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
651 phnum = bootaux[BA_PHNUM].ba_val;
652 phsize = bootaux[BA_PHENT].ba_val;
653 for (i = 0; i < phnum; i++) {
654 phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
655
656 if (phdr->p_type != PT_LOAD) {
657 continue;
658 }
659 /*
660 * Bounds of the various segments.
661 */
662 if (!(phdr->p_flags & PF_X)) {
663 #if defined(_RELSEG)
664 /*
665 * sparc kernel puts the dynamic info
666 * into a separate segment, which is
667 * free'd in bop_fini()
668 */
669 ASSERT(phdr->p_vaddr != 0);
670 dynseg = phdr->p_vaddr;
671 dynsize = phdr->p_memsz;
672 #else
673 ASSERT(phdr->p_vaddr == 0);
674 #endif
675 } else {
676 if (phdr->p_flags & PF_W) {
677 _data = (caddr_t)phdr->p_vaddr;
678 _edata = _data + phdr->p_memsz;
679 } else {
680 _text = (caddr_t)phdr->p_vaddr;
681 _etext = _text + phdr->p_memsz;
682 }
683 }
684 }
685
686 /* To do the kobj_alloc, _edata needs to be set. */
687 for (i = 0; i < NLIBMACROS; i++) {
688 if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
689 libmacros[i].lmi_list = kobj_alloc(
690 strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
691 1, KM_WAIT);
692 (void) strcpy(libmacros[i].lmi_list,
693 bootaux[libmacros[i].lmi_ba_index].ba_ptr);
694 }
695 libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
696 }
697 }
698
699 /*
700 * Set up the booted executable.
701 */
702 static struct module *
load_exec(val_t * bootaux,char * filename)703 load_exec(val_t *bootaux, char *filename)
704 {
705 struct modctl *cp;
706 struct module *mp;
707 Dyn *dyn;
708 Sym *sp;
709 int i, lsize, osize, nsize, allocsize;
710 char *libname, *tmp;
711 char path[MAXPATHLEN];
712
713 #ifdef KOBJ_DEBUG
714 if (kobj_debug & D_DEBUG)
715 _kobj_printf(ops, "module path '%s'\n", kobj_module_path);
716 #endif
717
718 KOBJ_MARK("add_primary");
719 cp = add_primary(filename, KOBJ_LM_PRIMARY);
720
721 KOBJ_MARK("struct module");
722 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
723 cp->mod_mp = mp;
724
725 /*
726 * We don't have the following information
727 * since this module is an executable and not
728 * a relocatable .o.
729 */
730 mp->symtbl_section = 0;
731 mp->shdrs = NULL;
732 mp->strhdr = NULL;
733
734 /*
735 * Since this module is the only exception,
736 * we cons up some section headers.
737 */
738 KOBJ_MARK("symhdr");
739 mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
740
741 KOBJ_MARK("strhdr");
742 mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
743
744 mp->symhdr->sh_type = SHT_SYMTAB;
745 mp->strhdr->sh_type = SHT_STRTAB;
746 /*
747 * Scan the dynamic structure.
748 */
749 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
750 dyn->d_tag != DT_NULL; dyn++) {
751 switch (dyn->d_tag) {
752 case DT_SYMTAB:
753 mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
754 mp->symhdr->sh_addr = dyn->d_un.d_ptr;
755 break;
756 case DT_HASH:
757 mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
758 mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
759 break;
760 case DT_STRTAB:
761 mp->strings = (char *)dyn->d_un.d_ptr;
762 mp->strhdr->sh_addr = dyn->d_un.d_ptr;
763 break;
764 case DT_STRSZ:
765 mp->strhdr->sh_size = dyn->d_un.d_val;
766 break;
767 case DT_SYMENT:
768 mp->symhdr->sh_entsize = dyn->d_un.d_val;
769 break;
770 }
771 }
772
773 /*
774 * Collapse any DT_NEEDED entries into one string.
775 */
776 nsize = osize = 0;
777 allocsize = MAXPATHLEN;
778
779 KOBJ_MARK("depends_on");
780 mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
781
782 for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
783 dyn->d_tag != DT_NULL; dyn++)
784 if (dyn->d_tag == DT_NEEDED) {
785 char *_lib;
786
787 libname = mp->strings + dyn->d_un.d_val;
788 if (strchr(libname, '$') != NULL) {
789 if ((_lib = expand_libmacro(libname,
790 path, path)) != NULL)
791 libname = _lib;
792 else
793 _kobj_printf(ops, "krtld: "
794 "load_exec: fail to "
795 "expand %s\n", libname);
796 }
797 lsize = strlen(libname);
798 nsize += lsize;
799 if (nsize + 1 > allocsize) {
800 KOBJ_MARK("grow depends_on");
801 tmp = kobj_alloc(allocsize + MAXPATHLEN,
802 KM_WAIT);
803 bcopy(mp->depends_on, tmp, osize);
804 kobj_free(mp->depends_on, allocsize);
805 mp->depends_on = tmp;
806 allocsize += MAXPATHLEN;
807 }
808 bcopy(libname, mp->depends_on + osize, lsize);
809 *(mp->depends_on + nsize) = ' '; /* separate */
810 nsize++;
811 osize = nsize;
812 }
813 if (nsize) {
814 mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
815 /*
816 * alloc with exact size and copy whatever it got over
817 */
818 KOBJ_MARK("realloc depends_on");
819 tmp = kobj_alloc(nsize, KM_WAIT);
820 bcopy(mp->depends_on, tmp, nsize);
821 kobj_free(mp->depends_on, allocsize);
822 mp->depends_on = tmp;
823 } else {
824 kobj_free(mp->depends_on, allocsize);
825 mp->depends_on = NULL;
826 }
827
828 mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */
829 mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
830 /*
831 * We allocate our own table since we don't
832 * hash undefined references.
833 */
834 KOBJ_MARK("chains");
835 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
836 KOBJ_MARK("buckets");
837 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
838
839 mp->text = _text;
840 mp->data = _data;
841
842 mp->text_size = _etext - _text;
843 mp->data_size = _edata - _data;
844
845 cp->mod_text = mp->text;
846 cp->mod_text_size = mp->text_size;
847
848 mp->filename = cp->mod_filename;
849
850 #ifdef KOBJ_DEBUG
851 if (kobj_debug & D_LOADING) {
852 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
853 _kobj_printf(ops, "\ttext: 0x%p", mp->text);
854 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
855 _kobj_printf(ops, "\tdata: 0x%p", mp->data);
856 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
857 }
858 #endif /* KOBJ_DEBUG */
859
860 /*
861 * Insert symbols into the hash table.
862 */
863 for (i = 0; i < mp->nsyms; i++) {
864 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
865
866 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
867 continue;
868 #if defined(__sparc)
869 /*
870 * Register symbols are ignored in the kernel
871 */
872 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
873 continue;
874 #endif /* __sparc */
875
876 sym_insert(mp, mp->strings + sp->st_name, i);
877 }
878
879 KOBJ_MARK("load_exec done");
880 return (mp);
881 }
882
883 /*
884 * Set up the linker module (if it's compiled in, LDNAME is NULL)
885 */
886 static void
load_linker(val_t * bootaux)887 load_linker(val_t *bootaux)
888 {
889 struct module *kmp = (struct module *)kobj_modules->mod_mp;
890 struct module *mp;
891 struct modctl *cp;
892 int i;
893 Shdr *shp;
894 Sym *sp;
895 int shsize;
896 char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
897
898 /*
899 * On some architectures, krtld is compiled into the kernel.
900 */
901 if (dlname == NULL)
902 return;
903
904 cp = add_primary(dlname, KOBJ_LM_PRIMARY);
905
906 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
907
908 cp->mod_mp = mp;
909 mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
910 shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
911 mp->shdrs = kobj_alloc(shsize, KM_WAIT);
912 bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
913
914 for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
915 shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
916
917 if (shp->sh_flags & SHF_ALLOC) {
918 if (shp->sh_flags & SHF_WRITE) {
919 if (mp->data == NULL)
920 mp->data = (char *)shp->sh_addr;
921 } else if (mp->text == NULL) {
922 mp->text = (char *)shp->sh_addr;
923 }
924 }
925 if (shp->sh_type == SHT_SYMTAB) {
926 mp->symtbl_section = i;
927 mp->symhdr = shp;
928 mp->symspace = mp->symtbl = (char *)shp->sh_addr;
929 }
930 }
931 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
932 mp->flags = KOBJ_INTERP|KOBJ_PRIM;
933 mp->strhdr = (Shdr *)
934 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
935 mp->strings = (char *)mp->strhdr->sh_addr;
936 mp->hashsize = kobj_gethashsize(mp->nsyms);
937
938 mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
939 (mp->hashsize + mp->nsyms) * sizeof (symid_t);
940
941 mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
942 mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
943
944 mp->bss = bootaux[BA_BSS].ba_val;
945 mp->bss_align = 0; /* pre-aligned during allocation */
946 mp->bss_size = (uintptr_t)_edata - mp->bss;
947 mp->text_size = _etext - mp->text;
948 mp->data_size = _edata - mp->data;
949 mp->filename = cp->mod_filename;
950 cp->mod_text = mp->text;
951 cp->mod_text_size = mp->text_size;
952
953 /*
954 * Now that we've figured out where the linker is,
955 * set the limits for the booted object.
956 */
957 kmp->text_size = (size_t)(mp->text - kmp->text);
958 kmp->data_size = (size_t)(mp->data - kmp->data);
959 kobj_modules->mod_text_size = kmp->text_size;
960
961 #ifdef KOBJ_DEBUG
962 if (kobj_debug & D_LOADING) {
963 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
964 _kobj_printf(ops, "\ttext:0x%p", mp->text);
965 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
966 _kobj_printf(ops, "\tdata:0x%p", mp->data);
967 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
968 }
969 #endif /* KOBJ_DEBUG */
970
971 /*
972 * Insert the symbols into the hash table.
973 */
974 for (i = 0; i < mp->nsyms; i++) {
975 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
976
977 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
978 continue;
979 if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
980 if (sp->st_shndx == SHN_COMMON)
981 sp->st_shndx = SHN_ABS;
982 }
983 sym_insert(mp, mp->strings + sp->st_name, i);
984 }
985
986 }
987
988 static kobj_notify_list_t **
kobj_notify_lookup(uint_t type)989 kobj_notify_lookup(uint_t type)
990 {
991 ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
992 sizeof (kobj_notify_list_t *));
993
994 return (&kobj_notifiers[type]);
995 }
996
997 int
kobj_notify_add(kobj_notify_list_t * knp)998 kobj_notify_add(kobj_notify_list_t *knp)
999 {
1000 kobj_notify_list_t **knl;
1001
1002 knl = kobj_notify_lookup(knp->kn_type);
1003
1004 knp->kn_next = NULL;
1005 knp->kn_prev = NULL;
1006
1007 mutex_enter(&kobj_lock);
1008
1009 if (*knl != NULL) {
1010 (*knl)->kn_prev = knp;
1011 knp->kn_next = *knl;
1012 }
1013 (*knl) = knp;
1014
1015 mutex_exit(&kobj_lock);
1016 return (0);
1017 }
1018
1019 int
kobj_notify_remove(kobj_notify_list_t * knp)1020 kobj_notify_remove(kobj_notify_list_t *knp)
1021 {
1022 kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
1023 kobj_notify_list_t *tknp;
1024
1025 mutex_enter(&kobj_lock);
1026
1027 /* LINTED */
1028 if (tknp = knp->kn_next)
1029 tknp->kn_prev = knp->kn_prev;
1030
1031 /* LINTED */
1032 if (tknp = knp->kn_prev)
1033 tknp->kn_next = knp->kn_next;
1034 else
1035 *knl = knp->kn_next;
1036
1037 mutex_exit(&kobj_lock);
1038
1039 return (0);
1040 }
1041
1042 /*
1043 * Notify all interested callbacks of a specified change in module state.
1044 */
1045 static void
kobj_notify(int type,struct modctl * modp)1046 kobj_notify(int type, struct modctl *modp)
1047 {
1048 kobj_notify_list_t *knp;
1049
1050 if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
1051 return;
1052
1053 mutex_enter(&kobj_lock);
1054
1055 for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
1056 knp->kn_func(type, modp);
1057
1058 /*
1059 * KDI notification must be last (it has to allow for work done by the
1060 * other notification callbacks), so we call it manually.
1061 */
1062 kobj_kdi_mod_notify(type, modp);
1063
1064 mutex_exit(&kobj_lock);
1065 }
1066
1067 /*
1068 * Create the module path.
1069 */
1070 static char *
getmodpath(const char * filename)1071 getmodpath(const char *filename)
1072 {
1073 char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT);
1074
1075 /*
1076 * Platform code gets first crack, then add
1077 * the default components
1078 */
1079 mach_modpath(path, filename);
1080 if (*path != '\0')
1081 (void) strcat(path, " ");
1082 return (strcat(path, MOD_DEFPATH));
1083 }
1084
1085 static struct modctl *
add_primary(const char * filename,int lmid)1086 add_primary(const char *filename, int lmid)
1087 {
1088 struct modctl *cp;
1089
1090 cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
1091
1092 cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
1093
1094 /*
1095 * For symbol lookup, we assemble our own
1096 * modctl list of the primary modules.
1097 */
1098
1099 (void) strcpy(cp->mod_filename, filename);
1100 cp->mod_modname = basename(cp->mod_filename);
1101
1102 /* set values for modinfo assuming that the load will work */
1103 cp->mod_prim = 1;
1104 cp->mod_loaded = 1;
1105 cp->mod_installed = 1;
1106 cp->mod_loadcnt = 1;
1107 cp->mod_loadflags = MOD_NOAUTOUNLOAD;
1108
1109 cp->mod_id = kobj_last_module_id++;
1110
1111 /*
1112 * Link the module in. We'll pass this info on
1113 * to the mod squad later.
1114 */
1115 if (kobj_modules == NULL) {
1116 kobj_modules = cp;
1117 cp->mod_prev = cp->mod_next = cp;
1118 } else {
1119 cp->mod_prev = kobj_modules->mod_prev;
1120 cp->mod_next = kobj_modules;
1121 kobj_modules->mod_prev->mod_next = cp;
1122 kobj_modules->mod_prev = cp;
1123 }
1124
1125 kobj_lm_append(lmid, cp);
1126
1127 return (cp);
1128 }
1129
1130 static int
bind_primary(val_t * bootaux,int lmid)1131 bind_primary(val_t *bootaux, int lmid)
1132 {
1133 struct modctl_list *linkmap = kobj_lm_lookup(lmid);
1134 struct modctl_list *lp;
1135 struct module *mp;
1136
1137 /*
1138 * Do common symbols.
1139 */
1140 for (lp = linkmap; lp; lp = lp->modl_next) {
1141 mp = mod(lp);
1142
1143 /*
1144 * Don't do common section relocations for modules that
1145 * don't need it.
1146 */
1147 if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
1148 continue;
1149
1150 if (do_common(mp) < 0)
1151 return (-1);
1152 }
1153
1154 /*
1155 * Resolve symbols.
1156 */
1157 for (lp = linkmap; lp; lp = lp->modl_next) {
1158 mp = mod(lp);
1159
1160 if (do_symbols(mp, 0) < 0)
1161 return (-1);
1162 }
1163
1164 /*
1165 * Do relocations.
