xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdkfd/kfd_flat_memory.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: kfd_flat_memory.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2014 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: kfd_flat_memory.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $");
28 
29 #include <linux/device.h>
30 #include <linux/export.h>
31 #include <linux/err.h>
32 #include <linux/fs.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/uaccess.h>
36 #include <linux/compat.h>
37 #include <uapi/linux/kfd_ioctl.h>
38 #include <linux/time.h>
39 #include "kfd_priv.h"
40 #include <linux/mm.h>
41 #include <linux/mman.h>
42 #include <asm/processor.h>
43 
44 /*
45  * The primary memory I/O features being added for revisions of gfxip
46  * beyond 7.0 (Kaveri) are:
47  *
48  * Access to ATC/IOMMU mapped memory w/ associated extension of VA to 48b
49  *
50  * “Flat” shader memory access – These are new shader vector memory
51  * operations that do not reference a T#/V# so a “pointer” is what is
52  * sourced from the vector gprs for direct access to memory.
53  * This pointer space has the Shared(LDS) and Private(Scratch) memory
54  * mapped into this pointer space as apertures.
55  * The hardware then determines how to direct the memory request
56  * based on what apertures the request falls in.
57  *
58  * Unaligned support and alignment check
59  *
60  *
61  * System Unified Address - SUA
62  *
63  * The standard usage for GPU virtual addresses are that they are mapped by
64  * a set of page tables we call GPUVM and these page tables are managed by
65  * a combination of vidMM/driver software components.  The current virtual
66  * address (VA) range for GPUVM is 40b.
67  *
68  * As of gfxip7.1 and beyond we’re adding the ability for compute memory
69  * clients (CP/RLC, DMA, SHADER(ifetch, scalar, and vector ops)) to access
70  * the same page tables used by host x86 processors and that are managed by
71  * the operating system. This is via a technique and hardware called ATC/IOMMU.
72  * The GPU has the capability of accessing both the GPUVM and ATC address
73  * spaces for a given VMID (process) simultaneously and we call this feature
74  * system unified address (SUA).
75  *
76  * There are three fundamental address modes of operation for a given VMID
77  * (process) on the GPU:
78  *
79  *	HSA64 – 64b pointers and the default address space is ATC
80  *	HSA32 – 32b pointers and the default address space is ATC
81  *	GPUVM – 64b pointers and the default address space is GPUVM (driver
82  *		model mode)
83  *
84  *
85  * HSA64 - ATC/IOMMU 64b
86  *
87  * A 64b pointer in the AMD64/IA64 CPU architecture is not fully utilized
88  * by the CPU so an AMD CPU can only access the high area
89  * (VA[63:47] == 0x1FFFF) and low area (VA[63:47 == 0) of the address space
90  * so the actual VA carried to translation is 48b.  There is a “hole” in
91  * the middle of the 64b VA space.
92  *
93  * The GPU not only has access to all of the CPU accessible address space via
94  * ATC/IOMMU, but it also has access to the GPUVM address space.  The “system
95  * unified address” feature (SUA) is the mapping of GPUVM and ATC address
96  * spaces into a unified pointer space.  The method we take for 64b mode is
97  * to map the full 40b GPUVM address space into the hole of the 64b address
98  * space.
99 
100  * The GPUVM_Base/GPUVM_Limit defines the aperture in the 64b space where we
101  * direct requests to be translated via GPUVM page tables instead of the
102  * IOMMU path.
103  *
104  *
105  * 64b to 49b Address conversion
106  *
107  * Note that there are still significant portions of unused regions (holes)
108  * in the 64b address space even for the GPU.  There are several places in
109  * the pipeline (sw and hw), we wish to compress the 64b virtual address
110  * to a 49b address.  This 49b address is constituted of an “ATC” bit
111  * plus a 48b virtual address.  This 49b address is what is passed to the
112  * translation hardware.  ATC==0 means the 48b address is a GPUVM address
113  * (max of 2^40 – 1) intended to be translated via GPUVM page tables.
