xref: /netbsd-src/sys/kern/kern_timeout.c (revision 32a89764db97084253bb1e4fd0cf5b396c7886c1)
1 /*	$NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019, 2023
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
35  * Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. The name of the author may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
51  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
52  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
53  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
54  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $");
64 
65 /*
66  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
67  * value of c_cpu->cc_ticks when the timeout should be called.  There are
68  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
69  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
70  * a Timer Facility" by George Varghese and Tony Lauck.
71  *
72  * Some of the "math" in here is a bit tricky.  We have to beware of
73  * wrapping ints.
74  *
75  * We use the fact that any element added to the queue must be added with
76  * a positive time.  That means that any element `to' on the queue cannot
77  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
78  * be positive or negative so comparing it with anything is dangerous.
79  * The only way we can use the c->c_time value in any predictable way is
80  * when we calculate how far in the future `to' will timeout - "c->c_time
81  * - c->c_cpu->cc_ticks".  The result will always be positive for future
82  * timeouts and 0 or negative for due timeouts.
83  */
84 
85 #define	_CALLOUT_PRIVATE
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/callout.h>
91 #include <sys/lwp.h>
92 #include <sys/mutex.h>
93 #include <sys/proc.h>
94 #include <sys/sleepq.h>
95 #include <sys/syncobj.h>
96 #include <sys/evcnt.h>
97 #include <sys/intr.h>
98 #include <sys/cpu.h>
99 #include <sys/kmem.h>
100 #include <sys/sdt.h>
101 
102 #ifdef DDB
103 #include <machine/db_machdep.h>
104 #include <ddb/db_interface.h>
105 #include <ddb/db_access.h>
106 #include <ddb/db_cpu.h>
107 #include <ddb/db_sym.h>
108 #include <ddb/db_output.h>
109 #endif
110 
111 #define BUCKETS		1024
112 #define WHEELSIZE	256
113 #define WHEELMASK	255
114 #define WHEELBITS	8
115 
116 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
117 
118 #define BUCKET(cc, rel, abs)						\
119     (((rel) <= (1 << (2*WHEELBITS)))					\
120     	? ((rel) <= (1 << WHEELBITS))					\
121             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
122             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
123         : ((rel) <= (1 << (3*WHEELBITS)))				\
124             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
125             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
126 
127 #define MOVEBUCKET(cc, wheel, time)					\
128     CIRCQ_APPEND(&(cc)->cc_todo,					\
129         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
130 
131 /*
132  * Circular queue definitions.
133  */
134 
135 #define CIRCQ_INIT(list)						\
136 do {									\
137         (list)->cq_next_l = (list);					\
138         (list)->cq_prev_l = (list);					\
139 } while (/*CONSTCOND*/0)
140 
141 #define CIRCQ_INSERT(elem, list)					\
142 do {									\
143         (elem)->cq_prev_e = (list)->cq_prev_e;				\
144         (elem)->cq_next_l = (list);					\
145         (list)->cq_prev_l->cq_next_l = (elem);				\
146         (list)->cq_prev_l = (elem);					\
147 } while (/*CONSTCOND*/0)
148 
149 #define CIRCQ_APPEND(fst, snd)						\
150 do {									\
151         if (!CIRCQ_EMPTY(snd)) {					\
152                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
153                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
154                 (snd)->cq_prev_l->cq_next_l = (fst);			\
155                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
156                 CIRCQ_INIT(snd);					\
157         }								\
158 } while (/*CONSTCOND*/0)
159 
160 #define CIRCQ_REMOVE(elem)						\
161 do {									\
162         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
163         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
164 } while (/*CONSTCOND*/0)
165 
166 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
167 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
168 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