1166 */
1167 for (lp = linkmap; lp; lp = lp->modl_next) {
1168 mp = mod(lp);
1169
1170 if (mp->flags & KOBJ_EXEC) {
1171 Dyn *dyn;
1172 Word relasz = 0, relaent = 0;
1173 Word shtype;
1174 char *rela = NULL;
1175
1176 for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1177 dyn->d_tag != DT_NULL; dyn++) {
1178 switch (dyn->d_tag) {
1179 case DT_RELASZ:
1180 case DT_RELSZ:
1181 relasz = dyn->d_un.d_val;
1182 break;
1183 case DT_RELAENT:
1184 case DT_RELENT:
1185 relaent = dyn->d_un.d_val;
1186 break;
1187 case DT_RELA:
1188 shtype = SHT_RELA;
1189 rela = (char *)dyn->d_un.d_ptr;
1190 break;
1191 case DT_REL:
1192 shtype = SHT_REL;
1193 rela = (char *)dyn->d_un.d_ptr;
1194 break;
1195 }
1196 }
1197 if (relasz == 0 ||
1198 relaent == 0 || rela == NULL) {
1199 _kobj_printf(ops, "krtld: bind_primary(): "
1200 "no relocation information found for "
1201 "module %s\n", mp->filename);
1202 return (-1);
1203 }
1204 #ifdef KOBJ_DEBUG
1205 if (kobj_debug & D_RELOCATIONS)
1206 _kobj_printf(ops, "krtld: relocating: file=%s "
1207 "KOBJ_EXEC\n", mp->filename);
1208 #endif
1209 if (do_relocate(mp, rela, shtype, relasz/relaent,
1210 relaent, (Addr)mp->text) < 0)
1211 return (-1);
1212 } else {
1213 if (do_relocations(mp) < 0)
1214 return (-1);
1215 }
1216
1217 kobj_sync_instruction_memory(mp->text, mp->text_size);
1218 }
1219
1220 for (lp = linkmap; lp; lp = lp->modl_next) {
1221 mp = mod(lp);
1222
1223 /*
1224 * We need to re-read the full symbol table for the boot file,
1225 * since we couldn't use the full one before. We also need to
1226 * load the CTF sections of both the boot file and the
1227 * interpreter (us).
1228 */
1229 if (mp->flags & KOBJ_EXEC) {
1230 struct _buf *file;
1231 int n;
1232
1233 file = kobj_open_file(mp->filename);
1234 if (file == (struct _buf *)-1)
1235 return (-1);
1236 if (kobj_read_file(file, (char *)&mp->hdr,
1237 sizeof (mp->hdr), 0) < 0)
1238 return (-1);
1239 n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1240 mp->shdrs = kobj_alloc(n, KM_WAIT);
1241 if (kobj_read_file(file, mp->shdrs, n,
1242 mp->hdr.e_shoff) < 0)
1243 return (-1);
1244 if (get_syms(mp, file) < 0)
1245 return (-1);
1246 if (get_ctf(mp, file) < 0)
1247 return (-1);
1248 kobj_close_file(file);
1249 mp->flags |= KOBJ_RELOCATED;
1250
1251 } else if (mp->flags & KOBJ_INTERP) {
1252 struct _buf *file;
1253
1254 /*
1255 * The interpreter path fragment in mp->filename
1256 * will already have the module directory suffix
1257 * in it (if appropriate).
1258 */
1259 file = kobj_open_path(mp->filename, 1, 0);
1260 if (file == (struct _buf *)-1)
1261 return (-1);
1262 if (get_ctf(mp, file) < 0)
1263 return (-1);
1264 kobj_close_file(file);
1265 mp->flags |= KOBJ_RELOCATED;
1266 }
1267 }
1268
1269 return (0);
1270 }
1271
1272 static struct modctl *
mod_already_loaded(char * modname)1273 mod_already_loaded(char *modname)
1274 {
1275 struct modctl *mctl = kobj_modules;
1276
1277 do {
1278 if (strcmp(modname, mctl->mod_filename) == 0)
1279 return (mctl);
1280 mctl = mctl->mod_next;
1281
1282 } while (mctl != kobj_modules);
1283
1284 return (NULL);
1285 }
1286
1287 /*
1288 * Load all the primary dependent modules.
1289 */
1290 static int
load_primary(struct module * mp,int lmid)1291 load_primary(struct module *mp, int lmid)
1292 {
1293 struct modctl *cp;
1294 struct module *dmp;
1295 char *p, *q;
1296 char modname[MODMAXNAMELEN];
1297
1298 if ((p = mp->depends_on) == NULL)
1299 return (0);
1300
1301 /* CONSTANTCONDITION */
1302 while (1) {
1303 /*
1304 * Skip space.
1305 */
1306 while (*p && (*p == ' ' || *p == '\t'))
1307 p++;
1308 /*
1309 * Get module name.
1310 */
1311 q = modname;
1312 while (*p && *p != ' ' && *p != '\t')
1313 *q++ = *p++;
1314
1315 if (q == modname)
1316 break;
1317
1318 *q = '\0';
1319 /*
1320 * Check for dup dependencies.
1321 */
1322 if (strcmp(modname, "dtracestubs") == 0 ||
1323 mod_already_loaded(modname) != NULL)
1324 continue;
1325
1326 cp = add_primary(modname, lmid);
1327 cp->mod_busy = 1;
1328 /*
1329 * Load it.
1330 */
1331 (void) kobj_load_module(cp, 1);
1332 cp->mod_busy = 0;
1333
1334 if ((dmp = cp->mod_mp) == NULL) {
1335 cp->mod_loaded = 0;
1336 cp->mod_installed = 0;
1337 cp->mod_loadcnt = 0;
1338 return (-1);
1339 }
1340
1341 add_dependent(mp, dmp);
1342 dmp->flags |= KOBJ_PRIM;
1343
1344 /*
1345 * Recurse.
1346 */
1347 if (load_primary(dmp, lmid) == -1) {
1348 cp->mod_loaded = 0;
1349 cp->mod_installed = 0;
1350 cp->mod_loadcnt = 0;
1351 return (-1);
1352 }
1353 }
1354 return (0);
1355 }
1356
1357 static int
console_is_usb_serial(void)1358 console_is_usb_serial(void)
1359 {
1360 char *console;
1361 int len, ret;
1362
1363 if ((len = BOP_GETPROPLEN(ops, "console")) == -1)
1364 return (0);
1365
1366 console = kobj_zalloc(len, KM_WAIT|KM_TMP);
1367 (void) BOP_GETPROP(ops, "console", console);
1368 ret = (strcmp(console, "usb-serial") == 0);
1369 kobj_free(console, len);
1370
1371 return (ret);
1372 }
1373
1374 static int
load_kmdb(val_t * bootaux)1375 load_kmdb(val_t *bootaux)
1376 {
1377 struct modctl *mctl;
1378 struct module *mp;
1379 Sym *sym;
1380
1381 if (console_is_usb_serial()) {
1382 _kobj_printf(ops, "kmdb not loaded "
1383 "(unsupported on usb serial console)\n");
1384 return (0);
1385 }
1386
1387 _kobj_printf(ops, "Loading kmdb...\n");
1388
1389 if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1390 return (-1);
1391
1392 mctl->mod_busy = 1;
1393 (void) kobj_load_module(mctl, 1);
1394 mctl->mod_busy = 0;
1395
1396 if ((mp = mctl->mod_mp) == NULL)
1397 return (-1);
1398
1399 mp->flags |= KOBJ_PRIM;
1400
1401 if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1402 return (-1);
1403
1404 if (boothowto & RB_VERBOSE)
1405 kobj_lm_dump(KOBJ_LM_DEBUGGER);
1406
1407 if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1408 return (-1);
1409
1410 if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1411 return (-1);
1412
1413 #ifdef KOBJ_DEBUG
1414 if (kobj_debug & D_DEBUG) {
1415 _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n",
1416 sym->st_value);
1417 _kobj_printf(ops, "\tops 0x%p\n", ops);
1418 _kobj_printf(ops, "\tromp 0x%p\n", romp);
1419 }
1420 #endif
1421
1422 if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1423 (const char **)kobj_kmdb_argv) < 0)
1424 return (-1);
1425
1426 return (0);
1427 }
1428
1429 /*
1430 * Return a string listing module dependencies.
1431 */
1432 static char *
depends_on(struct module * mp)1433 depends_on(struct module *mp)
1434 {
1435 Sym *sp;
1436 char *depstr, *q;
1437
1438 /*
1439 * The module doesn't have a depends_on value, so let's try it the
1440 * old-fashioned way - via "_depends_on"
1441 */
1442 if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1443 return (NULL);
1444
1445 q = (char *)sp->st_value;
1446
1447 /*
1448 * Idiot checks. Make sure it's
1449 * in-bounds and NULL terminated.
1450 */
1451 if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1452 _kobj_printf(ops, "Error processing dependency for %s\n",
1453 mp->filename);
1454 return (NULL);
1455 }
1456
1457 depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1458 (void) strcpy(depstr, q);
1459
1460 return (depstr);
1461 }
1462
1463 void
kobj_getmodinfo(void * xmp,struct modinfo * modinfo)1464 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1465 {
1466 struct module *mp;
1467 mp = (struct module *)xmp;
1468
1469 modinfo->mi_base = mp->text;
1470 modinfo->mi_size = mp->text_size + mp->data_size;
1471 }
1472
1473 /*
1474 * kobj_export_ksyms() performs the following services:
1475 *
1476 * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1477 * (2) Removes unneeded symbols to save space.
1478 * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1479 * (4) Makes the symbol table visible to /dev/ksyms.
1480 */
1481 static void
kobj_export_ksyms(struct module * mp)1482 kobj_export_ksyms(struct module *mp)
1483 {
1484 Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1485 Sym *sp, *osp;
1486 char *name;
1487 size_t namelen;
1488 struct module *omp;
1489 uint_t nsyms;
1490 size_t symsize = mp->symhdr->sh_entsize;
1491 size_t locals = 1;
1492 size_t strsize;
1493
1494 /*
1495 * Make a copy of the original module structure.
1496 */
1497 omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1498 bcopy(mp, omp, sizeof (struct module));
1499
1500 /*
1501 * Compute the sizes of the new symbol table sections.
1502 */
1503 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1504 if (osp->st_value == 0)
1505 continue;
1506 if (sym_lookup(omp, osp) == NULL)
1507 continue;
1508 name = omp->strings + osp->st_name;
1509 namelen = strlen(name);
1510 if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1511 locals++;
1512 nsyms++;
1513 strsize += namelen + 1;
1514 }
1515
1516 mp->nsyms = nsyms;
1517 mp->hashsize = kobj_gethashsize(mp->nsyms);
1518
1519 /*
1520 * ksyms_lock must be held as writer during any operation that
1521 * modifies ksyms_arena, including allocation from same, and
1522 * must not be dropped until the arena is vmem_walk()able.
1523 */
1524 rw_enter(&ksyms_lock, RW_WRITER);
1525
1526 /*
1527 * Allocate space for the new section headers (symtab and strtab),
1528 * symbol table, buckets, chains, and strings.
1529 */
1530 mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1531 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1532
1533 if (mp->flags & KOBJ_NOKSYMS) {
1534 mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1535 } else {
1536 mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1537 VM_BESTFIT | VM_SLEEP);
1538 }
1539 bzero(mp->symspace, mp->symsize);
1540
1541 /*
1542 * Divvy up symspace.
1543 */
1544 mp->shdrs = mp->symspace;
1545 mp->symhdr = (Shdr *)mp->shdrs;
1546 mp->strhdr = (Shdr *)(mp->symhdr + 1);
1547 mp->symtbl = (char *)(mp->strhdr + 1);
1548 mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1549 mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1550 mp->strings = (char *)(mp->chains + nsyms);
1551
1552 /*
1553 * Fill in the new section headers (symtab and strtab).
1554 */
1555 mp->hdr.e_shnum = 2;
1556 mp->symtbl_section = 0;
1557
1558 mp->symhdr->sh_type = SHT_SYMTAB;
1559 mp->symhdr->sh_addr = (Addr)mp->symtbl;
1560 mp->symhdr->sh_size = nsyms * symsize;
1561 mp->symhdr->sh_link = 1;
1562 mp->symhdr->sh_info = locals;
1563 mp->symhdr->sh_addralign = sizeof (Addr);
1564 mp->symhdr->sh_entsize = symsize;
1565
1566 mp->strhdr->sh_type = SHT_STRTAB;
1567 mp->strhdr->sh_addr = (Addr)mp->strings;
1568 mp->strhdr->sh_size = strsize;
1569 mp->strhdr->sh_addralign = 1;
1570
1571 /*
1572 * Construct the new symbol table.
1573 */
1574 for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1575 if (osp->st_value == 0)
1576 continue;
1577 if (sym_lookup(omp, osp) == NULL)
1578 continue;
1579 name = omp->strings + osp->st_name;
1580 namelen = strlen(name);
1581 sp = (Sym *)(mp->symtbl + symsize * nsyms);
1582 bcopy(osp, sp, symsize);
1583 bcopy(name, mp->strings + strsize, namelen);
1584 sp->st_name = strsize;
1585 sym_insert(mp, name, nsyms);
1586 nsyms++;
1587 strsize += namelen + 1;
1588 }
1589
1590 rw_exit(&ksyms_lock);
1591
1592 /*
1593 * Free the old section headers -- we'll never need them again.
1594 */
1595 if (!(mp->flags & KOBJ_PRIM)) {
1596 uint_t shn;
1597 Shdr *shp;
1598
1599 for (shn = 1; shn < omp->hdr.e_shnum; shn++) {
1600 shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize);
1601 switch (shp->sh_type) {
1602 case SHT_RELA:
1603 case SHT_REL:
1604 if (shp->sh_addr != 0) {
1605 kobj_free((void *)shp->sh_addr,
1606 shp->sh_size);
1607 }
1608 break;
1609 }
1610 }
1611 kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1612 }
1613 /*
1614 * Discard the old symbol table and our copy of the module strucure.
1615 */
1616 if (!(mp->flags & KOBJ_PRIM))
1617 kobj_free(omp->symspace, omp->symsize);
1618 kobj_free(omp, sizeof (struct module));
1619 }
1620
1621 static void
kobj_export_ctf(struct module * mp)1622 kobj_export_ctf(struct module *mp)
1623 {
1624 char *data = mp->ctfdata;
1625 size_t size = mp->ctfsize;
1626
1627 if (data != NULL) {
1628 if (_moddebug & MODDEBUG_NOCTF) {
1629 mp->ctfdata = NULL;
1630 mp->ctfsize = 0;
1631 } else {
1632 mp->ctfdata = vmem_alloc(ctf_arena, size,
1633 VM_BESTFIT | VM_SLEEP);
1634 bcopy(data, mp->ctfdata, size);
1635 }
1636
1637 if (!(mp->flags & KOBJ_PRIM))
1638 kobj_free(data, size);
1639 }
1640 }
1641
1642 void
kobj_export_module(struct module * mp)1643 kobj_export_module(struct module *mp)
1644 {
1645 kobj_export_ksyms(mp);
1646 kobj_export_ctf(mp);
1647
1648 mp->flags |= KOBJ_EXPORTED;
1649 }
1650
1651 static int
process_dynamic(struct module * mp,char * dyndata,char * strdata)1652 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1653 {
1654 char *path = NULL, *depstr = NULL;
1655 int allocsize = 0, osize = 0, nsize = 0;
1656 char *libname, *tmp;
1657 int lsize;
1658 Dyn *dynp;
1659
1660 for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1661 switch (dynp->d_tag) {
1662 case DT_NEEDED:
1663 /*
1664 * Read the DT_NEEDED entries, expanding the macros they
1665 * contain (if any), and concatenating them into a
1666 * single space-separated dependency list.