114  * ATC==1 means the 48b address is intended to be translated via IOMMU
115  * page tables.
116  *
117  * A 64b pointer is compared to the apertures that are defined (Base/Limit), in
118  * this case the GPUVM aperture (red) is defined and if a pointer falls in this
119  * aperture, we subtract the GPUVM_Base address and set the ATC bit to zero
120  * as part of the 64b to 49b conversion.
121  *
122  * Where this 64b to 49b conversion is done is a function of the usage.
123  * Most GPU memory access is via memory objects where the driver builds
124  * a descriptor which consists of a base address and a memory access by
125  * the GPU usually consists of some kind of an offset or Cartesian coordinate
126  * that references this memory descriptor.  This is the case for shader
127  * instructions that reference the T# or V# constants, or for specified
128  * locations of assets (ex. the shader program location).  In these cases
129  * the driver is what handles the 64b to 49b conversion and the base
130  * address in the descriptor (ex. V# or T# or shader program location)
131  * is defined as a 48b address w/ an ATC bit.  For this usage a given
132  * memory object cannot straddle multiple apertures in the 64b address
133  * space. For example a shader program cannot jump in/out between ATC
134  * and GPUVM space.
135  *
136  * In some cases we wish to pass a 64b pointer to the GPU hardware and
137  * the GPU hw does the 64b to 49b conversion before passing memory
138  * requests to the cache/memory system.  This is the case for the
139  * S_LOAD and FLAT_* shader memory instructions where we have 64b pointers
140  * in scalar and vector GPRs respectively.
141  *
142  * In all cases (no matter where the 64b -> 49b conversion is done), the gfxip
143  * hardware sends a 48b address along w/ an ATC bit, to the memory controller
144  * on the memory request interfaces.
145  *
146  *	<client>_MC_rdreq_atc   // read request ATC bit
147  *
148  *		0 : <client>_MC_rdreq_addr is a GPUVM VA
149  *
150  *		1 : <client>_MC_rdreq_addr is a ATC VA
151  *
152  *
153  * “Spare” aperture (APE1)
154  *
155  * We use the GPUVM aperture to differentiate ATC vs. GPUVM, but we also use
156  * apertures to set the Mtype field for S_LOAD/FLAT_* ops which is input to the
157  * config tables for setting cache policies. The “spare” (APE1) aperture is
158  * motivated by getting a different Mtype from the default.
159  * The default aperture isn’t an actual base/limit aperture; it is just the
160  * address space that doesn’t hit any defined base/limit apertures.
161  * The following diagram is a complete picture of the gfxip7.x SUA apertures.
162  * The APE1 can be placed either below or above
163  * the hole (cannot be in the hole).
164  *
165  *
166  * General Aperture definitions and rules
167  *
168  * An aperture register definition consists of a Base, Limit, Mtype, and
169  * usually an ATC bit indicating which translation tables that aperture uses.
170  * In all cases (for SUA and DUA apertures discussed later), aperture base
171  * and limit definitions are 64KB aligned.
172  *
173  *	<ape>_Base[63:0] = { <ape>_Base_register[63:16], 0x0000 }
174  *
175  *	<ape>_Limit[63:0] = { <ape>_Limit_register[63:16], 0xFFFF }
176  *
177  * The base and limit are considered inclusive to an aperture so being
178  * inside an aperture means (address >= Base) AND (address <= Limit).
179  *
180  * In no case is a payload that straddles multiple apertures expected to work.
181  * For example a load_dword_x4 that starts in one aperture and ends in another,
182  * does not work.  For the vector FLAT_* ops we have detection capability in
183  * the shader for reporting a “memory violation” back to the
184  * SQ block for use in traps.
185  * A memory violation results when an op falls into the hole,
186  * or a payload straddles multiple apertures.  The S_LOAD instruction
187  * does not have this detection.
188  *
189  * Apertures cannot overlap.
