xref: /netbsd-src/sys/kern/kern_clock.c (revision 792ae95f9038548bbcfbca61d524784435176737)
1 /*	$NetBSD: kern_clock.c,v 1.151 2023/09/02 17:44:59 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  * This code is derived from software contributed to The NetBSD Foundation
11  * by Charles M. Hannum.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.151 2023/09/02 17:44:59 riastradh Exp $");
73 
74 #ifdef _KERNEL_OPT
75 #include "opt_dtrace.h"
76 #include "opt_gprof.h"
77 #include "opt_multiprocessor.h"
78 #endif
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/signalvar.h>
87 #include <sys/sysctl.h>
88 #include <sys/timex.h>
89 #include <sys/sched.h>
90 #include <sys/time.h>
91 #include <sys/timetc.h>
92 #include <sys/cpu.h>
93 #include <sys/atomic.h>
94 #include <sys/rndsource.h>
95 #include <sys/heartbeat.h>
96 
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100 
101 #ifdef KDTRACE_HOOKS
102 #include <sys/dtrace_bsd.h>
103 #include <sys/cpu.h>
104 
105 cyclic_clock_func_t	cyclic_clock_func[MAXCPUS];
106 #endif
107 
108 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
109 
110 /*
111  * Clock handling routines.
112  *
113  * This code is written to operate with two timers that run independently of
114  * each other.  The main clock, running hz times per second, is used to keep
115  * track of real time.  The second timer handles kernel and user profiling,
116  * and does resource use estimation.  If the second timer is programmable,
117  * it is randomized to avoid aliasing between the two clocks.  For example,
118  * the randomization prevents an adversary from always giving up the CPU
119  * just before its quantum expires.  Otherwise, it would never accumulate
120  * CPU ticks.  The mean frequency of the second timer is stathz.
121  *
122  * If no second timer exists, stathz will be zero; in this case we drive
123  * profiling and statistics off the main clock.  This WILL NOT be accurate;
124  * do not do it unless absolutely necessary.
125  *
126  * The statistics clock may (or may not) be run at a higher rate while
127  * profiling.  This profile clock runs at profhz.  We require that profhz
128  * be an integral multiple of stathz.
129  *
130  * If the statistics clock is running fast, it must be divided by the ratio
131  * profhz/stathz for statistics.  (For profiling, every tick counts.)
132  */
133 
134 int	stathz;
135 int	profhz;
136 int	profsrc;
137 int	schedhz;
138 int	profprocs;
139 static int hardclock_ticks;
140 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
141 static int psdiv;			/* prof => stat divider */
142 int	psratio;			/* ratio: prof / stat */
143 
144 struct clockrnd {
145 	struct krndsource source;
146 	unsigned needed;
147 };
148 
149 static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
150 static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
151 
152 static void
clockrnd_get(size_t needed,void * cookie)153 clockrnd_get(size_t needed, void *cookie)
154 {
155 	struct clockrnd *C = cookie;
156 
157 	/* Start sampling.  */
158 	atomic_store_relaxed(&C->needed, 2*NBBY*needed);
159 }
160 
161 static void
clockrnd_sample(struct clockrnd * C)162 clockrnd_sample(struct clockrnd *C)
163 {
164 	struct cpu_info *ci = curcpu();
165 
166 	/* If there's nothing needed right now, stop here.  */
167 	if (__predict_true(atomic_load_relaxed(&C->needed) == 0))
168 		return;
169 
170 	/*
171 	 * If we're not the primary core of a package, we're probably
172 	 * driven by the same clock as the primary core, so don't
173 	 * bother.
174 	 */
175 	if (ci != ci->ci_package1st)
176 		return;
177 
178 	/* Take a sample and enter it into the pool.  */
179 	rnd_add_uint32(&C->source, 0);
180 
181 	/*
182 	 * On the primary CPU, count down.  Using an atomic decrement
183 	 * here isn't really necessary -- on every platform we care
184 	 * about, stores to unsigned int are atomic, and the only other
185 	 * memory operation that could happen here is for another CPU
186 	 * to store a higher value for needed.  But using an atomic
187 	 * decrement avoids giving the impression of data races, and is
188 	 * unlikely to hurt because only one CPU will ever be writing
189 	 * to the location.