1667 */
1668 libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1669
1670 if (strchr(libname, '$') != NULL) {
1671 char *_lib;
1672
1673 if (path == NULL)
1674 path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1675 if ((_lib = expand_libmacro(libname, path,
1676 path)) != NULL)
1677 libname = _lib;
1678 else {
1679 _kobj_printf(ops, "krtld: "
1680 "process_dynamic: failed to expand "
1681 "%s\n", libname);
1682 }
1683 }
1684
1685 lsize = strlen(libname);
1686 nsize += lsize;
1687 if (nsize + 1 > allocsize) {
1688 tmp = kobj_alloc(allocsize + MAXPATHLEN,
1689 KM_WAIT);
1690 if (depstr != NULL) {
1691 bcopy(depstr, tmp, osize);
1692 kobj_free(depstr, allocsize);
1693 }
1694 depstr = tmp;
1695 allocsize += MAXPATHLEN;
1696 }
1697 bcopy(libname, depstr + osize, lsize);
1698 *(depstr + nsize) = ' '; /* separator */
1699 nsize++;
1700 osize = nsize;
1701 break;
1702
1703 case DT_FLAGS_1:
1704 if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1705 mp->flags |= KOBJ_IGNMULDEF;
1706 if (dynp->d_un.d_val & DF_1_NOKSYMS)
1707 mp->flags |= KOBJ_NOKSYMS;
1708
1709 break;
1710 }
1711 }
1712
1713 /*
1714 * finish up the depends string (if any)
1715 */
1716 if (depstr != NULL) {
1717 *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */
1718 if (path != NULL)
1719 kobj_free(path, MAXPATHLEN);
1720
1721 tmp = kobj_alloc(nsize, KM_WAIT);
1722 bcopy(depstr, tmp, nsize);
1723 kobj_free(depstr, allocsize);
1724 depstr = tmp;
1725
1726 mp->depends_on = depstr;
1727 }
1728
1729 return (0);
1730 }
1731
1732 static int
do_dynamic(struct module * mp,struct _buf * file)1733 do_dynamic(struct module *mp, struct _buf *file)
1734 {
1735 Shdr *dshp, *dstrp, *shp;
1736 char *dyndata, *dstrdata;
1737 int dshn, shn, rc;
1738
1739 /* find and validate the dynamic section (if any) */
1740
1741 for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1742 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1743 switch (shp->sh_type) {
1744 case SHT_DYNAMIC:
1745 if (dshp != NULL) {
1746 _kobj_printf(ops, "krtld: get_dynamic: %s, ",
1747 mp->filename);
1748 _kobj_printf(ops,
1749 "multiple dynamic sections\n");
1750 return (-1);
1751 } else {
1752 dshp = shp;
1753 dshn = shn;
1754 }
1755 break;
1756 }
1757 }
1758
1759 if (dshp == NULL)
1760 return (0);
1761
1762 if (dshp->sh_link > mp->hdr.e_shnum) {
1763 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1764 _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1765 return (-1);
1766 }
1767 dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1768
1769 if (dstrp->sh_type != SHT_STRTAB) {
1770 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1771 _kobj_printf(ops, "sh_link not a string table for section %d\n",
1772 dshn);
1773 return (-1);
1774 }
1775
1776 /* read it from disk */
1777
1778 dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1779 if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1780 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1781 _kobj_printf(ops, "error reading section %d\n", dshn);
1782
1783 kobj_free(dyndata, dshp->sh_size);
1784 return (-1);
1785 }
1786
1787 dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1788 if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1789 dstrp->sh_offset) < 0) {
1790 _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1791 _kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1792
1793 kobj_free(dyndata, dshp->sh_size);
1794 kobj_free(dstrdata, dstrp->sh_size);
1795 return (-1);
1796 }
1797
1798 /* pull the interesting pieces out */
1799
1800 rc = process_dynamic(mp, dyndata, dstrdata);
1801
1802 kobj_free(dyndata, dshp->sh_size);
1803 kobj_free(dstrdata, dstrp->sh_size);
1804
1805 return (rc);
1806 }
1807
1808 void
kobj_set_ctf(struct module * mp,caddr_t data,size_t size)1809 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1810 {
1811 if (!standalone) {
1812 if (mp->ctfdata != NULL) {
1813 if (vmem_contains(ctf_arena, mp->ctfdata,
1814 mp->ctfsize)) {
1815 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1816 } else {
1817 kobj_free(mp->ctfdata, mp->ctfsize);
1818 }
1819 }
1820 }
1821
1822 /*
1823 * The order is very important here. We need to make sure that
1824 * consumers, at any given instant, see a consistent state. We'd
1825 * rather they see no CTF data than the address of one buffer and the
1826 * size of another.
1827 */
1828 mp->ctfdata = NULL;
1829 membar_producer();
1830 mp->ctfsize = size;
1831 mp->ctfdata = data;
1832 membar_producer();
1833 }
1834
1835 int
kobj_load_module(struct modctl * modp,int use_path)1836 kobj_load_module(struct modctl *modp, int use_path)
1837 {
1838 char *filename = modp->mod_filename;
1839 char *modname = modp->mod_modname;
1840 int i;
1841 int n;
1842 struct _buf *file;
1843 struct module *mp = NULL;
1844 #ifdef MODDIR_SUFFIX
1845 int no_suffixdir_drv = 0;
1846 #endif
1847
1848 mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1849
1850 /*
1851 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1852 * kmdb contains a bunch of symbols with well-known names, symbols
1853 * which will mask the real versions, thus causing no end of trouble
1854 * for mdb.
1855 */
1856 if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1857 mp->flags |= KOBJ_NOKSYMS;
1858
1859 file = kobj_open_path(filename, use_path, 1);
1860 if (file == (struct _buf *)-1) {
1861 #ifdef MODDIR_SUFFIX
1862 file = kobj_open_path(filename, use_path, 0);
1863 #endif
1864 if (file == (struct _buf *)-1) {
1865 kobj_free(mp, sizeof (*mp));
1866 goto bad;
1867 }
1868 #ifdef MODDIR_SUFFIX
1869 /*
1870 * There is no driver module in the ISA specific (suffix)
1871 * subdirectory but there is a module in the parent directory.
1872 */
1873 if (strncmp(filename, "drv/", 4) == 0) {
1874 no_suffixdir_drv = 1;
1875 }
1876 #endif
1877 }
1878
1879 mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1880 (void) strcpy(mp->filename, file->_name);
1881
1882 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1883 _kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1884 modname);
1885 kobj_free(mp->filename, strlen(file->_name) + 1);
1886 kobj_free(mp, sizeof (*mp));
1887 goto bad;
1888 }
1889 for (i = 0; i < SELFMAG; i++) {
1890 if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1891 if (_moddebug & MODDEBUG_ERRMSG)
1892 _kobj_printf(ops, "%s not an elf module\n",
1893 modname);
1894 kobj_free(mp->filename, strlen(file->_name) + 1);
1895 kobj_free(mp, sizeof (*mp));
1896 goto bad;
1897 }
1898 }
1899 /*
1900 * It's ELF, but is it our ISA? Interpreting the header
1901 * from a file for a byte-swapped ISA could cause a huge
1902 * and unsatisfiable value to be passed to kobj_alloc below
1903 * and therefore hang booting.
1904 */
1905 if (!elf_mach_ok(&mp->hdr)) {
1906 if (_moddebug & MODDEBUG_ERRMSG)
1907 _kobj_printf(ops, "%s not an elf module for this ISA\n",
1908 modname);
1909 kobj_free(mp->filename, strlen(file->_name) + 1);
1910 kobj_free(mp, sizeof (*mp));
1911 #ifdef MODDIR_SUFFIX
1912 /*
1913 * The driver mod is not in the ISA specific subdirectory
1914 * and the module in the parent directory is not our ISA.
1915 * If it is our ISA, for now we will silently succeed.
1916 */
1917 if (no_suffixdir_drv == 1) {
1918 cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1919 " not found\n", modname);
1920 }
1921 #endif
1922 goto bad;
1923 }
1924
1925 /*
1926 * All modules, save for unix, should be relocatable (as opposed to
1927 * dynamic). Dynamic modules come with PLTs and GOTs, which can't
1928 * currently be processed by krtld.
1929 */
1930 if (mp->hdr.e_type != ET_REL) {
1931 if (_moddebug & MODDEBUG_ERRMSG)
1932 _kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1933 "module\n", modname);
1934 kobj_free(mp->filename, strlen(file->_name) + 1);
1935 kobj_free(mp, sizeof (*mp));
1936 goto bad;
1937 }
1938
1939 n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1940 mp->shdrs = kobj_alloc(n, KM_WAIT);
1941
1942 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1943 _kobj_printf(ops, "kobj_load_module: %s error reading "
1944 "section headers\n", modname);
1945 kobj_free(mp->shdrs, n);
1946 kobj_free(mp->filename, strlen(file->_name) + 1);
1947 kobj_free(mp, sizeof (*mp));
1948 goto bad;
1949 }
1950
1951 kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1952 module_assign(modp, mp);
1953
1954 /* read in sections */
1955 if (get_progbits(mp, file) < 0) {
1956 _kobj_printf(ops, "%s error reading sections\n", modname);
1957 goto bad;
1958 }
1959
1960 if (do_dynamic(mp, file) < 0) {
1961 _kobj_printf(ops, "%s error reading dynamic section\n",
1962 modname);
1963 goto bad;
1964 }
1965
1966 modp->mod_text = mp->text;
1967 modp->mod_text_size = mp->text_size;
1968
1969 /* read in symbols; adjust values for each section's real address */
1970 if (get_syms(mp, file) < 0) {
1971 _kobj_printf(ops, "%s error reading symbols\n",
1972 modname);
1973 goto bad;
1974 }
1975
1976 /*
1977 * If we didn't dependency information from the dynamic section, look
1978 * for it the old-fashioned way.
1979 */
1980 if (mp->depends_on == NULL)
1981 mp->depends_on = depends_on(mp);
1982
1983 if (get_ctf(mp, file) < 0) {
1984 _kobj_printf(ops, "%s debug information will not "
1985 "be available\n", modname);
1986 }
1987
1988 /* primary kernel modules do not have a signature section */
1989 if (!(mp->flags & KOBJ_PRIM))
1990 get_signature(mp, file);
1991
1992 #ifdef KOBJ_DEBUG
1993 if (kobj_debug & D_LOADING) {
1994 _kobj_printf(ops, "krtld: file=%s\n", mp->filename);
1995 _kobj_printf(ops, "\ttext:0x%p", mp->text);
1996 _kobj_printf(ops, " size: 0x%x\n", mp->text_size);
1997 _kobj_printf(ops, "\tdata:0x%p", mp->data);
1998 _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
1999 }
2000 #endif /* KOBJ_DEBUG */
2001
2002 /*
2003 * For primary kernel modules, we defer
2004 * symbol resolution and relocation until
2005 * all primary objects have been loaded.
2006 */
2007 if (!standalone) {
2008 int ddrval, dcrval;
2009 char *dependent_modname;
2010 /* load all dependents */
2011 dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
2012 ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
2013
2014 /*
2015 * resolve undefined and common symbols,
2016 * also allocates common space
2017 */
2018 if ((dcrval = do_common(mp)) < 0) {
2019 switch (dcrval) {
2020 case DOSYM_UNSAFE:
2021 _kobj_printf(ops, "WARNING: mod_load: "
2022 "MT-unsafe module '%s' rejected\n",
2023 modname);
2024 break;
2025 case DOSYM_UNDEF:
2026 _kobj_printf(ops, "WARNING: mod_load: "
2027 "cannot load module '%s'\n",
2028 modname);
2029 if (ddrval == -1) {
2030 _kobj_printf(ops, "WARNING: %s: ",
2031 modname);
2032 _kobj_printf(ops,
2033 "unable to resolve dependency, "
2034 "module '%s' not found\n",
2035 dependent_modname);
2036 }
2037 break;
2038 }
2039 }
2040 kobj_free(dependent_modname, MODMAXNAMELEN);
2041 if (dcrval < 0)
2042 goto bad;
2043
2044 /* process relocation tables */
2045 if (do_relocations(mp) < 0) {
2046 _kobj_printf(ops, "%s error doing relocations\n",
2047 modname);
2048 goto bad;
2049 }
2050
2051 if (mp->destination) {
2052 off_t off = (uintptr_t)mp->destination & PAGEOFFSET;
2053 caddr_t base = (caddr_t)mp->destination - off;
2054 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2055
2056 hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
2057 vmem_free(heap_arena, base, size);
2058 }
2059
2060 /* sync_instruction_memory */
2061 kobj_sync_instruction_memory(mp->text, mp->text_size);
2062 kobj_export_module(mp);
2063 kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
2064 }
2065 kobj_close_file(file);
2066 return (0);
2067 bad:
2068 if (file != (struct _buf *)-1)
2069 kobj_close_file(file);
2070 if (modp->mod_mp != NULL)
2071 free_module_data(modp->mod_mp);
2072
2073 module_assign(modp, NULL);
2074 return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
2075 }
2076
2077 int
kobj_load_primary_module(struct modctl * modp)2078 kobj_load_primary_module(struct modctl *modp)
2079 {
2080 struct modctl *dep;
2081 struct module *mp;
2082
2083 if (kobj_load_module(modp, 0) != 0)
2084 return (-1);
2085
2086 mp = modp->mod_mp;
2087 mp->flags |= KOBJ_PRIM;
2088
2089 /* Bind new module to its dependents */
2090 if (mp->depends_on != NULL && (dep =
2091 mod_already_loaded(mp->depends_on)) == NULL) {
2092 #ifdef KOBJ_DEBUG
2093 if (kobj_debug & D_DEBUG) {
2094 _kobj_printf(ops, "krtld: failed to resolve deps "
2095 "for primary %s\n", modp->mod_modname);
2096 }
2097 #endif
2098 return (-1);
2099 }
2100
2101 add_dependent(mp, dep->mod_mp);
2102
2103 /*
2104 * Relocate it. This module may not be part of a link map, so we
2105 * can't use bind_primary.
2106 */
2107 if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
2108 do_relocations(mp) < 0) {
2109 #ifdef KOBJ_DEBUG
2110 if (kobj_debug & D_DEBUG) {
2111 _kobj_printf(ops, "krtld: failed to relocate "
2112 "primary %s\n", modp->mod_modname);
2113 }
2114 #endif
2115 return (-1);
2116 }
2117
2118 return (0);
2119 }
2120
2121 static void
module_assign(struct modctl * cp,struct module * mp)2122 module_assign(struct modctl *cp, struct module *mp)
2123 {
2124 if (standalone) {
2125 cp->mod_mp = mp;
2126 return;
2127 }
2128 mutex_enter(&mod_lock);
2129 cp->mod_mp = mp;
2130 cp->mod_gencount++;
2131 mutex_exit(&mod_lock);
2132 }
2133
2134 void
kobj_unload_module(struct modctl * modp)2135 kobj_unload_module(struct modctl *modp)
2136 {
2137 struct module *mp = modp->mod_mp;
2138
2139 if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
2140 _kobj_printf(ops, "text for %s ", mp->filename);
2141 _kobj_printf(ops, "was at %p\n", mp->text);
2142 mp->text = NULL; /* don't actually free it */
2143 }
2144
2145 kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
2146
2147 /*
2148 * Null out mod_mp first, so consumers (debuggers) know not to look
2149 * at the module structure any more.