190  *
191  *
192  *
193  * HSA32 - ATC/IOMMU 32b
194  *
195  * For HSA32 mode, the pointers are interpreted as 32 bits and use a single GPR
196  * instead of two for the S_LOAD and FLAT_* ops. The entire GPUVM space of 40b
197  * will not fit so there is only partial visibility to the GPUVM
198  * space (defined by the aperture) for S_LOAD and FLAT_* ops.
199  * There is no spare (APE1) aperture for HSA32 mode.
200  *
201  *
202  * GPUVM 64b mode (driver model)
203  *
204  * This mode is related to HSA64 in that the difference really is that
205  * the default aperture is GPUVM (ATC==0) and not ATC space.
206  * We have gfxip7.x hardware that has FLAT_* and S_LOAD support for
207  * SUA GPUVM mode, but does not support HSA32/HSA64.
208  *
209  *
210  * Device Unified Address - DUA
211  *
212  * Device unified address (DUA) is the name of the feature that maps the
213  * Shared(LDS) memory and Private(Scratch) memory into the overall address
214  * space for use by the new FLAT_* vector memory ops.  The Shared and
215  * Private memories are mapped as apertures into the address space,
216  * and the hardware detects when a FLAT_* memory request is to be redirected
217  * to the LDS or Scratch memory when it falls into one of these apertures.
218  * Like the SUA apertures, the Shared/Private apertures are 64KB aligned and
219  * the base/limit is “in” the aperture. For both HSA64 and GPUVM SUA modes,
220  * the Shared/Private apertures are always placed in a limited selection of
221  * options in the hole of the 64b address space. For HSA32 mode, the
222  * Shared/Private apertures can be placed anywhere in the 32b space
223  * except at 0.
224  *
225  *
226  * HSA64 Apertures for FLAT_* vector ops
227  *
228  * For HSA64 SUA mode, the Shared and Private apertures are always placed
229  * in the hole w/ a limited selection of possible locations. The requests
230  * that fall in the private aperture are expanded as a function of the
231  * work-item id (tid) and redirected to the location of the
232  * “hidden private memory”. The hidden private can be placed in either GPUVM
233  * or ATC space. The addresses that fall in the shared aperture are
234  * re-directed to the on-chip LDS memory hardware.
235  *
236  *
237  * HSA32 Apertures for FLAT_* vector ops
238  *
239  * In HSA32 mode, the Private and Shared apertures can be placed anywhere
240  * in the 32b space except at 0 (Private or Shared Base at zero disables
241  * the apertures). If the base address of the apertures are non-zero
242  * (ie apertures exists), the size is always 64KB.
243  *
244  *
245  * GPUVM Apertures for FLAT_* vector ops
246  *
247  * In GPUVM mode, the Shared/Private apertures are specified identically
248  * to HSA64 mode where they are always in the hole at a limited selection
249  * of locations.
250  *
251  *
252  * Aperture Definitions for SUA and DUA
253  *
254  * The interpretation of the aperture register definitions for a given
255  * VMID is a function of the “SUA Mode” which is one of HSA64, HSA32, or
256  * GPUVM64 discussed in previous sections. The mode is first decoded, and
257  * then the remaining register decode is a function of the mode.
258  *
259  *
260  * SUA Mode Decode
261  *
262  * For the S_LOAD and FLAT_* shader operations, the SUA mode is decoded from
263  * the COMPUTE_DISPATCH_INITIATOR:DATA_ATC bit and
264  * the SH_MEM_CONFIG:PTR32 bits.
265  *
266  * COMPUTE_DISPATCH_INITIATOR:DATA_ATC    SH_MEM_CONFIG:PTR32        Mode
267  *
268  * 1                                              0                  HSA64
269  *
270  * 1                                              1                  HSA32
271  *
272  * 0                                              X                 GPUVM64
273  *
274  * In general the hardware will ignore the PTR32 bit and treat
275  * as “0” whenever DATA_ATC = “0”, but sw should set PTR32=0
276  * when DATA_ATC=0.
277  *
278  * The DATA_ATC bit is only set for compute dispatches.