169 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
170 
171 struct callout_cpu {
172 	kmutex_t	*cc_lock;
173 	sleepq_t	cc_sleepq;
174 	u_int		cc_nwait;
175 	u_int		cc_ticks;
176 	lwp_t		*cc_lwp;
177 	callout_impl_t	*cc_active;
178 	struct evcnt	cc_ev_late;
179 	struct evcnt	cc_ev_block;
180 	struct callout_circq cc_todo;		/* Worklist */
181 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
182 	char		cc_name1[12];
183 	char		cc_name2[12];
184 	struct cpu_info	*cc_cpu;
185 };
186 
187 #ifdef DDB
188 static struct callout_cpu ccb;
189 #endif
190 
191 #ifndef CRASH /* _KERNEL */
192 static void	callout_softclock(void *);
193 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
194 
195 static struct callout_cpu callout_cpu0 __cacheline_aligned;
196 static void *callout_sih __read_mostly;
197 
198 SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
199     "struct callout *"/*ch*/,
200     "unsigned"/*flags*/);
201 SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
202     "struct callout *"/*ch*/);
203 SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
204     "struct callout *"/*ch*/,
205     "void (*)(void *)"/*func*/,
206     "void *"/*arg*/,
207     "unsigned"/*flags*/);
208 SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
209     "struct callout *"/*ch*/,
210     "void (*)(void *)"/*func*/,
211     "void *"/*arg*/,
212     "unsigned"/*flags*/,
213     "int"/*ticks*/);
214 SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
215     "struct callout *"/*ch*/,
216     "void (*)(void *)"/*func*/,
217     "void *"/*arg*/,
218     "unsigned"/*flags*/,
219     "struct cpu_info *"/*ocpu*/,
220     "struct cpu_info *"/*ncpu*/);
221 SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
222     "struct callout *"/*ch*/,
223     "void (*)(void *)"/*func*/,
224     "void *"/*arg*/,
225     "unsigned"/*flags*/);
226 SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
227     "struct callout *"/*ch*/,
228     "void (*)(void *)"/*func*/,
229     "void *"/*arg*/,
230     "unsigned"/*flags*/);
231 SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
232     "struct callout *"/*ch*/,
233     "void (*)(void *)"/*func*/,
234     "void *"/*arg*/,
235     "unsigned"/*flags*/,
236     "bool"/*expired*/);
237 SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
238     "struct callout *"/*ch*/,
239     "void (*)(void *)"/*func*/,
240     "void *"/*arg*/,
241     "unsigned"/*flags*/);
242 SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
243     "struct callout *"/*ch*/,
244     "void (*)(void *)"/*func*/,
245     "void *"/*arg*/,
246     "unsigned"/*flags*/,
247     "bool"/*expired*/);
248 
249 syncobj_t callout_syncobj = {
250 	.sobj_name	= "callout",
251 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
252 	.sobj_boostpri  = PRI_KERNEL,
253 	.sobj_unsleep	= sleepq_unsleep,
254 	.sobj_changepri	= sleepq_changepri,
255 	.sobj_lendpri	= sleepq_lendpri,
256 	.sobj_owner	= syncobj_noowner,
257 };
258 
259 static inline kmutex_t *
callout_lock(callout_impl_t * c)260 callout_lock(callout_impl_t *c)
261 {
262 	struct callout_cpu *cc;
263 	kmutex_t *lock;
264 
265 	for (;;) {
266 		cc = c->c_cpu;
267 		lock = cc->cc_lock;
268 		mutex_spin_enter(lock);
269 		if (__predict_true(cc == c->c_cpu))
270 			return lock;
271 		mutex_spin_exit(lock);
272 	}
273 }
274 
275 /*
276  * Check if the callout is currently running on an LWP that isn't curlwp.
277  */
278 static inline bool
callout_running_somewhere_else(callout_impl_t * c,struct callout_cpu * cc)279 callout_running_somewhere_else(callout_impl_t *c, struct callout_cpu *cc)
280 {
281 	KASSERT(c->c_cpu == cc);
282 
283 	return cc->cc_active == c && cc->cc_lwp != curlwp;
284 }
285 
286 /*
287  * callout_startup:
288  *
289  *	Initialize the callout facility, called at system startup time.
290  *	Do just enough to allow callouts to be safely registered.
291  */
292 void
callout_startup(void)293 callout_startup(void)
294 {
295 	struct callout_cpu *cc;
296 	int b;
297 
298 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
299 
300 	cc = &callout_cpu0;
301 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
302 	CIRCQ_INIT(&cc->cc_todo);
303 	for (b = 0; b < BUCKETS; b++)
304 		CIRCQ_INIT(&cc->cc_wheel[b]);
305 	curcpu()->ci_data.cpu_callout = cc;
306 }
307 
308 /*
309  * callout_init_cpu:
310  *
311  *	Per-CPU initialization.