190 	 */
191 	if (CPU_IS_PRIMARY(curcpu())) {
192 		unsigned needed __diagused;
193 
194 		needed = atomic_dec_uint_nv(&C->needed);
195 		KASSERT(needed != UINT_MAX);
196 	}
197 }
198 
199 static u_int get_intr_timecount(struct timecounter *);
200 
201 static struct timecounter intr_timecounter = {
202 	.tc_get_timecount	= get_intr_timecount,
203 	.tc_poll_pps		= NULL,
204 	.tc_counter_mask	= ~0u,
205 	.tc_frequency		= 0,
206 	.tc_name		= "clockinterrupt",
207 	/* quality - minimum implementation level for a clock */
208 	.tc_quality		= 0,
209 	.tc_priv		= NULL,
210 };
211 
212 static u_int
get_intr_timecount(struct timecounter * tc)213 get_intr_timecount(struct timecounter *tc)
214 {
215 
216 	return (u_int)getticks();
217 }
218 
219 int
getticks(void)220 getticks(void)
221 {
222 	return atomic_load_relaxed(&hardclock_ticks);
223 }
224 
225 /*
226  * Initialize clock frequencies and start both clocks running.
227  */
228 void
initclocks(void)229 initclocks(void)
230 {
231 	static struct sysctllog *clog;
232 	int i;
233 
234 	/*
235 	 * Set divisors to 1 (normal case) and let the machine-specific
236 	 * code do its bit.
237 	 */
238 	psdiv = 1;
239 
240 	/*
241 	 * Call cpu_initclocks() before registering the default
242 	 * timecounter, in case it needs to adjust hz.
243 	 */
244 	const int old_hz = hz;
245 	cpu_initclocks();
246 	if (old_hz != hz) {
247 		tick = 1000000 / hz;
248 		tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
249 	}
250 
251 	/*
252 	 * provide minimum default time counter
253 	 * will only run at interrupt resolution
254 	 */
255 	intr_timecounter.tc_frequency = hz;
256 	tc_init(&intr_timecounter);
257 
258 	/*
259 	 * Compute profhz and stathz, fix profhz if needed.
260 	 */
261 	i = stathz ? stathz : hz;
262 	if (profhz == 0)
263 		profhz = i;
264 	psratio = profhz / i;
265 	if (schedhz == 0) {
266 		/* 16Hz is best */
267 		hardscheddiv = hz / 16;
268 		if (hardscheddiv <= 0)
269 			panic("hardscheddiv");
270 	}
271 
272 	sysctl_createv(&clog, 0, NULL, NULL,
273 		       CTLFLAG_PERMANENT,
274 		       CTLTYPE_STRUCT, "clockrate",
275 		       SYSCTL_DESCR("Kernel clock rates"),
276 		       sysctl_kern_clockrate, 0, NULL,
277 		       sizeof(struct clockinfo),
278 		       CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
279 	sysctl_createv(&clog, 0, NULL, NULL,
280 		       CTLFLAG_PERMANENT,
281 		       CTLTYPE_INT, "hardclock_ticks",
282 		       SYSCTL_DESCR("Number of hardclock ticks"),
283 		       NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
284 		       CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
285 
286 	rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
287 	rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
288 	    RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|RND_FLAG_HASCB);
289 	if (stathz) {
290 		rndsource_setcb(&statclockrnd.source, clockrnd_get,
291 		    &statclockrnd);
292 		rnd_attach_source(&statclockrnd.source, "statclock",
293 		    RND_TYPE_SKEW,
294 		    (RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|
295 			RND_FLAG_HASCB));
296 	}
297 }
298 
299 /*
300  * The real-time timer, interrupting hz times per second.