2150 */
2151 mutex_enter(&mod_lock);
2152 modp->mod_mp = NULL;
2153 mutex_exit(&mod_lock);
2154
2155 kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
2156 free_module_data(mp);
2157 }
2158
2159 static void
free_module_data(struct module * mp)2160 free_module_data(struct module *mp)
2161 {
2162 struct module_list *lp, *tmp;
2163 int ksyms_exported = 0;
2164
2165 lp = mp->head;
2166 while (lp) {
2167 tmp = lp;
2168 lp = lp->next;
2169 kobj_free((char *)tmp, sizeof (*tmp));
2170 }
2171
2172 rw_enter(&ksyms_lock, RW_WRITER);
2173 if (mp->symspace) {
2174 if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
2175 vmem_free(ksyms_arena, mp->symspace, mp->symsize);
2176 ksyms_exported = 1;
2177 } else {
2178 if (mp->flags & KOBJ_NOKSYMS)
2179 ksyms_exported = 1;
2180 kobj_free(mp->symspace, mp->symsize);
2181 }
2182 }
2183 rw_exit(&ksyms_lock);
2184
2185 if (mp->ctfdata) {
2186 if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
2187 vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
2188 else
2189 kobj_free(mp->ctfdata, mp->ctfsize);
2190 }
2191
2192 if (mp->sigdata)
2193 kobj_free(mp->sigdata, mp->sigsize);
2194
2195 /*
2196 * We did not get far enough into kobj_export_ksyms() to free allocated
2197 * buffers because we encounted error conditions. Free the buffers.
2198 */
2199 if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2200 uint_t shn;
2201 Shdr *shp;
2202
2203 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2204 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2205 switch (shp->sh_type) {
2206 case SHT_RELA:
2207 case SHT_REL:
2208 if (shp->sh_addr != 0)
2209 kobj_free((void *)shp->sh_addr,
2210 shp->sh_size);
2211 break;
2212 }
2213 }
2214 err_free_done:
2215 if (!(mp->flags & KOBJ_PRIM)) {
2216 kobj_free(mp->shdrs,
2217 mp->hdr.e_shentsize * mp->hdr.e_shnum);
2218 }
2219 }
2220
2221 if (mp->bss)
2222 vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2223
2224 if (mp->fbt_tab)
2225 kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2226
2227 if (mp->textwin_base)
2228 kobj_textwin_free(mp);
2229
2230 if (mp->sdt_probes != NULL) {
2231 sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2232
2233 while (sdp != NULL) {
2234 next = sdp->sdpd_next;
2235 kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2236 kobj_free(sdp, sizeof (sdt_probedesc_t));
2237 sdp = next;
2238 }
2239 }
2240
2241 if (mp->sdt_tab)
2242 kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2243 if (mp->text)
2244 vmem_free(text_arena, mp->text, mp->text_size);
2245 if (mp->data)
2246 vmem_free(data_arena, mp->data, mp->data_size);
2247 if (mp->depends_on)
2248 kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2249 if (mp->filename)
2250 kobj_free(mp->filename, strlen(mp->filename)+1);
2251
2252 kobj_free((char *)mp, sizeof (*mp));
2253 }
2254
2255 static int
get_progbits(struct module * mp,struct _buf * file)2256 get_progbits(struct module *mp, struct _buf *file)
2257 {
2258 struct proginfo *tp, *dp, *sdp;
2259 Shdr *shp;
2260 reloc_dest_t dest = NULL;
2261 uintptr_t bits_ptr;
2262 uintptr_t text = 0, data, textptr;
2263 uint_t shn;
2264 int err = -1;
2265
2266 tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2267 dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2268 sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP);
2269 /*
2270 * loop through sections to find out how much space we need
2271 * for text, data, (also bss that is already assigned)
2272 */
2273 if (get_progbits_size(mp, tp, dp, sdp) < 0)
2274 goto done;
2275
2276 mp->text_size = tp->size;
2277 mp->data_size = dp->size;
2278
2279 if (standalone) {
2280 caddr_t limit = _data;
2281
2282 if (lg_pagesize && _text + lg_pagesize < limit)
2283 limit = _text + lg_pagesize;
2284
2285 mp->text = kobj_segbrk(&_etext, mp->text_size,
2286 tp->align, limit);
2287 /*
2288 * If we can't grow the text segment, try the
2289 * data segment before failing.
2290 */
2291 if (mp->text == NULL) {
2292 mp->text = kobj_segbrk(&_edata, mp->text_size,
2293 tp->align, 0);
2294 }
2295
2296 mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2297
2298 if (mp->text == NULL || mp->data == NULL)
2299 goto done;
2300
2301 } else {
2302 if (text_arena == NULL)
2303 kobj_vmem_init(&text_arena, &data_arena);
2304
2305 /*
2306 * some architectures may want to load the module on a
2307 * page that is currently read only. It may not be
2308 * possible for those architectures to remap their page
2309 * on the fly. So we provide a facility for them to hang
2310 * a private hook where the memory they assign the module
2311 * is not the actual place where the module loads.
2312 *
2313 * In this case there are two addresses that deal with the
2314 * modload.
2315 * 1) the final destination of the module
2316 * 2) the address that is used to view the newly
2317 * loaded module until all the relocations relative to 1
2318 * above are completed.
2319 *
2320 * That is what dest is used for below.
2321 */
2322 mp->text_size += tp->align;
2323 mp->data_size += dp->align;
2324
2325 mp->text = kobj_text_alloc(text_arena, mp->text_size);
2326
2327 /*
2328 * a remap is taking place. Align the text ptr relative
2329 * to the secondary mapping. That is where the bits will
2330 * be read in.
2331 */
2332 if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2333 mp->text, mp->text_size)) {
2334 off_t off = (uintptr_t)mp->text & PAGEOFFSET;
2335 size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2336 caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP);
2337 caddr_t orig = mp->text - off;
2338 pgcnt_t pages = size / PAGESIZE;
2339
2340 dest = (reloc_dest_t)(map + off);
2341 text = ALIGN((uintptr_t)dest, tp->align);
2342
2343 while (pages--) {
2344 hat_devload(kas.a_hat, map, PAGESIZE,
2345 hat_getpfnum(kas.a_hat, orig),
2346 PROT_READ | PROT_WRITE | PROT_EXEC,
2347 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2348 map += PAGESIZE;
2349 orig += PAGESIZE;
2350 }
2351 /*
2352 * Since we set up a non-cacheable mapping, we need
2353 * to flush any old entries in the cache that might
2354 * be left around from the read-only mapping.
2355 */
2356 dcache_flushall();
2357 }
2358 if (mp->data_size)
2359 mp->data = vmem_alloc(data_arena, mp->data_size,
2360 VM_SLEEP | VM_BESTFIT);
2361 }
2362 textptr = (uintptr_t)mp->text;
2363 textptr = ALIGN(textptr, tp->align);
2364 mp->destination = dest;
2365
2366 /*
2367 * This is the case where a remap is not being done.
2368 */
2369 if (text == 0)
2370 text = ALIGN((uintptr_t)mp->text, tp->align);
2371 data = ALIGN((uintptr_t)mp->data, dp->align);
2372
2373 /* now loop though sections assigning addresses and loading the data */
2374 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2375 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2376 if (!(shp->sh_flags & SHF_ALLOC))
2377 continue;
2378
2379 if ((shp->sh_flags & SHF_WRITE) == 0)
2380 bits_ptr = text;
2381 else
2382 bits_ptr = data;
2383
2384 bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2385
2386 if (shp->sh_type == SHT_NOBITS) {
2387 /*
2388 * Zero bss.
2389 */
2390 bzero((caddr_t)bits_ptr, shp->sh_size);
2391 shp->sh_type = SHT_PROGBITS;
2392 } else {
2393 if (kobj_read_file(file, (char *)bits_ptr,
2394 shp->sh_size, shp->sh_offset) < 0)
2395 goto done;
2396 }
2397
2398 if (shp->sh_flags & SHF_WRITE) {
2399 shp->sh_addr = bits_ptr;
2400 } else {
2401 textptr = ALIGN(textptr, shp->sh_addralign);
2402 shp->sh_addr = textptr;
2403 textptr += shp->sh_size;
2404 }
2405
2406 bits_ptr += shp->sh_size;
2407 if ((shp->sh_flags & SHF_WRITE) == 0)
2408 text = bits_ptr;
2409 else
2410 data = bits_ptr;
2411 }
2412
2413 err = 0;
2414 done:
2415 /*
2416 * Free and mark as freed the section headers here so that
2417 * free_module_data() does not have to worry about this buffer.
2418 *
2419 * This buffer is freed here because one of the possible reasons
2420 * for error is a section with non-zero sh_addr and in that case
2421 * free_module_data() would have no way of recognizing that this
2422 * buffer was unallocated.
2423 */
2424 if (err != 0) {
2425 kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2426 mp->shdrs = NULL;
2427 }
2428
2429 (void) kobj_free(tp, sizeof (struct proginfo));
2430 (void) kobj_free(dp, sizeof (struct proginfo));
2431 (void) kobj_free(sdp, sizeof (struct proginfo));
2432
2433 return (err);
2434 }
2435
2436 /*
2437 * Go through suppress_sym_list to see if "multiply defined"
2438 * warning of this symbol should be suppressed. Return 1 if
2439 * warning should be suppressed, 0 otherwise.
2440 */
2441 static int
kobj_suppress_warning(char * symname)2442 kobj_suppress_warning(char *symname)
2443 {
2444 int i;
2445
2446 for (i = 0; suppress_sym_list[i] != NULL; i++) {
2447 if (strcmp(suppress_sym_list[i], symname) == 0)
2448 return (1);
2449 }
2450
2451 return (0);
2452 }
2453
2454 static int
get_syms(struct module * mp,struct _buf * file)2455 get_syms(struct module *mp, struct _buf *file)
2456 {
2457 uint_t shn;
2458 Shdr *shp;
2459 uint_t i;
2460 Sym *sp, *ksp;
2461 char *symname;
2462 int dosymtab = 0;
2463
2464 /*
2465 * Find the interesting sections.
2466 */
2467 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2468 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2469 switch (shp->sh_type) {
2470 case SHT_SYMTAB:
2471 mp->symtbl_section = shn;
2472 mp->symhdr = shp;
2473 dosymtab++;
2474 break;
2475
2476 case SHT_RELA:
2477 case SHT_REL:
2478 /*
2479 * Already loaded.
2480 */
2481 if (shp->sh_addr)
2482 continue;
2483
2484 /* KM_TMP since kobj_free'd in do_relocations */
2485 shp->sh_addr = (Addr)
2486 kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2487
2488 if (kobj_read_file(file, (char *)shp->sh_addr,
2489 shp->sh_size, shp->sh_offset) < 0) {
2490 _kobj_printf(ops, "krtld: get_syms: %s, ",
2491 mp->filename);
2492 _kobj_printf(ops, "error reading section %d\n",
2493 shn);
2494 return (-1);
2495 }
2496 break;
2497 }
2498 }
2499
2500 /*
2501 * This is true for a stripped executable. In the case of
2502 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2503 * and since that symbol information is still present everything
2504 * is just fine.
2505 */
2506 if (!dosymtab) {
2507 if (mp->flags & KOBJ_EXEC)
2508 return (0);
2509 _kobj_printf(ops, "krtld: get_syms: %s ",
2510 mp->filename);
2511 _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2512 return (-1);
2513 }
2514
2515 /*
2516 * get the associated string table header
2517 */
2518 if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2519 return (-1);
2520 mp->strhdr = (Shdr *)
2521 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2522
2523 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2524 mp->hashsize = kobj_gethashsize(mp->nsyms);
2525
2526 /*
2527 * Allocate space for the symbol table, buckets, chains, and strings.
2528 */
2529 mp->symsize = mp->symhdr->sh_size +
2530 (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2531 mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2532
2533 mp->symtbl = mp->symspace;
2534 mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2535 mp->chains = mp->buckets + mp->hashsize;
2536 mp->strings = (char *)(mp->chains + mp->nsyms);
2537
2538 if (kobj_read_file(file, mp->symtbl,
2539 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2540 kobj_read_file(file, mp->strings,
2541 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2542 return (-1);
2543
2544 /*
2545 * loop through the symbol table adjusting values to account
2546 * for where each section got loaded into memory. Also
2547 * fill in the hash table.
2548 */
2549 for (i = 1; i < mp->nsyms; i++) {
2550 sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2551 if (sp->st_shndx < SHN_LORESERVE) {
2552 if (sp->st_shndx >= mp->hdr.e_shnum) {
2553 _kobj_printf(ops, "%s bad shndx ",
2554 file->_name);
2555 _kobj_printf(ops, "in symbol %d\n", i);
2556 return (-1);
2557 }
2558 shp = (Shdr *)
2559 (mp->shdrs +
2560 sp->st_shndx * mp->hdr.e_shentsize);
2561 if (!(mp->flags & KOBJ_EXEC))
2562 sp->st_value += shp->sh_addr;
2563 }
2564
2565 if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2566 continue;
2567 if (sp->st_name >= mp->strhdr->sh_size)
2568 return (-1);
2569
2570 symname = mp->strings + sp->st_name;
2571
2572 if (!(mp->flags & KOBJ_EXEC) &&
2573 ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2574 ksp = kobj_lookup_all(mp, symname, 0);
2575
2576 if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2577 !kobj_suppress_warning(symname) &&
2578 sp->st_shndx != SHN_UNDEF &&
2579 sp->st_shndx != SHN_COMMON &&
2580 ksp->st_shndx != SHN_UNDEF &&
2581 ksp->st_shndx != SHN_COMMON) {
2582 /*
2583 * Unless this symbol is a stub, it's multiply
2584 * defined. Multiply-defined symbols are
2585 * usually bad, but some objects (kmdb) have
2586 * a legitimate need to have their own
2587 * copies of common functions.
2588 */
2589 if ((standalone ||
2590 ksp->st_value < (uintptr_t)stubs_base ||
2591 ksp->st_value >= (uintptr_t)stubs_end) &&
2592 !(mp->flags & KOBJ_IGNMULDEF)) {
2593 _kobj_printf(ops,
2594 "%s symbol ", file->_name);
2595 _kobj_printf(ops,
2596 "%s multiply defined\n", symname);
2597 }
2598 }
2599 }
2600
2601 sym_insert(mp, symname, i);
2602 }
2603
2604 return (0);
2605 }
2606
2607 static int
get_ctf(struct module * mp,struct _buf * file)2608 get_ctf(struct module *mp, struct _buf *file)
2609 {
2610 char *shstrtab, *ctfdata;
2611 size_t shstrlen;
2612 Shdr *shp;
2613 uint_t i;
2614
2615 if (_moddebug & MODDEBUG_NOCTF)
2616 return (0); /* do not attempt to even load CTF data */
2617
2618 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2619 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2620 mp->filename);
2621 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2622 mp->hdr.e_shstrndx);
2623 return (-1);
2624 }
2625
2626 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2627 shstrlen = shp->sh_size;
2628 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2629
2630 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2631 _kobj_printf(ops, "krtld: get_ctf: %s, ",
2632 mp->filename);
2633 _kobj_printf(ops, "error reading section %u\n",
2634 mp->hdr.e_shstrndx);
2635 kobj_free(shstrtab, shstrlen);
2636 return (-1);
2637 }
2638
2639 for (i = 0; i < mp->hdr.e_shnum; i++) {
2640 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2641
2642 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2643 strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2644 ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2645
2646 if (kobj_read_file(file, ctfdata, shp->sh_size,
2647 shp->sh_offset) < 0) {
2648 _kobj_printf(ops, "krtld: get_ctf: %s, error "
2649 "reading .SUNW_ctf data\n", mp->filename);
2650 kobj_free(ctfdata, shp->sh_size);
2651 kobj_free(shstrtab, shstrlen);
2652 return (-1);
2653 }
2654
2655 mp->ctfdata = ctfdata;
2656 mp->ctfsize = shp->sh_size;
2657 break;
2658 }
2659 }
2660
2661 kobj_free(shstrtab, shstrlen);
2662 return (0);
2663 }
2664
2665 #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */
2666
2667 /*
2668 * Return the hash of the ELF sections that are memory resident.