312  */
313 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
314 
315 void
callout_init_cpu(struct cpu_info * ci)316 callout_init_cpu(struct cpu_info *ci)
317 {
318 	struct callout_cpu *cc;
319 	int b;
320 
321 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
322 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
323 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
324 		CIRCQ_INIT(&cc->cc_todo);
325 		for (b = 0; b < BUCKETS; b++)
326 			CIRCQ_INIT(&cc->cc_wheel[b]);
327 	} else {
328 		/* Boot CPU, one time only. */
329 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
330 		    callout_softclock, NULL);
331 		if (callout_sih == NULL)
332 			panic("callout_init_cpu (2)");
333 	}
334 
335 	sleepq_init(&cc->cc_sleepq);
336 
337 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
338 	    cpu_index(ci));
339 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
340 	    NULL, "callout", cc->cc_name1);
341 
342 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
343 	    cpu_index(ci));
344 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
345 	    NULL, "callout", cc->cc_name2);
346 
347 	cc->cc_cpu = ci;
348 	ci->ci_data.cpu_callout = cc;
349 }
350 
351 /*
352  * callout_init:
353  *
354  *	Initialize a callout structure.  This must be quick, so we fill
355  *	only the minimum number of fields.
356  */
357 void
callout_init(callout_t * cs,u_int flags)358 callout_init(callout_t *cs, u_int flags)
359 {
360 	callout_impl_t *c = (callout_impl_t *)cs;
361 	struct callout_cpu *cc;
362 
363 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
364 
365 	SDT_PROBE2(sdt, kernel, callout, init,  cs, flags);
366 
367 	cc = curcpu()->ci_data.cpu_callout;
368 	c->c_func = NULL;
369 	c->c_magic = CALLOUT_MAGIC;
370 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
371 		c->c_flags = flags;
372 		c->c_cpu = cc;
373 		return;
374 	}
375 	c->c_flags = flags | CALLOUT_BOUND;
376 	c->c_cpu = &callout_cpu0;
377 }
378 
379 /*
380  * callout_destroy:
381  *
382  *	Destroy a callout structure.  The callout must be stopped.
383  */
384 void
callout_destroy(callout_t * cs)385 callout_destroy(callout_t *cs)
386 {
387 	callout_impl_t *c = (callout_impl_t *)cs;
388 
389 	SDT_PROBE1(sdt, kernel, callout, destroy,  cs);
390 
391 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
392 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
393 	    c, c->c_magic, CALLOUT_MAGIC);
394 	/*
395 	 * It's not necessary to lock in order to see the correct value
396 	 * of c->c_flags.  If the callout could potentially have been
397 	 * running, the current thread should have stopped it.
398 	 */
399 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
400 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
401 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
402 	KASSERTMSG(!callout_running_somewhere_else(c, c->c_cpu),
403 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
404 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
405 	c->c_magic = 0;
406 }
407 
408 /*
409  * callout_schedule_locked:
410  *
411  *	Schedule a callout to run.  The function and argument must
412  *	already be set in the callout structure.  Must be called with
413  *	callout_lock.
414  */
415 static void
callout_schedule_locked(callout_impl_t * c,kmutex_t * lock,int to_ticks)416 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
417 {
418 	struct callout_cpu *cc, *occ;
419 	int old_time;
420 
421 	SDT_PROBE5(sdt, kernel, callout, schedule,
422 	    c, c->c_func, c->c_arg, c->c_flags, to_ticks);
423 
424 	KASSERT(to_ticks >= 0);
425 	KASSERT(c->c_func != NULL);
426 
427 	/* Initialize the time here, it won't change. */
428 	occ = c->c_cpu;
429 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
430 
431 	/*
432 	 * If this timeout is already scheduled and now is moved
433 	 * earlier, reschedule it now.  Otherwise leave it in place
434 	 * and let it be rescheduled later.