279  * All “Draw” dispatches are hardcoded to GPUVM64 mode
280  * for FLAT_* / S_LOAD operations.
281  */
282 
283 #define MAKE_GPUVM_APP_BASE_VI(gpu_num) \
284 	(((uint64_t)(gpu_num) << 61) + 0x1000000000000L)
285 
286 #define MAKE_GPUVM_APP_LIMIT(base, size) \
287 	(((uint64_t)(base) & 0xFFFFFF0000000000UL) + (size) - 1)
288 
289 #define MAKE_SCRATCH_APP_BASE_VI() \
290 	(((uint64_t)(0x1UL) << 61) + 0x100000000L)
291 
292 #define MAKE_SCRATCH_APP_LIMIT(base) \
293 	(((uint64_t)base & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
294 
295 #define MAKE_LDS_APP_BASE_VI() \
296 	(((uint64_t)(0x1UL) << 61) + 0x0)
297 #define MAKE_LDS_APP_LIMIT(base) \
298 	(((uint64_t)(base) & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
299 
300 /* On GFXv9 the LDS and scratch apertures are programmed independently
301  * using the high 16 bits of the 64-bit virtual address. They must be
302  * in the hole, which will be the case as long as the high 16 bits are
303  * not 0.
304  *
305  * The aperture sizes are still 4GB implicitly.
306  *
307  * A GPUVM aperture is not applicable on GFXv9.
308  */
309 #define MAKE_LDS_APP_BASE_V9() ((uint64_t)(0x1UL) << 48)
310 #define MAKE_SCRATCH_APP_BASE_V9() ((uint64_t)(0x2UL) << 48)
311 
312 /* User mode manages most of the SVM aperture address space. The low
313  * 16MB are reserved for kernel use (CWSR trap handler and kernel IB
314  * for now).
315  */
316 #define SVM_USER_BASE 0x1000000ull
317 #define SVM_CWSR_BASE (SVM_USER_BASE - KFD_CWSR_TBA_TMA_SIZE)
318 #define SVM_IB_BASE   (SVM_CWSR_BASE - PAGE_SIZE)
319 
kfd_init_apertures_vi(struct kfd_process_device * pdd,uint8_t id)320 static void kfd_init_apertures_vi(struct kfd_process_device *pdd, uint8_t id)
321 {
322 	/*
323 	 * node id couldn't be 0 - the three MSB bits of
324 	 * aperture shoudn't be 0
325 	 */
326 	pdd->lds_base = MAKE_LDS_APP_BASE_VI();
327 	pdd->lds_limit = MAKE_LDS_APP_LIMIT(pdd->lds_base);
328 
329 	if (!pdd->dev->device_info->needs_iommu_device) {
330 		/* dGPUs: SVM aperture starting at 0
331 		 * with small reserved space for kernel.
332 		 * Set them to CANONICAL addresses.
333 		 */
334 		pdd->gpuvm_base = SVM_USER_BASE;
335 		pdd->gpuvm_limit =
336 			pdd->dev->shared_resources.gpuvm_size - 1;
337 	} else {
338 		/* set them to non CANONICAL addresses, and no SVM is
339 		 * allocated.
340 		 */
341 		pdd->gpuvm_base = MAKE_GPUVM_APP_BASE_VI(id + 1);
342 		pdd->gpuvm_limit = MAKE_GPUVM_APP_LIMIT(pdd->gpuvm_base,
343 				pdd->dev->shared_resources.gpuvm_size);
344 	}
345 
346 	pdd->scratch_base = MAKE_SCRATCH_APP_BASE_VI();
347 	pdd->scratch_limit = MAKE_SCRATCH_APP_LIMIT(pdd->scratch_base);
348 }
349 
kfd_init_apertures_v9(struct kfd_process_device * pdd,uint8_t id)350 static void kfd_init_apertures_v9(struct kfd_process_device *pdd, uint8_t id)
351 {
352 	pdd->lds_base = MAKE_LDS_APP_BASE_V9();
353 	pdd->lds_limit = MAKE_LDS_APP_LIMIT(pdd->lds_base);
354 
355 	/* Raven needs SVM to support graphic handle, etc. Leave the small
356 	 * reserved space before SVM on Raven as well, even though we don't
357 	 * have to.