301  */
302 void
hardclock(struct clockframe * frame)303 hardclock(struct clockframe *frame)
304 {
305 	struct lwp *l;
306 	struct cpu_info *ci;
307 
308 	clockrnd_sample(&hardclockrnd);
309 
310 	ci = curcpu();
311 	l = ci->ci_onproc;
312 
313 	ptimer_tick(l, CLKF_USERMODE(frame));
314 
315 	/*
316 	 * If no separate statistics clock is available, run it from here.
317 	 */
318 	if (stathz == 0)
319 		statclock(frame);
320 	/*
321 	 * If no separate schedclock is provided, call it here
322 	 * at about 16 Hz.
323 	 */
324 	if (schedhz == 0) {
325 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
326 			schedclock(l);
327 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
328 		}
329 	}
330 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
331 		sched_tick(ci);
332 
333 	if (CPU_IS_PRIMARY(ci)) {
334 		atomic_store_relaxed(&hardclock_ticks,
335 		    atomic_load_relaxed(&hardclock_ticks) + 1);
336 		tc_ticktock();
337 	}
338 
339 	/*
340 	 * Make sure the CPUs and timecounter are making progress.
341 	 */
342 	heartbeat();
343 
344 	/*
345 	 * Update real-time timeout queue.
346 	 */
347 	callout_hardclock();
348 }
349 
350 /*
351  * Start profiling on a process.
352  *
353  * Kernel profiling passes proc0 which never exits and hence
354  * keeps the profile clock running constantly.
355  */
356 void
startprofclock(struct proc * p)357 startprofclock(struct proc *p)
358 {
359 
360 	KASSERT(mutex_owned(&p->p_stmutex));
361 
362 	if ((p->p_stflag & PST_PROFIL) == 0) {
363 		p->p_stflag |= PST_PROFIL;
364 		/*
365 		 * This is only necessary if using the clock as the
366 		 * profiling source.
367 		 */
368 		if (++profprocs == 1 && stathz != 0)
369 			psdiv = psratio;
370 	}
371 }
372 
373 /*
374  * Stop profiling on a process.
375  */
376 void
stopprofclock(struct proc * p)377 stopprofclock(struct proc *p)
378 {
379 
380 	KASSERT(mutex_owned(&p->p_stmutex));
381 
382 	if (p->p_stflag & PST_PROFIL) {
383 		p->p_stflag &= ~PST_PROFIL;
384 		/*
385 		 * This is only necessary if using the clock as the
386 		 * profiling source.
387 		 */
388 		if (--profprocs == 0 && stathz != 0)
389 			psdiv = 1;
390 	}
391 }
392 
393 void
schedclock(struct lwp * l)394 schedclock(struct lwp *l)
395 {
396 	if ((l->l_flag & LW_IDLE) != 0)
397 		return;
398 
399 	sched_schedclock(l);
400 }
401 
402 /*
403  * Statistics clock.  Grab profile sample, and if divider reaches 0,
404  * do process and kernel statistics.
405  */
406 void
statclock(struct clockframe * frame)407 statclock(struct clockframe *frame)
408 {
409 #ifdef GPROF
410 	struct gmonparam *g;
411 	intptr_t i;
412 #endif
413 	struct cpu_info *ci = curcpu();
414 	struct schedstate_percpu *spc = &ci->ci_schedstate;
415 	struct proc *p;
416 	struct lwp *l;
417 
418 	if (stathz)
419 		clockrnd_sample(&statclockrnd);
420 
421 	/*
422 	 * Notice changes in divisor frequency, and adjust clock
423 	 * frequency accordingly.
424 	 */
425 	if (spc->spc_psdiv != psdiv) {
426 		spc->spc_psdiv = psdiv;
427 		spc->spc_pscnt = psdiv;
428 		if (psdiv == 1) {
429 			setstatclockrate(stathz);
430 		} else {
431 			setstatclockrate(profhz);
432 		}
433 	}
434 	l = ci->ci_onproc;
435 	if ((l->l_flag & LW_IDLE) != 0) {
436 		/*
437 		 * don't account idle lwps as swapper.