435 	 */
436 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
437 		/* Leave on existing CPU. */
438 		old_time = c->c_time;
439 		c->c_time = to_ticks + occ->cc_ticks;
440 		if (c->c_time - old_time < 0) {
441 			CIRCQ_REMOVE(&c->c_list);
442 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
443 		}
444 		mutex_spin_exit(lock);
445 		return;
446 	}
447 
448 	cc = curcpu()->ci_data.cpu_callout;
449 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
450 	    !mutex_tryenter(cc->cc_lock)) {
451 		/* Leave on existing CPU. */
452 		c->c_time = to_ticks + occ->cc_ticks;
453 		c->c_flags |= CALLOUT_PENDING;
454 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
455 	} else {
456 		/* Move to this CPU. */
457 		c->c_cpu = cc;
458 		c->c_time = to_ticks + cc->cc_ticks;
459 		c->c_flags |= CALLOUT_PENDING;
460 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
461 		mutex_spin_exit(cc->cc_lock);
462 		SDT_PROBE6(sdt, kernel, callout, migrate,
463 		    c, c->c_func, c->c_arg, c->c_flags,
464 		    occ->cc_cpu, cc->cc_cpu);
465 	}
466 	mutex_spin_exit(lock);
467 }
468 
469 /*
470  * callout_reset:
471  *
472  *	Reset a callout structure with a new function and argument, and
473  *	schedule it to run.
474  */
475 void
callout_reset(callout_t * cs,int to_ticks,void (* func)(void *),void * arg)476 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
477 {
478 	callout_impl_t *c = (callout_impl_t *)cs;
479 	kmutex_t *lock;
480 
481 	KASSERT(c->c_magic == CALLOUT_MAGIC);
482 	KASSERT(func != NULL);
483 
484 	lock = callout_lock(c);
485 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
486 	c->c_func = func;
487 	c->c_arg = arg;
488 	callout_schedule_locked(c, lock, to_ticks);
489 }
490 
491 /*
492  * callout_schedule:
493  *
494  *	Schedule a callout to run.  The function and argument must
495  *	already be set in the callout structure.
496  */
497 void
callout_schedule(callout_t * cs,int to_ticks)498 callout_schedule(callout_t *cs, int to_ticks)
499 {
500 	callout_impl_t *c = (callout_impl_t *)cs;
501 	kmutex_t *lock;
502 
503 	KASSERT(c->c_magic == CALLOUT_MAGIC);
504 
505 	lock = callout_lock(c);
506 	callout_schedule_locked(c, lock, to_ticks);
507 }
508 
509 /*
510  * callout_stop:
511  *
512  *	Try to cancel a pending callout.  It may be too late: the callout
513  *	could be running on another CPU.  If called from interrupt context,
514  *	the callout could already be in progress at a lower priority.
515  */
516 bool
callout_stop(callout_t * cs)517 callout_stop(callout_t *cs)
518 {
519 	callout_impl_t *c = (callout_impl_t *)cs;
520 	kmutex_t *lock;
521 	bool expired;
522 
523 	KASSERT(c->c_magic == CALLOUT_MAGIC);
524 
525 	lock = callout_lock(c);
526 
527 	if ((c->c_flags & CALLOUT_PENDING) != 0)
528 		CIRCQ_REMOVE(&c->c_list);
529 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
530 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
531 
532 	SDT_PROBE5(sdt, kernel, callout, stop,
533 	    c, c->c_func, c->c_arg, c->c_flags, expired);
534 
535 	mutex_spin_exit(lock);
536 
537 	return expired;
538 }
539 
540 /*
541  * callout_halt:
542  *
543  *	Cancel a pending callout.  If in-flight, block until it completes.
544  *	May not be called from a hard interrupt handler.  If the callout
545  * 	can take locks, the caller of callout_halt() must not hold any of
546  *	those locks, otherwise the two could deadlock.  If 'interlock' is
547  *	non-NULL and we must wait for the callout to complete, it will be
548  *	released and re-acquired before returning.
549  */
550 bool
callout_halt(callout_t * cs,void * interlock)551 callout_halt(callout_t *cs, void *interlock)
552 {
553 	callout_impl_t *c = (callout_impl_t *)cs;
554 	kmutex_t *lock;
555 
556 	KASSERT(c->c_magic == CALLOUT_MAGIC);
557 	KASSERT(!cpu_intr_p());
558 	KASSERT(interlock == NULL || mutex_owned(interlock));
559 
560 	/* Fast path. */
561 	lock = callout_lock(c);
562 	SDT_PROBE4(sdt, kernel, callout, halt,
563 	    c, c->c_func, c->c_arg, c->c_flags);
564 	if ((c->c_flags & CALLOUT_PENDING) != 0)
565 		CIRCQ_REMOVE(&c->c_list);
566 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
567 	if (__predict_false(callout_running_somewhere_else(c, c->c_cpu))) {
568 		callout_wait(c, interlock, lock);
569 		return true;
570 	}
571 	SDT_PROBE5(sdt, kernel, callout, halt__done,
572 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
573 	mutex_spin_exit(lock);
574 	return false;
575 }
576 
577 /*
578  * callout_wait:
579  *
580  *	Slow path for callout_halt().  Deliberately marked __noinline to
581  *	prevent unneeded overhead in the caller.