358 	 * Set gpuvm_base and gpuvm_limit to CANONICAL addresses so that they
359 	 * are used in Thunk to reserve SVM.
360 	 */
361 	pdd->gpuvm_base = SVM_USER_BASE;
362 	pdd->gpuvm_limit =
363 		pdd->dev->shared_resources.gpuvm_size - 1;
364 
365 	pdd->scratch_base = MAKE_SCRATCH_APP_BASE_V9();
366 	pdd->scratch_limit = MAKE_SCRATCH_APP_LIMIT(pdd->scratch_base);
367 }
368 
kfd_init_apertures(struct kfd_process * process)369 int kfd_init_apertures(struct kfd_process *process)
370 {
371 	uint8_t id  = 0;
372 	struct kfd_dev *dev;
373 	struct kfd_process_device *pdd;
374 
375 	/*Iterating over all devices*/
376 	while (kfd_topology_enum_kfd_devices(id, &dev) == 0) {
377 		if (!dev || kfd_devcgroup_check_permission(dev)) {
378 			/* Skip non GPU devices and devices to which the
379 			 * current process have no access to. Access can be
380 			 * limited by placing the process in a specific
381 			 * cgroup hierarchy
382 			 */
383 			id++;
384 			continue;
385 		}
386 
387 		pdd = kfd_create_process_device_data(dev, process);
388 		if (!pdd) {
389 			pr_err("Failed to create process device data\n");
390 			return -ENOMEM;
391 		}
392 		/*
393 		 * For 64 bit process apertures will be statically reserved in
394 		 * the x86_64 non canonical process address space
395 		 * amdkfd doesn't currently support apertures for 32 bit process
396 		 */
397 		if (process->is_32bit_user_mode) {
398 			pdd->lds_base = pdd->lds_limit = 0;
399 			pdd->gpuvm_base = pdd->gpuvm_limit = 0;
400 			pdd->scratch_base = pdd->scratch_limit = 0;
401 		} else {
402 			switch (dev->device_info->asic_family) {
403 			case CHIP_KAVERI:
404 			case CHIP_HAWAII:
405 			case CHIP_CARRIZO:
406 			case CHIP_TONGA:
407 			case CHIP_FIJI:
408 			case CHIP_POLARIS10:
409 			case CHIP_POLARIS11:
410 			case CHIP_POLARIS12:
411 			case CHIP_VEGAM:
412 				kfd_init_apertures_vi(pdd, id);
413 				break;
414 			case CHIP_VEGA10:
415 			case CHIP_VEGA12:
416 			case CHIP_VEGA20:
417 			case CHIP_RAVEN:
418 			case CHIP_RENOIR:
419 			case CHIP_ARCTURUS:
420 			case CHIP_NAVI10:
421 			case CHIP_NAVI12:
422 			case CHIP_NAVI14:
423 				kfd_init_apertures_v9(pdd, id);
424 				break;
425 			default:
426 				WARN(1, "Unexpected ASIC family %u",
427 				     dev->device_info->asic_family);
428 				return -EINVAL;
429 			}
430 
431 			if (!dev->device_info->needs_iommu_device) {
432 				/* dGPUs: the reserved space for kernel
433 				 * before SVM
434 				 */
435 				pdd->qpd.cwsr_base = SVM_CWSR_BASE;
436 				pdd->qpd.ib_base = SVM_IB_BASE;
437 			}
438 		}
439 
440 		dev_dbg(kfd_device, "node id %u\n", id);
441 		dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id);
442 		dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base);
443 		dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit);
444 		dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base);
445 		dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit);
446 		dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base);
447 		dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit);
448 
449 		id++;
450 	}
451 
452 	return 0;
453 }
454