2669 * i.e. text and data. We skip a SHT_NOBITS section since it occupies
2670 * no space in the file. We use SHA1 here since libelfsign uses
2671 * it and both places need to use the same algorithm.
2672 */
2673 static void
crypto_es_hash(struct module * mp,char * hash,char * shstrtab)2674 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2675 {
2676 uint_t shn;
2677 Shdr *shp;
2678 SHA1_CTX ctx;
2679
2680 SHA1Init(&ctx);
2681
2682 for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2683 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2684 if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2685 continue;
2686
2687 /*
2688 * The check should ideally be shp->sh_type == SHT_NOBITS.
2689 * However, we can't do that check here as get_progbits()
2690 * resets the type.
2691 */
2692 if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2693 continue;
2694 #ifdef KOBJ_DEBUG
2695 if (kobj_debug & D_DEBUG)
2696 _kobj_printf(ops,
2697 "krtld: crypto_es_hash: updating hash with"
2698 " %s data size=%d\n", shstrtab + shp->sh_name,
2699 shp->sh_size);
2700 #endif
2701 ASSERT(shp->sh_addr != NULL);
2702 SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2703 }
2704
2705 SHA1Final((uchar_t *)hash, &ctx);
2706 }
2707
2708 /*
2709 * Get the .SUNW_signature section for the module, it it exists.
2710 *
2711 * This section exists only for crypto modules. None of the
2712 * primary modules have this section currently.
2713 */
2714 static void
get_signature(struct module * mp,struct _buf * file)2715 get_signature(struct module *mp, struct _buf *file)
2716 {
2717 char *shstrtab, *sigdata = NULL;
2718 size_t shstrlen;
2719 Shdr *shp;
2720 uint_t i;
2721
2722 if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2723 _kobj_printf(ops, "krtld: get_signature: %s, ",
2724 mp->filename);
2725 _kobj_printf(ops, "corrupt e_shstrndx %u\n",
2726 mp->hdr.e_shstrndx);
2727 return;
2728 }
2729
2730 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2731 shstrlen = shp->sh_size;
2732 shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2733
2734 if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2735 _kobj_printf(ops, "krtld: get_signature: %s, ",
2736 mp->filename);
2737 _kobj_printf(ops, "error reading section %u\n",
2738 mp->hdr.e_shstrndx);
2739 kobj_free(shstrtab, shstrlen);
2740 return;
2741 }
2742
2743 for (i = 0; i < mp->hdr.e_shnum; i++) {
2744 shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2745 if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2746 strcmp(shstrtab + shp->sh_name,
2747 ELF_SIGNATURE_SECTION) == 0) {
2748 filesig_vers_t filesig_version;
2749 size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2750 sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2751
2752 if (kobj_read_file(file, sigdata, shp->sh_size,
2753 shp->sh_offset) < 0) {
2754 _kobj_printf(ops, "krtld: get_signature: %s,"
2755 " error reading .SUNW_signature data\n",
2756 mp->filename);
2757 kobj_free(sigdata, sigsize);
2758 kobj_free(shstrtab, shstrlen);
2759 return;
2760 }
2761 filesig_version = ((struct filesignatures *)sigdata)->
2762 filesig_sig.filesig_version;
2763 if (!(filesig_version == FILESIG_VERSION1 ||
2764 filesig_version == FILESIG_VERSION3)) {
2765 /* skip versions we don't understand */
2766 kobj_free(sigdata, sigsize);
2767 kobj_free(shstrtab, shstrlen);
2768 return;
2769 }
2770
2771 mp->sigdata = sigdata;
2772 mp->sigsize = sigsize;
2773 break;
2774 }
2775 }
2776
2777 if (sigdata != NULL) {
2778 crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2779 }
2780
2781 kobj_free(shstrtab, shstrlen);
2782 }
2783
2784 static void
add_dependent(struct module * mp,struct module * dep)2785 add_dependent(struct module *mp, struct module *dep)
2786 {
2787 struct module_list *lp;
2788
2789 for (lp = mp->head; lp; lp = lp->next) {
2790 if (lp->mp == dep)
2791 return; /* already on the list */
2792 }
2793
2794 if (lp == NULL) {
2795 lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2796
2797 lp->mp = dep;
2798 lp->next = NULL;
2799 if (mp->tail)
2800 mp->tail->next = lp;
2801 else
2802 mp->head = lp;
2803 mp->tail = lp;
2804 }
2805 }
2806
2807 static int
do_dependents(struct modctl * modp,char * modname,size_t modnamelen)2808 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2809 {
2810 struct module *mp;
2811 struct modctl *req;
2812 char *d, *p, *q;
2813 int c;
2814 char *err_modname = NULL;
2815
2816 mp = modp->mod_mp;
2817
2818 if ((p = mp->depends_on) == NULL)
2819 return (0);
2820
2821 for (;;) {
2822 /*
2823 * Skip space.
2824 */
2825 while (*p && (*p == ' ' || *p == '\t'))
2826 p++;
2827 /*
2828 * Get module name.
2829 */
2830 d = p;
2831 q = modname;
2832 c = 0;
2833 while (*p && *p != ' ' && *p != '\t') {
2834 if (c < modnamelen - 1) {
2835 *q++ = *p;
2836 c++;
2837 }
2838 p++;
2839 }
2840
2841 if (q == modname)
2842 break;
2843
2844 if (c == modnamelen - 1) {
2845 char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2846
2847 (void) strncpy(dep, d, p - d + 1);
2848 dep[p - d] = '\0';
2849
2850 _kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2851 _kobj_printf(ops, "'%s' too long ", dep);
2852 _kobj_printf(ops, "(max %d chars)\n", modnamelen);
2853
2854 kobj_free(dep, p - d + 1);
2855
2856 return (-1);
2857 }
2858
2859 *q = '\0';
2860 if ((req = mod_load_requisite(modp, modname)) == NULL) {
2861 #ifndef KOBJ_DEBUG
2862 if (_moddebug & MODDEBUG_LOADMSG) {
2863 #endif /* KOBJ_DEBUG */
2864 _kobj_printf(ops,
2865 "%s: unable to resolve dependency, ",
2866 modp->mod_modname);
2867 _kobj_printf(ops, "cannot load module '%s'\n",
2868 modname);
2869 #ifndef KOBJ_DEBUG
2870 }
2871 #endif /* KOBJ_DEBUG */
2872 if (err_modname == NULL) {
2873 /*
2874 * This must be the same size as the modname
2875 * one.
2876 */
2877 err_modname = kobj_zalloc(MODMAXNAMELEN,
2878 KM_WAIT);
2879
2880 /*
2881 * We can use strcpy() here without fearing
2882 * the NULL terminator because the size of
2883 * err_modname is the same as one of modname,
2884 * and it's filled with zeros.
2885 */
2886 (void) strcpy(err_modname, modname);
2887 }
2888 continue;
2889 }
2890
2891 add_dependent(mp, req->mod_mp);
2892 mod_release_mod(req);
2893
2894 }
2895
2896 if (err_modname != NULL) {
2897 /*
2898 * Copy the first module name where you detect an error to keep
2899 * its behavior the same as before.
2900 * This way keeps minimizing the memory use for error
2901 * modules, and this might be important at boot time because
2902 * the memory usage is a crucial factor for booting in most
2903 * cases. You can expect more verbose messages when using
2904 * a debug kernel or setting a bit in moddebug.
2905 */
2906 bzero(modname, MODMAXNAMELEN);
2907 (void) strcpy(modname, err_modname);
2908 kobj_free(err_modname, MODMAXNAMELEN);
2909 return (-1);
2910 }
2911
2912 return (0);
2913 }
2914
2915 static int
do_common(struct module * mp)2916 do_common(struct module *mp)
2917 {
2918 int err;
2919
2920 /*
2921 * first time through, assign all symbols defined in other
2922 * modules, and count up how much common space will be needed
2923 * (bss_size and bss_align)
2924 */
2925 if ((err = do_symbols(mp, 0)) < 0)
2926 return (err);
2927 /*
2928 * increase bss_size by the maximum delta that could be
2929 * computed by the ALIGN below
2930 */
2931 mp->bss_size += mp->bss_align;
2932 if (mp->bss_size) {
2933 if (standalone)
2934 mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2935 MINALIGN, 0);
2936 else
2937 mp->bss = (uintptr_t)vmem_alloc(data_arena,
2938 mp->bss_size, VM_SLEEP | VM_BESTFIT);
2939 bzero((void *)mp->bss, mp->bss_size);
2940 /* now assign addresses to all common symbols */
2941 if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2942 return (err);
2943 }
2944 return (0);
2945 }
2946
2947 static int
do_symbols(struct module * mp,Elf64_Addr bss_base)2948 do_symbols(struct module *mp, Elf64_Addr bss_base)
2949 {
2950 int bss_align;
2951 uintptr_t bss_ptr;
2952 int err;
2953 int i;
2954 Sym *sp, *sp1;
2955 char *name;
2956 int assign;
2957 int resolved = 1;
2958
2959 /*
2960 * Nothing left to do (optimization).
2961 */
2962 if (mp->flags & KOBJ_RESOLVED)
2963 return (0);
2964
2965 assign = (bss_base) ? 1 : 0;
2966 bss_ptr = bss_base;
2967 bss_align = 0;
2968 err = 0;
2969
2970 for (i = 1; i < mp->nsyms; i++) {
2971 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2972 /*
2973 * we know that st_name is in bounds, since get_sections
2974 * has already checked all of the symbols
2975 */
2976 name = mp->strings + sp->st_name;
2977 if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2978 continue;
2979 #if defined(__sparc)
2980 /*
2981 * Register symbols are ignored in the kernel
2982 */
2983 if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
2984 if (*name != '\0') {
2985 _kobj_printf(ops, "%s: named REGISTER symbol ",
2986 mp->filename);
2987 _kobj_printf(ops, "not supported '%s'\n",
2988 name);
2989 err = DOSYM_UNDEF;
2990 }
2991 continue;
2992 }
2993 #endif /* __sparc */
2994 /*
2995 * TLS symbols are ignored in the kernel
2996 */
2997 if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
2998 _kobj_printf(ops, "%s: TLS symbol ",
2999 mp->filename);
3000 _kobj_printf(ops, "not supported '%s'\n",
3001 name);
3002 err = DOSYM_UNDEF;
3003 continue;
3004 }
3005
3006 if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
3007 if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
3008 sp->st_shndx = SHN_ABS;
3009 sp->st_value = sp1->st_value;
3010 continue;
3011 }
3012 }
3013
3014 if (sp->st_shndx == SHN_UNDEF) {
3015 resolved = 0;
3016
3017 if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
3018 continue;
3019
3020 /*
3021 * If it's not a weak reference and it's
3022 * not a primary object, it's an error.
3023 * (Primary objects may take more than
3024 * one pass to resolve)
3025 */
3026 if (!(mp->flags & KOBJ_PRIM) &&
3027 ELF_ST_BIND(sp->st_info) != STB_WEAK) {
3028 _kobj_printf(ops, "%s: undefined symbol",
3029 mp->filename);
3030 _kobj_printf(ops, " '%s'\n", name);
3031 /*
3032 * Try to determine whether this symbol
3033 * represents a dependency on obsolete
3034 * unsafe driver support. This is just
3035 * to make the warning more informative.
3036 */
3037 if (strcmp(name, "sleep") == 0 ||
3038 strcmp(name, "unsleep") == 0 ||
3039 strcmp(name, "wakeup") == 0 ||
3040 strcmp(name, "bsd_compat_ioctl") == 0 ||
3041 strcmp(name, "unsafe_driver") == 0 ||
3042 strncmp(name, "spl", 3) == 0 ||
3043 strncmp(name, "i_ddi_spl", 9) == 0)
3044 err = DOSYM_UNSAFE;
3045 if (err == 0)
3046 err = DOSYM_UNDEF;
3047 }
3048 continue;
3049 }
3050 /*
3051 * It's a common symbol - st_value is the
3052 * required alignment.
3053 */
3054 if (sp->st_value > bss_align)
3055 bss_align = sp->st_value;
3056 bss_ptr = ALIGN(bss_ptr, sp->st_value);
3057 if (assign) {
3058 sp->st_shndx = SHN_ABS;
3059 sp->st_value = bss_ptr;
3060 }
3061 bss_ptr += sp->st_size;
3062 }
3063 if (err)
3064 return (err);
3065 if (assign == 0 && mp->bss == NULL) {
3066 mp->bss_align = bss_align;
3067 mp->bss_size = bss_ptr;
3068 } else if (resolved) {
3069 mp->flags |= KOBJ_RESOLVED;
3070 }
3071
3072 return (0);
3073 }
3074
3075 uint_t
kobj_hash_name(const char * p)3076 kobj_hash_name(const char *p)
3077 {
3078 uint_t g;
3079 uint_t hval;
3080
3081 hval = 0;
3082 while (*p) {
3083 hval = (hval << 4) + *p++;
3084 if ((g = (hval & 0xf0000000)) != 0)
3085 hval ^= g >> 24;
3086 hval &= ~g;
3087 }
3088 return (hval);
3089 }
3090
3091 /* look for name in all modules */
3092 uintptr_t
kobj_getsymvalue(char * name,int kernelonly)3093 kobj_getsymvalue(char *name, int kernelonly)
3094 {
3095 Sym *sp;
3096 struct modctl *modp;
3097 struct module *mp;
3098 uintptr_t value = 0;
3099
3100 if ((sp = kobj_lookup_kernel(name)) != NULL)
3101 return ((uintptr_t)sp->st_value);
3102
3103 if (kernelonly)
3104 return (0); /* didn't find it in the kernel so give up */
3105
3106 mutex_enter(&mod_lock);
3107 modp = &modules;
3108 do {
3109 mp = (struct module *)modp->mod_mp;
3110 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3111 (sp = lookup_one(mp, name))) {
3112 value = (uintptr_t)sp->st_value;
3113 break;
3114 }
3115 } while ((modp = modp->mod_next) != &modules);
3116 mutex_exit(&mod_lock);
3117 return (value);
3118 }
3119
3120 /* look for a symbol near value. */
3121 char *
kobj_getsymname(uintptr_t value,ulong_t * offset)3122 kobj_getsymname(uintptr_t value, ulong_t *offset)
3123 {
3124 char *name = NULL;
3125 struct modctl *modp;
3126
3127 struct modctl_list *lp;
3128 struct module *mp;
3129
3130 /*
3131 * Loop through the primary kernel modules.