582  */
583 static void __noinline
callout_wait(callout_impl_t * c,void * interlock,kmutex_t * lock)584 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
585 {
586 	struct callout_cpu *cc;
587 	struct lwp *l;
588 	kmutex_t *relock;
589 	int nlocks;
590 
591 	l = curlwp;
592 	relock = NULL;
593 	for (;;) {
594 		/*
595 		 * At this point we know the callout is not pending, but it
596 		 * could be running on a CPU somewhere.  That can be curcpu
597 		 * in a few cases:
598 		 *
599 		 * - curlwp is a higher priority soft interrupt
600 		 * - the callout blocked on a lock and is currently asleep
601 		 * - the callout itself has called callout_halt() (nice!)
602 		 */
603 		cc = c->c_cpu;
604 		if (__predict_true(!callout_running_somewhere_else(c, cc)))
605 			break;
606 
607 		/* It's running - need to wait for it to complete. */
608 		if (interlock != NULL) {
609 			/*
610 			 * Avoid potential scheduler lock order problems by
611 			 * dropping the interlock without the callout lock
612 			 * held; then retry.
613 			 */
614 			mutex_spin_exit(lock);
615 			mutex_exit(interlock);
616 			relock = interlock;
617 			interlock = NULL;
618 		} else {
619 			/* XXX Better to do priority inheritance. */
620 			KASSERT(l->l_wchan == NULL);
621 			cc->cc_nwait++;
622 			cc->cc_ev_block.ev_count++;
623 			nlocks = sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
624 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
625 			    &callout_syncobj, false);
626 			sleepq_block(0, false, &callout_syncobj, nlocks);
627 		}
628 
629 		/*
630 		 * Re-lock the callout and check the state of play again.
631 		 * It's a common design pattern for callouts to re-schedule
632 		 * themselves so put a stop to it again if needed.
633 		 */
634 		lock = callout_lock(c);
635 		if ((c->c_flags & CALLOUT_PENDING) != 0)
636 			CIRCQ_REMOVE(&c->c_list);
637 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
638 	}
639 
640 	SDT_PROBE5(sdt, kernel, callout, halt__done,
641 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
642 
643 	mutex_spin_exit(lock);
644 	if (__predict_false(relock != NULL))
645 		mutex_enter(relock);
646 }
647 
648 #ifdef notyet
649 /*
650  * callout_bind:
651  *
652  *	Bind a callout so that it will only execute on one CPU.
653  *	The callout must be stopped, and must be MPSAFE.
654  *
655  *	XXX Disabled for now until it is decided how to handle
656  *	offlined CPUs.  We may want weak+strong binding.
657  */
658 void
callout_bind(callout_t * cs,struct cpu_info * ci)659 callout_bind(callout_t *cs, struct cpu_info *ci)
660 {
661 	callout_impl_t *c = (callout_impl_t *)cs;
662 	struct callout_cpu *cc;
663 	kmutex_t *lock;
664 
665 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
666 	KASSERT(c->c_cpu->cc_active != c);
667 	KASSERT(c->c_magic == CALLOUT_MAGIC);
668 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
669 
670 	lock = callout_lock(c);
671 	cc = ci->ci_data.cpu_callout;
672 	c->c_flags |= CALLOUT_BOUND;
673 	if (c->c_cpu != cc) {
674 		/*
675 		 * Assigning c_cpu effectively unlocks the callout
676 		 * structure, as we don't hold the new CPU's lock.
677 		 * Issue memory barrier to prevent accesses being
678 		 * reordered.