438 		 */
439 		p = NULL;
440 	} else {
441 		p = l->l_proc;
442 		mutex_spin_enter(&p->p_stmutex);
443 	}
444 
445 	if (CLKF_USERMODE(frame)) {
446 		KASSERT(p != NULL);
447 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
448 			addupc_intr(l, CLKF_PC(frame));
449 		if (--spc->spc_pscnt > 0) {
450 			mutex_spin_exit(&p->p_stmutex);
451 			return;
452 		}
453 
454 		/*
455 		 * Came from user mode; CPU was in user state.
456 		 * If this process is being profiled record the tick.
457 		 */
458 		p->p_uticks++;
459 		if (p->p_nice > NZERO)
460 			spc->spc_cp_time[CP_NICE]++;
461 		else
462 			spc->spc_cp_time[CP_USER]++;
463 	} else {
464 #ifdef GPROF
465 		/*
466 		 * Kernel statistics are just like addupc_intr, only easier.
467 		 */
468 #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL)
469 		g = curcpu()->ci_gmon;
470 		if (g != NULL &&
471 		    profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
472 #else
473 		g = &_gmonparam;
474 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
475 #endif
476 			i = CLKF_PC(frame) - g->lowpc;
477 			if (i < g->textsize) {
478 				i /= HISTFRACTION * sizeof(*g->kcount);
479 				g->kcount[i]++;
480 			}
481 		}
482 #endif
483 #ifdef LWP_PC
484 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
485 		    (p->p_stflag & PST_PROFIL)) {
486 			addupc_intr(l, LWP_PC(l));
487 		}
488 #endif
489 		if (--spc->spc_pscnt > 0) {
490 			if (p != NULL)
491 				mutex_spin_exit(&p->p_stmutex);
492 			return;
493 		}
494 		/*
495 		 * Came from kernel mode, so we were:
496 		 * - handling an interrupt,
497 		 * - doing syscall or trap work on behalf of the current
498 		 *   user process, or
499 		 * - spinning in the idle loop.
500 		 * Whichever it is, charge the time as appropriate.
501 		 * Note that we charge interrupts to the current process,
502 		 * regardless of whether they are ``for'' that process,
503 		 * so that we know how much of its real time was spent
504 		 * in ``non-process'' (i.e., interrupt) work.
505 		 */
506 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
507 			if (p != NULL) {
508 				p->p_iticks++;
509 			}
510 			spc->spc_cp_time[CP_INTR]++;
511 		} else if (p != NULL) {
512 			p->p_sticks++;
513 			spc->spc_cp_time[CP_SYS]++;
514 		} else {
515 			spc->spc_cp_time[CP_IDLE]++;
516 		}
517 	}
518 	spc->spc_pscnt = psdiv;
519 
520 	if (p != NULL) {
521 		atomic_inc_uint(&l->l_cpticks);
522 		mutex_spin_exit(&p->p_stmutex);
523 	}
524 
525 #ifdef KDTRACE_HOOKS
526 	cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
527 	if (func) {
528 		(*func)((struct clockframe *)frame);
529 	}
530 #endif
531 }
532 
533 /*
534  * sysctl helper routine for kern.clockrate. Assembles a struct on
535  * the fly to be returned to the caller.
536  */
537 static int
538 sysctl_kern_clockrate(SYSCTLFN_ARGS)
539 {
540 	struct clockinfo clkinfo;
541 	struct sysctlnode node;
542 
543 	clkinfo.tick = tick;
544 	clkinfo.tickadj = tickadj;
545 	clkinfo.hz = hz;
546 	clkinfo.profhz = profhz;
547 	clkinfo.stathz = stathz ? stathz : hz;
548 
549 	node = *rnode;
550 	node.sysctl_data = &clkinfo;
551 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
552 }
553