3132 */
3133 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3134 mp = mod(lp);
3135
3136 if ((name = kobj_searchsym(mp, value, offset)) != NULL)
3137 return (name);
3138 }
3139
3140 mutex_enter(&mod_lock);
3141 modp = &modules;
3142 do {
3143 mp = (struct module *)modp->mod_mp;
3144 if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
3145 (name = kobj_searchsym(mp, value, offset)))
3146 break;
3147 } while ((modp = modp->mod_next) != &modules);
3148 mutex_exit(&mod_lock);
3149 return (name);
3150 }
3151
3152 /* return address of symbol and size */
3153
3154 uintptr_t
kobj_getelfsym(char * name,void * mp,int * size)3155 kobj_getelfsym(char *name, void *mp, int *size)
3156 {
3157 Sym *sp;
3158
3159 if (mp == NULL)
3160 sp = kobj_lookup_kernel(name);
3161 else
3162 sp = lookup_one(mp, name);
3163
3164 if (sp == NULL)
3165 return (0);
3166
3167 *size = (int)sp->st_size;
3168 return ((uintptr_t)sp->st_value);
3169 }
3170
3171 uintptr_t
kobj_lookup(struct module * mod,const char * name)3172 kobj_lookup(struct module *mod, const char *name)
3173 {
3174 Sym *sp;
3175
3176 sp = lookup_one(mod, name);
3177
3178 if (sp == NULL)
3179 return (0);
3180
3181 return ((uintptr_t)sp->st_value);
3182 }
3183
3184 char *
kobj_searchsym(struct module * mp,uintptr_t value,ulong_t * offset)3185 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
3186 {
3187 Sym *symtabptr;
3188 char *strtabptr;
3189 int symnum;
3190 Sym *sym;
3191 Sym *cursym;
3192 uintptr_t curval;
3193
3194 *offset = (ulong_t)-1l; /* assume not found */
3195 cursym = NULL;
3196
3197 if (kobj_addrcheck(mp, (void *)value) != 0)
3198 return (NULL); /* not in this module */
3199
3200 strtabptr = mp->strings;
3201 symtabptr = (Sym *)mp->symtbl;
3202
3203 /*
3204 * Scan the module's symbol table for a symbol <= value
3205 */
3206 for (symnum = 1, sym = symtabptr + 1;
3207 symnum < mp->nsyms; symnum++, sym = (Sym *)
3208 ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3209 if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3210 if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3211 continue;
3212 if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3213 ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3214 continue;
3215 }
3216
3217 curval = (uintptr_t)sym->st_value;
3218
3219 if (curval > value)
3220 continue;
3221
3222 /*
3223 * If one or both are functions...
3224 */
3225 if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3226 ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3227 /* Ignore if the address is out of the bounds */
3228 if (value - sym->st_value >= sym->st_size)
3229 continue;
3230
3231 if (cursym != NULL &&
3232 ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3233 /* Prefer the function to the non-function */
3234 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3235 continue;
3236
3237 /* Prefer the larger of the two functions */
3238 if (sym->st_size <= cursym->st_size)
3239 continue;
3240 }
3241 } else if (value - curval >= *offset) {
3242 continue;
3243 }
3244
3245 *offset = (ulong_t)(value - curval);
3246 cursym = sym;
3247 }
3248 if (cursym == NULL)
3249 return (NULL);
3250
3251 return (strtabptr + cursym->st_name);
3252 }
3253
3254 Sym *
kobj_lookup_all(struct module * mp,char * name,int include_self)3255 kobj_lookup_all(struct module *mp, char *name, int include_self)
3256 {
3257 Sym *sp;
3258 struct module_list *mlp;
3259 struct modctl_list *clp;
3260 struct module *mmp;
3261
3262 if (include_self && (sp = lookup_one(mp, name)) != NULL)
3263 return (sp);
3264
3265 for (mlp = mp->head; mlp; mlp = mlp->next) {
3266 if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3267 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3268 return (sp);
3269 }
3270
3271 /*
3272 * Loop through the primary kernel modules.
3273 */
3274 for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3275 mmp = mod(clp);
3276
3277 if (mmp == NULL || mp == mmp)
3278 continue;
3279
3280 if ((sp = lookup_one(mmp, name)) != NULL &&
3281 ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3282 return (sp);
3283 }
3284 return (NULL);
3285 }
3286
3287 Sym *
kobj_lookup_kernel(const char * name)3288 kobj_lookup_kernel(const char *name)
3289 {
3290 struct modctl_list *lp;
3291 struct module *mp;
3292 Sym *sp;
3293
3294 /*
3295 * Loop through the primary kernel modules.
3296 */
3297 for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3298 mp = mod(lp);
3299
3300 if (mp == NULL)
3301 continue;
3302
3303 if ((sp = lookup_one(mp, name)) != NULL)
3304 return (sp);
3305 }
3306 return (NULL);
3307 }
3308
3309 static Sym *
lookup_one(struct module * mp,const char * name)3310 lookup_one(struct module *mp, const char *name)
3311 {
3312 symid_t *ip;
3313 char *name1;
3314 Sym *sp;
3315
3316 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3317 ip = &mp->chains[*ip]) {
3318 sp = (Sym *)(mp->symtbl +
3319 mp->symhdr->sh_entsize * *ip);
3320 name1 = mp->strings + sp->st_name;
3321 if (strcmp(name, name1) == 0 &&
3322 ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3323 sp->st_shndx != SHN_UNDEF &&
3324 sp->st_shndx != SHN_COMMON)
3325 return (sp);
3326 }
3327 return (NULL);
3328 }
3329
3330 /*
3331 * Lookup a given symbol pointer in the module's symbol hash. If the symbol
3332 * is hashed, return the symbol pointer; otherwise return NULL.
3333 */
3334 static Sym *
sym_lookup(struct module * mp,Sym * ksp)3335 sym_lookup(struct module *mp, Sym *ksp)
3336 {
3337 char *name = mp->strings + ksp->st_name;
3338 symid_t *ip;
3339 Sym *sp;
3340
3341 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3342 ip = &mp->chains[*ip]) {
3343 sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3344 if (sp == ksp)
3345 return (ksp);
3346 }
3347 return (NULL);
3348 }
3349
3350 static void
sym_insert(struct module * mp,char * name,symid_t index)3351 sym_insert(struct module *mp, char *name, symid_t index)
3352 {
3353 symid_t *ip;
3354
3355 #ifdef KOBJ_DEBUG
3356 if (kobj_debug & D_SYMBOLS) {
3357 static struct module *lastmp = NULL;
3358 Sym *sp;
3359 if (lastmp != mp) {
3360 _kobj_printf(ops,
3361 "krtld: symbol entry: file=%s\n",
3362 mp->filename);
3363 _kobj_printf(ops,
3364 "krtld:\tsymndx\tvalue\t\t"
3365 "symbol name\n");
3366 lastmp = mp;
3367 }
3368 sp = (Sym *)(mp->symtbl +
3369 index * mp->symhdr->sh_entsize);
3370 _kobj_printf(ops, "krtld:\t[%3d]", index);
3371 _kobj_printf(ops, "\t0x%lx", sp->st_value);
3372 _kobj_printf(ops, "\t%s\n", name);
3373 }
3374
3375 #endif
3376 for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3377 ip = &mp->chains[*ip]) {
3378 ;
3379 }
3380 *ip = index;
3381 }
3382
3383 struct modctl *
kobj_boot_mod_lookup(const char * modname)3384 kobj_boot_mod_lookup(const char *modname)
3385 {
3386 struct modctl *mctl = kobj_modules;
3387
3388 do {
3389 if (strcmp(modname, mctl->mod_modname) == 0)
3390 return (mctl);
3391 } while ((mctl = mctl->mod_next) != kobj_modules);
3392
3393 return (NULL);
3394 }
3395
3396 /*
3397 * Determine if the module exists.
3398 */
3399 int
kobj_path_exists(char * name,int use_path)3400 kobj_path_exists(char *name, int use_path)
3401 {
3402 struct _buf *file;
3403
3404 file = kobj_open_path(name, use_path, 1);
3405 #ifdef MODDIR_SUFFIX
3406 if (file == (struct _buf *)-1)
3407 file = kobj_open_path(name, use_path, 0);
3408 #endif /* MODDIR_SUFFIX */
3409 if (file == (struct _buf *)-1)
3410 return (0);
3411 kobj_close_file(file);
3412 return (1);
3413 }
3414
3415 /*
3416 * fullname is dynamically allocated to be able to hold the
3417 * maximum size string that can be constructed from name.
3418 * path is exactly like the shell PATH variable.
3419 */
3420 struct _buf *
kobj_open_path(char * name,int use_path,int use_moddir_suffix)3421 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3422 {
3423 char *p, *q;
3424 char *pathp;
3425 char *pathpsave;
3426 char *fullname;
3427 int maxpathlen;
3428 struct _buf *file;
3429
3430 #if !defined(MODDIR_SUFFIX)
3431 use_moddir_suffix = B_FALSE;
3432 #endif
3433
3434 if (!use_path)
3435 pathp = ""; /* use name as specified */
3436 else
3437 pathp = kobj_module_path;
3438 /* use configured default path */
3439
3440 pathpsave = pathp; /* keep this for error reporting */
3441
3442 /*
3443 * Allocate enough space for the largest possible fullname.
3444 * since path is of the form <directory> : <directory> : ...
3445 * we're potentially allocating a little more than we need to
3446 * but we'll allocate the exact amount when we find the right directory.
3447 * (The + 3 below is one for NULL terminator and one for the '/'
3448 * we might have to add at the beginning of path and one for
3449 * the '/' between path and name.)
3450 */
3451 maxpathlen = strlen(pathp) + strlen(name) + 3;
3452 /* sizeof includes null */
3453 maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3454 fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3455
3456 for (;;) {
3457 p = fullname;
3458 if (*pathp != '\0' && *pathp != '/')
3459 *p++ = '/'; /* path must start with '/' */
3460 while (*pathp && *pathp != ':' && *pathp != ' ')
3461 *p++ = *pathp++;
3462 if (p != fullname && p[-1] != '/')
3463 *p++ = '/';
3464 if (use_moddir_suffix) {
3465 char *b = basename(name);
3466 char *s;
3467
3468 /* copy everything up to the base name */
3469 q = name;
3470 while (q != b && *q)
3471 *p++ = *q++;
3472 s = slash_moddir_suffix_slash;
3473 while (*s)
3474 *p++ = *s++;
3475 /* copy the rest */
3476 while (*b)
3477 *p++ = *b++;
3478 } else {
3479 q = name;
3480 while (*q)
3481 *p++ = *q++;
3482 }
3483 *p = 0;
3484 if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3485 kobj_free(fullname, maxpathlen);
3486 return (file);
3487 }
3488 while (*pathp == ' ')
3489 pathp++;
3490 if (*pathp == 0)
3491 break;
3492
3493 }
3494 kobj_free(fullname, maxpathlen);
3495 if (_moddebug & MODDEBUG_ERRMSG) {
3496 _kobj_printf(ops, "can't open %s,", name);
3497 _kobj_printf(ops, " path is %s\n", pathpsave);
3498 }
3499 return ((struct _buf *)-1);
3500 }
3501
3502 intptr_t
kobj_open(char * filename)3503 kobj_open(char *filename)
3504 {
3505 struct vnode *vp;
3506 int fd;
3507
3508 if (_modrootloaded) {
3509 struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3510 int Errno;
3511
3512 /*
3513 * Hand off the open to a thread who has a
3514 * stack size capable handling the request.
3515 */
3516 if (curthread != &t0) {
3517 (void) thread_create(NULL, DEFAULTSTKSZ * 2,
3518 kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3519 sema_p(<p->sema);
3520 Errno = ltp->Errno;
3521 vp = ltp->vp;
3522 } else {
3523 /*
3524 * 1098067: module creds should not be those of the
3525 * caller
3526 */
3527 cred_t *saved_cred = curthread->t_cred;
3528 curthread->t_cred = kcred;
3529 Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3530 0, 0, rootdir, -1);
3531 curthread->t_cred = saved_cred;
3532 }
3533 kobjopen_free(ltp);
3534
3535 if (Errno) {
3536 if (_moddebug & MODDEBUG_ERRMSG) {
3537 _kobj_printf(ops,
3538 "kobj_open: vn_open of %s fails, ",
3539 filename);
3540 _kobj_printf(ops, "Errno = %d\n", Errno);
3541 }
3542 return (-1);
3543 } else {
3544 if (_moddebug & MODDEBUG_ERRMSG) {
3545 _kobj_printf(ops, "kobj_open: '%s'", filename);
3546 _kobj_printf(ops, " vp = %p\n", vp);
3547 }
3548 return ((intptr_t)vp);
3549 }
3550 } else {
3551 fd = kobj_boot_open(filename, 0);
3552
3553 if (_moddebug & MODDEBUG_ERRMSG) {
3554 if (fd < 0)
3555 _kobj_printf(ops,
3556 "kobj_open: can't open %s\n", filename);
3557 else {
3558 _kobj_printf(ops, "kobj_open: '%s'", filename);
3559 _kobj_printf(ops, " descr = 0x%x\n", fd);
3560 }
3561 }
3562 return ((intptr_t)fd);
3563 }
3564 }
3565
3566 /*
3567 * Calls to kobj_open() are handled off to this routine as a separate thread.
3568 */
3569 static void
kobjopen_thread(struct kobjopen_tctl * ltp)3570 kobjopen_thread(struct kobjopen_tctl *ltp)
3571 {
3572 kmutex_t cpr_lk;
3573 callb_cpr_t cpr_i;
3574
3575 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3576 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3577 ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3578 0, 0);
3579 sema_v(<p->sema);
3580 mutex_enter(&cpr_lk);
3581 CALLB_CPR_EXIT(&cpr_i);
3582 mutex_destroy(&cpr_lk);
3583 thread_exit();
3584 }
3585
3586 /*
3587 * allocate and initialize a kobjopen thread structure
3588 */
3589 static struct kobjopen_tctl *
kobjopen_alloc(char * filename)3590 kobjopen_alloc(char *filename)
3591 {
3592 struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3593
3594 ASSERT(filename != NULL);
3595
3596 ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3597 bcopy(filename, ltp->name, strlen(filename) + 1);
3598 sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL);
3599 return (ltp);
3600 }
3601
3602 /*
3603 * free a kobjopen thread control structure
3604 */
3605 static void
kobjopen_free(struct kobjopen_tctl * ltp)3606 kobjopen_free(struct kobjopen_tctl *ltp)
3607 {
3608 sema_destroy(<p->sema);
3609 kmem_free(ltp->name, strlen(ltp->name) + 1);
3610 kmem_free(ltp, sizeof (*ltp));
3611 }
3612
3613 int
kobj_read(intptr_t descr,char * buf,uint_t size,uint_t offset)3614 kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset)
3615 {
3616 int stat;
3617 ssize_t resid;
3618
3619 if (_modrootloaded) {
3620 if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3621 (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3622 &resid)) != 0) {
3623 _kobj_printf(ops,
3624 "vn_rdwr failed with error 0x%x\n", stat);
3625 return (-1);
3626 }
3627 return (size - resid);
3628 } else {
3629 int count = 0;
3630
3631 if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3632 _kobj_printf(ops,
3633 "kobj_read: seek 0x%x failed\n", offset);
3634 return (-1);
3635 }
3636
3637 count = kobj_boot_read((int)descr, buf, size);
3638 if (count < size) {
3639 if (_moddebug & MODDEBUG_ERRMSG) {
3640 _kobj_printf(ops,
3641 "kobj_read: req %d bytes, ", size);
3642 _kobj_printf(ops, "got %d\n", count);
3643 }
3644 }
3645 return (count);
3646 }
3647 }
3648
3649 void
kobj_close(intptr_t descr)3650 kobj_close(intptr_t descr)
3651 {
3652 if (_moddebug & MODDEBUG_ERRMSG)
3653 _kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3654
3655 if (_modrootloaded) {
3656 struct vnode *vp = (struct vnode *)descr;
3657 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL);
3658 VN_RELE(vp);
3659 } else
3660 (void) kobj_boot_close((int)descr);
3661 }
3662
3663 int
kobj_fstat(intptr_t descr,struct bootstat * buf)3664 kobj_fstat(intptr_t descr, struct bootstat *buf)
3665 {
3666 if (buf == NULL)
3667 return (-1);
3668
3669 if (_modrootloaded) {
3670 vattr_t vattr;
3671 struct vnode *vp = (struct vnode *)descr;
3672 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3673 return (-1);
3674
3675 /*
3676 * The vattr and bootstat structures are similar, but not
3677 * identical. We do our best to fill in the bootstat structure
3678 * from the contents of vattr (transfering only the ones that
3679 * are obvious.