679 		 */
680 		membar_exit();
681 		c->c_cpu = cc;
682 	}
683 	mutex_spin_exit(lock);
684 }
685 #endif
686 
687 void
callout_setfunc(callout_t * cs,void (* func)(void *),void * arg)688 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
689 {
690 	callout_impl_t *c = (callout_impl_t *)cs;
691 	kmutex_t *lock;
692 
693 	KASSERT(c->c_magic == CALLOUT_MAGIC);
694 	KASSERT(func != NULL);
695 
696 	lock = callout_lock(c);
697 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
698 	c->c_func = func;
699 	c->c_arg = arg;
700 	mutex_spin_exit(lock);
701 }
702 
703 bool
callout_expired(callout_t * cs)704 callout_expired(callout_t *cs)
705 {
706 	callout_impl_t *c = (callout_impl_t *)cs;
707 	kmutex_t *lock;
708 	bool rv;
709 
710 	KASSERT(c->c_magic == CALLOUT_MAGIC);
711 
712 	lock = callout_lock(c);
713 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
714 	mutex_spin_exit(lock);
715 
716 	return rv;
717 }
718 
719 bool
callout_active(callout_t * cs)720 callout_active(callout_t *cs)
721 {
722 	callout_impl_t *c = (callout_impl_t *)cs;
723 	kmutex_t *lock;
724 	bool rv;
725 
726 	KASSERT(c->c_magic == CALLOUT_MAGIC);
727 
728 	lock = callout_lock(c);
729 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
730 	mutex_spin_exit(lock);
731 
732 	return rv;
733 }
734 
735 bool
callout_pending(callout_t * cs)736 callout_pending(callout_t *cs)
737 {
738 	callout_impl_t *c = (callout_impl_t *)cs;
739 	kmutex_t *lock;
740 	bool rv;
741 
742 	KASSERT(c->c_magic == CALLOUT_MAGIC);
743 
744 	lock = callout_lock(c);
745 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
746 	mutex_spin_exit(lock);
747 
748 	return rv;
749 }
750 
751 bool
callout_invoking(callout_t * cs)752 callout_invoking(callout_t *cs)
753 {
754 	callout_impl_t *c = (callout_impl_t *)cs;
755 	kmutex_t *lock;
756 	bool rv;
757 
758 	KASSERT(c->c_magic == CALLOUT_MAGIC);
759 
760 	lock = callout_lock(c);
761 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
762 	mutex_spin_exit(lock);
763 
764 	return rv;
765 }
766 
767 void
callout_ack(callout_t * cs)768 callout_ack(callout_t *cs)
769 {
770 	callout_impl_t *c = (callout_impl_t *)cs;
771 	kmutex_t *lock;
772 
773 	KASSERT(c->c_magic == CALLOUT_MAGIC);
774 
775 	lock = callout_lock(c);
776 	c->c_flags &= ~CALLOUT_INVOKING;
777 	mutex_spin_exit(lock);
778 }
779 
780 /*
781  * callout_hardclock:
782  *
783  *	Called from hardclock() once every tick.  We schedule a soft
784  *	interrupt if there is work to be done.
785  */
786 void
callout_hardclock(void)787 callout_hardclock(void)
788 {
789 	struct callout_cpu *cc;
790 	int needsoftclock, ticks;
791 
792 	cc = curcpu()->ci_data.cpu_callout;
793 	mutex_spin_enter(cc->cc_lock);
794 
795 	ticks = ++cc->cc_ticks;
796 
797 	MOVEBUCKET(cc, 0, ticks);
798 	if (MASKWHEEL(0, ticks) == 0) {
799 		MOVEBUCKET(cc, 1, ticks);
800 		if (MASKWHEEL(1, ticks) == 0) {
801 			MOVEBUCKET(cc, 2, ticks);
802 			if (MASKWHEEL(2, ticks) == 0)
803 				MOVEBUCKET(cc, 3, ticks);
804 		}
805 	}
806 
807 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
808 	mutex_spin_exit(cc->cc_lock);
809 
810 	if (needsoftclock)
811 		softint_schedule(callout_sih);
812 }
813 
814 /*
815  * callout_softclock:
816  *
817  *	Soft interrupt handler, scheduled above if there is work to
818  * 	be done.  Callouts are made in soft interrupt context.
819  */
820 static void
callout_softclock(void * v)821 callout_softclock(void *v)
822 {
823 	callout_impl_t *c;
824 	struct callout_cpu *cc;
825 	void (*func)(void *);
826 	void *arg;
827 	int mpsafe, count, ticks, delta;
828 	u_int flags __unused;
829 	lwp_t *l;
830 
831 	l = curlwp;
832 	KASSERT(l->l_cpu == curcpu());
833 	cc = l->l_cpu->ci_data.cpu_callout;
834 
835 	mutex_spin_enter(cc->cc_lock);
836 	cc->cc_lwp = l;
837 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
838 		c = CIRCQ_FIRST(&cc->cc_todo);
839 		KASSERT(c->c_magic == CALLOUT_MAGIC);
840 		KASSERT(c->c_func != NULL);
841 		KASSERT(c->c_cpu == cc);
842 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
843 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
844 		CIRCQ_REMOVE(&c->c_list);
845 
846 		/* If due run it, otherwise insert it into the right bucket. */
847 		ticks = cc->cc_ticks;
848 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
849 		if (delta > 0) {
850 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
851 			continue;
852 		}
853 		if (delta < 0)
854 			cc->cc_ev_late.ev_count++;
855 
856 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
857 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
858 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
859 		func = c->c_func;
860 		arg = c->c_arg;
861 		cc->cc_active = c;
862 		flags = c->c_flags;
863 
864 		mutex_spin_exit(cc->cc_lock);
865 		KASSERT(func != NULL);
866 		SDT_PROBE4(sdt, kernel, callout, entry,  c, func, arg, flags);
867 		if (__predict_false(!mpsafe)) {
868 			KERNEL_LOCK(1, NULL);
869 			(*func)(arg);
870 			KERNEL_UNLOCK_ONE(NULL);
871 		} else
872 			(*func)(arg);
873 		SDT_PROBE4(sdt, kernel, callout, return,  c, func, arg, flags);
874 		KASSERTMSG(l->l_blcnt == 0,
875 		    "callout %p func %p leaked %d biglocks",
876 		    c, func, l->l_blcnt);
877 		mutex_spin_enter(cc->cc_lock);
878 
879 		/*
880 		 * We can't touch 'c' here because it might be
881 		 * freed already.  If LWPs waiting for callout
882 		 * to complete, awaken them.
883 		 */
884 		cc->cc_active = NULL;
885 		if ((count = cc->cc_nwait) != 0) {
886 			cc->cc_nwait = 0;
887 			/* sleepq_wake() drops the lock. */
888 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
889 			mutex_spin_enter(cc->cc_lock);
890 		}
891 	}
892 	cc->cc_lwp = NULL;
893 	mutex_spin_exit(cc->cc_lock);
894 }
895 #endif /* !CRASH */
896 
897 #ifdef DDB
898 static void
db_show_callout_bucket(struct callout_cpu * cc,struct callout_circq * kbucket,struct callout_circq * bucket)899 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
900     struct callout_circq *bucket)
901 {
902 	callout_impl_t *c, ci;
903 	db_expr_t offset;
904 	const char *name;
905 	static char question[] = "?";
906 	int b;
907 
908 	if (CIRCQ_LAST(bucket, kbucket))
909 		return;
910 
911 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
912 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
913 		c = &ci;
914 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
915 		    &offset);
916 		name = name ? name : question;
917 		b = (bucket - cc->cc_wheel);
918 		if (b < 0)
919 			b = -WHEELSIZE;
920 		db_printf("%9d %2d/%-4d %16lx  %s\n",
921 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
922 		    (u_long)c->c_arg, name);
923 		if (CIRCQ_LAST(&c->c_list, kbucket))
924 			break;
925 	}
926 }
927 
928 void
db_show_callout(db_expr_t addr,bool haddr,db_expr_t count,const char * modif)929 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
930 {
931 	struct callout_cpu *cc;
932 	struct cpu_info *ci;
933 	int b;
934 
935 #ifndef CRASH
936 	db_printf("hardclock_ticks now: %d\n", getticks());
937 #endif
938 	db_printf("    ticks  wheel               arg  func\n");
939 
940 	/*
941 	 * Don't lock the callwheel; all the other CPUs are paused
942 	 * anyhow, and we might be called in a circumstance where
943 	 * some other CPU was paused while holding the lock.
944 	 */
945 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
946 		db_read_bytes((db_addr_t)ci +
947 		    offsetof(struct cpu_info, ci_data.cpu_callout),
948 		    sizeof(cc), (char *)&cc);
949 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
950 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
951 	}
952 	for (b = 0; b < BUCKETS; b++) {
953 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
954 			db_read_bytes((db_addr_t)ci +
955 			    offsetof(struct cpu_info, ci_data.cpu_callout),
956 			    sizeof(cc), (char *)&cc);
957 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
958 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
959 			    &ccb.cc_wheel[b]);
960 		}
961 	}
962 }
963 #endif /* DDB */
964