3680 */
3681
3682 buf->st_mode = (uint32_t)vattr.va_mode;
3683 buf->st_nlink = (uint32_t)vattr.va_nlink;
3684 buf->st_uid = (int32_t)vattr.va_uid;
3685 buf->st_gid = (int32_t)vattr.va_gid;
3686 buf->st_rdev = (uint64_t)vattr.va_rdev;
3687 buf->st_size = (uint64_t)vattr.va_size;
3688 buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3689 buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3690 buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3691 buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3692 buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3693 buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3694 buf->st_blksize = (int32_t)vattr.va_blksize;
3695 buf->st_blocks = (int64_t)vattr.va_nblocks;
3696
3697 return (0);
3698 }
3699
3700 return (kobj_boot_fstat((int)descr, buf));
3701 }
3702
3703
3704 struct _buf *
kobj_open_file(char * name)3705 kobj_open_file(char *name)
3706 {
3707 struct _buf *file;
3708 struct compinfo cbuf;
3709 intptr_t fd;
3710
3711 if ((fd = kobj_open(name)) == -1) {
3712 return ((struct _buf *)-1);
3713 }
3714
3715 file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3716 file->_fd = fd;
3717 file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3718 file->_cnt = file->_size = file->_off = 0;
3719 file->_ln = 1;
3720 file->_ptr = file->_base;
3721 (void) strcpy(file->_name, name);
3722
3723 /*
3724 * Before root is mounted, we must check
3725 * for a compressed file and do our own
3726 * buffering.
3727 */
3728 if (_modrootloaded) {
3729 file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT);
3730 file->_bsize = MAXBSIZE;
3731
3732 /* Check if the file is compressed */
3733 file->_iscmp = kobj_is_compressed(fd);
3734 } else {
3735 if (kobj_boot_compinfo(fd, &cbuf) != 0) {
3736 kobj_close_file(file);
3737 return ((struct _buf *)-1);
3738 }
3739 file->_iscmp = cbuf.iscmp;
3740 if (file->_iscmp) {
3741 if (kobj_comp_setup(file, &cbuf) != 0) {
3742 kobj_close_file(file);
3743 return ((struct _buf *)-1);
3744 }
3745 } else {
3746 file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP);
3747 file->_bsize = cbuf.blksize;
3748 }
3749 }
3750 return (file);
3751 }
3752
3753 static int
kobj_comp_setup(struct _buf * file,struct compinfo * cip)3754 kobj_comp_setup(struct _buf *file, struct compinfo *cip)
3755 {
3756 struct comphdr *hdr;
3757
3758 /*
3759 * read the compressed image into memory,
3760 * so we can deompress from there
3761 */
3762 file->_dsize = cip->fsize;
3763 file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP);
3764 if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) {
3765 kobj_free(file->_dbuf, cip->fsize);
3766 return (-1);
3767 }
3768
3769 hdr = kobj_comphdr(file);
3770 if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION ||
3771 hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 ||
3772 (hdr->ch_blksize & (hdr->ch_blksize - 1)) != 0) {
3773 kobj_free(file->_dbuf, cip->fsize);
3774 return (-1);
3775 }
3776 file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP);
3777 file->_bsize = hdr->ch_blksize;
3778 return (0);
3779 }
3780
3781 void
kobj_close_file(struct _buf * file)3782 kobj_close_file(struct _buf *file)
3783 {
3784 kobj_close(file->_fd);
3785 if (file->_base != NULL)
3786 kobj_free(file->_base, file->_bsize);
3787 if (file->_dbuf != NULL)
3788 kobj_free(file->_dbuf, file->_dsize);
3789 kobj_free(file->_name, strlen(file->_name)+1);
3790 kobj_free(file, sizeof (struct _buf));
3791 }
3792
3793 int
kobj_read_file(struct _buf * file,char * buf,uint_t size,uint_t off)3794 kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off)
3795 {
3796 int b_size, c_size;
3797 int b_off; /* Offset into buffer for start of bcopy */
3798 int count = 0;
3799 int page_addr;
3800
3801 if (_moddebug & MODDEBUG_ERRMSG) {
3802 _kobj_printf(ops, "kobj_read_file: size=%x,", size);
3803 _kobj_printf(ops, " offset=%x at", off);
3804 _kobj_printf(ops, " buf=%x\n", buf);
3805 }
3806
3807 /*
3808 * Handle compressed (gzip for now) file here. First get the
3809 * compressed size, then read the image into memory and finally
3810 * call zlib to decompress the image at the supplied memory buffer.
3811 */
3812 if (file->_iscmp == CH_MAGIC_GZIP) {
3813 ulong_t dlen;
3814 vattr_t vattr;
3815 struct vnode *vp = (struct vnode *)file->_fd;
3816 ssize_t resid;
3817 int err = 0;
3818
3819 if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0)
3820 return (-1);
3821
3822 file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP);
3823 file->_dsize = vattr.va_size;
3824
3825 /* Read the compressed file into memory */
3826 if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size,
3827 (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3828 &resid)) != 0) {
3829
3830 _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, "
3831 "error code 0x%x\n", err);
3832 return (-1);
3833 }
3834
3835 dlen = size;
3836
3837 /* Decompress the image at the supplied memory buffer */
3838 if ((err = z_uncompress(buf, &dlen, file->_dbuf,
3839 vattr.va_size)) != Z_OK) {
3840 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3841 "failed, error code : 0x%x\n", err);
3842 return (-1);
3843 }
3844
3845 if (dlen != size) {
3846 _kobj_printf(ops, "kobj_read_file: z_uncompress "
3847 "failed to uncompress (size returned 0x%x , "
3848 "expected size: 0x%x)\n", dlen, size);
3849 return (-1);
3850 }
3851
3852 return (0);
3853 }
3854
3855 while (size) {
3856 page_addr = F_PAGE(file, off);
3857 b_size = file->_size;
3858 /*
3859 * If we have the filesystem page the caller's referring to
3860 * and we have something in the buffer,
3861 * satisfy as much of the request from the buffer as we can.
3862 */
3863 if (page_addr == file->_off && b_size > 0) {
3864 b_off = B_OFFSET(file, off);
3865 c_size = b_size - b_off;
3866 /*
3867 * If there's nothing to copy, we're at EOF.
3868 */
3869 if (c_size <= 0)
3870 break;
3871 if (c_size > size)
3872 c_size = size;
3873 if (buf) {
3874 if (_moddebug & MODDEBUG_ERRMSG)
3875 _kobj_printf(ops, "copying %x bytes\n",
3876 c_size);
3877 bcopy(file->_base+b_off, buf, c_size);
3878 size -= c_size;
3879 off += c_size;
3880 buf += c_size;
3881 count += c_size;
3882 } else {
3883 _kobj_printf(ops, "kobj_read: system error");
3884 count = -1;
3885 break;
3886 }
3887 } else {
3888 /*
3889 * If the caller's offset is page aligned and
3890 * the caller want's at least a filesystem page and
3891 * the caller provided a buffer,
3892 * read directly into the caller's buffer.
3893 */
3894 if (page_addr == off &&
3895 (c_size = F_BLKS(file, size)) && buf) {
3896 c_size = kobj_read_blks(file, buf, c_size,
3897 page_addr);
3898 if (c_size < 0) {
3899 count = -1;
3900 break;
3901 }
3902 count += c_size;
3903 if (c_size != F_BLKS(file, size))
3904 break;
3905 size -= c_size;
3906 off += c_size;
3907 buf += c_size;
3908 /*
3909 * Otherwise, read into our buffer and copy next time
3910 * around the loop.
3911 */
3912 } else {
3913 file->_off = page_addr;
3914 c_size = kobj_read_blks(file, file->_base,
3915 file->_bsize, page_addr);
3916 file->_ptr = file->_base;
3917 file->_cnt = c_size;
3918 file->_size = c_size;
3919 /*
3920 * If a _filbuf call or nothing read, break.
3921 */
3922 if (buf == NULL || c_size <= 0) {
3923 count = c_size;
3924 break;
3925 }
3926 }
3927 if (_moddebug & MODDEBUG_ERRMSG)
3928 _kobj_printf(ops, "read %x bytes\n", c_size);
3929 }
3930 }
3931 if (_moddebug & MODDEBUG_ERRMSG)
3932 _kobj_printf(ops, "count = %x\n", count);
3933
3934 return (count);
3935 }
3936
3937 static int
kobj_read_blks(struct _buf * file,char * buf,uint_t size,uint_t off)3938 kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off)
3939 {
3940 int ret;
3941
3942 ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0);
3943 if (file->_iscmp) {
3944 uint_t blks;
3945 int nret;
3946
3947 ret = 0;
3948 for (blks = size / file->_bsize; blks != 0; blks--) {
3949 nret = kobj_uncomp_blk(file, buf, off);
3950 if (nret == -1)
3951 return (-1);
3952 buf += nret;
3953 off += nret;
3954 ret += nret;
3955 if (nret < file->_bsize)
3956 break;
3957 }
3958 } else
3959 ret = kobj_read(file->_fd, buf, size, off);
3960 return (ret);
3961 }
3962
3963 static int
kobj_uncomp_blk(struct _buf * file,char * buf,uint_t off)3964 kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off)
3965 {
3966 struct comphdr *hdr = kobj_comphdr(file);
3967 ulong_t dlen, slen;
3968 caddr_t src;
3969 int i;
3970
3971 dlen = file->_bsize;
3972 i = off / file->_bsize;
3973 src = file->_dbuf + hdr->ch_blkmap[i];
3974 if (i == hdr->ch_fsize / file->_bsize)
3975 slen = file->_dsize - hdr->ch_blkmap[i];
3976 else
3977 slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i];
3978 if (z_uncompress(buf, &dlen, src, slen) != Z_OK)
3979 return (-1);
3980 return (dlen);
3981 }
3982
3983 int
kobj_filbuf(struct _buf * f)3984 kobj_filbuf(struct _buf *f)
3985 {
3986 if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0)
3987 return (kobj_getc(f));
3988 return (-1);
3989 }
3990
3991 void
kobj_free(void * address,size_t size)3992 kobj_free(void *address, size_t size)
3993 {
3994 if (standalone)
3995 return;
3996
3997 kmem_free(address, size);
3998 kobj_stat.nfree_calls++;
3999 kobj_stat.nfree += size;
4000 }
4001
4002 void *
kobj_zalloc(size_t size,int flag)4003 kobj_zalloc(size_t size, int flag)
4004 {
4005 void *v;
4006
4007 if ((v = kobj_alloc(size, flag)) != 0) {
4008 bzero(v, size);
4009 }
4010
4011 return (v);
4012 }
4013
4014 void *
kobj_alloc(size_t size,int flag)4015 kobj_alloc(size_t size, int flag)
4016 {
4017 /*
4018 * If we are running standalone in the
4019 * linker, we ask boot for memory.
4020 * Either it's temporary memory that we lose
4021 * once boot is mapped out or we allocate it
4022 * permanently using the dynamic data segment.
4023 */
4024 if (standalone) {
4025 #if defined(_OBP)
4026 if (flag & (KM_TMP | KM_SCRATCH))
4027 return (bop_temp_alloc(size, MINALIGN));
4028 #else
4029 if (flag & (KM_TMP | KM_SCRATCH))
4030 return (BOP_ALLOC(ops, 0, size, MINALIGN));
4031 #endif
4032 return (kobj_segbrk(&_edata, size, MINALIGN, 0));
4033 }
4034
4035 kobj_stat.nalloc_calls++;
4036 kobj_stat.nalloc += size;
4037
4038 return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
4039 }
4040
4041 /*
4042 * Allow the "mod" system to sync up with the work
4043 * already done by kobj during the initial loading
4044 * of the kernel. This also gives us a chance
4045 * to reallocate memory that belongs to boot.
4046 */
4047 void
kobj_sync(void)4048 kobj_sync(void)
4049 {
4050 struct modctl_list *lp, **lpp;
4051
4052 /*
4053 * The module path can be set in /etc/system via 'moddir' commands
4054 */
4055 if (default_path != NULL)
4056 kobj_module_path = default_path;
4057 else
4058 default_path = kobj_module_path;
4059
4060 ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
4061 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4062
4063 ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
4064 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
4065
4066 /*
4067 * Move symbol tables from boot memory to ksyms_arena.
4068 */
4069 for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
4070 for (lp = *lpp; lp != NULL; lp = lp->modl_next)
4071 kobj_export_module(mod(lp));
4072 }
4073 }
4074
4075 caddr_t
kobj_segbrk(caddr_t * spp,size_t size,size_t align,caddr_t limit)4076 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
4077 {
4078 uintptr_t va, pva;
4079 size_t alloc_pgsz = kobj_mmu_pagesize;
4080 size_t alloc_align = BO_NO_ALIGN;
4081 size_t alloc_size;
4082
4083 /*
4084 * If we are using "large" mappings for the kernel,
4085 * request aligned memory from boot using the
4086 * "large" pagesize.
4087 */
4088 if (lg_pagesize) {
4089 alloc_align = lg_pagesize;
4090 alloc_pgsz = lg_pagesize;
4091 }
4092
4093 #if defined(__sparc)
4094 /* account for redzone */
4095 if (limit)
4096 limit -= alloc_pgsz;
4097 #endif /* __sparc */
4098
4099 va = ALIGN((uintptr_t)*spp, align);
4100 pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
4101 /*
4102 * Need more pages?
4103 */
4104 if (va + size > pva) {
4105 uintptr_t npva;
4106
4107 alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
4108 /*
4109 * Check for overlapping segments.
4110 */
4111 if (limit && limit <= *spp + alloc_size) {
4112 return ((caddr_t)0);
4113 }
4114
4115 npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
4116 alloc_size, alloc_align);
4117
4118 if (npva == NULL) {
4119 _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes",
4120 alloc_size);
4121 _kobj_printf(ops, " aligned %lx", alloc_align);
4122 _kobj_printf(ops, " at 0x%lx\n", pva);
4123 return (NULL);
4124 }
4125 }
4126 *spp = (caddr_t)(va + size);
4127
4128 return ((caddr_t)va);
4129 }
4130
4131 /*
4132 * Calculate the number of output hash buckets.
4133 * We use the next prime larger than n / 4,
4134 * so the average hash chain is about 4 entries.
4135 * More buckets would just be a waste of memory.
4136 */
4137 uint_t
kobj_gethashsize(uint_t n)4138 kobj_gethashsize(uint_t n)
4139 {
4140 int f;
4141 int hsize = MAX(n / 4, 2);
4142
4143 for (f = 2; f * f <= hsize; f++)
4144 if (hsize % f == 0)
4145 hsize += f = 1;
4146
4147 return (hsize);
4148 }
4149
4150 /*
4151 * Get the file size.
4152 *
4153 * Before root is mounted, files are compressed in the boot_archive ramdisk
4154 * (in the memory). kobj_fstat would return the compressed file size.
4155 * In order to get the uncompressed file size, read the file to the end and
4156 * count its size.
4157 */
4158 int
kobj_get_filesize(struct _buf * file,uint64_t * size)4159 kobj_get_filesize(struct _buf *file, uint64_t *size)
4160 {
4161 int err = 0;
4162 ssize_t resid;
4163 uint32_t buf;
4164
4165 if (_modrootloaded) {
4166 struct bootstat bst;
4167
4168 if (kobj_fstat(file->_fd, &bst) != 0)
4169 return (EIO);
4170 *size = bst.st_size;
4171
4172 if (file->_iscmp == CH_MAGIC_GZIP) {
4173 /*
4174 * Read the last 4 bytes of the compressed (gzip)
4175 * image to get the size of its uncompressed
4176 * version.
4177 */
4178 if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd,
4179 (char *)(&buf), 4, (offset_t)(*size - 4),
4180 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid))
4181 != 0) {
4182 _kobj_printf(ops, "kobj_get_filesize: "
4183 "vn_rdwr() failed with error 0x%x\n", err);
4184 return (-1);
4185 }
4186
4187 *size = (uint64_t)buf;
4188 }
4189 } else {
4190
4191 #if defined(_OBP)
4192 struct bootstat bsb;
4193
4194 if (file->_iscmp) {
4195 struct comphdr *hdr = kobj_comphdr(file);
4196
4197 *size = hdr->ch_fsize;
4198 } else if (kobj_boot_fstat(file->_fd, &bsb) != 0)
4199 return (EIO);
4200 else
4201 *size = bsb.st_size;
4202 #else
4203 char *buf;
4204 int count;
4205 uint64_t offset = 0;
4206
4207 buf = kmem_alloc(MAXBSIZE, KM_SLEEP);
4208 do {
4209 count = kobj_read_file(file, buf, MAXBSIZE, offset);
4210 if (count < 0) {
4211 kmem_free(buf, MAXBSIZE);
4212 return (EIO);
4213 }
4214 offset += count;
4215 } while (count == MAXBSIZE);
4216 kmem_free(buf, MAXBSIZE);
4217
4218 *size = offset;
4219 #endif
4220 }
4221
4222 return (0);
4223 }
4224
4225 static char *
basename(char * s)4226 basename(char *s)
4227 {
4228 char *p, *q;
4229
4230 q = NULL;
4231 p = s;
4232 do {
4233 if (*p == '/')
4234 q = p;
4235 } while (*p++);
4236 return (q ? q + 1 : s);
4237 }
4238
4239 void
kobj_stat_get(kobj_stat_t * kp)4240 kobj_stat_get(kobj_stat_t *kp)
4241 {
4242 *kp = kobj_stat;
4243 }
4244
4245 int
kobj_getpagesize()4246 kobj_getpagesize()
4247 {
4248 return (lg_pagesize);
4249 }
4250
4251 void
kobj_textwin_alloc(struct module * mp)4252 kobj_textwin_alloc(struct module *mp)
4253 {
4254 ASSERT(MUTEX_HELD(&mod_lock));
4255
4256 if (mp->textwin != NULL)
4257 return;
4258
4259 /*
4260 * If the text is not contained in the heap, then it is not contained
4261 * by a writable mapping. (Specifically, it's on the nucleus page.)
4262 * We allocate a read/write mapping for this module's text to allow
4263 * the text to be patched without calling hot_patch_kernel_text()
4264 * (which is quite slow).
4265 */
4266 if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
4267 uintptr_t text = (uintptr_t)mp->text;
4268 uintptr_t size = (uintptr_t)mp->text_size;
4269 uintptr_t i;
4270 caddr_t va;
4271 size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
4272 (text & PAGEMASK);
4273
4274 va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
4275
4276 for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
4277 hat_devload(kas.a_hat, va, PAGESIZE,
4278 hat_getpfnum(kas.a_hat, (caddr_t)i),
4279 PROT_READ | PROT_WRITE,
4280 HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4281 va += PAGESIZE;
4282 }
4283
4284 mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
4285 } else {
4286 mp->textwin = mp->text;
4287 }
4288 }
4289
4290 void
kobj_textwin_free(struct module * mp)4291 kobj_textwin_free(struct module *mp)
4292 {
4293 uintptr_t text = (uintptr_t)mp->text;
4294 uintptr_t tsize = (uintptr_t)mp->text_size;
4295 size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
4296 (text & PAGEMASK));
4297
4298 mp->textwin = NULL;
4299
4300 if (mp->textwin_base == NULL)
4301 return;
4302
4303 hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
4304 vmem_free(heap_arena, mp->textwin_base, size);
4305 mp->textwin_base = NULL;
4306 }
4307
4308 static char *
find_libmacro(char * name)4309 find_libmacro(char *name)
4310 {
4311 int lmi;
4312
4313 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4314 if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
4315 return (libmacros[lmi].lmi_list);
4316 }
4317 return (NULL);
4318 }
4319
4320 /*
4321 * Check for $MACRO in tail (string to expand) and expand it in path at pathend
4322 * returns path if successful, else NULL
4323 * Support multiple $MACROs expansion and the first valid path will be returned
4324 * Caller's responsibility to provide enough space in path to expand
4325 */
4326 char *
expand_libmacro(char * tail,char * path,char * pathend)4327 expand_libmacro(char *tail, char *path, char *pathend)
4328 {
4329 char c, *p, *p1, *p2, *path2, *endp;
4330 int diff, lmi, macrolen, valid_macro, more_macro;
4331 struct _buf *file;
4332
4333 /*
4334 * check for $MACROS between nulls or slashes
4335 */
4336 p = strchr(tail, '$');
4337 if (p == NULL)
4338 return (NULL);
4339 for (lmi = 0; lmi < NLIBMACROS; lmi++) {
4340 macrolen = libmacros[lmi].lmi_macrolen;
4341 if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
4342 break;
4343 }
4344
4345 valid_macro = 0;
4346 if (lmi < NLIBMACROS) {
4347 /*
4348 * The following checks are used to restrict expansion of
4349 * macros to those that form a full directory/file name
4350 * and to keep the behavior same as before. If this
4351 * restriction is removed or no longer valid in the future,
4352 * the checks below can be deleted.
4353 */
4354 if ((p == tail) || (*(p - 1) == '/')) {
4355 c = *(p + macrolen + 1);
4356 if (c == '/' || c == '\0')
4357 valid_macro = 1;
4358 }
4359 }
4360
4361 if (!valid_macro) {
4362 p2 = strchr(p, '/');
4363 /*
4364 * if no more macro to expand, then just copy whatever left
4365 * and check whether it exists
4366 */
4367 if (p2 == NULL || strchr(p2, '$') == NULL) {
4368 (void) strcpy(pathend, tail);
4369 if ((file = kobj_open_path(path, 1, 1)) !=
4370 (struct _buf *)-1) {
4371 kobj_close_file(file);
4372 return (path);
4373 } else
4374 return (NULL);
4375 } else {
4376 /*
4377 * copy all chars before '/' and call expand_libmacro()
4378 * again
4379 */
4380 diff = p2 - tail;
4381 bcopy(tail, pathend, diff);
4382 pathend += diff;
4383 *(pathend) = '\0';
4384 return (expand_libmacro(p2, path, pathend));
4385 }
4386 }
4387
4388 more_macro = 0;
4389 if (c != '\0') {
4390 endp = p + macrolen + 1;
4391 if (strchr(endp, '$') != NULL)
4392 more_macro = 1;
4393 } else
4394 endp = NULL;
4395
4396 /*
4397 * copy lmi_list and split it into components.
4398 * then put the part of tail before $MACRO into path
4399 * at pathend
4400 */
4401 diff = p - tail;
4402 if (diff > 0)
4403 bcopy(tail, pathend, diff);
4404 path2 = pathend + diff;
4405 p1 = libmacros[lmi].lmi_list;
4406 while (p1 && (*p1 != '\0')) {
4407 p2 = strchr(p1, ':');
4408 if (p2) {
4409 diff = p2 - p1;
4410 bcopy(p1, path2, diff);
4411 *(path2 + diff) = '\0';
4412 } else {
4413 diff = strlen(p1);
4414 bcopy(p1, path2, diff + 1);
4415 }
4416 /* copy endp only if there isn't any more macro to expand */
4417 if (!more_macro && (endp != NULL))
4418 (void) strcat(path2, endp);
4419 file = kobj_open_path(path, 1, 1);
4420 if (file != (struct _buf *)-1) {
4421 kobj_close_file(file);
4422 /*
4423 * if more macros to expand then call expand_libmacro(),
4424 * else return path which has the whole path
4425 */
4426 if (!more_macro || (expand_libmacro(endp, path,
4427 path2 + diff) != NULL)) {
4428 return (path);
4429 }
4430 }
4431 if (p2)
4432 p1 = ++p2;
4433 else
4434 return (NULL);
4435 }
4436 return (NULL);
4437 }
4438
4439 static void
tnf_add_notifyunload(kobj_notify_f * fp)4440 tnf_add_notifyunload(kobj_notify_f *fp)
4441 {
4442 kobj_notify_list_t *entry;
4443
4444 entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4445 entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4446 entry->kn_func = fp;
4447 (void) kobj_notify_add(entry);
4448 }
4449
4450 /* ARGSUSED */
4451 static void
tnf_unsplice_probes(uint_t what,struct modctl * mod)4452 tnf_unsplice_probes(uint_t what, struct modctl *mod)
4453 {
4454 tnf_probe_control_t **p;
4455 tnf_tag_data_t **q;
4456 struct module *mp = mod->mod_mp;
4457
4458 if (!(mp->flags & KOBJ_TNF_PROBE))
4459 return;
4460
4461 for (p = &__tnf_probe_list_head; *p; )
4462 if (kobj_addrcheck(mp, (char *)*p) == 0)
4463 *p = (*p)->next;
4464 else
4465 p = &(*p)->next;
4466
4467 for (q = &__tnf_tag_list_head; *q; )
4468 if (kobj_addrcheck(mp, (char *)*q) == 0)
4469 *q = (tnf_tag_data_t *)(*q)->tag_version;
4470 else
4471 q = (tnf_tag_data_t **)&(*q)->tag_version;
4472
4473 tnf_changed_probe_list = 1;
4474 }
4475
4476 int
tnf_splice_probes(int boot_load,tnf_probe_control_t * plist,tnf_tag_data_t * tlist)4477 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4478 tnf_tag_data_t *tlist)
4479 {
4480 int result = 0;
4481 static int add_notify = 1;
4482
4483 if (plist) {
4484 tnf_probe_control_t *pl;
4485
4486 for (pl = plist; pl->next; )
4487 pl = pl->next;
4488
4489 if (!boot_load)
4490 mutex_enter(&mod_lock);
4491 tnf_changed_probe_list = 1;
4492 pl->next = __tnf_probe_list_head;
4493 __tnf_probe_list_head = plist;
4494 if (!boot_load)
4495 mutex_exit(&mod_lock);
4496 result = 1;
4497 }
4498
4499 if (tlist) {
4500 tnf_tag_data_t *tl;
4501
4502 for (tl = tlist; tl->tag_version; )
4503 tl = (tnf_tag_data_t *)tl->tag_version;
4504
4505 if (!boot_load)
4506 mutex_enter(&mod_lock);
4507 tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4508 __tnf_tag_list_head = tlist;
4509 if (!boot_load)
4510 mutex_exit(&mod_lock);
4511 result = 1;
4512 }
4513 if (!boot_load && result && add_notify) {
4514 tnf_add_notifyunload(tnf_unsplice_probes);
4515 add_notify = 0;
4516 }
4517 return (result);
4518 }
4519
4520 char *kobj_file_buf;
4521 int kobj_file_bufsize;
4522
4523 /*
4524 * This code is for the purpose of manually recording which files
4525 * needs to go into the boot archive on any given system.
4526 *
4527 * To enable the code, set kobj_file_bufsize in /etc/system
4528 * and reboot the system, then use mdb to look at kobj_file_buf.
4529 */
4530 static void
kobj_record_file(char * filename)4531 kobj_record_file(char *filename)
4532 {
4533 static char *buf;
4534 static int size = 0;
4535 int n;
4536
4537 if (kobj_file_bufsize == 0) /* don't bother */
4538 return;
4539
4540 if (kobj_file_buf == NULL) { /* allocate buffer */
4541 size = kobj_file_bufsize;
4542 buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4543 }
4544
4545 n = snprintf(buf, size, "%s\n", filename);
4546 if (n > size)
4547 n = size;
4548 size -= n;
4549 buf += n;
4550 }
4551
4552 static int
kobj_boot_fstat(int fd,struct bootstat * stp)4553 kobj_boot_fstat(int fd, struct bootstat *stp)
4554 {
4555 #if defined(_OBP)
4556 if (!standalone && _ioquiesced)
4557 return (-1);
4558 return (BOP_FSTAT(ops, fd, stp));
4559 #else
4560 return (BRD_FSTAT(bfs_ops, fd, stp));
4561 #endif
4562 }
4563
4564 static int
kobj_boot_open(char * filename,int flags)4565 kobj_boot_open(char *filename, int flags)
4566 {
4567 #if defined(_OBP)
4568
4569 /*
4570 * If io via bootops is quiesced, it means boot is no longer
4571 * available to us. We make it look as if we can't open the
4572 * named file - which is reasonably accurate.
4573 */
4574 if (!standalone && _ioquiesced)
4575 return (-1);
4576
4577 kobj_record_file(filename);
4578 return (BOP_OPEN(filename, flags));
4579 #else /* x86 */
4580 kobj_record_file(filename);
4581 return (BRD_OPEN(bfs_ops, filename, flags));
4582 #endif
4583 }
4584
4585 static int
kobj_boot_close(int fd)4586 kobj_boot_close(int fd)
4587 {
4588 #if defined(_OBP)
4589 if (!standalone && _ioquiesced)
4590 return (-1);
4591
4592 return (BOP_CLOSE(fd));
4593 #else /* x86 */
4594 return (BRD_CLOSE(bfs_ops, fd));
4595 #endif
4596 }
4597
4598 /*ARGSUSED*/
4599 static int
kobj_boot_seek(int fd,off_t hi,off_t lo)4600 kobj_boot_seek(int fd, off_t hi, off_t lo)
4601 {
4602 #if defined(_OBP)
4603 return (BOP_SEEK(fd, lo) == -1 ? -1 : 0);
4604 #else
4605 return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4606 #endif
4607 }
4608
4609 static int
kobj_boot_read(int fd,caddr_t buf,size_t size)4610 kobj_boot_read(int fd, caddr_t buf, size_t size)
4611 {
4612 #if defined(_OBP)
4613 return (BOP_READ(fd, buf, size));
4614 #else
4615 return (BRD_READ(bfs_ops, fd, buf, size));
4616 #endif
4617 }
4618
4619 static int
kobj_boot_compinfo(int fd,struct compinfo * cb)4620 kobj_boot_compinfo(int fd, struct compinfo *cb)
4621 {
4622 return (boot_compinfo(fd, cb));
4623 }
4624
4625 /*
4626 * Check if the file is compressed (for now we handle only gzip).
4627 * It returns CH_MAGIC_GZIP if the file is compressed and 0 otherwise.
4628 */
4629 static int
kobj_is_compressed(intptr_t fd)4630 kobj_is_compressed(intptr_t fd)
4631 {
4632 struct vnode *vp = (struct vnode *)fd;
4633 ssize_t resid;
4634 uint16_t magic_buf;
4635 int err = 0;
4636
4637 if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf),
4638 sizeof (magic_buf), (offset_t)(0),
4639 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
4640
4641 _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, "
4642 "error code 0x%x\n", err);
4643 return (0);
4644 }
4645
4646 if (magic_buf == CH_MAGIC_GZIP)
4647 return (CH_MAGIC_GZIP);
4648
4649 return (0);
4650 }
4651